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Abstract: A computation of the constant appearing in the spin-1 bosonization formula
is given. This constant relates Faltings’ delta invariant to the zeta-regularized determinant
of the Laplace operator with respect to the Arakelov metric.

1. Introduction

The bosonization formulas on Riemann surfaces relate zeta-regularized determinants of
Laplace operators acting on sections of line bundles and on scalars [AMV,VV,ABMNV,
Sn,DS,F2]. They play an important role in conformal field theory and perturbative string
theory (for a survey of the subject, see [DP3]). Proofs of these identities in the math-
ematical literature generally proceed by computing either first or second variations of
certain combinations of Green’s and theta functions with respect to the Riemann moduli.
As a consequence, all current formulations leave undetermined constants of integration,
depending only on the genus and spin, which must be evaluated by other means. There
has been renewed interest recently in the precise values of these constants (cf. [DGP]).

In [W1], using ideas of Belavin-Knizhnik [BK] and D’Hoker-Phong [DP1], along
with the results in [W2] on the behavior of the Arakelov metric on degenerating surfaces,
values for the constants ¢, associated to genus = g and spin = 1 were obtained. The
argument was heuristic, however, since it involved techniques from functional integra-
tion where normalizations can be somewhat arbitrary. The goal of this note is to give a
rigorous proof of the result in [W1].

For the purposes of this paper, we may define ¢, in terms of the relationship between
Faltings’ delta invariant § (M) of a compact Riemann surface M of genus g > 1 and the
determinant of the Laplace operator on functions with respect to the Arakelov metric
(cf. [F1]),

det’ Ay, Arak.)
area(M, Arak.)’
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S(M) =cgy —6log (1.1)
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The spin-1 bosonization formula states that

( det/A(M,Arak.) )3/4 ce/8 ||ﬁ||(pl+"'+pg_Z_A)Hi<j G(pi, pj)
=e
area(M, Arak.) det Im I det w; (p)HITT—; G(pi, 2)

(1.2)
where ¥ is the theta function associated to M, A is the Riemann divisor, w; is a basis of
abelian differentials, €2 is the period matrix, G(z, w) is the Arakelov-Green’s function,

and {p;, z} C M are generic points.
The main result is

Theorem 1.3. The value of ¢, in (1.1) is

cg = (1 —g)co+ger,
c1 = —8log(2m),
co = —24¢'(—=1) +1 — 6log(2m) — 21log(2),

where ¢ (s) is the Riemann zeta function.

Remark 1.4. In [W1] one of the terms in the computation of the conformal anomaly was
mistakenly neglected (see [W3] and the proof of Lemma 5.2 below). With this correc-
tion, the expression in Theorem 1.3 agrees with the result in [W1]. It is noteworthy that
the path integral approach to factorization computes this constant exactly.

Remark 1.5. The constant:

ag = (1 = gao,
ag =co—cy] = —24 (=) + 1 +2log(2m) — 2log(2),

is called “Deligne’s constant” and is the normalization in another formulation of the
bosonization formulas (see [D]). We note that this value of ¢, implies that formally:

S(PYH = 0 (see [J2, §7]).

Remark 1.6. In addition to [W1], expressions for ¢, have previously appeared in the
mathematical literature (cf. [GSo,So0,J2]). These disagree slightly with the result obtained
in Theorem 1.3.

The proof of Theorem 1.3 is obtained via degeneration. Let M; denote a family of
genus g Riemann surfaces degenerating as + — 0 to a semistable nodal curve My with
irreducible components M* and M~ of genus g* and g—, respectively. We will use the
following

Theorem 1.7 ([W2], Main Theorem; see also [J1]).

+ -

tlirr(1) (8(M,)+4 log|t|) =8(M*)+8(M™).

To evaluate ¢, we compare this result with the degeneration of the determinant of the
Laplace operator for the Arakelov metric, and then we use (1.1). The asymptotic behav-
ior of determinants of laplacians is a widely studied subject (cf. [DP2,Sa,K,V,GIJR,H,
Wol]). The new ingredient that is useful here is the result of [BFK]. Let y denote a sim-
ple closed separating curve on M, with R* U R~ = M — y the connected components.
Given a Riemannian metric 4 on M, let RT have the induced metrics.
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Theorem 1.8 ([BFK], Theorem B*).

det’ ANGVA,

det’ MM,y,h)
area(M, h) '

Ly (V)

Here, the determinants on the right-hand-side are evaluated with respect to the spectra
for the Dirichlet problems on the surfaces with boundary R*, £, (y) denotes the length
of y with respect to the metric 4, and N,y denotes the Neumann jump operator for
functions on y; in this case, it is the sum of the Dirichlet-to-Neumann operators for R=.

