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ABSTRACT. We give explicit formulas for the constants appearing in bosonization formulas on Riemann sur-
faces relating zeta regularized determinants of Laplace type operators associated to holomorphic line bundles
of varying degree. We find that the constants Bg,d, which depend on the genus g of the surface and the degree d
of the line bundle, satisfy the relation Bg,d = (2π)2g−2−dBg,2g−2. The value of Bg,2g−2 has been determined
in an earlier work. One may interpret this formula in terms of the relationship between the Quillen and Faltings
metrics on the determinant of cohomology.

1. INTRODUCTION

The bosonization formulas on Riemann surfaces relate zeta-regularized determinants of Laplace opera-
tors acting on sections of line bundles to determinants of scalar laplacians (see [2, 7, 36, 8, 6, 12, 33, 14, 17],
and for their role in string theory [13]). They are tantamount to a relationship between the metrics defined by
Quillen and Faltings on the determinant of cohomology [28, 15]. Following initial work on the scalar lapla-
cian [39], the results presented in this paper give a precise expression for all of the previously undetermined
constants appearing in these formulas.

Given a conformal metric ρ on a closed Riemann surface M of genus g, denote the associated scalar
laplacian by ∆M . If h is a hermitian metric on a holomorphic line bundle L → M , let �L = 2∂̄∗L∂̄L be
the Dolbeault laplacian. Determinants Det �L are defined as the zeta regularized product of eigenvalues
and are functions of ρ, h, and the moduli of M and L (see Section 2.4; in the case of a kernel the nota-
tion Det∗ �L is used to emphasize that the zeta function is defined using only nonzero eigenvalues). The
bosonization formulas, which hold for general metrics, are most conveniently expressed in the case where
ρ is the Arakelov metric on M and h is an admissible metric on L (see Section 4.3 for the definitions). Let
G(z, w) be the Arakelov-Green’s function. A marking of M determines a Riemann divisor D. This satisfies
2D = [K], where K is the canonical bundle of M and [K] is its associated divisor class of degree 2g − 2.
The marking also gives a period matrix Ω and theta function ϑ(Z,Ω). For the following statement of the
bosonization formulas see the references cited above (and in particular [17, Theorems 4.9, 5.8 and 5.11]).

Theorem 1.1. Consider M with the Arakelov metric ρ. For d ≥ g − 1, there are positive constants Bg,d

such that for any line bundle L of degree d with admissible metric h and satisfying h1(L) = 0, the following
hold.
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• Spin-1/2 bosonization. If d = g − 1, then

(1.2) Det �L = Bg,g−1

(
Det∗ ∆M

area(M) detIm Ω

)−1/2

‖ϑ‖2([L]−D,Ω)

where area(M) is the area of M with respect to the Arakelov metric.
• Higher spin bosonization. If d ≥ g, then

(1.3)
Det∗ �L

det〈ωi, ωj〉
= Bg,d

(
Det∗ ∆M

area(M) detIm Ω

)−1/2
∏

i6=j G(pi, pj)
‖detωi(pj)‖2

‖ϑ‖2
(
[L]−

m∑
i=1

pi −D,Ω
)

where m = d − g + 1, {pi}m
i=1 are generic points of M , {ωi}m

i=1 is any basis for H0(M,L), and
the pointwise and L2-metrics are taken with respect to h.

• Scalar laplacian. If g ≥ 2 and Bg,2g−2 is as above, the scalar determinant is given by

(1.4)
(

Det∗ ∆M

area(M) detIm Ω

)3/2

=
Bg,2g−2

4π2

∏
i6=j G(pi, pj)

‖detωi(pj)‖2
∏g

i=1G
2(pi, z)

‖ϑ‖2
( g∑

i=1

pi − z −D,Ω
)

where {pi}g
i=1 are generic points of M , {ωi}g

i=1 is any basis for H0(M,K), and the pointwise
metric is the one induced by ρ.

Let
cg = (1− g)c0 + gc1

c1 = −8 log(2π)

c0 = −24ζ ′(−1) + 1− 6 log(2π)− 2 log(2)

(1.5)

where ζ(s) is the Riemann zeta function. Then we have previously shown the following

Theorem 1.6 ([39, Theorem 1.3]). Bg,2g−2 = 4π2 exp(cg/4).

The main result of this paper is a computation of the constants for arbitrary degree. We will prove the

Main Theorem. For any d ≥ g − 1, Bg,d = (2π)2g−2−dBg,2g−2.

The importance of the constants Bg,d was emphasized by Fay, who made a systematic study of bosoniza-
tion formulas. Our result provides a complete solution to the problem stated in the last paragraph of [17].
The following generalization of the genus 1 computation in [17, p. 117] is a consequence of Theorem 1.6
and the Main Theorem.

Corollary 1.7. Fay’s constants δg and εg,d defined in [17, Thms. 5.9 and 5.11] have values:

δg = (2π)g+1 exp(cg/6)

εg,d = (2π)g−1−d

What follows is a brief outline of the paper and an explanation of the difference with the scalar case. Our
approach to prove the Main Theorem is to study the behavior of both sides of eqs. (1.2) and (1.3) as the
Riemann surface structure degenerates in moduli. Doing so gives a recursive formula for Bg,d in the genus
and consequently an expression in terms of the genus 1 constants which have been determined explicitly
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(cf. [17, p. 117]). The right hand sides of the bosonization formulas consist of holomorphic data and the
determinant of the scalar laplacian, and the asymptotic behavior of these is known (cf. [38, 39]). Hence, it
remains to study the asymptotics of the determinant of the Dolbeault laplacian.

For the scalar laplacian (1.4) this analysis depends on two key ingredients: (1) the Polyakov-Alvarez for-
mula which expresses the dependency of the determinant on conformal changes in the metric on a surface,
possibly with boundary (see [1]); and (2) the Burghelea-Friedlander-Kappeler factorization of the determi-
nant in terms of Dirichlet determinants when the surface is cut along simple closed curves (see [10] and also
[18]). Roughly speaking, the strategy is to use (2) to track the behavior of the determinant when the surface
degenerates by pinching a simple closed curve, rescale the degenerating metrics to admissible metrics on
the components of the nodal surface using (1), and then cap off the components of the cut surface by again
applying (2).

It turns out that these steps are incompatible when one considers the Dolbeault operators in (1.2) and
(1.3). The reason is that the proof of the Polyakov-Alvarez formula exploits the laplacian for the adjoint
operator as well. Hence, in imposing boundary conditions, one requires ellipticity of the Dolbeault complex,
rather than just the Dolbeault operator (this requirement is also, of course, natural from the point of view of
the determinant of cohomology). On the other hand, it is well-known that such (local) boundary conditions
fail to exist for the Dolbeault laplacian, except in the scalar case (cf. [20]).

In [1] Alvarez computed the conformal variation of the determinant of the laplacian acting on traceless
symmetric tensors. In this case, the appropriate boundary condition was found to be of a mixed type arising
from the natural splitting of the bundle induced along the boundary. One may view the bundle of traceless
symmetric tensors as the real bundle underlying a power of the canonical (complex) line bundle. Moti-
vated by this example, in Section 2.2, we introduce elliptic boundary conditions for Dolbeault operators on
holomorphic bundles equipped with a framing, by which we mean a choice of trivialization near the bound-
ary. These Alvarez boundary conditions are of mixed Dirichlet–Robin type, and come from the splitting of
sections near the boundary into real and imaginary parts made possible by the framing. This is essentially
the second order counterpart to the boundary conditions discussed in [40]. Because of the asymmetry, the
boundary conditions are manifestly not complex linear. In particular, the Dolbeault laplacian must be re-
garded as a real operator (see Section 2.1). The advantage, however, is that the boundary value problem is
compatible with a similar BVP on the adjoint bundle. This allows for an index theorem and a generalization
of the Polyakov-Alvarez formula to arbitrary conformal changes of (ρ, h) (see Theorems 2.28 and 2.33).

The next step in our approach is to prove the corresponding Burghelea-Friedlander-Kappeler factorization
theorem for Alvarez boundary conditions. The result is stated in Theorems 3.21, 3.26 and 3.38. A very
special case of this factorization theorem is the well-known product formula

(1.8) Det∗ ∆S2
R

= (Det∗Neu. ∆H2
R
)(DetDir. ∆H2

R
)

expressing the scalar determinant on the sphere S2
R of radius R in terms of the determinants on the hemi-

sphere H2
R with Neumann and Dirichlet boundary conditions. Theorem 3.38 is therefore a kind of general-

ization of this result to arbitrary curves and to arbitrary line bundles. An interesting novelty is the fact that
the Neumann jump operator for this problem is a pseudo-differential operator of order zero, rather than of



4 R.A. WENTWORTH

order one as in the scalar case. Following Friedlander-Guillemin [19], we define its determinant by choosing
a regularizer (see the definition (3.18)). This leads to an overall constant in the factorization which depends
on the choice of regularizer. This constant can, however, be computed explicitly.

With these two ingredients, we apply the same degeneration techniques used in [39] to compute the
asymptotics of the determinant of the Dolbeault laplacian. In Section 4.1, we study the asymptotics of the
determinant of the Neumann jump operator. The analogous result was a key step in [39]. As in that case, we
find that the Neumann jump operator takes a standard form when the surface degenerates. In particular, the
aforementioned dependency on a choice of regularizer cancels out in the limit. In Sections 4.2 and 4.3, we
describe the behavior of holomorphic sections and admissible metrics using the results of [38]. The Main
Theorem is then proven in Section 4.4.

Finally, we should point out that there are many papers on gluing formulas for determinants of Laplace
type operators with various boundary conditions (see, for example, [27] and the references therein), as well
as results on degeneration of Quillen metrics [5, 22, 41]. We also note that expressions for the constant
Bg,2g−2 have previously appeared in the mathematical literature (cf. [21, 34, 23]). These disagree slightly
with the value found in [39, Theorem 1.3].

Acknowledgements. The author wishes to thank E. Falbel, A. Kokotov and D.H. Phong for their sugges-
tions, and S. Zelditch for many discussions and especially for pointing out ref. [19]. He also gratefully
acknowledges the hospitality of the University of Paris 6 and the IHES, where a portion of this work was
completed.

2. THE MIXED BOUNDARY VALUE PROBLEM

2.1. Real structures. We begin with a construction that is completely elementary but will nevertheless
serve to make precise the notions of a real operator and a real structure used in this paper. Let V be
a complex Hilbert space with hermitian inner product 〈·, ·〉 and dual space V ∗. Let R : V ∗ → V be the
complex antilinear isomorphism given by the Riesz representation: f(a) = 〈a,R(f)〉, for all a ∈ V, f ∈ V ∗.
Note that the complex antilinear involution

ı : V ⊕ V ∗ −→ V ⊕ V ∗ : (a, f) 7→ (R(f),R−1(a))

satisfies 〈ı(a1, f1), ı(a2, f2)〉 = 〈(a1, f1), (a2, f2)〉 for the induced inner product on V ⊕ V ∗. Define

(2.1) VR = Fix(ı) =
{
(a,R−1(a)) : a ∈ V

}
The map  : V → VR : a 7→ A = (a,R−1(a)) is then an R-linear isomorphism. The real vector space VR

inherits a complete inner product (·, ·) from V ⊕ V ∗, and

(2.2) (a1, a2) = 2 Re〈a1, a2〉

Let T : V →W be a (possibly unbounded) linear operator between Hilbert spaces. Then R−1TR : V ∗ →
W ∗ is also linear (with domain R−1(DomT )). The associated operator (T,R−1TR) : V ⊕V ∗ −→W⊕W ∗

commutes with the involution ı and hence induces a real linear map PT : VR →WR that makes the following
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diagram commute.

