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Abstract. We study the behavior of the Yang-Mills flow for unitary connections on compact
and non-compact oriented surfaces with varying metrics. The flow can be used to define a one
dimensional foliation on the space ofSU(2) representations of a once punctured surface. This
foliation universalizes over Teichm¨uller space and is equivariant with respect to the action of
the mapping class group. It is shown how to extend the foliation as a singular foliation over the
augmented boundary of Teichm¨uller space obtained by adding nodal Riemann surfaces. Continuity
of this extension is the main result of the paper.
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1. Introduction

The Morse theory of the Yang-Mills functional on the space of gauge equiva-
lence classes of unitary connections on a hermitian vector bundle over a Rie-
mann surface was introduced in the seminal paper of Atiyah and Bott [AB].
Further properties of the gradient flow of the functional were obtained in [D] and
[R]. The minimal critical set can be identified on the one hand with conjugacy
classes of (projective) unitary representations of the fundamental group of the
surface via the holonomy map, and on the other hand with the moduli space
of semistable holomorphic vector bundles via the theorem of Narasimhan and
Seshadri (cf. [NS,Do1]), and the analysis of [AB] shows that theYang-Mills flow
can be used effectively to study the topology of this space.

In [DW2] we studied the behavior of the moduli space of vector bundles as
the conformal structure on the Riemann surface degenerates. A natural question
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to pose is whether the Yang-Mills flow itself behaves in a reasonable fashion
under similar degenerations. In the case where the metric degeneration is to a
cone metric, one may regard such a description as a non-linear version of the
convergence of eigenvalues and eigenfunctions of the Laplace operator obtained
in [JW1].

The specific problem we consider is the following: letX denote a compact
surface of genusg ≥ 2, with a prescribed pointp, and setX∗ = X \ {p}. We
define

Rα = Homα

(
π1(X

∗), SU(2)
)/
SU(2)(1.1)

where the subscriptα indicates that the holonomy of the representation around
p is conjugate to the diagonal matrix with entriese±2πiα. We take 0≤ α ≤ 1/2.
Thus,R0 is identified with conjugacy classes ofSU(2) representations of the
fundamental group of the closed surfaceX. Fixing a conformal structure[σ ∗] on
(X, {p}) we can define a smooth, surjective map (the “Hecke Correspondence";
see [DDW] and below)π [σ ∗]

α : Rα −→ R0 for α �= 0,1/2, which is anS2-
fibration over the irreducibles. Roughly speaking, the map is defined as follows:
for a flat SU(2) connectionA with holonomyα aboutp, we act onA by a
singularcomplexgauge transformationg to bring the connectionA0 = g(A)

into the standard, trivial formd on a neighborhood ofp. Thus,A0 may be
regarded as a connection on the closed surfaceX which is, however, no longer
flat. The map is then defined by using the Yang-Mills flow to obtain fromA0 a
flat connectionπ [σ ∗]

α [A]. This definition clearly involves the choice of conformal
structure in an important way, and understanding this behavior is the motivation
for this paper.

The mapπ [σ ∗]
α can be generalized to a mapπ [σ ∗]

αβ : Rα → Rβ for any 0≤ β ≤
α < 1/2, and this will be a homeomorphism forβ �= 0 (see Sect. 2.3). We obtain
from this a (real) 1-dimensional foliationF [σ ∗] of R = ⋃

0<α<1/2 Rα. A similar
question to the one posed above is the dependence of this foliation on[σ ∗]. For
example, while it may be intuitively clear thatF [σ ∗] varies continuously with
[σ ∗], a differentiable structure is less obvious. Our first result is thus an explicit
determination of variational formulas governingF [σ ∗]. As a consequence, we
prove that the foliation isC1. The second result is a description of the behavior
when the conformal structure degenerates. Here we show that for certain kinds
of ideal boundary points on Teichm¨uller space, the foliations actually converge
away from some singularities.

More precisely, letTaug.(g,1) denote the augmented Teichm¨uller space ob-
tained by addingnodal Riemann surfaces (cf. [A]). These are obtained by col-
lapsing a collectionΦ of disjoint simple closed boundary incompressible curves
onX∗. In the topology ofTaug.(g,1), nodal surfaces may be approached by the
“pinching" degeneration familiar from the Deligne-Mumford compactification
of the moduli of curves. Thus, there is a family of conformal structuresσ ∗(�)
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onX∗ and a conformal structureσ ∗(0) onX∗ \Φ such that: (i)σ ∗(�)→ σ ∗(0)
uniformly on compact sets ofX∗ \Φ as�→ 0; and (ii) for eachc ∈ Φ there is
a tubular neighborhood

C = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 2π}/ {(x,0) ∼ (x,2π)} ,
wherec is given byx = 0, andσ ∗(�) is given by the conformal metricds2

� =
dx2 + (

�+ (1− �)x2
)
κ2dy2 for some fixed 0< κ ≤ 1. The collapsed curvec,

corresponding to the origin, is called thenode, and we shall refer to the union of
the model tubular neighborhoods forc ∈ Φ as thepinching region(see Sect. 4.2
for more details). To see the effect of pinching on the representation variety, we
first make the following:

Definition 1.1. Given a systemΦ of disjoint simple closed boundary incom-
pressible curves onX∗ and an irreducible representationρ : π1(X

∗)→ SU(2),
we say thatρ is accidentally reduciblewith respect toΦ if the restriction ofρ
to the fundamental group of any component ofX∗ \ Φ is reducible. We denote
byRΦ ⊂ R the closed subspace of conjugacy classes of accidentally reducible
representations.

In Sect. 5 we prove the:

Main Theorem. For each equivalence class[σ ∗(0)] of nodal conformal struc-
tures onX∗ \Φ there exists a smooth 1-dimensional foliationF [σ ∗(0)] ⊂ R\RΦ

such that for all paths[σ ∗(�)] → [σ ∗(0)] in Taug.(g,1) as above,F [σ ∗(�)] −→
F [σ ∗(0)] uniformly on compact sets ofR \ RΦ in the Hausdorff sense.

This result is in contrast to the algebraic situation: for each conformal struc-
ture [σ ∗] one can identify the spaceRα with the moduli space of parabolic
stable bundlesM[σ ∗]

α (cf. [MS]). This universalizes overT (g,1) to define a

holomorphic fibratioñMα. Furthermore, the Mehta-Seshadri Theorem defines
an identification of̃Mα with the trivial fibrationR̃α = T (g,1) × Rα. In this
setting, the mapπ [σ ∗]

α : M[σ ∗]
α −→ M is the elementary transformation atp;

for 0 < β < α < 1/2, π [σ ∗]
αβ is simply the identity. Using algebro-geometric

methods, it is possible to compactifỹMα andM̃ over the Deligne-Mumford
compactification ofM(g,1) by adding the appropriate moduli space of torsion-
free sheaves on nodal curves. Furthermore, one can show that the mapsπ [σ ∗]

α

extend holomorphically over the compactification. This is similar in spirit to the
degeneration used in [DW2]. But the map defined in the Main Theorem differs
significantly from this algebraic compactification in the sense that there does not
appear to be a version of the Narasimhan-Seshadri theorem relating the moduli
space of torsion-free sheaves on a nodal curve to the subspace ofRα mentioned
above.

The definition of accidental reducibles, Def. 1.1, may be motivated as follows:
in the case where theYang-Mills flow starting from a connection[A] converges to
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an irreducible flat connection[B], one can find a complex gauge transformation
g such that[B] = g[A]. This is not true, however, if[B] is reducible. As[B]
moves closer to the reducibles one expects to lose control of theC0 bound ong.
Reducibility of[B] can be detected via the existence of a kernel for the associated
Laplace operator∆B acting on the traceless, skew-hermitian endomorphisms of
E. As [B] approaches the reducibles, the first eigenvalue of this operator goes to
zero, and one might therefore look for an explicitC0 bound ong which depends
on[B]only through the first eigenvalue of∆B . Such an estimate exists and will be
used in Sect. 5. As the surface degenerates to a cone metric we have convergence
of eigenvalues. TheC0 bound ong mentioned in the previous paragraph will
persist, provided that the limiting eigenvalues are non-zero.