In Sect. 2 we show how Theorem 1.8 can be used to factorize det’ Ay in terms of
det” A+ (see Proposition 2.5). This argument is closely parallel to the one in [W1],
where the sewing property of path integrals was used in lieu of Theorem 1.8. In Sect. 3
we make a simple observation concerning the asymptotic behavior of the Neumann jump
operator N,y as the surface degenerates along y. The key result, Proposition 3.5,
is that NV(p,,.5) is equal to a universal operator on L2-functions on the circle, modulo
trace-class operators with asymptotically vanishing norm (for more detailed treatments,
see [GG,PW,L,MM)]). In Sect. 4 we briefly review the results needed on the Arakelov
metric, and in Sect. 5 we complete the proof of Theorem 1.3.

As a final remark, we emphasize that the method described above gives the asymp-
totic behavior of determinants up to the zero™ order term for any family of confor-
mal metrics, provided one has sufficient information on the degeneration (essentially,
a C¥ estimate on the metric and its curvature, with bounded growth of derivatives; see
Proposition 4.6). This paper illustrates the case of the Arakelov metric, but the technique
applies equally well to the hyperbolic metric, for example. Indeed, using the expansion
in [Wo2] one can quickly recover the asymptotic behavior for the case of pinching along
a separating curve,

= detA(Rﬁh)detA(Rih)

logdet’ Ay, ypy = (1/6)log || + O(1)

that is a consequence of the (more precise) expression given in [Wol, Theorem 5.3],
without passing through the explicit evaluation of determinants in terms of Selberg zeta
functions. This also explains why evaluating the next order term is more difficult in this
case, since the procedure in [Wo2] relates the hyperbolic metric on M; to the complete
hyperbolic metrics on the punctured surfaces M* — {p*}, and not to the hyperbolic
metrics on the closed surfaces M*. The conformal factors relating these two are, of
course, quite complicated (cf. [JL]).

2. Factorization of Determinants

Let M* and M~ be a pair of closed Riemann surfaces with genera g™ > 1. For a complex
parameter ¢, 0 < |¢t| < 1 we construct a degenerating family M; of closed surfaces of

genus g = gt + g~ using the “plumbing construction”: z*z~ = ¢, for local coordinates
7+ on M centered at points pjE (for more details, see [W2]). Let y; denote the curve in
M, given by |z*| = |z7| = |¢|'/2. If we set B, = {z € C : |z| < |t|'/?}, identify z with

z*,and let R = M* — B, then M, — y, is conformally equivalent to the disjoint union
R} U R; . Fix conformal metrics 1~ on M*. For simplicity, we will assume in advance
that z* are normalized in the sense that with respect to these coordinates hE0) = 1.
Let h;, t # 0 be a family of conformal metrics on M;. Then on R,jE there are conformal
factors

h = hEer 2.1)

! M=y
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Set

det’ AM,,hy)

) 2.2)
area(M;, h;)

QM by =

where det” A denotes the zeta-regularized determinant of the (positive) Laplace-Beltrami
operator over the nonzero spectrum {2 ; };?": I

logdet' A = =, (0) , CA(S)ZZ)”;s‘
j=1

Similarly, we define

det/ A(Mi,hi)

Qs sy = area(M=*, h*)’

We wish to derive an expression for Qyy, in terms of Q,+. To do this, we pass through
the relative determinants. Let

QrE ny = dtARE py s Qurt px) = et e )

denote the determinants for the Laplacian on R,i with respect to the restriction of the
metric 4, on the one hand, and the metrics AT on the other. In this note we always
choose Dirichlet boundary conditions on a manifold with boundary. Since 4; and A* are
conformally related as in (2.1), we have the Polyakov-Alvarez formula (cf. [A]):

+
St (0r)