V
 //

T

��

VR

PT

��
W

 // WR

We call PT the real operator associated to T . Note that in the case W = V , it follows that the spectrum
of PT : VR → VR coincides with the real spectrum of T : V → V with twice the multiplicity: if a ∈ V

is nonzero with Ta = λa and λ ∈ R, then a and (ia) are independent eigenvectors of PT , both with
eigenvalue λ.

Finally, suppose that V has a real structure. By this we mean a complex antilinear involution σ : V → V

satisfying

(2.3) 〈σa1, σa2〉 = 〈a1, a2〉

Then σR = ◦σ ◦ −1 gives an involution of VR which, by (2.2) and (2.3), is an isometry. Let V ′
R, V ′′

R denote
the +1, −1 eigenspaces of σR, respectively. Then we have an orthogonal decomposition VR = V ′

R ⊕ V ′′
R .

For A ∈ VR, A = A′ + A′′, where A′ = (1/2)(A + σRA), A′′ = (1/2)(A − σRA). We refer to A′ and
A′′ as the real and imaginary parts of A. There is a natural almost complex structure J on VR given by
JA = (i−1(A)). A calculation shows that (JA1, JA2) = (A1, A2), and J(V ′

R) ⊂ V ′′
R , J(V ′′

R ) ⊂ V ′
R.

As a consequence, if we define a symplectic structure on VR by the pairing (A1, JA2), then V ′
R and V ′′

R are
lagrangian subspaces (i.e. maximal isotropic).

2.2. Alvarez boundary conditions. We apply the construction of Section 2.1 to sections of hermitian holo-
morphic line bundles on M . Let M be a compact Riemann surface of genus g with a (non-empty) boundary
∂M and inclusion ı : ∂M ↪→ M . Without loss of generality, we may assume that M is obtained from a
closed Riemann surface by deleting finitely many disjoint coordinate disks. Each component of ∂M has an
open neighborhood in M biholomorphic to an annulus {r1 ≤ |z| < r2}. We will refer to such a z as an
annular coordinate.

Let L → M be a holomorphic line bundle. A holomorphic structure on L is equivalent to a Dolbeault
operator ∂̄L : Ω0(M,L) → Ω0,1(M,L) satisfying the Leibniz rule. Equip M with a conformal metric ρ and
L with a hermitian metric h. The holomorphic and hermitian structures on L give a unique unitary Chern
connection D = (∂̄L, h), as well as an adjoint operator ∂̄∗L, and similarly on L∗. We will use the standard
notation h0(L) = dimC ker ∂̄L, h1(L) = dimC coker ∂̄L = dimC ker ∂̄∗L.

There is a natural hermitian inner product on the space Ω0(M,L) of smooth sections of L given by

〈s1, s2〉M =
∫

M
dAρ 〈s1, s2〉h

where dAρ is the area form on M coming from the metric ρ. The dual space is given by integration on M :
Ω0(M,L)∗ ' Ω1,1(M,L∗). Then

(2.4) Ω0
R(M,L) ⊂ Ω0(M,L)⊕ Ω1,1(M,L∗)
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is the real vector space constructed as in (2.1). Strictly speaking, here we should work with the L2 and
Sobolev completions. These are defined using the Chern connectionD. Since this is standard, for notational
simplicity we omit this from the notation.

We can also carry out this construction on (0, 1)-forms:

(2.5) Ω0,1
R (M,L) ⊂ Ω0,1(M,L)⊕ Ω1,0(M,L∗)

Denote the isomorphisms of real vector spaces

0 : Ω0(M,L) −→ Ω0
R(M,L) : ϕ 7→ Φ

1 : Ω0,1(M,L) −→ Ω0,1
R (M,L) : ψ 7→ Ψ

or simply by  when the meaning is clear.
As in Section 2.1, define a (real, unbounded) linear operator PL : Ω0

R(M,L) → Ω0,1
R (M,L) making the

following diagram commute:

Ω0(M,L)
0 //

∂̄L

��

Ω0
R(M,L)

PL

��
Ω0,1(M,L)

1 // Ω0,1
R (M,L)

In terms of the decompositions (2.4) and (2.5), it follows that

(2.6) PL =
(
∂̄L 0
0 (∂̄L∗)∗

)
Now consider the boundary. There is an hermitian inner product on Ω0(∂M, ı∗L) given by

〈s1, s2〉∂M =
∫

∂M
dsρ 〈s1, s2〉h

where dsρ is the induced measure on ∂M . Note that ∂M inherits an orientation from M and the outward
normal. Hence, integration gives an identification Ω0(∂M, ı∗L)∗ with Ω1(∂M, ı∗(L∗)). With this under-
stood, let

(2.7) Ω0
R(∂M, ı∗L) ⊂ Ω0(∂M, ı∗L)⊕ Ω1(∂M, ı∗(L∗))

be the real vector space constructed as in the previous section.
The trace map

(2.8) Ω0(M,L) −→ Ω0(∂M, ı∗L) : ϕ 7→ ϕ
∣∣
∂M

is induced by restriction. Using the Hodge star on M to identify Ω1,1(M,L∗) ' Ω0(M,L∗), and on ∂M to
identify Ω1(∂M, ı∗L∗) ' Ω0(∂M, ı∗L∗), there is a similar restriction map

Ω1,1(M,L∗) ' Ω0(M,L∗) −→ Ω0(∂M, ı∗L∗) ' Ω1(∂M, ı∗L∗)

The restriction maps combine to give a trace map Ω0
R(M,L) → Ω0

R(∂M, ı∗L). We carry out the same
construction with Ω0,1(M,L). Here, we define

Ω1
R(∂M, ı∗L) ⊂ Ω1(∂M, ı∗L)⊕ Ω0(∂M, ı∗(L∗))
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In this case, again using the Hodge star on ∂M the trace map Ω0,1
R (M,L) → Ω1

R(∂M, ı∗L) pulls-back the
forms and restricts the section.

Definition 2.9. We call
B(∂M, ı∗L) = Ω0

R(∂M, ı∗L)⊕ Ω1
R(∂M, ı∗L)

the space of Cauchy data. The trace map is the (real) linear map:

b∂M : Ω0
R(M,L) −→ B(∂M, ı∗L) : Φ 7→ (Φ, PLΦ)

∣∣
∂M

defined as above.

In order to define elliptic boundary conditions we will need real structures. These come from a choice of
trivialization of L near ∂M .

Definition 2.10. A framing of a holomorphic line bundle L → M is a trivialization (i.e. a nowhere
vanishing holomorphic section) τL of L near ∂M .

An important example of a framing is the following

Example 2.11. Let L be defined by a divisor D compactly supported in M . Then by construction L has a
meromorphic section τL with zeros and poles exactly at D. In particular, τL gives a framing of L. While τL
is only defined up to multiplication by a nonzero constant, we shall refer to any such choice as a canonical
framing.

Given a framing and a section ϕ of L defined in a neighborhood of ∂M , write ϕ = (ϕ′ + iϕ′′) · τL,
where ϕ′, ϕ′′ are real valued functions. Then let σ(ϕ) = (ϕ′ − iϕ′′) · τL. This defines a real structure on
Ω0(∂M, ı∗L). As in Section 2.1, the boundary values of Φ ∈ Ω0

R(M,L) therefore have real and imaginary
parts Φ′, Φ′′. The framing also gives a real structure on boundary values of elements of Ω0,1(M,L). Indeed,
there is natural isomorphism T 0,1M

∣∣
∂M

' T (∂M) ⊗ C. Equivalently, the Hodge star gives a C-linear
isomorphism ∗ : Ω0(∂M, ı∗L) ' Ω1(∂M, ı∗L) with ∗2 = 1. If σ0 is the real structure on Ω0(∂M, ı∗L),
then σ1 = ∗σ0∗ is a real structure on Ω1(∂M, ı∗L). We let B′(∂M, ı∗L) (resp. B′′(∂M, ı∗L)) be the
subspaces of B(∂M, ı∗L) consisting of elements (Φ′,Ψ′) (resp. (Φ′′,Ψ′′)).

• Note that there is a natural pairing of Ω0
R(∂M, ı∗L) and Ω1

R(∂M, ı∗L) defined as follows. If Φ =
0(ϕ), Ψ = 1(ψ) then

(2.12) (Φ,Ψ)∂M = 2Re

∫
∂M

〈ϕ,ψ〉h

• The real structure defines an almost complex structure on Ω0
R(∂M, ı∗L) and Ω1

R(∂M, ı∗L) as in Sec-
tion 2.1. We extend this to an almost complex structure on the space of boundary values B(∂M, ı∗L)
by defining

J∂M =
(

0 ∗J
∗J 0

)
(for simplicity, we will denote this operator simply by J as well). This almost complex structure
and the pairing (2.12) give a symplectic structure on B(∂M, ı∗L) defined by (f, Jg). As in Section
2.1, the subspaces B′(∂M, ı∗L) and B′′(∂M, ı∗L) are then lagrangian.
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Definition 2.13. Let b′∂M and b′′∂M be the projections to the real and imaginary parts of b∂M . We call the
equation b′∂M (Φ) = 0 (resp. b′′∂M (Φ) = 0) the real (resp. imaginary) Alvarez boundary conditions.

Note that b′∂M and b′′∂M take values in lagrangian subspaces of B(∂M, ı∗L). We will use the same
notation for the boundary map on Ω0,1

R (M,L); namely,

b∂M : Ω0,1
R (M,L) −→ B(∂M, ı∗L) : Ψ 7→ (P †LΨ,Ψ)

∣∣
∂M

where P †L is the formal adjoint of PL. Then b′∂M and b′′∂M are defined similarly.
Since we here assume that ∂M 6= ∅, by a theorem of Grauert L admits a global holomorphic trivialization

1L on M . Then τL/1L is a nowhere vanishing holomorphic function in a neighborhood of ∂M . We define
the degree deg(τL) of a framed line bundle to be the winding number of τL/1L (with the outward normal,
summed over all components of ∂M ). Clearly, the definition of degree is independent of the choice of
trivialization 1L. Note the following two important examples.

Example 2.14. (1) Let s be a meromorphic section of L satisfying imaginary Alvarez boundary condi-
tions and with divisor (s) compactly supported in the interior of M . Then deg(τL) = deg(s).

(2) Let L = Kq, where the framing is given by τL = (−idz/z)q in local annular coordinates near
∂M . Then deg(τL) = −χ(M). One can check that the real structure is independent of the choice
of annular coordinate.

The Alvarez boundary conditions are of mixed Dirichlet-Robin type. Indeed, fix a framing τL of L, and
let h = ‖τL‖2. Then on ∂M , define

(2.15) νL,h = −1
2∂n log h

where n is the outward normal. Also, let Π± = 1
2(I±σR) be the projections to the real and imaginary parts.

Then it is easy to see that b′′∂M (Φ) = 0 is equivalent to the conditions

Π−Φ
∣∣
∂M

= 0

(∇n + S)Π+Φ
∣∣
∂M

= 0
(2.16)

where n is the outward normal, ∇ is the induced connection on the bundle of real sections, and S = νL,h.
Indeed, write ϕ = (ϕ′ + iϕ′′)τL. The Alvarez boundary conditions are ϕ′′ = 0 and ∂nϕ

′ = 0 on ∂M .
A local unitary frame is given by eL = h−1/2τL. Since the connection form in the frame eL is purely
imaginary, eL is parallel with respect to ∇, and the result follows from the expression Π+Φ = (ϕ′h1/2)eL.

2.3. Heat kernels and an index theorem. A straightforward calculation gives the following important
integration by parts formula: for smooth sections Φ ∈ Ω0

R(M,L) and Ψ ∈ Ω0,1
R (M,L),

(2.17) (PLΦ,Ψ)M − (Φ, P †LΨ)M = 1
2(Φ, JΨ)∂M

where the pairing (2.12) appears on the right hand side. Define the laplacian DL = 2P †LPL on smooth
sections Ω0(M,L). Then from (2.17) we have
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(DLΦ1,Φ2)M − (Φ1, DLΦ2)M = (b∂M (Φ1), J b∂M (Φ2))(2.18)

(PLΦ1, PLΦ2)− (Φ1, DLΦ2) = 1
2

[
(Φ′′

1, J(PLΦ2)′)− ((PLΦ2)′′, JΦ′
1)

]
(2.19)

The right hand sides of (2.18) and (2.19) vanish identically for Alvarez boundary conditions. For the
following result, see for example [20, Lemma 1.11.1].