This paper is organized as follows: in Sect. 2 we review Donaldson’s approach
to theYang-Mills flow and R˚ade’s version of L. Simon’s estimate for the behavior
of the curvature along the flow (see Prop. 2.1). This takes the form

‖D∗
AFA‖ ≥ c‖FA‖(1.2)

whereA is a connection along the flow,FA is its curvature, andc is a constant.
The norms are taken with respect to the metrics onX∗ and theSU(2) bundle.
We also discuss Simpson’s flow for singular metrics and show that the flow at
infinity of a singular connection preserves the conjugacy class of the holonomy
about the singularity (see Cor. 2.4). An interpretation of this construction via
branched covers is provided. All this permits a definition of the foliationF [σ ∗]

and of the extended mapsπ [σ ∗(0)]
αβ . Sect. 3 contains the proof of the first variational

formula Thm. 3.1 for the action of the complex gauge group. In particular, we
show that the first variation for a path[gεAε] of gauge equivalence classes of flat
connections is independent of the derivativeġ. This may be regarded as a kind of
analogue ofAhlfors’result for the first variation of the hyperbolic area element for
quasi-conformal maps. In Sect. 4 we prove estimates for the eigenvalue problems
for sections of vector bundles and degenerations to cone metrics, i.e. families of
the typeds2

� above. Finally, the Main Theorem is proved in Sect. 5.
Let us here briefly outline the proof of the Main Theorem (see Sect. 5.1 for

more details). Let[σ ∗(�)] → [σ ∗(0)] be a degeneration of conformal structures
associated to a collectionΦ of simple closed curves. It suffices to show that for
[A] ∈ Rα away from the accidental reducibles, and forβ sufficiently close to
α, the familyπ [σ ∗(�)]

αβ [A] converges toπ [σ ∗(0)]
αβ [A]. Convergence of a conjugacy

class of flat connections amounts to convergence of the associated holonomy
maps onπ1(X

∗). The problem naturally divides into two parts: convergence
of the holonomy about closed loops supported inX∗ \ Φ, and convergence of
the “gluing parameters," which essentially measure the holonomy across arcs
transverse to the pinching curvesc ∈ Φ. These two considerations are dealt with
in Thm.’s 5.1 and 5.2, respectively.
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To show convergence of the holonomy inX∗ \ Φ, the key idea is to show
that the estimate (1.2) holds with respect to a uniform constantc independent
of the degeneration parameter� (see Prop. 5.9). This is achieved by choosing
a conic degeneration of representative metrics (i.e.σ ∗(�) conformal metrics of
the formds2

� in the pinching region) and using the results of Sect. 4. This basic
estimate can then be used to obtain exponential decay of the curvature along the
flow (Prop. 5.8), which in turn gives control over the connection, and hence the
holonomy, away from the pinching region.

For the second part, we use the fact that the connections before and after the
flow are flat in the pinching region. By the formula for the change of curvature
under a complex gauge transformation (5.2) this means that the bundle metric
relating the two connections is harmonic. A Bochner formula then gives us `a
priori control of the metric, and therefore also of the gluing parameters, within
the pinching region. An important ingredient in all of these arguments is theC0

bound on the gauge transformationg mentioned above.
A word concerning notation: ifσ is a Riemannian metric on a surfaceX,

then integrals overX, unless otherwise specified, will be assumed to be taken
with respect toσ . If σ is a conformal metric andz a conformal coordinate, we
sometimes writeσ(z)|dz|2 for the area form. Iff is a function onX, or more
generally a section of a vector bundleV with a fiber metricH , andν ≥ 1, we
set

‖f ‖ν =
{∫

X

|f |ν
}1/ν

In the above, iff is a section, then|f | = |f |H involves the fiber metricH . When
we want to emphasize the choice of metrics, we will write‖f ‖ν;σ or ‖f ‖ν;σ,H
or perhaps even‖f ‖ν;H when there is no risk of confusion of the two metrics.
Other Sobolev norms will be denoted with an explicit subscript, e.g.‖f ‖L2

1(σ )
,

with ‖f ‖∞ (resp.‖f ‖∞,H ) for theL∞ norm of|f | (resp.|f |H ). Finally, we also
use the following abbreviation for 2× 2 diagonal matrices:

diag(λ1, λ2) =
(
λ1 0
0 λ2

)
.
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the Max-Planck Institute in Bonn and the MSRI for their generous hospitality. Thanks also to G.
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2. Gauge theory

2.1. Review of the Yang–Mills flow

LetE be a rank 2 hermitian vector bundle on a closed, compact surfaceX. The
Yang-Mills flow is given by the equation:

dA(t)

dt
+D∗

A(t)FA(t) = 0 ,(2.1)

whereA(t) is a time dependent connection,FA is the curvature, andD∗
A =

−∗DA∗ is theL2 formal adjoint of covariant differentiationDA with respect to
the connectionA. Eq. (2.1) depends on a choice of a Riemannian metric onX

through the Hodge star, and this dependence will be the main theme of the paper.
Let A denote the space of unitary connections onE andG the group of

unitary gauge transformations. Donaldson proved in [Do2] that the Yang-Mills
flow equations (2.1) with initial condition:

A(0) = A0 ,(2.2)

have a unique solution for all time inA/G. Subsequently, R˚ade was able to prove
that the initial value problem (2.1)-(2.2) has a unique solution for all time inA
beforewe mod out by the gauge group. R˚ade’s estimates on the asymptotics of
the flow ast → ∞ will be important for our arguments.

Eq. (2.1) is theL2-gradient flow for the Yang-Mills functionalYM(A) =
‖FA‖2

2, and for a solutionA(t) of (2.1),

d

dt
YM(A(t)) = −∇YM(A(t)) = −‖D∗

A(t)FA(t)‖2
2 .(2.3)

The critical points ofYM(A) are solutions of theYang-Mills equationsD∗
AFA =

0, and the minima are given by the Hermitian-Yang-Mills (or projectively flat)
equation∗FA = µ I for a constantµ.

Donaldson’s approach to solving eq.’s (2.1)-(2.2) up to gauge is to solve
instead the non-linear heat equation:

H−1(t)
dH(t)

dt
= −√−1 ∗ F∂̄E,H(t) ,(2.4)

for a family of metricsH(t) with initial conditions:

H(0) = H0 .(2.5)

In the above,F∂̄E,H(t) denotes the curvature of the unique connection compatible
with holomorphic structurē∂E onE and unitary with respect to the metricH(t).

The two systems yield the same solution inA/G, for if A(t) = g(t)A0 is
a solution of (2.1), thenH(t) = g(t)g(t)∗H0 is a solution to (2.4); conversely,
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if H(t) = h(t)H0 is a solution to (2.4), thenA(t) = h1/2(t)A0 is real gauge
equivalent to a solution of (2.1). See [Do2] for more details. Also notice that it
is easy to factor out the trace part of the connection and gauge transformations
in eq.’s (2.1)-(2.2) and (2.4)-(2.5). Therefore, in the following we shall assume
that the solutions to the above equations all preserve determinants.

We now review the analogue of L. Simon’s result, due to R˚ade, concerning
the asymptotics of the solutions to (2.1)-(2.2):

Proposition 2.1 ([R, Prop. 7.2]).LetA∞ be anirreducibleYang-Mills connec-
tion. There exist constantsε1, c > 0such that for anyA satisfying‖A−A∞‖L4 ≤
ε1, we have:

‖D∗
AFA‖2 ≥ c |YM(A)− YM(A∞)|1/2 .(2.6)

Let adE denote the bundle of skew-hermitian endomorphisms ofE, and let
(adE)0 denote the subbundle of traceless ones. Then the constantsε1, c depend
only on the first eigenvalue of the Laplacian associated toA∞ acting on sections
of (adE)0 and on the constant governing the inclusionL2

1 ↪→ L4 (notice that by
Kato’s inequality this is essentially the Sobolev constants1 for functions – see
(4.2) below).