Q(R,i,h,) = Q(Rti,hi)e s (23)

1 1
Swm(@)=——— | dA, {ZKha+|VU|2}——/ dsp (2kno +33,0) . (2.4)
127 R 127 9R

where Kj and kj, are the Gauss and geodesic curvatures, respectively, for the metric A.
Let V; denote the Neumann jump operator for (M, y;, h;), and ./\fljE the Neumann jump
operators for the surfaces (M +, Vzi, hi), where y,i = 8Rli. Finally, we set

Qp, =detAp, , Qp,n = detAp, ),

where B; has the Euclidean metric, or a general metric &, respectively. Then we have
the following

Proposition 2.5.

L, (yr) det’ NF det’ N~ ]

lim 2ex{—S+++—S—7 _}
Ho[QW“h”(QBf) P Sikri @) = Sy O | S S G N

= O+t Qm—n)-
Proof. Applying Theorem 1.8 and (2.3) we have

det’ N;
Lh, (1) .

QuMyhey = Qry ) LRy i) EXP [S(R;,h+)(0t+) + S(R;,h—>(f7z_)}
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Using Theorem 1.8 again for (M*, ht):

det! N7F
Q(Mi,hi) = Q + hi Q(B[’hi)—t.
i) ()
Now Qp, 5+ and Qp, are related by the Liouville action (2.4) for a smooth conformal

factor. Hence, Q(p, 4+)/Qp, — 1 ast — 0 (recall the normalization h*(0) = 1). The
result follows. O

3. Asymptotics of the Neumann Jump Operator

Let M be a compact Riemann surface and z = re'? a local coordinate. For a real param-
etere,0 <e <l,setB(e) ={x e M :|z(x)| < ¢e},and R(¢) = M — B(e) (n.b. in the
notation of the previous section, B(¢) = B; and R*(¢) = Ri, where |t| = 82). Assume
M is equipped with a conformal metric that is euclidean |dz|“ in a neighborhood of B(1).
Let Pree): L2(S') — L2(S') (resp. Ppe)) denote the Dirichlet-to-Neumann operator
for R(e) (resp. B(e)). Normals are always taken to be outward pointing. Note that
ker Ppe) consists of the constants, and by Stokes’ theorem, Pg ) : L(z)(Sl) — L(z)(Sl),
where L%(S 1) isthe subspace of L2(ShH orthogonal to the constants. Define the following
auxiliary operators on L>(S!):

ind e —eg™n ino
T : E ape’™’ — — ) a,e”
& - n 8"+g_" n 9

nez nez
; 1 _ .
Z/lgjE : Zane”’g — 3 Z(e" + e )a,e™?,
nez ne’
V- Z inf Z inf
. ape > nape .
nez nez
. in6 in6
V| : ape'’ — |n|a,e' .
nez nez

Remark 3.1. On L§(S"), the operators VU, )" and {V(T,)~! + |V} are trace-class
with norm tending to zero as ¢ — 0.

Remark 3.2. By direct computation: Py = [V|.

We also define the (unbounded) operator Eg(e) : L>(S') — L?(S') as follows. For
f e L2(S1), let u be the harmonic function on R(1) with boundary values f. Extend
u to a harmonic function on R(e) (also denoted u). Then Ege)(f) We have
the following simple

= ”|3R(s)'

Lemma 3.3. |Eri) (/) = | fll forall0 < e < 1andall f € L?*(SY). In particular,
5;(18) is uniformly bounded as ¢ — 0.



344 R. A. Wentworth

Proof. Tt suffices to prove the estimate for f smooth. Let # be harmonic on R(¢) with

ulyge1y = f- Then
2
wWawme=Aewh%ﬂkﬁmm}
1 d 2
:/ dr—/ do u*(r, )
& dr 0
1 2
d 9
:2/ —r/ rdo u(r, 0) 2 (r, 0)
e ' Jo or
Uar
= —2/ —/ ds ud,u
e T IR(r)
1
d
:—2/ —r/ dA |Vul?
e T JR(
<0.
O

We also have

Lemma 3.4. £ () preserves the orthogonal splitting LXSHh=Ceo Lg(Sl).