Proposition 2.20. Assuming either real or imaginary Alvarez boundary conditions, the formal adjoint P †L
extends to an unbounded operator on Ω0,1

R (M,L) as the the L2-adjoint of PL on Ω0
R(M,L). Moreover, DL

extends to an unbounded self-adjoint non-negative elliptic operator DA
L on sections Ω0

R(M,L) satisfying
real (resp. imaginary) Alvarez boundary conditions. A similar statement holds for the laplacian 2PLP

†
L on

Ω0,1
R (M,L).

We now make a choice: henceforth, unless otherwise indicated, by Alvarez boundary conditions we will
mean the condition b′′∂M (Φ) = 0. We write DA

L when we wish to emphasize that the laplacian DL is acting
on the space of sections satisfying Alvarez boundary conditions.

Remark 2.21. By (2.19), kerDA
L ⊂ kerPL. Hence, kerDA

L is real isomorphic to the space of holomorphic
sections ϕ of L with local expression ϕ = ϕ(z)τL near ∂M , satisfying Im(ϕ(z))

∣∣
∂M

= 0.

Remark 2.22. If Φ is an eigensection of DL satisfying Alvarez boundary conditions with eigenvalue λ 6=
0, then PLΦ is an eigensection of 2PLP

†
L with the same eigenvalue λ, also satisfying Alvarez boundary

conditions.

This simple observation is the raison d’être of the mixed boundary conditions we have chosen. By contrast,
if ϕ is an eigensection of �L satisfying Dirichlet conditions, then ∂̄Lϕ is a formal eigensection of ∂̄L∂̄

∗
L, but

does not necessarily satisfy an elliptic boundary condition.
We also note the following

Proposition 2.23 (Serre duality). Fix a framing τL on L→M . Then with respect to the duality

Ω0,1(M,L) ' (Ω0(K ⊗ L∗))∗

the framing on K ⊗L∗ is induced by that on L and −idz/z, where z is an annular coordinate near ∂M . In
particular, with these Alvarez boundary conditions, cokerPL ' kerP †L ' (kerPK⊗L∗)†.

Proof. The usual proof of Serre duality applies, modulo the boundary conditions. To understand these,
choose a local annular coordinate z near ∂M . Then with respect to the trivialization τL, a smooth section
ψdz̄ ∈ Ω0,1(M,L) with Ψ ∈ kerP †L satisfies Alvarez boundary conditions if Im(iψe−iθ) = 0. The
corresponding section of Ω0(K ⊗ L∗) is ψ̄h−1dz = izψ̄h−1(−idz/z). On the boundary, Im(iψe−iθ) = 0
is equivalent to Im(izψ̄h−1) = 0. This proves the claim. �

We will need the following
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Proposition 2.24. Let L → M be the holomorphic bundle associated to an effective divisor D of degree
d compactly supported in the interior of M , and give L a canonical framing. If 2d ≥ 1 − χ(M), then for
generic choices of D, cokerPL = {0}.

Proof. By Proposition 2.23, it suffices to show kerPK⊗L∗ = {0} for genericD. Suppose to the contrary that
0 6= Φ ∈ kerPK⊗L∗ . Let N be the Schottky double of M . Then N has genus G = 1−χ(M) ≤ 2d, and by
Remark 2.21 and the reflection principle, ϕ extends to a holomorphic section of a a bundle on N associated
to a symmetric divisor of degree −2χ(M) − 2d ≤ −1 − χ(M) ≤ G − 2 (see Example 2.14 (2)). On the
other hand, by the discussion in [16, Ch. VI], every symmetric divisor of degree G is linearly equivalent to
a positive one, whereas the space of positive symmetric divisors of degree G − 1 has codimension 1. The
result follows from this fact. �

In order to state a result for the small time expansion of the trace of the heat kernel, we will need the
following quantities. Let ΩL,h denote the Hermitian-Einstein tensor (cf. [24, IV.1.2]). In a local holomorphic
frame we have

(2.25) ΩL,h = i ∗ F(∂̄L,h) = −1
2∆ρ log h

where F(∂̄L,h) is the curvature of the Chern connection. Note the following special case.

Lemma 2.26. Let Rρ and κρ denote the scalar and geodesic curvatures of M and ∂M . With the hermitian
metric on K induced from the metric on M , ΩK,ρ−1 = −(1/2)Rρ. For the framing −idz/z, νK,ρ−1 = κρ.

For the short time expansion of heat kernels, we refer to [9] and [20]. In particular, we use the result in
[35, Sec. 5.3] and the expression for S in (2.16).

Proposition 2.27. Let L → M be a holomorphic line bundle on M with framing τL. Let ρ and h be
hermitian metrics on M and L, respectively. Then for any function f , the trace with the heat kernel for the
operator DA

L with Alvarez boundary conditions defined by τL has the following short time expansion:

Tr(fe−εDA
L ) =

1
2πε

∫
M
dAf +

1
12π

∫
M
dAf(6ΩL,h +Rρ) +

1
6π

∫
∂M

ds f(κρ − 3νL,h) +O(ε1/2)

Theorem 2.28 (Index theorem). Let L → M be a holomorphic line bundle on M with framing τL. Then
for Alvarez boundary conditions,

(2.29) indexPL = dimR kerPL − dimR cokerPL = 2deg(τL) + χ(M)

Proof. From Proposition 2.27, Lemma 2.26, Remark 2.22, and Proposition 2.23

indexPL = lim
ε→0

{
Tr(e−2εP †

LPL)− Tr(e−2εPLP †
L)

}
=

1
2π

∫
M
dA (ΩL,h − ΩKL∗,(ρh)−1)−

1
2π

∫
∂M

ds (νL,h − νKL∗,(ρh)−1)

=
1
2π

∫
M
dA 2ΩL,h −

1
2π

∫
∂M

ds 2νL,h +
1
4π

∫
M
dARρ +

1
2π

∫
∂M

ds κρ
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By the Gauss-Bonnet Theorem, the last two terms give the Euler characteristic χ(M). Write τL = f1L, and
let h0 = ‖1L‖2. Then near ∂M , h = |f |2h0, and

deg(τL) =
1
2π

∫
∂M

ds ∂n log |f |

On the other hand,
1
2π

∫
M
dAΩL,h −

1
2π

∫
∂M

νL,h = − 1
4π

∫
M
dA∆ log h0 +

1
4π

∫
∂M

ds ∂n log h

=
1
4π

∫
∂M

ds (−∂n log h0 + ∂n log h)

=
1
4π

∫
∂M

ds ∂n log |f |2 = deg(τL)

The result follows. �

Remark 2.30. By Example 2.14, if Kq on M is given the framing (−idz/z)q for annular coordinates at
each component of ∂M , then deg(τKq) = −qχ(M). Hence, by Theorem 2.28, indexPKq = (1−2q)χ(M).
This agrees with [1, eq. (4.32)].

2.4. Determinants of laplacians. Following [29], we define determinants as follows. SupposeM is closed
with conformal metric ρ and a hermitian holomorphic line bundle L→M . Let {λj}∞j=1 be the spectrum of
�L and form the zeta function ζ�L

(s) =
∑

λj>0 λ
−s
j . Then ζ�L

(s) converges for Re(s) sufficiently large,
and by a theorem of Seeley [30] it is known that ζ�L

(s) is regular at s = 0. Then log Det∗ �L := −ζ ′�L
(0).

A similar definition applies to Det∗DL on M , and to Det∗DA
L when M has boundary, L has a framing, and

we use Alvarez boundary conditions. When it is understood that the spectrum is strictly positive, we will
omit the asterisk and write Det �L, etc.

When M is closed, DL acting on Ω0
R(M,L) is the same as �L acting on Ω(M,L), regarded as a real

operator (see Section 2.1), and hence it has the same spectrum but with twice the multiplicity. Taking into
account also the factor of 2 in the definition of the real inner product (see (2.2)), we have the following

Lemma 2.31. If M is a closed Riemann surface with line bundle L→M . Then for all λ > 0,

Det(DL + λ) = [Det(�L + λ)]2

Similarly,
Det∗DL

det(Φi,Φj)
=

(
2−h0(L) Det∗ �L

det〈ωi, ωj〉

)2

where {ωi}h0(L)
i=1 is a basis (over C) forH0(M,L) and {Φi}2h0(L)

i=1 is the associated basis (over R) of kerDL

given by

(2.32) Φ2i = (iωi) , Φ2i−1 = (ωi)

for i = 1, . . . , h0(L).

The main result of this section is the following
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Theorem 2.33 (Polyakov-Alvarez formula). Let {Φi}m
i=1, {Ψj}n

j=1 be bases for the kernel and cokernel
of PL on M with Alvarez boundary conditions. Suppose the following relation for hermitian metrics: ρ =
e2σρ̂, h = e2f ĥ. Then[

Det∗DA
L

det(Φi,Φj) det(Ψi,Ψj)

]
(ρ,h)

=
[

Det∗DA
L

det(Φi,Φj) det(Ψi,Ψj)

]
(ρ̂,ĥ)

exp(S(σ, f))

where

S(σ, f) = − 1
6π

∫
M
dAρ̂

{
6∇f · ∇(σ + f) + |∇σ|2

}
− 1

6π

∫
M
dAρ̂

{
6ΩL,ĥ(σ + 2f) +Rρ̂(σ + 3f)

}
+

1
3π

∫
∂M

dsρ̂

{
3νL,ĥ(σ + 2f)− κρ̂(σ + 3f)

}(2.34)

Proof. The argument exactly follows [1]; here we only sketch the important differences. Temporarily define
D+

L = 2P †LPL, andD−
L = 2PLP

†
L. Let {Φj} be an orthonormal basis of eigensections ofD+

L with eigenval-
ues λj . Then by Remark 2.22, if Ψj = (1/

√
λj)PLΦj , then {Ψj} is an orthonormal basis of the subspace

of eigensections of D−
L with nonzero eigenvalues. Let σ = σ(t), f = f(t) be one parameter families of

conformal deformations; σ̇ and ḟ , their derivatives. One computes the variation of eigenvalues.

λ̇j = −2λj((σ̇ + ḟ)Φj ,Φj) + 2λj(ḟΨj ,Ψj)

Then as in [1, pp. 148-9], the corresponding variation of the determinant is given by
d

dt
log Det∗D+

L = f.p.

∫ ∞

ε
dt

∑
λj 6=0

λ̇je
−tλj

= f.p.

∫ ∞

ε
dt

∑
λj 6=0

{
−2λj((σ̇ + ḟ)Φj ,Φj) + 2λj(ḟΨj ,Ψj)

}
e−tλj

= −f.p.
∫ ∞

ε
dt
d

dt

{
−2 Tr((σ̇ + ḟ)e−tD+

L ) + 2 Tr(ḟ e−tD−
L )

}
Applying Proposition 2.27 to the heat kernel expansion for the laplacian on L and KL∗,

d

dt
log Det∗D+

L = − 1
6π

∫
M
dAρ (6ΩL,h +Rρ)(σ̇ + ḟ) +

1
6π

∫
M
dAρ (6ΩKL∗,(ρh)−1 +Rρ)ḟ

− 1
3π

∫
∂M

dsρ (κρ − 3νL,h)(σ̇ + ḟ) +
1
3π

∫
∂M

dsρ (κρ − 3νKL∗,(ρh)−1)ḟ

From Lemma 2.26 it follows that ΩKL∗,(ρh)−1 = −(1/2)Rρ − ΩL,h, and νKL∗,(ρh)−1 = κρ − νL,h. Hence,

d

dt
log Det∗D+

L = − 1
6π

∫
M
dAρ

{
6ΩL,h(σ̇ + 2ḟ) +Rρ(σ̇ + 3ḟ)

}
− 1

3π

∫
∂M

dsρ

{
κρ(σ̇ + 3ḟ)− 3νL,h(σ̇ + 2ḟ)

}(2.35)

We have the following variations with respect to conformal changes.