The initial value problem (2.4)-(2.5) has solutions over non-compact surfaces
as well. More precisely, letX be a compact Riemann surface as before, choose
“punctures"p1, . . . , pk ∈ X, and letX′ = X \ {p1, . . . , pk}. Fix a metric on
X′ whose expression in terms of a conformal coordinatez onX centered at any
one of thepi ’s has the formds2 = σ(z)|dz|2, with:∫

X

|σ(z)|p|dz|2 <∞ ,(2.7)

for somep > 1 (cf. [Si1, Prop. 2.4] and note that the finiteness of (2.7) is
independent of the choice of coordinate, though the actual value of the integral
may vary). LetE be a holomorphic bundle onX. Given a hermitian metricH0

onE with ‖ ∗ F∂̄E,H0
‖∞ <∞, we define:

deg(E,H0) =
√−1

∫
X

Tr
(∗F∂̄E,H0

)
.

ThenE is said to beH0-stable(resp.semistable) if for any proper holomorphic
subbundleF of E we have:

deg(F,H0)

rk F
<

deg(E,H0)

rkE
(resp. ≤) .

Simpson proved the following:
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Theorem 2.2 (cf. [Si1], Prop. 6.6 and the proof of Thm. 1).(i) Given a holo-
morphic vector bundleE onX′ with hermitian metricH0 such that‖∗F∂̄E,H0

‖∞,H0

<∞, there exists a unique solutionH(t) = h(t)H0 to (2.4)-(2.5) with constant
determinant and having the property that for any finiteT > 0,

sup
T≥t≥0

‖h(t)‖∞;H0 <∞ .(2.8)

(ii) If, in addition,E isH0-stable, then (2.8) holds uniformly for allT . Further-
more,H(t) = h(t)H0 converges weakly inLp2,loc. to a solutionH(∞) = h(∞)H0

of the Hermitian-Yang-Mills equation with‖h(∞)‖∞;H0 <∞.

This result has important consequences which we will need in the proof
of our main theorem: given a holomorphic bundleE → X∗ as above and a
puncturep ∈ X \ X∗, choose a local holomorphic coordinatez : U → ∆

centered atp and defined on a neighborhoodU , and a local holomorphic frame
{f1, f2} overU such thatH0 is in the standard form diag(|z|2α, |z|−2α). The
identification is chosen so that a unitary frame{e1, e2} is given bye1 = |z|−αf1,
e2 = |z|αf2, and the hermitian connectionD0 with respect to this frame is in the
formD0 = d + diag(iα,−iα)dθ .

Proposition 2.3.The gauge transformationh(∞) from Thm. 2.2, Part (ii), is
independent of the choice of conformal metric satisfying (2.7). Furthermore, if
α < 1/2 thenh(∞) extends continuously atp, andh(∞)(p) is diagonal with
respect to the frame{e1, e2}.
Proof. For the first statement, note that the action of the complex gauge group
GC onA is independent of the conformal factor. Therefore, theC0 bound from
Thm. 2.2, (ii), and the argument in [Do1] prove uniqueness. To show thath(∞)

extends ifα < 1/2, denote byD0 the hermitian connection onE associated to
H0. Letg1 be a singular gauge transformation of the formg1 = diag(|z|−α, |z|α)
nearp. Theng1(D0) = d nearp. Furthermore, there exists 0≤ β ≤ 1/2 and
a real gauge transformation� with det� = 1 such that ifg2 = diag(|z|−β, |z|β)
nearp, theng2�h

1/2(∞)(D0) = d (cf. [DW1, Lemma 2.7]). It follows that
g2�h

1/2(∞)g−1
1 (d) = d, henceg2�h

1/2(∞)g−1
1 is holomorphic on the punctured

disk∆∗. On the other hand, since|α+ β| < 1, this matrix cannot have a pole at
p, and it therefore extends continuously. Thus, we may write:

g2�h
1/2(∞)g−1

1 =
(
a b

c d

)
,

wherea, b, c, d are holomorphic in∆. Then:

�h1/2(∞) = g−1
2

(
a b

c d

)
g1 =

( |z|β−αa |z|α+βb
|z|−(α+β)c |z|α−βd

)
.
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Suppose thatα < β. Since the entries of the last matrix are bounded, we must
havec(0) = 0 andd(0) = 0, which contradicts deth1/2(∞) = 1 (as mentioned
above we always fix the determinant by projecting away the trace part of the
connection; see [Si1]). A similar argument holds forα > β. Hence,α = β.
Finally, sinceb andc are holomorphic,c(0) = 0, and�h1/2(∞) is diagonal at
p. In particular,(�h1/2(∞))∗(�h1/2(∞))(p) = h(∞)(p) is diagonal atp.

Corollary 2.4. If E is a holomorphic bundle onX∗ which isH0-stable, then the
Yang-Mills flow at infinity preserves the conjugacy class of the holonomy around
the punctures.

Proof. The case 0< α < 1/2 follows from the proof of Prop. 2.3 above. For
α = 0, the metricH0 is smooth atp and the flow (2.4)-(2.5) extends smoothly
onX. It follows that the holonomy of the limit remains trivial. The caseα = 1/2
also follows from the proof of Prop. 2.3, for ifβ < 1/2 then we again have
|α + β| < 1, and the same argument gives a contradiction.

Remark 2.5.It follows by the arguments in [Si2] that ifH0 is of the form
diag(|z|2α, |z|−2α)with respect to a holomorphic frame{f1, f2} nearp, thenH0-
stability coincides with Seshadri’s parabolic stability with respect to the weights
{α,−α}. For more details we refer to [DW1,DW2].

2.2. Representation varieties and branched covers

LetX be a compact surface,p ∈ X, andX∗ = X \ {p}. We denote byR(X∗) the
space of conjugacy classes ofSU(2) representations of the free groupπ1(X

∗).
We may also identifyR(X∗) with the space of gauge equivalence classes of
flat connections on a trivial rank two hermitian bundleE onX∗. Given a real
number 0≤ α ≤ 1/2, we denote byRα the subspace of flat connections onE
with holonomy matrix conjugate to diag(e2πiα, e−2πiα) around the puncturep.
ThenR0 is naturally identified with the spaceR(X) of equivalence classes of
flat connections on the trivial bundle over the compact surfaceX. Notice that for
α �= 0, Rα consists entirely of irreducible representations. For future reference,
we let R(X)irr ⊂ R(X) denote the open set of irreducible representations of
π1(X).

In this section, we will sketch how to reduce certain analytical questions for
theYang-Mills flow onE overX∗ to the flow on a bundle over a branched cover
of the compact surfaceX. Letβ = k/nwherek, n are positive coprime integers.
Consider a regular, cyclic,n-fold, holomorphic branched cover̂X of X with p
in the ramification divisorB. Letq : X̂ → X be the covering map,̂p = q−1(p),
B̂ = q−1(B), X̂∗ = X̂ \{p̂}, Û = q−1(U), andÛ ∗ = Û ∩ X̂∗. LetE = X∗×C2

be the trivial rank 2 vector bundle onX∗. We construct a bundlêE over X̂ by
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gluingq∗(E) on X̂ \ Û with Û × C2 via the gauge transformation:

ŝ : Û ∗ −→ SU(2) : ŝ(w) = ŝ(r̂, θ̂ ) =
(
e−ikθ̂ 0

0 e−ikθ̂

)
.