Proof. Letu be aharmonic functionon R(¢) with u | AR(1) = f.u | IR = & Then apply-
ing Green’s theorem with the harmonic function v = log r on the annulus B(1) — B(e),

0= / (w0, v — vI,u)ds
d(R(e)—R(1))

= fd@—/ gdG—/ Pre)(g) logeds.
s! N dR(e)

Since Prs)(g) € L(%(Sl), we have
[, rdo= [ eav= [ enerrde.
st st s!

The following result shows that the operators £Pr(.) and ePp(s) are asymptotically
close as ¢ — 0.

Proposition 3.5. On L3(S"), ePrey = —V(To) ™' + VWU E -

Proof. First, note that by Lemma 3.4 the composition ({/; )_18,;(18) is well-defined on

L(z)(S 1. With this understood, the result follows by a direct calculation. Namely, by
expanding functions in Fourier modes, one computes

ERey = U — V_IUS_PR(U,
—8PR(5)€R(5) = VUE_ — Z/l:’PR(ly

The proposition is then a consequence of these two facts. 0O
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Corollary 3.6. Let A, be any of det’ N; /£y, (v;), or det’ N7 /4,,+ (y5) from Sect. 2. Then

lim A, = 1/2.

t—0

Proof. Consider NV, the argument being similar for the other two cases. By conformal
invariance of det’ N;* /€+(y;*) (cf. [GG], the method in [EW], or note that this follows
from (2.3) and Theorem 1.8) it suffices to consider the locally euclidean case. Also,

notice that
tn+(0) =—1
for all ¢. Indeed, if we scale the metric by 2,
() > clir (v, N TN

Then by conformal invariance

det N}t det(c™' N} det N;F
0 =lo =—(n+O0)+ Dlogce+1o ,
S T e () Al ST )

and since c is arbitrary, (3.7) holds. As a consequence,

log det([r]'/2N;F) = ¢n+(0) log 1t1'/2 + log det N;F
= —log|t|'? + logdet N},

det V¥

¢ L +log(2m).

L+ (Y

log det(|7]'>N;") = log

(3.7)

(3.8)

On the other hand, by Proposition 3.5, Remarks 3.1 and 3.2, and Lemma 3.3, it follows

that

t|/2NF = 2|V| + {trace-class},

where the trace norm of the remainder tends to zero as t — 0. Hence by (3.8) and [L,

Lemma 4.1],

lim log A, = lim (log det(|t|'2NF) — log(2n)) = log det(2|V|) — log(27).
— t—

Now spec(2|V|) = {2n},2, and each of the nonzero eigenvalues has multiplicity 2.
Hence, {oy)(s) = 21=5¢(s). The result then follows from the special values of the

Riemann zeta function: £(0) = —1/2,¢'(0) = —(1/2) log(2x). O
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4. The Arakelov Metric

Recall the definition of the Arakelov metric (cf. [Ar,Fl1,J1, W2,F2]). Given a compact
Riemann surface M of genus g > 1, let {A;, Bi}f?]:1 be a symplectic set of generators

of Hi (M) and choose {w; }lgzl to be a basis of abelian differentials normalized such that
Ja, @j = 8ij. Let Qij = [, w; be the associated period matrix with theta function 9.
Set

/1 & B _
w="1o Z(jmfz),.j‘wi/\wj. (4.1)
ij=1

Then f = 1. The Arakelov-Green’s function G(z, w) is symmetric with a zero of
order one along the diagonal satisfying

9,0:10g G(z, w) = T~/—1juzz 2 # w; 4.2)
/ n(z)log G(z, w) =0, 4.3)
M

and the Arakelov metric & = h,z|dz|? is defined by

logh;; =2 lim {log G(z, w) —log |z — w|}. (4.4)
w—>z

The Arakelov metric is “admissible” in the sense of [Fl]; hence,
Ric(h) = 4nv/—1(g — DHu. 4.5)

For more details we refer to the papers cited above.
Consider now the situation in Sect. 2, where /; and 4T denote the Arakelov metrics
on M; and M*, respectively (see [Ar,F1]). The purpose of this section is to prove