Rρ = e−2σ(Rρ̂ − 2∆ρ̂σ) ΩL,h = e−2σ(ΩL,ĥ −∆ρ̂f)

κρ = e−σ(κρ̂ + ∂n̂σ) νL,h = e−σ(νL,ĥ − ∂n̂f)
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Plugging these into the above, the first term on the right hand side of (2.35) becomes

− 1
6π

∫
M
dAρ̂

{
6ΩL,ĥ(σ̇ + 2ḟ) +Rρ̂(σ̇ + 3ḟ)

}
− 1

6π

∫
M
dAρ̂

{
6∇f · ∇σ̇ + 12∇f · ∇ḟ + 2∇σ · ∇σ̇ + 6∇σ · ∇ḟ

}
+

1
6π

∫
∂M

dsρ̂

{
12(∂n̂f)ḟ + 2(∂n̂σ)σ̇ + 6((∂n̂f)σ̇ + (∂n̂σ)ḟ)

}(2.36)

whereas the second term on the right hand side of (2.35) becomes

− 1
3π

∫
∂M

dsρ̂

{
κρ̂(σ̇ + 3ḟ)− 3νL,ĥ(σ̇ + 2ḟ)

}
− 1

3π

∫
∂M

dsρ̂

{
(∂n̂σ)(σ̇ + 3ḟ) + 3(∂n̂f)(σ̇ + 2ḟ)

}(2.37)

The last terms on the right hand sides of (2.36) and (2.37) cancel. The remaining terms can be integrated as
in [1], giving the desired result. �

Remark 2.38. Consider the following special cases:

(1) ∂M = ∅. Then the formula in (2.34) coincides with the result in [17, Prop. 3.8]. Note that there
is an overall factor of 2, coming from the fact that the determinant Det∗DL, regarded as a real
operator, is the square of the complex laplacian (see Lemma 2.31).

(2) If L = Kq, h the induced metric from M , and f = −qσ, then (2.34) coincides with the result in [1,
eq. (4.29)] (see Lemma 2.26).

(3) If σ and f are constant, then

S(σ, f) = −(2 deg(τL) + 2
3χ(M))σ − (4 deg(τL) + 2χ(M))f

gives the scaling law for determinants.

We will also need the following example. For the trivial bundle over the disk, the Alvarez boundary
conditions on a complex valued function reduce to Dirichlet conditions on the imaginary part and Neumann
conditions on the real part. Hence, the determinant is a product of the determinants for these boundary
conditions, which have been evaluated in [37]: i.e. for the flat disk of radius R and trivial, flat L with
parallel framing,

(2.39) Det∗DA
L = [Det∗Neu.∆][DetDir.∆] = 2−1/3R4/3 exp(−4ζ ′(−1) + 1/6)

3. FACTORIZATION OF DETERMINANTS

3.1. The generalized Dirichlet-to-Neumann operator. In this section we assumeM has non-empty bound-
ary. Let L→M be a hermitian holomorphic bundle with framing τL. The following is clear.

Lemma 3.1. The real and imaginary Alvarez boundary conditions are complimentary in the sense of [10,
Def. 2.12].
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Definition 3.2. The Poisson operator is characterized by the condition

PM (λ) : B′′(∂M, ı∗L) → Ω0
R(M,L) : (f, g) 7→ PM (λ)(f, g) = Φ

where Φ satisfies (DL + λ)Φ = 0, and b′′∂M (Φ) = (f, g). The boundary operator is defined by

AM (λ) : B′′(∂M, ı∗L) → B′′(∂M, ı∗L) : AM (λ) = J b′∂M PM (λ)

Hence, AM (λ) is the analog of the Dirichlet-to-Neumann operator. Like the DN operator, AM (λ) is elliptic
and, by (2.18) it is self-adjoint. In this case, however, it is a zero-th order pseudo-differential operator instead
of first order.

In case λ = 0, the Poisson, and hence also boundary operators are not necessarily everywhere defined
nor are they a priori well-defined. This can be seen from the integration by parts formula (2.18). The
Poisson operator is defined at (f, g) only if (f, g) is orthogonal to the image by J of boundary values of
sections Φ ∈ kerDL satisfying imaginary Alvarez boundary conditions. Similarly, given any such (f, g),
the extension by the Poisson operator is only well-defined up to addition of such Φ. With this in mind, set

(3.3) Aalv
M =

{
J b′∂M (Φ) : Φ ∈ kerDL , b′′∂M (Φ) = 0

}
Proposition 3.4. On the orthogonal complement of Aalv

M , the family AM (λ) extends continously as λ → 0
to a pseudo-differential operator AM (0) = AM .

Proof. Let {ΦA
i }∞i=1 be a complete set of eigensections for DA

L with eigenvalues {λi}∞i=1, and λi = 0 if
and only if i ≤ n. Choose a smooth extension map E : B′′(∂M, ı∗L) → L2(M) satisfying b′′∂M E = I ,
b′∂M E = 0. To compute PM (λ)(f, g) we need to solve the boundary value problem

(DL + λ)Φ = 0 , b′′∂M (Φ) = (f, g)

on M . From the definition of the extension, it suffices to solve

(DL + λ)Φ̃ = −(DL + λ)E(f, g) , b′′∂M (Φ̃) = 0

for then Φ = E(f, g) + Φ̃. Moreover, by the assumption on E, J b′∂M (Φ̃) = AM (λ)(f, g). Now

Φ̃ = −
∞∑

j=1

1
λj + λ

((DL + λ)E(f, g),ΦA
j )MΦA

j

= −
n∑

j=1

{
1
λ

(DLE(f, g),ΦA
j )M + (E,Φj)M

}
ΦA

j

−
∞∑

j=n+1

1
λj + λ

(
(DL + λ)E(f, g),ΦA

j

)
M

ΦA
j
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By (2.18), the first sum on the right hand side reduces to (since b′′∂M (ΦA
j ) = 0)

= −
n∑

j=1

{
1
λ

(b∂M (E(f, g)), J b∂M (ΦA
j )) + (E(f, g),ΦA

j )M

}
ΦA

j

= −
n∑

j=1

{
1
λ

(b′′∂M (E(f, g)), J b′∂M (ΦA
j )) + (E(f, g),ΦA

j )M

}
ΦA

j

= −
n∑

j=1

{
1
λ

((f, g), J b′∂M (ΦA
j )) + (E(f, g),ΦA

j )M

}
ΦA

j

Hence, if (f, g) ∈ (Aalv
M )⊥,

AM (λ)(f, g) = −
n∑

j=1

(E(f, g),ΦA
j )MJ b′∂M ΦA

j −
∞∑

j=n+1

1
λj + λ

(
(DL + λ)E(f, g),ΦA

j

)
M
J b′∂M ΦA

j

This clearly extends continuously as λ → 0, the second term giving the orthogonal projection to (Aalv
M )⊥.

�

Example 3.5. Consider the disk Bε of radius ε with the euclidean metric and trivial line bundle, metric,
and framing. Then Aalv

Bε
= {0} ⊕ R. By direct computation one shows that

(3.6) ABε(f, g)(θ) =
∑
n6=0

(
0 iσ(n)

−iσ(n) ε/|n|

) (
f̂(n)
ĝ(n)

)
einθ

where

(3.7) f(θ) =
∑
n∈Z

f̂(n)eiθ , g(θ) =
∑
n6=0

ĝ(n)eiθ

and σ(n) is the sign of n.

3.2. The generalized Neumann jump operator. Now suppose M is closed. Let Γ ⊂ M be a union of
simple closed disjoint curves in M , and define MΓ to be the surface with boundary obtained from M \Γ by
adjoining a double cover of Γ. We denote the connected components of MΓ by R(i), and by gi we mean the
genus of R(i). Note that a conformal metric ρ on M induces one on MΓ, and a holomorphic hermitian line
bundle L on determines one on MΓ. In both cases, we use the same notation for the objects on M and MΓ.

Suppose that τL is a framing of L → MΓ. We will always assume such framings arise from local
trivializations of L in a neighborhood of Γ ⊂M . We have the following

Lemma 3.8. Let di denote the degree of L→ R(i) defined by framing τL, and let d be the degree of L→M .
Then d =

∑
i di.

Proof. Let s be a meromorphic section of L with no zeros or poles on Γ, and let si denote the induced
meromorphic sections of L → R(i). Clearly, d = deg(s) =

∑
i deg(si). Write τL = fs for a nowhere

vanishing function f defined in a neighborhood of Γ. Then the local winding number of τL is the sum of
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local winding numbers of f and s. On the other hand, for each component of Γ, the local winding numbers
of f on the two copies in MΓ cancel, since they are defined in terms of outward normals. Hence,∑

i=1

deg(τL)R(i) =
∑
i=1

deg(si) = d

�

The additivity of the Euler characteristic and Theorem 2.28 imply

Corollary 3.9. Let M be a closed surface and Γ ⊂ M a union of simple closed curves dividing M into
surfaces R(i), i = 1, . . . , `, with boundary. Let PL be the real operator associated to ∂̄L on Ω0(M,L), and
on Ω0

R(R(i), L) with Alvarez boundary conditions defined by a framing τL. Then

index(PL) =
∑̀
i=1

index(PL)R(i)

Choose an orientation for Γ. We define maps

bΓ : Ω0
R(M,L) → B(Γ, ı∗L) := Ω0

R(Γ, ı∗L)⊕ Ω1
R(Γ, ı∗L)

(and b′Γ, b′′Γ) by restriction. The double cover ∂MΓ → Γ gives a diagonal and difference map

ı∆ : B(Γ, ı∗L) −→ B(∂MΓ, ı
∗L)

δΓ : B(∂MΓ, ı
∗L) −→ B(Γ, ı∗L)

(3.10)

The maps ı∆ and δΓ depend on the choice of orientation of Γ. We assume that such an orientation has been
fixed once and for all.

We now come the following crucial

Definition 3.11. The Neumann jump operator NΓ(λ) : B′′(Γ, ı∗L) −→ B′′(Γ, ı∗L) is defined by the
composition: NΓ(λ)(f, g) = δΓAMΓ

(λ)(ı∆(f, g)).

Then NΓ(λ) is a self-adjoint elliptic pseudo-differential operator of order zero. A calculation similar to the
one in [10, Prop. 4.4] leads to the following

Proposition 3.12. Choose coordinates with ρ ≡ 1 on ∂M . Then the symbol of NΓ(λ) is given by

σNΓ(λ)(x, ξ) = 2(I + rλ(x, ξ))aλ(ξ)

where aλ(ξ) is block diagonal with respect to the components of Γ, with blocks equal to

1
(ξ2 + λ)1/2

(
λ/2 iξ
−iξ −2

)
and rλ(x, ξ) is a matrix symbol with parameter satisfying

‖∂m
x ∂

n
ξ rλ(x, ξ)‖ ≤ Cm,n(1 + |ξ|+ |λ|1/2)−2−n

for all m,n ≥ 0.

Let

(3.13) ? : B′′(Γ, ı∗L) → B′′(Γ, ı∗L) : (f, g) 7→ (∗g, ∗f)
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Corollary 3.14. For λ > 0 we have NΓ(λ) = 2(I +R(λ))A(λ), where

(1) A(λ) is an invertible elliptic pseudo-differential operator of order zero satisfying

?A(λ) = −A(λ)−1?