Since det̂s = 1, it follows that deĝE = 0; hence,̂E is isomorphic to the trivial
bundle. Although there is no natural global trivialization, there is a trivialization
of Ê

∣∣
X̂∗ = q∗E

∣∣
X̂∗ induced by the one onE.

OnE we fix the trivial hermitian metricH0.Also, sincês is unitary, the trivial
metrics onq∗E andÛ ×C2 glue together to define a hermitian metriĉH0 on Ê.
LetAβ denote the space of unitary connections ofE onX∗, flat in a neighborhood
of p with holonomy conjugate to diag(e2πiβ, e−2πiβ). GivenA ∈ Aβ , choose a
real gauge transformationg such that:

g(A)
∣∣
U
= d +

(
iβ 0
0 −iβ

)
dθ .

It follows that:

q∗g(A)
∣∣
Û∗ = d +

(
ik 0
0 −ik

)
dθ̂ .

By gluing q∗g(A) with the trivial connectiondÛ via ŝ, we obtain a unitary
connection̂A onÊ. Let Â denote the space of unitary connections onÊ. Define:

q̂ : Aβ −→ Â , q̂(A) = q∗(g−1)Â ,

where in the above,q∗(g) = g ◦q. It is easily checked that̂q is well-defined and
real gauge equivariant. In particular, it induces a mapq̂ : Rβ → R̂ = R(X̂) =
Âf lat/Ĝ, whereÂf lat are the flat connections on̂E andĜ is the real gauge group.
We note the following:

Proposition 2.6. If β = k/n with n odd, thenq̂(Rβ) ⊂ R̂irr . Furthermore,
given a collectionΦ of simple closed boundary incompressible curves inX∗,
mutually disjoint and disjoint fromB, Φ̂ = q−1(Φ), and [A] ∈ Rβ which is
not accidentally reducible with respect toΦ (see Def. 1.1), then̂q([A]) is not
accidentally reducible with respect tôΦ.

Proof. We first prove:

Lemma 2.7.Consider an exact sequence of groups1 → H → G → Q → 1,
and suppose thatQ is abelian with no index 2 subgroup. Then the restriction to
H of any irreducibleSU(2) representation ofG is also irreducible.

Proof. Suppose, to the contrary, that there is an irreducibleρ : G → SU(2)
which is reducible onH . Then there is a maximal torusT in SU(2) such that the
image ofH lies in T. SinceQ is abelian andρ is irreducible, the image ofH
cannot be contained entirely in the center ofSU(2). This implies that the image
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of G lies inN(T), the normalizer ofT. Now we have the exact sequence for
the Weyl group 1→ T → N(T) → Z/2Z → 1. Since the image ofG is not
contained inT, we must have a surjectionQ→ Z/2Z → 1; contradiction.

Continuing with the proof of Prop. 2.6: as remarked above, a point[A] ∈ Rβ

gives a conjugacy class of irreducible representations ofπ1(X
∗) which, in turn,

induce irreducible representations ofπ1(X \ B). Now q̂[A] is irreducible as a
representation ofπ1(X̂) if and only if it induces an irreducible representation of
π1(X̂ \ B̂). The first statement then follows from Lemma 2.7 by settingH =
π1(X̂ \ B̂),G = π1(X \B), andQ = Z/nZ. For the second statement, consider
a connected componentY of X \ Φ. If Y ∩ B �= ∅, then Ŷ = q−1(Y ) is a
connected component of̂X \ Φ̂, and the argument is as above. IfY ∩ B = ∅,
then for each connected componentŶi of q−1(Y ), π1(Ŷi) " π1(Y ), so q̂[A] is
irreducible there as well.

Now consider the effect of eq.’s (2.4)-(2.5) underq̂. First we choose a confor-
mal metricσ onX \B with the following property: for everyb ∈ B, express the
mapq locally asz = wn for coordinatesz on centered atb andw centered at̂b.
Then we assume thatσ(z) = 1/n2|z|2(1−1/n). Notice that such a metric satisfies
condition (2.7). This is an example of a cone metric (see (4.1)). Letσ̂ be the
pull-back metric on̂X \ B̂. Then the condition onσ implies thatσ̂ extends to a
smooth conformal metric on̂X.

Next, fix a connectionA0 onE overX∗ and letÂ0 = q̂(A0). LetH(t) =
h(t)H0 be a solution of (2.4)-(2.5) onE overX \ B, where the holomorphic
structure onE is defined byA0,1

0 . ThenĤ (t) = q∗H(t) = ĥ(t)Ĥ0 is a solution
of the same equations on̂X\ B̂ with respect to the holomorphic structureq∗A0,1

0 .
Sinceq is smooth andh(t) satisfies the estimate (2.8), the same is true forĥ(t).
Hence, by the uniqueness properties of the flow, we obtain

Lemma 2.8.The restriction of the floŵH(t) to X̂ \ B̂ coincides withq∗H(t).
This allows us to reduce estimates ofh(t) overX∗ to estimates of̂h(t) overX̂.
For example:

Lemma 2.9.LetΩ be an open set with compact closure inX \ B. Then there
exists a constantC = C(Ω) such that:

‖h(t)‖Lpk (Ω) ≤ C ‖ĥ(t)‖Lpk (Ω̂) .
In the above,h(t) is the solution to (2.4)-(2.5) onX∗, and ĥ(t) is the solution
overX̂.

2.3. Definition of the foliation

Let X, X∗ be as above. Given 0≤ β < α < 1/2, or 0 < α < β ≤ 1/2,
and[σ ∗] ∈ T (g,1), we will now give a rigorous definition of the twist maps
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π
[σ ∗]
αβ : Rα → Rβ . The conformal structure onX∗ extends toX. Let σ denote

a choice of smooth metric onX compatible with this conformal structure. Let
z : U → ∆ be a holomorphic coordinate centered atp, and letϕ1 be a smooth
cut-off function supported in∆1/3 and identically equal to 1 on∆1/6. We define
a singular complex gauge transformation ofE by setting:

gαβ(ξ) =
(

exp{ϕ1(z(ξ))(α − β) log |z(ξ)|} 0
0 exp{ϕ1(z(ξ))(β − α) log |z(ξ)|}

)
,

(2.9)

for ξ ∈ U and extending by the identity elsewhere. Given[A] ∈ Rα, choose
a representativeA in the standard form diag(iα,−iα)dθ when pulled back to
∆ via z. Then Ã = gαβ(A) will be of the form diag(iβ,−iβ)dθ over∆1/6.
Furthermore, it is easy to check (cf. [MS,DW1]) that the holomorphic structure
induced byÃ is parabolic stable, and hence by Remark 2.5 we can flow the
connectionÃ with respect to the metricσ at infinite time. Thm. 2.2 guarantees
thatÃflows to a flat connectioñA(∞)which, by Cor. 2.4 has holonomy conjugate
to diag(e2πiβ, e−2πiβ). We set:

π
[σ ∗]
αβ [A] = [Ã(∞)] ,(2.10)

the class of̃A(∞) in Rβ .
It is straightforward to show that the definition ofπ [σ ∗]

αβ is independent of
the choices made, i.e. the coordinatez, the cutoff functionϕ1, the lift of the
conformal structure, and the lift of[A]. In other words, the only dependence of
π

[σ ∗]
αβ is through the class[σ ∗] ∈ T (g,1). SetR = ⋃

0<α<1/2 Rα ⊂ R(X∗). The
next two lemmas are left to the reader:

Lemma 2.10.For 0 ≤ γ < β < α < 1/2 or 0 < α < β < γ ≤ 1/2 and
[σ ∗] ∈ T (g,1), π [σ ∗]

αγ = π
[σ ∗]
βγ ◦ π [σ ∗]

αβ .

Lemma 2.11.Given [σ ∗] ∈ T (g,1), α ∈ (0,1/2), and [A] ∈ Rα, the map
[0,1/2] → R : β #→ π

[σ ∗]
αβ [A] is continuous. Furthermore, its restriction to

(0,1/2) is smooth.