Proposition 4.6 (cf. [W2], Eq. (8.1)). Let h; = €20 hE. Then forz € RE,

F\2 F
o (7) = (g?) log 7] — 2 (%) log GE(z, p¥) +r¥(1. 2), 4.7)

where lim sup IrE(t, 2)| = 0. Moreover, if z+ are the plumbing coordinates then there
=0 erft
is a constant C > 0 independent of t such that

sup |90 (2 ) < Cle|7V2 (4.8)

|z |=le]1/2

In the statement above, Gi(z, w) denote the Arakelov-Green’s functions on M +. The
uniformity of the estimate is an improvement on the result of [W2] and is made possible
by the explicit expression for the Arakelov metric in [F2] (Eq. (4.28) below). We require
two preliminary technical results.
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Lemma 4.9. Let w; be a holomorphic family of abelian differentials on M; such that
(pointwise) w;(z) — wo(z) for z € M* — {p*}, and w,(z) — Oforz €e M~ — {p~},
where wq is an abelian differential on M™. Let W,i, W be the local expressions for
w; and wq in the plumbing coordinates z*. Then there are functions f(t,x), g(t, x),
analytic in a neighborhood of (0, 0), and h(t) analytic in a neighborhood of 0, such that

2
Wi(z") = Zéh(t) + @, +t/2)+ (Zt+)2 g,z +1/2%), (4.10)
W (") = —Zi_h(t) — (Zf—)zf(t, - +t/77) —tg(t,z” +t/z7). (4.1

In particular, if we assume f (0, 0) # 0, then for |z*| sufficiently small,

log |W;' ()| = log WS (zD)| +r* (¢, 27), (4.12)
log |W; (z7)| = log |t| +log |Wy (z )| +r~(t,27), (4.13)

where

Wi (z") = f(0,z),
L h©)  f©0,z7) _
WO (Z ) = ——Z_ — —(Z_)z — g(O, Z ),

and lim  sup |ri(t, zi)| = 0. Moreover, there is a constant C independent of t such
012 e 2

that

sup  |aWEEH)| < Cle 72 (4.14)

|2 |=1e[1/2

Proof. By [F1, p. 40] we have an expansion

w = %am (HX™dX + ZZ(:) by (t)X"%, (4.15)
where

X =0/ +z27)=/2)(E +t/zh), (4.16)

Y=/ —z)=—-(1/2)E —t/z7). 4.17)

The a,, (), b, (t) are analytic near t = 0, and the series are convergent for (X, ¢) in a
neighborhood of (0, 0). Moreover, using the assumption that w;(z) - Oon M~ —{p~},
we have by (0) = 0,and b,,+1(0) = a, (0) forallm > 0. Now, substituting the expressions
for X, dX, and ), we find

. am (1) t A by 1 (o Y
W/ (z )ZZ e (1—(Z+)2)<z +z_+) +Z > Z—+(z +Z—+)

m>0 n>0
bo(t) t 1 t\"
= + Z W(am(t) + b1 (1)) (Z+ + Z—+)

m>0

_Z 1 (an(t) — buy1 (1)) 12 (++L)"
on+l t (Z+)2 2 .

T
n>0 <
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Since bo(t)/t and (a,(t) — by+1(2))/t are regular at t = 0, this gives the expression in
(4.10) with
bo(1) )
h(t) =

1
Ft.x) =3 o @n(0) + b (0)3"

m=>0

_Z 1 (an(t) — bys1(2)) o
on+l t

n>0

g, x) =

Equation (4.11) follows from (4.10) and the fact that dz* = —tdz~ /(z™)>.
For fixed z* write

2
F() = f(t, 2" +1/2%) + (1) + ——g(t, 2" +1/27),
zt ()
, 1 1 to, 2
F(t)=81f+z—+82f+z—+h+z—+h + @ +)2g
t2 2
+( +)281g(t +t/z) + @ +)382g(t T +1/7Y).

Hence, for |z*| > |t|'/2, we have F(r) = £(0,0) + O(|t|'/?), uniformly. This implies
(4.12). For fixed z~ write

Gt)= f(t,z  +1/z ) +z2 h(t)+(z)2g(t, 2~ +1/z7),
1
G'(ty=0f+ Z—_azf +2h + (@) gtz +t/z) + 2 dog(t z +1/20).