(2) R(λ) is a pseudo-differential operator with parameter of order −2 with uniform bound O(λ−1).

Proof. Let A(λ) be the operator with total symbol aλ(ξ), and R(λ) the operator with total symbol rλ(x, ξ).
Then the expression for NΓ(λ) follows from Proposition 3.12, (1) is clear from the definition, and (2) follows
from [32, Cor. 9.1]. �

As with the boundary operator, the jump operator is not everywhere defined for λ = 0. In order to rectify
this, let AΓ = Aker

Γ ⊕ Aalv
Γ , where

Aker
Γ =

{
b′′Γ(Φ) : Φ ∈ kerDL ⊂ Ω0

R(M,L)
}

Aalv
Γ =

{
δΓJ(b′∂MΓ

(Φ)) : Φ ∈ kerDL ⊂ Ω0
R(MΓ, L) , b′′∂MΓ

(Φ) = 0
}

Notice that Aker
Γ ⊂ Ω0

R(Γ, ı∗L) ⊕ {0}, Aalv
Γ ⊂ {0} ⊕ Ω1

R(Γ, ı∗L). In particular, Aker
Γ ⊥ Aalv

Γ . Now
Propositions 3.4 and 3.12 imply

Proposition 3.15. On the orthogonal complement of AΓ, the family NΓ(λ) extends continously as λ→ 0 to
a zero-th order pseudo-differential operator NΓ(0) = NΓ.

We also record the following

Lemma 3.16. Assume cokerPL = {0} on M and on MΓ. Then dimR Aker
Γ = dimR Aalv

Γ .

Proof. Let V = {b′Γ(Φ) : Φ ∈ kerDL , b′′Γ(Φ) = 0}. Then since any holomorphic section vanishing on Γ
must vanish identically, we have by the assumption on cokernels Corollary 3.9,

dimR Aker
Γ = 2h0(L)− dimR V = dimR kerDA

L − dimR V

On the other hand, consider the surjective map kerDA
L → Aalv

Γ . Any element in the kernel corresponds to a
global holomorphic section satisfying the extra condition b′′Γ(Φ) = 0. Hence,

dimR kerDA
L − dimR V = dimR Aalv

Γ

and the result follows. �

3.3. Determinants of zero-th order operators. Let T be a positive elliptic self-adjoint pseudo-differential
operator of order zero on the real Hilbert space L2(S1)⊕ L2(S1) (where the L2 functions are real valued).
The usual zeta regularization procedure does not apply to T . In order to define its determinant, we need
to choose a regularizer. By this we mean an elliptic pseudo-differential operator Q of order 1 on L2(S1).
Given Q, we extend it diagonally on L2(S1)⊕ L2(S1) and denote this extended operator also by Q.
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Next, define Log T as follows. Let γ ⊂ C \ {Re z ≤ 0} be a closed curve containing the spectrum of T .
Then define

(3.17) Log T =
1

2πi

∫
γ
dz(log z)(z − T )−1

where log is the branch of the logarithm on C\{Re z ≤ 0} with −π < arg log z < π. Then following [19],
we set

(3.18) log DetQT = f.p. Tr
(
Q−s Log T

)
s=0

While this definition of the determinant depends on Q, it is nevertheless very suitable for our purposes.
The main properties we will need are summarized below.

Proposition 3.19. (1) Let B be a bounded operator satisfying BT = T−1B. Then

B(Log T ) = −(Log T )B

(2) Suppose in addition that B is an involution that commutes with Q. Then DetQ T = 1.
(3) If R is trace-class with norm ≤ 1/2, then | log DetQ(I +R)| ≤ 2|TrR|.
(4) Suppose T (ε) is a differentiable family of positive elliptic self-adjoint pseudo-differential operators

of order zero. If dT (ε)/dε is trace-class, then

d

dε
log DetQT (ε) = Tr

(
T (ε)−1dT (ε)

dε

)
Proof. These follow from directly from the definitions. For example, for (1) note that

(3.20)
1

2πi

∫
γ

dz

z
(log z)(z − T )−1 = (Log T )T−1

Indeed, from z−1(z − T )−1 = (z − T )−1T−1 − z−1T−1 we have

1
2πi

∫
γ

dz

z
(log z)(z − T )−1 =

1
2πi

∫
γ
dz(log z)(z − T )−1T−1 − 1

2πi

∫
γ

dz

z
(log z)T−1

Because of the choice of contour, the second term vanishes. Now

B(z − T ) = (z − T−1)B =⇒ (z − T−1)−1B = B(z − T )−1

Hence,

B(Log T ) =
1

2πi

∫
γ
dz(log z)(z − T−1)−1B =

1
2πi

∫
γ
dz(log z)(Tz − I)−1TB

= − 1
2πi

∫
γ

dz

z
(log z)(z−1 − T )−1TB

Next make a change of variables w = z−1. Without loss of generality, we may assume γ is invariant under
this change. Then by (3.20).

B(Log T ) = − 1
2πi

∫
γ

dz

z
(log z)(z−1 − T )−1TB = − 1

2πi

∫
γ

dw

w
(logw)(w − T )−1TB = −(Log T )B
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For (2), it follows from (1) that

f.p. Tr
(
Q−s Log T

)
s=0

= f.p. Tr
(
BQ−s(Log T )B

)
s=0

= f.p. Tr
(
Q−sB(Log T )B

)
s=0

= −f.p. Tr
(
Q−s Log T

)
s=0

Parts (3) and (4) follow similarly. �

3.4. The Burghelea-Friedlander-Kappeler formula. We apply the definition of determinant in the previ-
ous section to the Neumann jump operator. The self-adjoint operator NΓ(λ) has non-zero real eigenvalues
for λ 6= 0, but is not positive. Hence, we define the logarithm and determinant by

Log NΓ(λ) = 1
2 Log N2

Γ(λ)

log DetQ NΓ(λ) = 1
2 log DetQ N2

Γ(λ)

Note that we choose the regulator Q to be diagonal on each component of Γ. In what follows, let ζQ(s) =
TrQ−s, and recall that s = 0 is a regular value of (the analytic continuation of) ζQ(s).

With this understood, we state the key factorization theorem (cf. [10, Thm. A]).

Theorem 3.21 (BFK formula). For all λ > 0,

[Det(DL + λ)]M = cQ [Det(DA
L + λ)]MΓ

DetQNΓ(λ)

where cQ = 2−ζQ(0).

First, note the following

Lemma 3.22. For all λ > 0, N−1
Γ (λ)dNΓ(λ)/dλ is trace-class.

Proof. In terms of the expression from Corollary 3.14,

N−1
Γ (λ)ṄΓ(λ) = A−1(λ)(I +R(λ))−1Ṙ(λ)A(λ) +A−1(λ)Ȧ(λ)

where the dot indicates the derivative with respect to the spectral parameter. Since R(λ) has order −2 on
the circle, the first term on the right hand side is trace class. It therefore suffices to prove that A−1(λ)Ȧ(λ)
is trace class. Its symbol is block diagonal with respect to the components of Γ, with blocks given by

σA−1(λ)Ȧ(λ)(x, ξ) =
1

(ξ2 + λ)

(
1/2 0
iξ/2 −1/2

)
Since the associated operator with this symbol is clearly trace class, the assertion follows. �

Lemma 3.23. log DetQ NΓ(λ) = ζQ(0) log 2 + log DetQA(λ) +O(λ−1/2).

Proof. From Corollary 3.14, log DetQ NΓ(λ) = ζQ(0) log 2 + log DetQ [(I +R(λ))A(λ)]. On the other
hand, as in the proof of the previous lemma, R(λ)A(λ) is trace-class. Applying Proposition 3.19 (4) to the
family

T (ε) = [(I + εR(λ))A(λ)]2

and integrating ε, we have

log DetQ [(I +R(λ))A(λ)] = log DetQA(λ) +
∫ 1

0
dεTr

[
R(λ)(I + εR(λ))−1

]
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By the estimate on the symbol of R(λ), its trace is bounded by O(λ−1/2), say. The result follows. �

Proof of Theorem 3.21. Using Lemma 3.22, the proof of the existence of such a constant cQ follows exactly
as in [10, pp. 46-47]. By [10, Thm. 3.12 (2)] it therefore suffices to prove the estimate

(3.24) log DetQ NΓ(λ) = ζQ(0) log 2 +O(λ−1/2)

By Lemma 3.23, this immediately follows if we can show log DetQA(λ) = 0. Using Corollary 3.14 and
Proposition 3.19 (1), ?LogA(λ) = −(LogA(λ)) ?, where ? is given by (3.13). Since Q is a diagonal
operator, ?Q = Q?, and the claim follows from Proposition 3.19 (2). �

3.5. The case of zero modes. The goal of this section is to extend the formula in Theorem 3.21 as λ→ 0.
We will need a preliminary

Definition 3.25. A framing τL near Γ is generic if b′′Γ is injective on kerDL ⊂ Ω0
R(M,L).

Note that an equivalent condition to the one above is that the difference map δΓ b′∂MΓ
be injective on kerDA

L

on MΓ. Indeed, if Φ is a global section in kerDL, then regarded as a section on MΓ, we automatically
have δΓ b′∂MΓ

(Φ) = 0. If in addition, b′′Γ(Φ) = 0, then Φ ∈ kerDA
L. Conversely, if ΦA ∈ kerDA

L and
δΓ b′∂MΓ

(ΦA) = 0, then since δΓ b′′∂MΓ
(ΦA) = 0 automatically, it extends to a global section on M .

Theorem 3.26. For a given framing τL near Γ, let {Φi} (resp. {ΦA

i }) be a basis for kerDL on M (resp.
for kerDA

L on MΓ ). Assume the framing is generic in the sense of Definition 3.25. Then[
Det∗DL

det(Φi,Φj)

]
M

= cQ

[
Det∗DA

L

det(ΦA

i ,Φ
A

j )

]
MΓ

det(δΓ b′∂MΓ
(ΦA

i ), δΓ b′∂MΓ
(ΦA

j ))
det(b′′Γ(Φi),b′′Γ(Φj))

Det∗QNΓ

where NΓ = NΓ(0) is the operator defined on the orthogonal complement of AΓ in Proposition 3.15.