For convenience, forβ = α we defineπ [σ ∗]
αβ to be the identity.

Definition 2.12. Fix [σ ∗] ∈ T (g,1), [A] ∈ Rα, 0< α < 1/2, and let:

F [σ ∗]
[A] =

⋃
0<β<1/2

π
[σ ∗]
αβ [A] , F [σ ∗] =

⋃
[A]∈R∗

F [σ ∗]
[A] .

It follows from the above discussion thatF [σ ∗] is a smooth 1-dimensional folia-
tion of R∗ = R \ hol−1{0,1/2}.

We now turn to the definition of the limiting foliationF [σ ∗(0)] discussed in the
Introduction. LetΦ denote a collection of disjoint simple closed curves onX∗,
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and letσ ∗(0) be a conformal structure on the pinched surfaceX∗
0 = X∗ \Φ. Let

us elaborate on this (see Sect. 4.2 for more details). By definition, the conformal
structure on the pinched surfaceX∗

0 arises from a conformal structureσ ∗ onX∗
as follows: for eachc ∈ Φ there is a tubular, cylindrical neighborhoodC of c
which is conformally equivalent, with respect toσ ∗, to the intersection inC2

of a neighborhood of the origin with the annuluszw = ε for some non-zero
complex numberε. In these coordinates,c is the set where|z| = |w| = |ε|1/2.
The conformal structureσ ∗(0) then replacesC with a neighborhood of the origin
of the pinched annuluszw = 0.

LetRΦ ⊂ R be the set ofΦ-accidental reducibles. Given[A] ∈ Rα \RΦ , let
Abe a lift of[A] to a connection which has the standard formd+diag(iγ,−iγ )dθ
in a coordinate neighborhoodz of eachc ∈ Φ as described above. Of course, the
holonomyγ depends on the componentc. By assumption, the restriction ofA
to any component ofX∗

0 is irreducible. Hence, forε([A]) > 0 sufficiently small
and|β−α| < ε([A]), the holomorphic structure associated to the twistsgαβ(A)

onX∗
0 is parabolic stable for the choice of weightsβ and{γc}c∈Φ .

SetA(0,∞) to be the flow ofgαβ(A) (at infinite time) with respect to a metric
onX∗

0 compatible with the conformal structure and satisfying the condition (2.7).
As before, the real gauge equivalence class[A(0,∞)] ofA(0,∞) is independent
of all the choices made.

Theorem 2.13.There is a well-defined lift of[A(0,∞)] to an element inRβ .

Proof. Let U± be coordinate neighborhoodsz andw corresponding to a curve
c ∈ Φ as before, and suppose the holonomy isγ . Thus we have:

A
∣∣
U± = d ±

(
iγ 0
0 −iγ

)
dθ± ,

with respect to unitary framese±1 , e
±
2 of E|U± . By Cor. 2.4 there are real gauge

transformationsg± of E|U± such that:

g± (A(0,∞))
∣∣
U± = d ±

(
iγ 0
0 −iγ

)
dθ± .(2.11)

Theg± may be extended to a global real gauge transformationg ofE|X∗
0

which is
the identity away from a small neighborhood ofU±. By using the identification of
the frame{e+1 , e+2 }with {e−1 , e−2 }, (2.11) implies that the pull-back ofg(A(0,∞))

toX∗ \ c extends smoothly overc. By repeating the above for every curvec ∈ Φ
we obtain a flat connection onX∗ with the correct holonomy. The resulting
conjugacy class is unique, because a conjugacy class of connections onE|X∗

0

together with gluing data determine a unique conjugacy class of connections on
E|X∗ .
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The construction above may be summarized as follows: the connectionA

onX∗ determines a flat connection onX∗ \ Φ, along with “gluing parameters"
across the curvesc ∈ Φ. The twisted connectiongαβ(A) has a small amount of
curvature in the componentY of X∗ \ Φ containing{p}, and it agrees withA
on all the other components. The flowA(0,∞) then runs the Simpson flow on
Y , applied togαβ(A), and leaves the connection on the other components fixed.
Since the holonomies around the curvesc ∈ Φ boundingY remain unchanged
for the flow at infinite time (Cor. 2.4), we may use the original gluing parameters
to reconstruct a flat connection onX∗.

For each[A] ∈ Rα andβ satisfying |α − β| < ε([A]) as above, define
π

[σ ∗(0)]
αβ [A] to be the lift of[A(0,∞)] described in Thm. 2.13. Furthermore, we

set:

F [σ ∗(0)]
[A] =

⋃
α−ε([A])<β<α+ε([A])

πΦαβ[A] .

It is straightforward to check a composition rule as in Lemma 2.10. We may
therefore define:

F [σ ∗(0)] =
⋃

[A]∈R
F [σ ∗(0)]

[A] .

ThenF [σ ∗(0)] is a smooth foliation ofR \ RΦ .

3. Differentiability of the foliation

3.1. First order variational formula

In describing the behavior of theYang-Mills flow applied to a connectionA as the
conformal structureσ on a closed surface varies, there are two considerations:
first, the complex gauge transformationg describing the flow, i.e. such thatg(A)
is flat, will depend in a complicated way onσ . Second, while the real gauge
group acts on the space of unitary connections in a manner independent of the
conformal structure, the complex gauge group does not.

Assume that we have fixed a conformal structure onX. Let µε be a differ-
entiable family of Beltrami differentials onX with µ0 = 0, µ̇ε

∣∣
ε=0 = ν. Let gε

be a differentiable family of complex gauge transformations onE with g0 = g,
ġε
∣∣
ε=0 = ġ. Finally, letAε be differentiable family of unitary connections on

E with A0 = A, Ȧε
∣∣
ε=0 = Ȧ. Setγε = gεAε, andγ̇ = γ̇ε

∣∣
ε=0. We emphasize

that the action of the complex gauge group is with respect to theµε-deformed
conformal structure. Also, we regard Beltrami differentialsν as endomorphisms
Ω1,0(X)→ Ω0,1(X), which extend to endomorphisms on forms with values in
E.
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Theorem 3.1.Letµε, gε, Aε, andγε be as above. Then:

γ̇ 0,1 = ∂̄g(A)
(
g−1ġ

)− ν
[(
∂Ag

∗) (g∗)−1 + (g∗)−1∂Ag
∗]+ g−1Ȧ0,1g ,

where the(0,1) part is taken with respect to the fixed conformal structure onX,
andg∗ denotes the fiberwise adjoint ofg with respect to the background metric
H0.

Remark 3.2.If γε is a path of flat connections, then inA/G a representative
for the tangent vector[γ̇ 0,1] may be taken to be harmonic. Projecting to the
harmonics, we see that the first term in the expression above vanishes. Hence,
we conclude that the first variation of the Yang-Mills flow is independent ofġ.

Proof of Thm. 3.1. We first note how the Cauchy-Riemann operators deform: fix
a unitary connectionA onE and a Beltrami differentialµ.

Lemma 3.3.Let ∂̄A,µ : Ω0(E)→ Ω0,1(Xµ,E) ⊂ Ω1(E) be the∂̄-operator on
Xµ associated toA. Then∂̄A,µ is given by

∂̄A,µs = 1

1− |µ|2
(
∂̄As − µ∂As + µ̄∂̄As − |µ|2∂As

)
,

for smooth sectionss ∈ Ω0(E).

Proof. By choosing local frames, the lemma follows from the corresponding
statement for̄∂ acting on functions. Thus, letf be a function,z a local conformal
coordinate onX, andw = wε solutions to the Beltrami equationwz̄ = µzz̄wz.
Here we have expressedµ = µzz̄dz̄⊗ (∂/∂z). Write:

df = fzdz+ fz̄dz̄ = fwdw + fw̄dw̄ ,

and usedw = wz(dz+ µzz̄dz̄) to obtain:

fz = fzwz + fw̄w̄zµ̄
z̄
z , fz̄ = fwwzµ

z
z̄ + fw̄w̄z .