It follows that G(r) = G(0) + O(|7|'/?), uniformly for |z7| > 712 By assumption,
G(0) # 0 for |z | sufficiently small, and hence

W= )2 ——=GO)(1+0(1]'?)),
so the estimate (4.13) follows. The estimate (4.14) follows immediately from (4.10) and
4.11). o

For the second result, let E;(z, w), E*(z, w) denote the Schottky prime forms on
M,;, M* (cf. [F1,F2] and Eq. (4.22) below). When evaluated at points on the Riemann
surface, we will assume that lifts to a fixed fundamental domain have been chosen.
Also, when points are in the pinching region we will assume the expressions for the
prime forms are given with respect to the coordinates z*. The following asymptotics are
well-known. The point again is the uniformity of the estimates.

Lemma 4.18. For z, w € R/,
log |E;(z, w)| = log |E™(z, w)| + r{ (z, w, 1), (4.19)

where for fixed w, lim sup |r1+(z, w, t)| = 0 (and similarly for fixed 7). A similar result
~YzeRr

holds for points in R; . For z € R} and w € R,

log |E(z, w)|=—log |t|'? +log [E*(z, p*)|+log |E~ (w, p)|+r2(z, w, 1),  (4.20)
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where for fixed w, lim sup |r2(z, w, )| = 0 (and similarly for fixed z). Moreover, if z*
~YzeR

are the plumbing coordinates and w is fixed, then there is a constant C > 0 independent

of t such that

sup |0+ EX(zE, w)| < Cle|7V2 (4.21)

|zt |=lr]1/2

Proof. Recall that the prime form may be defined as follows. Let 9#(Z), Z € C8,
denote the theta function for the period matrix 2. Choose a nonsingular § € ®, where
® C Jac(M) is the theta divisor in the Jacobian of M. Then by [F1, Corollary 2.3],

Pz—w+8)(z—w—235)

_ E? —
@ w) Hy(2) Hy(w)

, 4.22)

where

8
Hs(z) = " 9,9 (8)w;(2). (4.23)

i=1

Now consider the degenerating family M;. The collection {A;, B,-}f: | may be chosen

so that {A;, B; }f;l is a symplectic homology basis for M* and {A;, B; }f:g++l is a sym-
plectic homology basis for M ™. Let w; 4, a)li be abelian differentials on M, and M*,
respectively, normalized with respect to {A;}, and let €2; and Q= be the associated period

matrices. Then as ¢t — 0,

wi(z) i<gzeM" —{p*}

0 i<gt,zeM —{p~}
wi(z) —> 4.24
0t(2) w () i>gtzeM —{p7} 29
0 i>ghzeM" —({p*}

and €2; becomes block diagonal (QF, Q27) (cf. [F1, p. 38]). Choose §; so that
limé, = (6%,87) € ©F x Jac(M ™).
t—0
If z, w € R}, we also have 94 (z —w+6;) — 9 (z—w+8*)¥~(87), and this is uniform

in z, w (cf. [W2, Sect. 3 and Prop. A.1]). For simplicity and without loss of generality,
assume ¥~ (67) # 0 and Hy, (p*) # 0. Then from (4.23),

Hs, (z) > H3 ()97 (87), (4.25)

and by Lemma 4.9 this is uniform for z € R;. Hence, the expression (4.22) immediately
implies (4.19). Now suppose z, w € R, . From [W2, Prop. 3.8] we have
UV (z—p  £6 )0 (w—p~  FOHE (z,w
Dp(emw ) = 2P =20 W OB G ey 0,
PT()E"(z, pT)E~ (w, p7)

(4.26)
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where the O(|t|2) term depends on two derivatives of ¢ (Z, 2) with respect to €2;; and

is smooth in Z. Hence, again this is uniform. We then also have,

D (z—p +86 )0 (z—p —687)
D= (8 )NE~(z, p7))?

Again, (4.19) follows. The uniformity for the remainder term in log | Hs, (z)| comes from

(4.13) as applied to Hs, (z) and Hs, (w), and as mentioned, the expansion (4.26) is also
uniform. The expression (4.20) follows. For (4.21), note that from (4.22),

S8 82,00z — w+8)wi (2)

Hs (z) =1 Hi:(pH+ 0. 427

28ZE1(Z, w) = E[(Z, w) {

P (z —w+6;)
+Z§:1 0z,0:1(z —w — §;)w; (2) _ 0, Hs,(z)
19[(2 —w — 8;) HB; (Z) !