Proof. We apply Theorem 3.21 as λ ↓ 0. By the definition of zeta regularization,

log Det(DL + λ) = (log λ) dimR kerDL + log Det∗DL + o(1)

log Det(DA
L + λ) = (log λ) dimR kerDA

L + log Det∗DA
L + o(1)

on M and MΓ with Alvarez boundary conditions. Let m = dimR kerDL on M , and n = dimR kerDA
L on

MΓ. Hence, it suffices to compute limλ→0 {log DetQ NΓ(λ) + (n−m) log λ}. The key point is that there
are small eigenvalues of NΓ(λ), µj(λ) → 0, j = 1, . . . ,m, corresponding to global holomorphic sections
of L, and large eigenvalues νj(λ) → +∞, j = 1, . . . , n, corresponding to kerDA

L. Moreover, it follows
easily from the definition that

(3.27) log DetNΓ(λ) = log(µ1(λ) · · ·µm(λ)) + log(ν1(λ) · · · νn(λ)) + log Det∗QNΓ + o(1)

We need therefore to compute the contribution from both the {µi} and {νi}.
Let µ1(λ), . . . , µm(λ) be the small eigenvalues of NΓ(λ), and let {βj(λ)}m

j=1 be orthonormal with eigen-
values µj(λ). Let {Φj}∞i=1 be a complete set of eigensections for DL on M with eigenvalues {λj}∞j=1,



PRECISE CONSTANTS IN BOSONIZATION FORMULAS II 21

λj = 0 if and only if j ≤ m. Let π : B′′(Γ, ı∗L) → B′′(Γ, ı∗L) orthogonal projection to Aker
Γ . Then we

compute

N−1
Γ (λ) =

(
1
λA1 + πB1(λ)π πB1(λ)π⊥

π⊥B1(λ)π π⊥B1(λ)π⊥

)
where A1, B1(λ) : L2(Γ) → L2(Γ) are given by

A1(F,G) =
m∑

j=1

(
(F,G),b′′Γ(Φj)

)
Γ
b′′Γ(Φj)(3.28)

B1(λ)(F,G) =
∞∑

j=m+1

1
λj + λ

(
(F,G),b′′Γ(Φj)

)
b′′Γ(Φj)

To see this, let Φ be a section of L → MΓ, (DL + λ)Φ = 0, with (F,G) = δΓJ b′∂MΓ
(Φ), and

δΓ b′′∂MΓ
(Φ) = 0. Then by (2.18),

Φ =
∞∑

j=1

(Φ,Φj)MΓ
Φj =

∞∑
j=1

1
λj + λ

(Φ, (DL + λ)Φj)MΓ
Φj

= −
∞∑

j=1

1
λj + λ

(b∂MΓ
Φ, J b∂MΓ

Φj)Φj

= −
∞∑

j=1

1
λj + λ

(δΓ bΓ Φ, J bΓ Φj)Φj

= −
∞∑

j=1

1
λj + λ

(δΓ b′Γ Φ, J b′′Γ Φj)Φj

=
∞∑

j=1

1
λj + λ

(δΓJ b′Γ Φ,b′′Γ Φj)Φj

=
∞∑

j=1

1
λj + λ

((F,G),b′′Γ Φj)Φj

and computing b′′Γ(Φ) gives the result. We wish to relate the eigenvalues of A1 to the µj(λ). Since

N−1
Γ (λ)βj(λ) = µ−1

j (λ)βj(λ)

we have
1
λ
A1βj(λ) + πB1(λ)βj(λ) = µ−1

j (λ)πβj(λ)(3.29)

π⊥B1(λ)βj(λ) = µ−1
j (λ)π⊥βj(λ)

Since B1(λ) is uniformly bounded as λ ↓ 0, it follows that ‖π⊥βj(λ)‖L2(Γ) ≤ Cµj(λ), for C independent
of λ. In particular, ‖πβj(λ)‖L2(Γ) → 1 as λ ↓ 0, and so (after passing to a sequence λk ↓ 0) there exist limits
{βj(0)} which give a basis for Aker

Γ . If we let vj be an orthonormal basis for Aker
Γ such that A1vj = σjvj ,

and write

πβj(λ) =
m∑

k=1

Cjk(λ)vk
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then the (subsequential) limit Cjk(0) exists and is nonsingular. From (3.29) we have

(3.30)
∥∥∥∥A1πβj(λ)− λ

µj(λ)
πβj(λ)

∥∥∥∥
L2(Γ)

≤ Cλ

In terms of the basis {vj},

A1πβj(λ)− λ

µj(λ)
πβj(λ) =

m∑
k=1

Cjk(λ)
(
σk −

λ

µj(λ)

)
vk

so by (3.30), Cjk(λ)(σk− (λ/µj(λ))) → 0, for all j, k. Since (Cjk) is non-singular, for each j, Cjk(0) 6= 0
for some k. Hence, σ−1

k = limλ↓0 µj(λ)/λ = µ̂j exists for each j, with Cjkσk = µ̂−1
j Cjk. Again using the

fact that (Cjk) is non-singular, we have

log detA1 + log(
∏

µj(λ)) = m log λ+ o(1)

Finally, note that by choosing b′′Γ(Φj), j = 1, . . . ,m, as a basis in (3.28), we have

detA1 = det(b′′Γ(Φi),b′′Γ(Φj))

(3.31) log(
∏

µj(λ)) = m log λ− log det(b′′Γ(Φi),b′′Γ(Φj)) + o(1)

Let ν1(λ), . . . , νn(λ) be the divergent eigenvalues of NΓ(λ), and let {βA
j (λ)}n

j=1 be orthonormal with
eigenvalues νj(λ). Let {ΦA

i }∞i=1 be a complete set of eigensections forDA
L onMΓ with eigenvalues {λi}∞i=1,

and λi = 0 if and only if i ≤ n. Let π : B′′(Γ, ı∗L) → B′′(Γ, ı∗L) be orthogonal projection to Aalv
Γ . We

also choose a smooth extension map E : B′′(Γ, ı∗L) → L2(MΓ) satisfying b′′ΓE = I , b′ΓE = 0. Then as
above we compute

NΓ(λ) =
(

1
λA2(λ) + πB2(λ)π πB2(λ)π⊥

π⊥B2(λ)π π⊥B2(λ)π⊥

)
where A2(λ), B2(λ) : L2(Γ) → L2(Γ) are given by

A2(λ)(f, g) = −
n∑

j=1

{(
(f, g), δΓJ b′∂MΓ

(ΦA
j )

)
+ λ

(
E(f, g),ΦA

j

)
M

}
δΓJ b′∂MΓ

(ΦA
i )(3.32)

B2(λ)(f, g) = −
∞∑

j=n+1

1
λj + λ

(
(DL + λ)E(f, g),ΦA

j

)
M
δΓJ b′∂MΓ

(ΦA
j )

To see this, note that to compute NΓ(λ)(f, g) we need to solve the boundary value problem

(DL + λ)Φ = 0 , b′′∂MΓ
(Φ) = ı∆(f, g)

on MΓ. From the definition of the extension, it suffices to solve

(DL + λ)Φ̃ = −(DL + λ)E(f, g) , b′′∂MΓ
(Φ̃) = 0
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for then Φ = E(f, g) + Φ̃, and by the assumption on E the jump in b′∂MΓ
(Φ̃) gives NΓ(λ)(f, g). Now

Φ̃ = −
∞∑

j=1

1
λj + λ

((DL + λ)E(f, g),ΦA
j )MΓ

ΦA
j

= −
n∑

j=1

{
1
λ

(DLE(f, g),ΦA
j )MΓ

+ (E,Φj)MΓ

}
ΦA

j

−
∞∑

j=n+1

1
λj + λ

(
(DL + λ)E(f, g),ΦA

j

)
MΓ

ΦA
j

By (2.18), the first term on the right hand side is (since b′′∂MΓ
(ΦA

j ) = 0)

= −
n∑

j=1

{
1
λ

(b∂MΓ
(E(f, g)), J b∂MΓ

(ΦA
j )) + (E(f, g),Φj)MΓ

}
ΦA

j

= −
n∑

j=1

{
1
λ

(b′′∂MΓ
(E(f, g)), J b′∂MΓ

(ΦA
j )) + (E(f, g),ΦA

j )MΓ

}
ΦA

j

= −
n∑

j=1

{
1
λ

(b′′Γ(E(f, g)), δΓJ b′∂MΓ
(ΦA

j )) + (E(f, g),ΦA
j )MΓ

}
ΦA

j

= −
n∑

j=1

{
1
λ

((f, g), δΓJ b′∂MΓ
(ΦA

j )) + (E(f, g),ΦA
j )MΓ

}
ΦA

j

We again relate the eigenvalues of A2(0) to the νj(λ). Since NΓ(λ)βA
j (λ) = νj(λ)βA

j (λ), we have

1
λ
A2(λ)βA

j (λ) + πB2(λ)βA
j (λ) = νj(λ)πβA

j (λ)(3.33)

π⊥B2(λ)βA
j (λ) = νj(λ)π⊥βA

j (λ)

SinceB2(λ) is uniformly bounded as λ ↓ 0, it follows that ‖π⊥βA
j (λ)‖L2(Γ) ≤ Cν−1

j (λ), forC independent
of λ. In particular, ‖πβA

j (λ)‖L2(Γ) → 1 as λ ↓ 0, and so the (sequential) limits {βA
j (0)} give a basis for

Aalv
Γ . If we let vj be an orthonormal basis for Aalv

Γ such that A2(0)vj = σjvj , and write

πβA
j (λ) =

n∑
k=1

Cjk(λ)vk ,

then Cjk(0) exists and is nonsingular. From (3.33) we have

(3.34)
∥∥A2(0)πβA

j (λ)− λνj(λ)πβA
j (λ)

∥∥
L2(Γ)

≤ Cλ

In terms of the basis {vj},

A2(0)πβA
j (λ)− λνj(λ)πβA

j (λ) =
n∑

k=1

Cjk(λ) (σk − λνj(λ)) vk

so by (3.34), Cjk(λ)(σk − λνj(λ)) → 0 for all j, k. As before, limλ↓0 λνj(λ) = ν̂j exists for each j, and
Cjkσk = ν̂jCjk for all j, k. Hence, log detA2(0) = log(

∏
νj(λ)) +m log λ + o(1). Finally, note that by
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choosing δΓJ b′∂MΓ
(ΦA

j ) as a basis in (3.32), we have

detA2(0) = det(δΓ b′∂MΓ
(ΦA

i ), δΓ b′∂MΓ
(ΦA

j ))

(3.35) log(
∏

νj(λ)) = −m log λ+ log det(δΓ b′∂MΓ
(ΦA

i ), δΓ b′∂MΓ
(ΦA

j )) + o(1)

Putting together (3.27), (3.31) and (3.35) gives the result. �

In calculating the bosonization constants we will use the following special case of Theorem 3.26: let Γ
be a simple closed connected curve separating M into components R(1) and R(2). Then for any choice of
bases {Φi}m

i=1 for kerDL on M , and {ΦA,(1)
i }m1

i=1, and {ΦA,(2)
i }m2

i=1 for kerDA
L on R(1) and R(2), we have

[
Det∗DL

det(Φi,Φj)

]
M

= cQ

[
Det∗DL

det(ΦA,(1)
i ,ΦA,(1)

j )

]
R(1)

[
Det∗DL

det(ΦA,(2)
i ,ΦA,(2)

j )

]
R(2)

×
det(δΓ b′∂MΓ

(ΦA

i ), δΓ b′∂MΓ
(ΦA

j ))
det(b′′Γ(Φi),b′′Γ(Φj))

Det∗QNΓ

(3.36)

where

ΦA
i =

{
ΦA,(1)

i 1 ≤ i ≤ m1

ΦA,(2)
i−m1

m1 < i ≤ m1 +m2

Actually, for the purpose of degeneration it will be useful to also have a slightly modified version of
(3.36) in the case where the trivialization τL is in fact the restriction of a global holomorphic section. This
is not a generic situation in the sense of Definition 3.25, since the global section τL also satisfies Alvarez
boundary conditions, and hence det(b′′Γ(Φi),b′′Γ(Φj))Γ = 0 for any basis. Similarly, since the jump of τL
is trivial, det(δΓ b′Γ(ΦA

i ), δΓ b′Γ(ΦA

j )) also vanishes. This motivates the following

Definition 3.37. Let τL be a global holomorphic section of L→M , nowhere vanishing near Γ. We call the
framing τL good if the kernel of b′′Γ on kerDL ⊂ Ω0

R(M,L) is precisely the R-span of τL. We say that bases
{Φi}m

i=1, {ΦA,(1)
i }m1

i=1, and {ΦA,(2)
i }m2

i=1 for kerDL on M and for kerDA
L on R(1) and R(2), are adapted to τL

if Φ1 = τL, ΦA,(1)
1 = τL

∣∣
R(1) , ΦA,(2)

1 = τL
∣∣
R(2) .

For adapted bases, the notation d̂et(b′′Γ(Φi),b′′Γ(Φj)) will by definition denote the determinant of the (11)-
minor of (b′′Γ(Φi),b′′Γ(Φj)). Similarly, d̂et(δΓ b′∂MΓ

(ΦA

i ), δΓ b′∂MΓ
(ΦA

j )) will denote the determinant of the
(11)-minor of (δΓ b′∂MΓ

(ΦA

i ), δΓ b′∂MΓ
(ΦA

j )). Then after some linear algebra we have

Theorem 3.38. Let τL be a global holomorphic section giving a framing of L near Γ, and let {Φi} (resp.
{ΦA,(1)

i ,ΦA,(2)
j }) be an adapted basis for kerDL on M (resp. on R(1, 2) with Alvarez boundary conditions).