Multiplying the first equation byµ and subtracting the second, we have:

fw̄w̄z(1− |µ|2) = fz̄ − fzµ
z
z̄ .

Now multiply through bydz̄+ µ̄zz̄dz to obtain:

∂̄µf = fw̄dw̄ = 1

1− |µ|2
(
fz̄dz̄− µzz̄dz̄fz + µ̄zz̄dzfz̄ − |µ|2fzdz

)
.

The result follows by observing that:

µzz̄dz̄fz = µzz̄dz̄⊗ (∂/∂z)(fzdz) = µ∂f ,

µ̄zz̄dzfz̄ = µ̄z̄zdz⊗ (∂/∂z)(fz̄dz̄) = µ̄∂̄f .
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Continuing with the proof of Thm. 3.1: the action of the complex gauge group
is given by:

g(DA) = d + g−1A0,1g + g∗A1,0(g∗)−1 + g−1∂̄µg − (∂µg
∗)(g∗)−1 ,(3.1)

where

A0,1 = Aw̄dw̄ = Az̄dz̄− εν(Azdz)+ εν̄(Az̄dz̄)+O(ε2) ,

A1,0 = Awdw = Azdz− εν̄(Az̄dz̄)+ εν(Azdz)+O(ε2) .
(3.2)

From Lemma 3.3 we have:

∂̄µg = ∂̄g + ε
(
∂̄ ġ − ν(∂g)+ ν̄(∂̄g)

)+O(ε2) ,

∂µg
∗ = ∂g∗ + ε

(
∂ġ∗ − ν̄(∂̄g∗)+ ν(∂g∗)

)+O(ε2) .

Applying this and (3.2) to (3.1) yields the result.

3.2. Differentiability of the twisted connection

The aim of this section is to prove the following:

Proposition 3.4.Let σ ∗
ε be a continuously differentiable family of the metrics

representing a path[σ ∗
ε ] ⊂ T (g,1). Then there is a family of singular gauge

transformationsgεαβ such thatgεαβ(A) is a continuously differentiable path of
connections.

Proof. We differentiate atε = 0. Letµε be the differentiable path of Beltrami
differentials onX withµ0 = 0 andµ̇ε

∣∣
ε=0 = ν, associated toσ ∗

ε . Letz : U → ∆

be a local coordinate on a neighborhoodU of p, conformal with respect to
the conformal structure determined byσ ∗

0 . Fix ϕ0 a smooth cut-off function
supported in∆ and identically 1 on∆2/3. We obtain Beltrami differentials̃µ on
C by extendingϕ0µ by zero. Forε ≥ 0 small, we consider the solutionwε to the
Beltrami equation onC:

wz̄ = µ̃zz̄wz ,(3.3)

normalized such that:

wε(0) = 0 , wε(1) = 1 , wε(∞) = ∞ .(3.4)

Let ẇ denote∂wε/∂ε at ε = 0. We also set̃ν = ˙̃µ.
To compute the derivative, we must take into account the change of frame.

The problem is local, so suppose we have a fixed (trivial) hermitian rank 2
vector bundle over the complex plane with global unitary framee± and singular
connectionAα such that:

DAe± = ±iαdθ ⊗ e± .(3.5)

Let θε denote the theta coordinate ofwε.



The Yang-Mills Flow 17

Lemma 3.5.Define a framee±ε = exp
{±iuεα} e± such thatDAe

±
ε = ±iαdθε⊗

e±. Normalize by settinguεα(1) = 0, u0
α(z) ≡ 0, and setu̇α = u̇εα

∣∣
ε=0. Then

iu̇α(z) = α

2

(
ẇ

z
− ẇ

z

)
.

Proof. Differentiate to obtain:

DAe
+
ε = iduεα ⊗ e+ε + iαdθ ⊗ e+ε '⇒ duεα = αdθε − αdθ .

Hence,du̇α = αdθ̇ . Now:

dθε = 1

2i

(
dw

w
− dw

w

)
'⇒ dθ̇ = 1

2i

(
d

(
ẇ

z

)
− d

(
ẇ

z

))
.

Sinceẇ(1) = 0 by the normalization (3.4), the result follows upon integration.

We now choose one more smooth cut-off function in addition toϕ0 andϕ1: let
ϕ2 be smooth, supported on∆ and is identically 1 on∆1/3. Setuεαβ = uεα − uεβ ,
and define the complex gauge transformation:

gεαβ =
exp

{
iϕ2u

ε
αβ + ϕ1(α − β) log |wε|

}
0

0 exp
{
−iϕ2u

ε
αβ − ϕ1(α − β) log |wε|

} .

Now consider the family of singular connectionsγε = gεAα, where the action
of the complex gauge transformation is with respect to the complex structurewε.
The derivative in thee+ direction, for example, is given by (see Thm. 3.1):

(
γ̇ 0,1

)
e+ = ∂

∂z̄

[
iϕ2u̇αβ + ϕ1

α − β

2

(
ẇ

z
+ ẇ

z

)]

−2(α − β)ν̃
∂

∂z

(
ϕ1 log |z|2) .

By Lemma 3.5 this is:

(
γ̇ 0,1

)
e+ = ∂

∂z̄

[
ϕ2(α − β)

2

{(
ẇ

z
− ẇ

z

)

+ ϕ1

(
ẇ

z
+ ẇ

z

)}]
− 2(α − β)ν̃

∂

∂z

(
ϕ1 log |z|2) .

By the choice of cut-off functions it is easily verified that the support ofγ̇ 0,1 lies
in the annulus 1/6 ≤ |z| ≤ 2/3. The continuity follows from this expression.
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3.3. Differentiability

We combine Thm. 3.1 and Prop. 3.4 to prove:

Theorem 3.6.Let σ ∗
ε be a continuously differentiable family of metrics repre-

senting a path[σ ∗
ε ] ∈ T (g,1). Then for each[A] ∈ Rα, π

[σ ∗
ε ]

αβ [A] is a continu-
ously differentiable path inRβ .

As an immediate consequence:

Corollary 3.7. Given0 < β < α < 1/2, the universal Hecke correspondence
π̃αβ : R̃α → R̃β is continuously differentiable. The same is true forβ = 0 on
the preimage of the irreducible representations.

Proof of Thm. 3.6. First, notice that by choosing a rational numberβ < k/n < α

and using Lemma 2.10 it suffices to prove the result for rational holonomies.
Second, by the definition (2.10) of the foliation and Prop. 3.4 it suffices to
show that given a continuously differentiable path of connectionsAε ∈ Aβ ,
the path[Aε(∞)] ∈ Rβ is also continuously differentiable. Finally, by pass-
ing to a branched cover as in Sect. 2.2, it suffices to prove the result for closed
surfaces. We continue with the notation as in Sect. 2.2.

Let Âε ∈ Â be a continuously differentiable path. Note that by Prop. 2.6 and
Lemma 2.8 we may assume thêAε are stable. SincêAε(∞) = gεÂε, wheregε is
a complex gauge transformation, it suffices by the first variational formula (Thm.
3.1) to show thathε is a smooth family of complex gauge transformations. This
can be achieved by the implicit function theorem as follows: consider the map

f : Ω0(
√−1 ad0 Ê)× Âstable × Met−1 −→ Ω0(

√−1 ad0 Ê)

f (u, Â, σ̂ ) = √−1 ∗σ̂ ∂̄ σ̂Â
(
e−u∂σ̂

Â
eu
)
.

It is easily verified that the mapf is smooth, and:

(δuf )(u,Â,σ̂ ) (δu) = ∆σ̂

euÂ
(δu) .

By the implicit function theorem, the solutionu = u(Â, σ̂ ) depends smoothly
on (Â, σ̂ ), and this completes the proof.