+|:

Now fix w € R, . By (4.19), |E;(z, w)| is uniformly bounded from above for |z
17]1/2, and |Hs,(z*)| is uniformly bounded from below (see Lemma 4.9). Similarly,
|9;(z — w £ 8,)| ~ |t]'/? (see (4.26)). Hence,
sup 0+ E; (25, w)| < Cile] 77+ Ca sup  [d+ Hy, (1))
Iz |=lr|1/2 |z |=[¢]1/2

and the desired bound in (4.21) follows from (4.14) applied to Hs, (z). The case w € R}
is similar. Finally, in case z € R, w € R;, use %(z — w +8;) — 97 (z — p* +
3N (w— p~ +87), (4.25), and (4.27) to obtain (4.20). The uniformity and statement
about derivatives follows as above. This completes the proof. O

Proof of Proposition 4.6. From [F2, Eq. (1.31)], the Arakelov metric may be expressed
in local conformal coordinates as

h(z) = C(M)|s(z)|*/$ exp{(4/g(g — 1)) BIK®, k*1} |dz|?, (4.28)

where C (M) is an explicit constant depending on M but independent of z, k* is the
vector of Riemann constants associated to z,

1+ij <
=S f o [ o
i#Fj o
and

8
BIK*. k¥l =7 ) (Im Q);I(Jme)i(jme),-.
i=1
The function s(z) is given in [F2, Prop. 1.2]. Important here is the relation

s@ _ P pi—z= ) 15[ E(pi.2)
s(zo) 95 pi—z20—A) E(pi.z0)’

where pyp, ..., pg are generic points. Using Theorem 1.7 one can in fact recover the
asymptotics in [W2, Eq. (8.1)] from (4.28). Relevant to the proof of Proposition 4.6,
however, is the uniformity. From (4.28) and (4.29) this amounts to uniformity and bound
on derivatives of the prime form, since the uniformity of the theta function and Riemann
constants follows from the results in [W2]. Hence, Proposition 4.6 is a consequence of
Lemma4.18. O

(4.29)

i=1
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5. Proof of the Main Theorem

We now apply the formulation of Sects. 2 and 3 to Q(,,,) and Q% s+, where h; and
h¥* are the Arakelov metrics on M; and M, respectively. The main result is

Proposition 5.1.

+

28%g”

. co
lim (log QMy.h) — log |f|) =1og(Qm+ 1) Qm—.n—)) — —»
t—0 6

where c is defined in Theorem 1.3.
For this we require

Lemma 5.2. In the notation of Sect. 2,

. L) 28te
;153(1) S(R,*,h*)("f) + S(R;,h_)(at ) + (5 — 3g log [t|+ 1} =0.

Proof. This is essentially [W1, Eq. (3.5)]. However, there is an error in the computation
due to the omission of the last term in (2.4). See [W3] or (5.8) below for the correction.
Moreover, the uniformity of the asymptotics of the Arakelov metric, established in the
previous section, was assumed in that paper. Hence, for the sake of completeness, we
include the full computation here. Let u,, u* be the forms corresponding to (4.1) on
M, and M*. 1t follows from (4.24) that

ne — (g5/9)n*, (5.3)

and from Lemma 4.9, u, is uniformly bounded in the plumbing coordinates as t — 0.
By (4.5) we have Kj+d A+ = —47(g* — Du*. Using this and Proposition 4.6,

1 + 2 4 +[, 5, 2
o fou 2K = S [ e s
—~2(g7/9)log G*(z. p) | + (1)

2
=§@i—nw¢wfbmn+mn, (5.4)

where we have also used the normalization (4.3). For the next term in (2.4), use the
estimates in Proposition 4.6 and the fact, again from (4.5) and also (5.3), that

dAp= Ao =4 (gT /o) ut +o0(1), (5.5)
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where o(1) converges pointwise to zero and is uniformly bounded on R,‘jE with respect
the euclidean measure in the plumbing coordinates. By (4.7), (4.8), and (5.5), we have