Assume the framing is good in the sense of Definition 3.37. Then[
Det∗DL

det(Φi,Φj)

]
M

= cQ

[
Det∗DL

det(ΦA,(1)
i ,ΦA,(1)

j )

]
R(1)

[
Det∗DL

det(ΦA,(2)
i ,ΦA,(2)

j )

]
R(2)

×
d̂et(δΓ b′∂MΓ

(ΦA

i ), δΓ b′∂MΓ
(ΦA

j ))

d̂et(b′′Γ(Φi),b′′Γ(Φj))
Det∗QNΓ
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4. ASYMPTOTICS OF DETERMINANTS

4.1. Asymptotics of the generalized Neumann jump operator. The goal of this section is to prove the
following. Let M be a closed Riemann surface of genus g, and choose a coordinate neighborhood B with
coordinate z centered at p ∈ M . Let Bε = {|z| < ε}, and set Rε = M \ Bε. Let L → M be a hermitian
holomorphic line bundle of degree d with a global holomorphic section τL that is nowhere vanishing on B.
Also, assume cokerPL = {0} on M and on Rε, and that ρ ≡ 1 and ‖τL‖ = 1 on B.

Proposition 4.1. If NΓε denotes the Neumann jump operator with respect to Alvarez boundary conditions
defined by a global section τL. Then as ε→ 0,

log Det∗QNΓε −→ (ζQ(0)− 4h0(L) + 2) log 2

By direct computation, as in [39] one proves

Lemma 4.2. For 1/2 ≥ ε > 0, ARε = Sε + εUεAR1(I + TεAR1)
−1Uε, where

Sε(f, g)(θ) =
∑
n6=0

(
εn − ε−n

εn + ε−n

) (
0 −i
i −ε/n

) (
f̂(n)
ĝ(n)

)
eiθ

Uε(f, g)(θ) =
∑
n6=0

2
ε(εn + ε−n)

(
f̂(n)
εĝ(n)

)
eiθ

Tε(f, g)(θ) =
∑
n6=0

(
εn − ε−n

εn + ε−n

) (
1/n −i
i 0

) (
f̂(n)
ĝ(n)

)
eiθ

for functions f, g in (3.7).

We also note the following estimates.

Lemma 4.3. Assume 1/2 ≥ ε > 0.

(1) (Aε − Sε) is trace-class with norm bounded by 8ε2.
(2) Uε is trace-class with uniformly bounded norm.
(3) If T0 is defined by

T0(f, g)(θ) =
∑
n6=0

(
−1/|n| iσ(n)
−iσ(n) 0

) (
f̂(n)
ĝ(n)

)
eiθ

then (Tε − T0) is trace-class with norm bounded by 8ε2.

Lemma 4.4. For ε > 0 sufficiently small , I +TεAR1 is uniformly invertible on the orthogonal complement
of AΓ.

Proof. It suffices to show that I + T0AR1 has no kernel on A⊥
Γ . But by a direct computation, if (f, g) =

−T0AR1(f, g), then PR1(f, g) extends to a global section in kerDL. �
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Proof of Proposition 4.1. By Lemma 4.2 we have on the orthogonal complement of AΓε :

Log NΓε = log 2 + 1
2 Log

(
1
2NΓε

)2 = log 2 + 1
2 Log (I + C(ε))

log Det∗QNΓε = (ζQ(0)− dimR AΓε) log 2 + 1
2 log Det∗Q(I + C(ε))

More precisely, assume the orientation of Γ is chosen to agree with ∂Rε. Then for f, g as in (3.7), and using
(3.6),

NΓε = ARε +
(
−1 0
0 1

)
ABε

(
1 0
0 −1

)
NΓε

(
f

g

)
=

∑
n6=0

[(
0 iσ(n)

−iσ(n) ε/|n|

)
+

(
−1 0
0 1

) (
0 iσ(n)

−iσ(n) ε/|n|

) (
1 0
0 −1

)] (
f̂(n)
ĝ(n)

)
einθ

+ {trace class}

=
∑
n6=0

2
(
iσ(n)ĝ(n)
−iσ(n)f̂(n)

)
einθ + {trace class}

N2
Γε

= 4I + {trace class}

Now by Lemma 3.16,

dimR AΓε = dimR kerDL − 1 + dimR kerDA
L − 1 = 2 dimR kerDL − 2 = 4h0(L)− 2

Since C(ε) → 0 in trace, the result follows from Proposition 3.19 (3). �

4.2. Degeneration of Riemann surfaces and holomorphic sections. Suppose g ≥ 1. Let M1 and M2

be a pair of closed Riemann surfaces with genera g − 1 and 1, respectively. For a complex parameter t,
0 < |t| ≤ 1 we construct a degenerating family Mt of closed surfaces of genus g using the “plumbing
construction": z1z2 = t, for local coordinates on M1, M2 centered at points q1, q2 (for more details, see
[38]). Let Γt denote the curve in Mt given by |z1| = |z2| = |t|1/2. If we set B(i)

t = {|zi| ≤ |t|1/2}, and let
R(1)

t = M1 \B(1)

t , R(2)

t = M2 \B(2)

t , then Mt \Γt is conformally equivalent to the disjoint union R(1)

t ∪R(2)

t .
We now consider holomorphic line bundles of degree d ≥ g−1 ≥ 1, and setm = d−g+1. We will need

two different degeneration schemes: (I) for d ≥ g, and another (II) for d = g − 1. In scheme I, the bundle
will be associated to an effective divisor

∑d−1
i=1 xi + y, with xi ∈ M1 \ {q1}, y ∈ M2 \ {q2}. By keeping

the points fixed, this defines a holomorphic family of line bundles Lt → Mt degenerating to line bundles
L1 → M1 of degree d − 1 and L2 → M2 of degree 1, given by divisors

∑d−1
i=1 xi and y, respectively. In

scheme II, the divisor is
∑g−1

i=1 xi−x0 + y, with xi ∈M1 \ {q1}, y ∈M2 \ {q2} . In both cases, we assume
the points have been chosen generically so that h1(L1) (note that h1(L2) = 0 automatically). In scheme I,
by the same argument as in the proof of Proposition 2.24 we may also assume cokerPL vanishes on R(1)

t .
A divisor also determines a framing τLt of Lt, unique up to scale, which we fix once and for all t.

Note that τLt is globally holomorphic in scheme I, whereas in scheme II it is only meromorphic with pole
y ∈M1. In scheme I we assume, again by the genericity of the divisor, that the framing is good. The section
τLt clearly limits to sections τL1 and τL2 of L1 and L2.

More generally, for the following result we refer to [31] (see also [11] and the discussion in [39]).
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Proposition 4.5. Suppose d ≥ g. Choose a basis {τL1 , ω
(1)

2 , . . . , ω(1)
m } for H0(M1, L1) with ω(1)

i (q1) = 0.
Then there is a family of bases {ω1(t), . . . , ωm(t)} for H0(Mt, Lt) such that ω1(t) = τLt , and for 2 ≤ i ≤
m,

ωi(z, t) =

{
ω(1)

i (z) + o(1) , z ∈M1 \ {q1}
o(1) , z ∈M2 \ {q2}

Moreover, the o(1) vanish uniformly on R(1)

t and R(2)

t as t→ 0.

4.3. Admissible metrics and asymptotics of S(σ, f). Recall the definition of the Arakelov metric (cf.
[3, 15, 38, 17]). Given a compact Riemann surface M of genus g ≥ 1, let {Ai, Bi}g

i=1 be a symplectic
set of generators of H1(M) and choose {ωi}g

i=1 to be a basis of abelian differentials normalized such that∫
Ai
ωj = δij . Let Ωij =

∫
Bi
ωj be the associated period matrix with theta function ϑ. Set

µ =
i

2g

g∑
i,j=1

(Im Ω)−1
ij ωi ∧ ωj

Then
∫
M µ = 1. The Arakelov-Green’s function G(z, w) is symmetric with a zero of order one along

the diagonal satisfying ∂∂̄ logG(z, w) = (πi)µ, for z 6= w, normalized by
∫
M µ(z) logG(z, w) = 0. The

Arakelov metric ρ = ρ(z)|dz|2 is defined by

(4.6) log ρ(z) = 2 lim
w→z

{logG(z, w)− log |z − w|}

A hermitian metric h on a line bundle L→M of degree is d is admissible in the sense of [15] if

(4.7) Ric(h) = −(2πid)µ

The Arakelov metric onM , considered as a hermitian metric on the anti-canonical bundleK∗, is admissible:

(4.8) Ric(ρ) = 4πi(g − 1)µ

In terms of the Hermitian-Einstein tensor and the scalar curvature, (4.7) and (4.8) become

(4.9) dAΩL,h = (2πd)µ , dARρ = −8π(g − 1)µ

For more details we refer to the papers cited above.
We now consider the degenerating families Lt → Mt discussed in the previous section. The choice of

framing τLt allows us to define admissible metrics. Let Gt(z, w) denote the Arakelov-Green’s function on
Mt.

In scheme I, we define the metric on Lt, L1, and L2 by

‖τLt‖2(z) = ht(z) = G2
t (z, q)

d−1∏
i=1

G2
t (z, xi)(4.10)

‖τL1‖2(z) = h1(z) =
d−1∏
i=1

G2
1(z, xi)

[
G2(q, p)∏d−1

i=1 G1(p, xi)

]2/g

(4.11)

‖τL2‖2(z) = h2(z) = G2
2(z, q)

[∏d−1
i=1 G1(p, xi)
G2(q, p)

]2(g−1)/g

(4.12)
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Similarly, in scheme II, we define the metrics

‖τLt‖2(z) = ht(z) = G−2
t (z, y)G2

t (z, q)
g−1∏
i=1

G2
t (z, xi)(4.13)

‖τL1‖2(z) = h1(z) = G−2
1 (z, y)

g−1∏
i=1

G2
1(z, xi)

[
G1(y, p)G2(q, p)∏g−1

i=1 G1(p, xi)

]2/g

(4.14)

‖τL2‖2(z) = h2(z) = G2
2(z, q)

[ ∏d−1
i=1 G1(p, xi)

G1(y, p)G2(q, p)

]2(g−1)/g

(4.15)

For z ∈Mt, define the conformal factor ft(z) by

ht(z) =

{
e2ft(z)h1(z) z ∈M1 \ {p}
e2ft(z)h2(z) z ∈M2 \ {p}

Similarly, let ρ1, ρ2, and ρt denote the Arakelov metrics on M1, M2, and Mt, respectively. Define σt by

ρt(z) =

{
e2σt(z)ρ1(z) z ∈M1 \ {p}
e2σt(z)ρ2(z) z ∈M2 \ {p}

Applying [38, Thm. 6.10] to (4.10), (4.11), and (4.12) for scheme I, and to (4.13), (4.14), and (4.15) for
scheme II, we have the following estimates:

Gt(z, w) =



|t|1/g2
G1(z, w)(G1(z, p)G1(w, p))−1/g + o(1) , z, w ∈M1

|t|(g−1)2/g2
G2(z, w)(G2(z, p)G2(w, p))−(g−1)/g + o(1) , z, w ∈M2

|t|−(g−1)/g2
G1(z, p)(g−1)/gG2(w, p)1/g + o(1) , z ∈M1 , w ∈M2

(4.16)

ft(z) =


(d− g)
g2

log |t| − (d− g)
g

logG1(z, p) + o(1) , z ∈M1 \ {p}

(g − 1)(g − d)
g2

log |t|+ (d− g)
g

logG2(z, p) + o(1) , z ∈M2 \ {p}

(4.17)

σt(z) =


1
g2

log |t| − 2
g

logG1(z, p) + o(1) , z ∈M1 \ {p}

(
g − 1
g

)2

log |t| − 2(g − 1)
g

logG2(z, p) + o(1) , z ∈M2 \ {p}

(4.18)

The o(1) terms converge to zero uniformly as |t| → 0. By direct computation of the expression (2.34) using
(4.16), (4.17), and (4.18), we have

Lemma 4.19. Assume d ≥ g − 1 and let m = d− g + 1. Then in both degeneration schemes,

SR
(1)
t

(σ(t), f(t)) + SR
(2)
t

(σ(t), f(t)) = −
(

2
3

+
2(g − 1)

3g
+

2m(m− 1)
g2

)
log |t|+ o(1)
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4.4. Proof of the Main Theorem. Let B̂g,d = Bg,d exp(−cg/12). Then the Main Theorem is equivalent
to

Proposition 4.20. For d ≥ g − 1, B̂g,d = (2π)2g−d exp(cg/6).