4. Eigenvalue and eigenfunction estimates

4.1. Estimates

We shall need eigenfunction and eigenvalue estimates on sections of a vector bun-
dleV equipped with a Riemannian metric, a metric connectionA, and Laplace
operator∆A. In the following, we shall assumeX is a compact surface, possibly
with boundary, with a smooth metric of areaa. We define (cf. [Li, eq. (0.4)])
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the Sobolev constants1 to be the supremum over all constantss satisfying:
s inf a∈R ‖f − a‖2

2 ≤ ‖df ‖2
1, for all smooth functionsf . In case∂X �= ∅, we

define another constant associated to the Dirichlet problem: lets2 be the supre-
mum over all constantss satisfying:s ‖f ‖2

2 ≤ ‖df ‖2
1, for all smooth compactly

supported functionsf . In this section we prove the following:

Theorem 4.1.There is a universal constantC with the following property: let
ϕ be an eigensection ofV with eigenvalueλ. Then:

(1) If ∂X = ∅ or if ∂X �= ∅ andϕ satisfies Neumann boundary conditions, then:

‖ϕ‖2
∞ ≤ C

(
a−1 +

(
4λ

s1

)2

a

)
‖ϕ‖2

2 .

(2) If ∂X �= ∅ andϕ satisfies Dirichlet boundary conditions, then:

‖ϕ‖2
∞ ≤ C

(
4λ

s2

)2

a‖ϕ‖2
2 .

We also need a lower bound on the growth of eigenvalues. While heat kernel
estimates as in [CL] might perhaps give more precise estimates, we shall only
need the following:

Theorem 4.2.There is a universal constantC with the following property:

(1) If λk denotes thek-th eigenvalue for sections ofV for the closed or Neumann
boundary problem, then:

k ≤ C rk V

(
1+ 4λka

s1

)3

.

(2) Ifµk denotes thek-th eigenvalue for sections ofV for the Dirichlet boundary
problem, then:

k ≤ C rk V

(
4µka

s2

)3

.

Thm.’s 4.1 and 4.2 stated above are generalizations of the results of P. Li [Li]
(see also [CL]) on eigenvalues and eigenfunctions of the Laplacian on forms. For
the sake of completeness, however, we shall sketch the important steps involved
in the proofs of the results for sections. We point out that the main difference in
the estimates is the extra terma−1 in Thm. 4.1, Part (1), and the 1 in Thm. 4.2,
Part (1). These are basically due to the lack of an `a priori lower bound on the
eigenvalues in terms of Sobolev constants. The key estimate is the following (cf.
[Li, eq. (2.7) and (3.1)]):



20 G.D. Daskalopoulos, R.A. Wentworth

Lemma 4.3.Letϕ be a smooth section ofV andAa smooth metric connection on
V . If ∂X �= ∅, we assume thatϕ satisfies either Dirichlet or Neumann boundary
conditions. Then for anyν > 1,∫

X

|ϕ|2ν−2〈ϕ,∆Aϕ〉 ≥ 2ν − 1

ν2

∫
X

|d|ϕ|ν |2 .

Proof. Using 2〈ϕ,DAϕ〉 = d|ϕ|2, we have forν > 1:〈
DA

(|ϕ|2ν−2ϕ
)
,DAϕ

〉 = ν − 1

2
|ϕ|2ν−4〈d|ϕ|2, d|ϕ|2〉 + |ϕ|2ν−2|DAϕ|2 .

By Kato’s inequality, the right hand side above is

≥ ν − 1

2
|ϕ|2ν−4〈d|ϕ|2, d|ϕ|2〉 + |ϕ|2ν−2 |d|ϕ||2 = 2ν − 1

ν2
|d|ϕ|ν |2 .

The lemma then follows from integration by parts.

Proof of Thm. 4.1. We shall only prove Part (1), the proofs of the other statements
being similar.Assume∆Aϕ = λϕ.Applying (4.2) tof = |ϕ|ν and using Lemma
4.3, we obtain:

λ

∫
X

|ϕ|2ν ≥ 2ν − 1

ν2

s1

4

(
a−1/2

(∫
X

|ϕ|4ν
)1/2

− a−1
∫
X

|ϕ|2ν
)
,

or, (
a−1/2 + ν2

2ν − 1

4λa1/2

s1

)1/2ν

‖ϕ‖2ν ≥ ‖ϕ‖4ν .

Setν = 2k to obtain, by iteration,

‖ϕ‖2

k∏
j=0

(
a−1/2 + 22j

2j+1 − 1

4λa1/2

s1

)1/2j+1

≥ ‖ϕ‖2k+2 .

Letting k → ∞ yields ‖ϕ‖2
∞ ≤ ‖ϕ‖2

2a
−1

∞∏
j=0

(
1+ 22j

2j+1 − 1

4λa

s1

)1/2j

. The

result then follows from the following simple:

Lemma 4.4.Fix γ > 0. Then forβ > 1 there is a constantC(β) independent
of γ such that:

∞∏
j=0

(
1+ γβ2j

2βj − 1

)1/βj

≤ C(β)
(
1+ γ β/β−1

)
.
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Proof of Thm. 4.2. Again, we shall concentrate on Part (1). Let the firstk eigen-
values and eigensections be denoted 0≤ λ1 ≤ . . . ≤ λk, andϕ1, . . . , ϕk,
respectively.

Lemma 4.5.For anyψ ∈ span{ϕ1, . . . , ϕk} and anyl ≥ 1,

‖ψ‖2l+2

a1/2l+2 ≤
(

1+ 4λka

s1

22l

2l+1 − 1

)1/2l+1−1 ‖ψ‖2l+1

a1/2l+1 .

Proof. By Lemma 4.3 forν = 2l and (4.2) we have:

(2l+1 − 1)

22l

s1

4

{
a−1/2‖ψ‖2l+1

2l+2 − a−1‖ψ‖2l+1

2l+1

}
≤
∫
X

|ψ |2l+1−2〈ψ,∆Aψ〉

≤
{∫

X

|ψ |2l+1
}(2l+1−1)/2l+1 {∫

X

|∆Aψ |2l+1
}1/2l+1

.

Writeψ = ∑k
j=1 cjϕj . Now it follows as in [Li, Lemma 17] that there is a subset

J ⊂ {1, . . . , k} such that:{∫
X

|∆Aψ |2l+1
}1/2l+1

≤
{∫

X

|∆Aψ |2l+2
}1/2l+2

a1/2l+2

≤

∫
X

∣∣ k∑
j=1

λjcjϕj
∣∣2l+2


1/2l+2

a1/2l+2 ≤ λk


∫
X

∣∣∑
j∈J

cjϕj
∣∣2l+2


1/2l+2

a1/2l+2

≤ λk‖ψ‖2l+2a1/2l+2
.

Therefore,

a−1/2

(‖ψ‖2l+2

‖ψ‖2l+1

)2l+1−1

≤ 4λk
s1

22l

2l+1 − 1
a1/2l+2 + a−1‖ψ‖2l+1

‖ψ‖2l+2
.

Using the fact that‖ψ‖2l+1 ≤ a1/2l+2‖ψ‖2l+2, we have:(‖ψ‖2l+2

‖ψ‖2l+1

)2l+1−1

≤
(

a−1/2 + 4λk
s1

22l

2l+1 − 1
a1/2

)
a1/2l+2

,

from which the lemma follows.

For eachl ≥ 1, chooseψl ∈ span{ϕ1, . . . , ϕk} so that‖ϕ‖2l+2‖ψl‖2 ≤ ‖ψl‖2l+2

‖ϕ‖2 for all ϕ ∈ span{ϕ1, . . . , ϕk}. Then repeated application of Lemma 4.5
gives:

‖ϕ‖∞
‖ϕ‖2

≤ ‖ψ0‖4

‖ψ0‖2

1

a1/4

∞∏
l=1

(
1+ 4λka

s1

22l

(2l+1 − 1)

)1/2l+1−1

.
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From Lemma 4.3 and (4.2) we also have:

‖ψ0‖2
4

‖ψ0‖2
2

≤ a−1/2

(
1+ 4λka

s1

)
.