1
——— | dAu=IVoE)?
12 [+

1
= — dAp=oE Ao —
127 R[i
1

127 Rti

—_— dsp=0 0,05
127 aRri

dAh:tO'tiAO'ti
1 _
+t—= dsp+ {(g+g /g% log |t| +0(1)} o
127 BRti
1

T 127 Jgt

+ (g+g_/g2)log|t|} +o(1)

d A Do { (87 /) log 1] — 257 /) log G*(z. p®)

1 (gT 2
_ ! (_) log ¢ + o(1). (5.6)
3\¢g

Since the metrics h* are normalized at pi,

Lo
= | dsekirot = —2(g" g7 /gD loglt +o(1) by A7) (5T)
T 3Rri 3

Finally,

1

dsyedpot — ) dAsAct — — 5 o) (by (5.5
_E - Sp0p0; __H " nxAo, _—?+0() (by (5.5)).

(5.8)

Combining the results (5.4) and (5.6)-(5.8) for R} and R, , we obtain the statement of
the lemma. 0O

Proof of Proposition 5.1. 1t suffices to consider the factors in Proposition 2.5. By
Corollary 3.6,

L, (yr) det N det N~ 1
—_— —.
L (v (ve) det N; 2

By [Wb, Eq. (28)],
(Qp,)* =27 @) r| 7' exp(—4¢'(—1) — 5/6).
The result now follows from Lemma 5.2. O

Proof of Theorem 1.3. Comparing Proposition 5.1 with Theorem 1.7 and the definition
(1.1) of ¢cg, we find: cg41 — cg = ¢1 — co, Where ¢y is the constant for g = 1 surfaces
and ¢ is as in Proposition 5.1. The g = 1 constant c¢; has been evaluated (cf. [F1,P]):
¢y = —8log(2m). The expression for ¢, now follows. O
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Appendix

At the suggestion of the referee, in this appendix we clarify the relationship between the
expansions for holomorphic abelian differentials on degenerating surfaces found in [F1]
and [Y]. Let w;(z) — wo(z) be as in the statement of Lemma 4.9. We assume moreover
that the periods | 4; @r are fixed independent of 7.

From (4.10) and (4.11) we have

Wy (2" = £(0,2%), (5.9)

Wi = S s p0,eh + 2L (5.10)

e WO 5 i f (0,2 97f(0,2%) 2 .

Wo @) =277 +9i /(0. 2 +27=1 2 et ® )
(5.11)

o hO) f0,z7) _

Wo (27) = —— o g(0,27), (5.12)

where the dots indicate derivatives with respect to ¢. From (5.10), the restriction of

. . w(2) —wo(t)
wo(z) = lim ———
t—0 t

to M* is an abelian differential with a pole of order at most one at p*. Hence, it is
holomorphic. On the other hand, by the normalization it must have zero A ; periods. It
therefore vanishes identically. From (5.12), the restriction of wg to M~ is an abelian
differential with a pole of order two at p~, and the coefficient of the 1/(z ) term is
—f00,0) = —WJ (0), from (5.9). Hence, for z € M~ we have the f-expansion

w(z) = —t Wi (0w~ (z, p7) + 0(1?), (5.13)

where w™ (z, w) is the abelian differential of the second kind on M ~, normalized to have
zero A j-periods and an expansion

1
(z—w)
in local coordinates about a point p, where S~ is a holomorphic projective connection

on M~ (see [F1, Cor. 2.6]). Examining the constant term in the 7-expansion (5.12) we
find

w_(z,w)Z( 2+é5_(p)+~-~)dzdw

1 1
5031(0.0)+2(0,0) = W (0)S™(p7).

From (5.11), the restriction of &y to M* is an abelian differential with a pole of order
two at p*, and the coefficient of the 1/(z*)? term is

1
9/(0.0) +2¢(0.0) = 2 W5 (0)S~(p").

Hence, for z € M* we have the t-expansion

2
w1 (2) = wo(2) + %WJ(O)Sf(pf)wf(Z, p)+0@). (5.14)
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The expressions (5.13) and (5.14) agree with [Y, Eq. (36)]. In [F1, Eq. 47], the
t-expansion was carried out with respect to a local expression of the differentials in
the “pinching coordinate” X. Since the restrictions of dX to M* — {p*} are differ-
entials that themselves depend on ¢ (see (4.16)), the O(t) terms calculated there are
incorrect.
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