Proof. Analyze the asymptotics of both sides of the bosonization formula under the degeneration described
in Section 4.2. First, consider the case d ≥ g, i.e. the degeneration scheme I, and again set m = d− g + 1.
Choose sections ωi(z, t), i = 1, . . . ,m, as in Proposition 4.5. In terms of B̂g,d the right hand side of the
bosonization formula (1.3) is

RHS = B̂g,de
δ(M)/12(det Im Ω)1/2

∏
i<j G

2(pi, pj)∣∣detωi(pj)
∣∣2 ∏m

i=1 h(pi)
‖ϑ‖2

(
[L]−

m∑
i=1

pi −D,Ω
)

where δ(M) is Faltings’ delta invariant (cf. [39, Theorem 1.3]). Apply this to Mt. Choose generic points
{pi}m

i=1 ⊂ M1 \ {q1}. The Jacobian degenerates to the product of Jacobians for M1 and M2. With respect
to this decomposition,

([Lt]−
m∑

i=1

pi −Dt) −→ ([L1]−
m∑

i=1

pi −D1, [L2]− q2 −D2)

as t→ 0, and the period matrix and theta function factorize

det Im Ω −→ det Im Ω1 det Im Ω2

‖ϑ‖2
(
Lt −

m∑
i=1

pi −Dt,Ωt

)
−→ ‖ϑ‖2

(
L1 −

m∑
i=1

pi −D1,Ω1

)
‖ϑ‖2 (L2 − q2 −D2,Ω2)

(4.21)

(cf. [16] and [38, Lemma 3.7]). From (4.16),

(4.22)
∏
i<j

G2
t (pi, pj) ∼ |t|m(m−1)/g2

∏
i<j

G2
1(pi, pj)

m∏
i=1

G1(pi, p)−2(d−g)/g

From (4.17)

(4.23)
m∏

i=1

ht(pi) ∼ |t|2m(d−g)/g2
m∏

i=1

G1(pi, p)−2(d−g)/g
m∏

i=1

h1(pi)

and by Proposition 4.5, |detωi(pj , t)|2 → |detω(1)

i (pj)|2. Finally, from [38, Main Theorem] we have

(4.24) eδ(Mt)/12 ∼ |t|−(g−1)/3geδ(M1)/12eδ(M2)/12

Putting this altogether,

(4.25) (RHS)t ∼ |t|−(g−1)/3g−m(m−1)/g2
B̂g,d

RHS1

B̂g−1,d−1

RHS2

B̂1,1

h2(q2)

For the left hand side of (1.3), apply Theorem 3.38 to the pairs (Mt,Γt), (M1,Γt) and (M2,Γt). Let
{Φ(1)

i (z)}2m
i=1 be the basis associated to {ω(1)

i }m
i=1, and let {Φi(z, t)}2m

i=1 be the basis associated to {ωi(z, t)}2m
i=1

(see (2.32)). Let {Φ(2)

i (z)}2
i=1 be the basis associated to τL2 . Also, choose a basis {ΦA

i (z, t)}2m−1
i=1 of kerDA

L
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on R(1)

t , with ΦA
1 = τLt

∣∣
R

(1)
t

. Note that the R-span of τLt

∣∣
R

(2)
t

is the entire one dimensional space kerDA
L on

R(2)

t . Then we have[
Det∗DL

det(Φi,Φj)

]
(Mt,ρt,ht)

= cQ

[
Det∗DA

L

det(ΦA
i ,Φ

A
j )

]
(R

(1)
t ,ρt,ht))

[
Det∗DA

L

‖τLt‖2

]
(R

(2)
t ,ρt,ht)

(4.26)

×
det((ΦA

i )′, (ΦA
j )′)(Γt,ρt,ht)

d̂et((Φi)′′, (Φj)′′)(Γt,ρt,ht)

Det∗QN(Mt,Γt)

[
Det∗DL

det(Φ(1)

i ,Φ
(1)

j )

]
(M1,ρ1,h1)

= cQ

[
Det∗DA

L

det(ΦA
i ,Φ

A
j )

]
(R

(1)
t ,ρ1,h1)

[
Det∗DA

L

‖τL1‖2

]
(B

(1)
t ,ρ1,h1)

(4.27)

×
det((ΦA

i )′, (ΦA
j )′)(Γt,ρ1,h2)

d̂et((Φ(1)

i )′′, (Φ(1)

j )′′)(Γt,ρ1,h2)

Det∗QN(M1,Γt)

[
Det∗DL

det(Φ(2)

i ,Φ
(2)

j )

]
(M2,ρ2,h2)

= cQ

[
Det∗DA

L

‖τL2‖2

]
(R

(2)
t ,ρ2,h2)

[
Det∗DA

L

‖τL2‖2

]
(B

(2)
t ,ρ2,ht)

Det∗QN(M2,Γt)(4.28)

Use the expressions on the right hand side to compute the ratio of (4.26) by (4.27) × (4.28). The factor

det((ΦA
i )′, (ΦA

j )′)(Γt,ρt,ht)

d̂et((Φi)′′, (Φj)′′)(Γt,ρt,ht)

Det∗QN(Mt,Γt)

is invariant under conformal rescalings of (ρ, h) (see Remark 2.38); hence, we may suppose the metrics are
locally euclidean. Using the same argument as in the proof of Proposition 4.1, we have

cQDet∗QNMt,Γt ∼ 2−4h0(L)+2

By the same argument,

cQDet∗QNM1,Γt ∼ 2−4h0(L1)+2 , cQDet∗QNM2,Γt ∼ 2−4h0(L2)+2

After the conformal rescaling, the factors involving (ΦA
i )′ in (4.26) and (4.27) cancel, while by Proposition

4.5, the same is true for the factors involving (Φi)′′ and (Φ(1)

i )′′. Applying Theorem 2.33 to R(1)

t and R(2)

t ,
we find [

det∗DL

det(Φi,Φj)

]
Mt

∼
[

det∗DA
L

det(Φi,Φj)

]
M1

[
det∗DA

L

det(Φi,Φj)

]
M2

[
Det∗DA

L

‖τL1‖2

]−1

B
(1)
t

[
Det∗DA

L

‖τL2‖2

]−1

B
(2)
t

× exp(S(σt, ft))
2−4h0(L)+2

(2−4h0(L1)+2)(2−4h0(L2)+2)

Next, we scale the hermitian metrics on the line bundles on the disks by h1(q1) = h2(q2) in order to have
‖τLi‖(qi) = 1 (see (4.11) and (4.12)). Use Remark 2.38 (3) to compute the scale, and then (2.39) to compute
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the determinant. Combining this with Lemma 4.19, we have[
det∗DL

det(Φi,Φj)

]
Mt

∼
[

det∗DL

det(Φi,Φj)

]
M1

[
det∗DL

det(Φi,Φj)

]
M2

[
1

2π|t|
2−1/3|t|2/3 exp(−4ζ ′(−1) + 1/6)

]−2

× 4(h2(q2))2|t|−{2/3+2(g−1)/3g+2m(m−1)/g2}

Now use Lemma 2.31 to compute[
det∗ �L

det〈ωi, ωj〉

]
Mt

∼
[

det∗ �L

det〈ωi, ωj〉

]
M1

[
det∗ �L

det〈ωi, ωj〉

]
M2

[
(2π) 21/3 exp(4ζ ′(−1)− 1/6)

]
× h2(q2)|t|−(g−1)/3g−m(m−1)/g2

Comparing with (4.25) and using definition (1.5), we arrive at the recursive formula for g ≥ 2:

(4.29) B̂g,d = B̂g−1,d−1B̂1,1 exp(−c0/6)

This implies by recursion on g that

(4.30) B̂g,d = (B̂1,1)g−1 exp {(1− g)c0/6} B̂1,d−g+1

By [17, p. 117], we have B̂1,d = (2π)−d exp(−c1/12). Plugging into (4.30) proves Proposition 4.20 for
d ≥ g.

For d = g− 1, we use the degeneration scheme II. The RHS of (1.2) is calculated from (4.21) and (4.24).
The assumptions imply that Aker

Γ = {0} and Aalv
Γ = {0} ⊕ R. Hence, for Mt and M1 we use (3.36), and

(4.26), (4.27) become in this case

[DetDL](Mt,ρt,ht)
= cQ [DetDA

L](R(1)
t ,ρt,ht))

[
Det∗DA

L

‖τLt‖2

]
(R

(2)
t ,ρt,ht)

‖τLt‖2
Γt

Det∗QN(Mt,Γt)(4.31)

[DetDL](M1,ρ1,h1) = cQ [DetDA
L](R(1)

t ,ρ1,h1)

[
Det∗DA

L

‖τL1‖2

]
(B

(1)
t ,ρ1,h1)

‖τL1‖2
Γt

Det∗QN(M1,Γt)(4.32)

The only difference from the argument above is in the degeneration of the Neumann jump operators: since
there are no global sections, we may not restrict the boundary operators AR

(1, 2)
t

orthogonal to the constants.
On the other hand, the section τL does define an element of kerDA

L on R(2) (resp. the disk). To analyze this
further, given f0 ∈ R, let F0 to be the constant term in the Fourier expansion of AR

(1)
1

(f0, 0). Notice that
since the section τL2 extends holomorphically on on R(2), AR

(2)
t

(f0, 0) = 0 for all t. Let Φ0 = PR
(1)
1

(f0, 0).

By the proof of Proposition 2.24 we may assume PLΦ0 6= 0. On the other hand, Φ0 ∈ kerP †LPL and
(PLΦ0)′′ = 0 on ∂R(1)

1 . Applying (2.17) to Φ0, we have

(PLΦ0, PLΦ0)R
(1)
1

=
1
2
(Φ0, JPLΦ0)∂R

(1)
1

=
1
2
(Φ′′

0, J(PLΦ0)′)∂R
(1)
1

= 2πf0F0

The left hand side is nonzero; hence, we have a lower bound |F0| ≥ c|f0| for a constant c > 0. Next,
compute the harmonic extension Φε of Φ0 toRε as in Lemma 4.2. One finds that the corresponding constant
terms in the Fourier expansions of the first factors fε and F ε in b′′∂Mε

Φε and Jb′∂Mε
(Φε), respectively, are

related by F ε
0 = (1/ε log ε)(fε

0 − f0), and fε
0 = f0 − F0 log ε. Taken together, this implies

F ε
0 =

1
ε log ε

(1 +O(1/ log(1/ε)))fε
0
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The computation for the remaining Fourier modes is unchanged as in Lemma 4.2. We deduce the following
modification of Proposition 4.1.[

log Det∗QN(Mt,Γt) − log(|t|1/2 log |t|1/2)
]
−→ (ζQ(0)− 2) log 2

and this applies as well to M1. Hence, in the ratio of (4.31) by (4.32), the extra singular term cancels. Using
the the same argument given above for scheme I, we obtain the recursion (4.29) for d = g − 1 as well. This
completes the proof of Proposition 4.20 . �
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