Using Lemma 4.4 and the fact that 1/(2l+1 − 1) ≤ 1/2l we conclude that for all
ϕ ∈ span{ϕ1, . . . , ϕk}

‖ϕ‖2∞
‖ϕ‖2

2

≤ Ca−1

(
1+ 4λka

s1

)3

.

Part (1) of Thm. 4.2 now follows from the following:

Lemma 4.6 ([Li, Lemma 11]). LetW be a finite dimensional subspace ofL2

(V ) ∩ C0. Then there isϕ ∈ W such thatdimW ‖ϕ‖2
2 ≤ (rk V ) a‖ϕ‖2∞ .

4.2. Conic degeneration

Recall the notion of a cone metric on a manifoldC(Y ) = (0,1) × Y (cf.
[Ch1], [Ch2], [JW1]): this is a metric of the formds2 = dr2 + r2σ̃ , where
σ̃ is a (smooth) metric onY . An n-dimensional manifoldX with metricσ on
X \ {p} is said to have a cone metric if for some choice of(Y, σ̃ ) and some
neighborhoodU of p in X, U \ {p} is isometric toC(Y ); in this case we call
p a cone point. We generalize this notion to that of a cone double point, by
which we mean locally the union of two copies ofC(Y ) with the singular-
ity identified. For example, for surfaces it is natural to view such a singular-
ity as arising from the following family of degenerating metrics: on the cylin-
derC = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 2π}/ {(x,0) ∼ (x,2π)}, define, for
0 ≤ � ≤ 1, the metricsds2

� = dx2 + (
�+ (1− �)x2

)
κ2dy2. The parameter

0 < κ ≤ 1, introduced here for convenience, is a fixed cone angle. The metric
for � = 0 has a cone double point as described above. We shall refer to a family of
metricsσ(�) on a compact, connected surfaceX as aconic degenerating family
if X contains a finite collection of disjoint cylindersC1, . . . , Ck, all of which are
isometric toC(�) = (C, ds2

� ), andσ(�) converges smoothly to a Riemannian
metric onX \ C1 ∪ · · · ∪ Ck.

Eigenvalue problems are still well-behaved on compact manifolds with cone
metrics. We shall be considering the following situation: letA be a connection
on a (real) vector bundleV → X with Riemannian metric. IfX has cone points,
then we allowA to be singular at those points. It will suffice to assume further
that with respect to some choice of orthonormal frame and conformal coordi-
nates(r, θ) near the cone point,A has the formb ⊗ dθ , whereb is a constant
diagonal matrix. Consider the operator∆A = D∗

ADA acting on sectionsϕ of V
satisfyingϕ, DAϕ, ∆Aϕ in L2. Then by a generalization of the result in [Ch1],
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Stokes theorem holds for sections ofV and the cone metric. Hence, theL2 exten-
sion of∆A is self-adjoint. Moreover, the spectrum of∆A is discrete with finite
multiplicity, and the eigenfunctions are smooth away from the singularities (cf.
[Ch2]).

We will be using three important properties of conic degenerating families.
The first follows from a direct computation:

Proposition 4.7.Let(X, σ (�)) be a conic degenerating family of surfaces. Then
the eigenvalues of the Ricci curvature tensor are uniformly bounded by a constant
times1/�.

Proof. We briefly sketch the computation: it clearly suffices to compute the Ricci
tensorRki for C(�) = (C, ds2

� ). We use coordinatesx1 = x, x2 = y, so that:

σij =
(

1 0
0
(
�+ (1− �)x2

)
κ2

)
.

Then one finds for the Christoffel symbols:Γ 1
11 = Γ 2

11 = Γ 1
12 = Γ 2

22 = 0, and

Γ 1
22 = −1

2

∂σ22

∂x
= −(1− �)xκ2 , Γ 2

12 =
1

2
σ 22∂σ22

∂x
= (1− �)x

�+ (1− �)x2
.

The operator

Rk
i = σ lj

(
∂Γ i

jl

∂xk
− ∂Γ i

jk

∂xl
+ Γ

µ

jl Γ
i
µk − Γ

µ

jkΓ
i
µl

)
.

From this, one verifiesR1
2 = R2

1 = 0, and

R1
1 = σ 22

(
∂Γ 1

22

∂x
− Γ 2

12Γ
1

22

)
= −�(1− �)

(�+ (1− �)x2)2
,

R2
2 = −∂Γ

2
12

∂x
− Γ 2

12Γ
2

12 =
−�(1− �)

(�+ (1− �)x2)2
.

The result follows.

The second fact is a comparison between conic degeneration and the well-
known “plumbing" construction used to study holomorphic degenerating fam-
ilies of Riemann surfaces (cf. [DW2]). Consider the annuli given by:Υε ={
(z, w) ∈ C2 : |z|, |w| ≤ 1, zw = ε

}
. This is a holomorphic family forε in a

punctured disk, but we will takeε to be real. The central fiberε = 0 is a “pinched"
annulus – two disks with coordinatesz andw identified atz = w = 0. We shall
be interested in metrics onΥε which are conformal with respect to the com-
plex structure induced fromC2 and which degenerate to cone metricsds2

0 onΥ0

proportional to metrics of the following form: for some 0< κ ≤ 1 and in the
coordinatez,
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ds2
0 = κ2|z|2(κ−1)|dz|2(4.1)

(cf. [JW1, Lemma 6.1]). These can always be constructed:

Proposition 4.8.Fix κ, 0< κ ≤ 1. Then there is a functionε = ε(�) depending
onκ and a conformal conic degenerating family of metrics onΥε(�) converging to
the metric (4.1). Furthermore, the parametersε and�are related by the following
bound:

�2/κ

41/κ
≤ ε(�) ≤ �1/κ ,

for � ≤ 3/4.

Proof. We solve for conformal coordinatesz = reiθ on the portion ofΥε(�) where
0 ≤ x ≤ 1. Takeθ = θ(y) = y, andr = f (x, �) for f increasing,f (1, �) = 1.
For such a solution, we may writeds2

� = σ(z, �)|dz|2, or:

dr2

(f ′)2(x, �)
+ (�+ (1− �)x2)κ2dθ2 = σ(z, �)(dr2 + r2dθ2) .

wheref ′(x, �) is the partial derivative with respect tox. This implies:

∂

∂x
logf (x, �) = 1

κ(�+ (1− �)x2)1/2
, σ (z, �) = 1

(f ′)2(x, �)
.

Applying the initial condition, we find the solution

f (x, �) =
[
(1− �)1/2x

1+ (1− �)1/2
+ (1− �)1/2

1+ (1− �)1/2

√
x2 + �

1− �

]1/κ(1−�)1/2

ε(�) = f 2(0, �) =
[

�

(1+ (1− �)1/2)2

]1/κ(1−�)1/2

Notice that the relationship betweenε andf in the second line follows from
the fact that the middle of the cylinder corresponds to|z| = |w| = √

ε. The
convergence and bounds onε(�) easily follow.

Lastly, we comment on the behavior of the Sobolev constants under conic
degeneration. We quote the following result:

Proposition 4.9 ([JW1, Thm. 2.4 and Prop. 2.6]).For the conic degenerating
cylinderC(�) in Sect. 4.2, there is a constantc such thats2(C(�)) ≥ c > 0 for
all � > 0.
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This result bears on the inclusionL2
1 ↪→ L4. Recall that for a smooth function

f the definition of the Sobolev constant implies (see [Li, Lemma 4]):

‖df ‖2
2 ≥ s1

4

(
a−1/2‖f ‖2

4 − a−1‖f ‖2
2

)
,(4.2)

wherea denotes the area ofX. For a conic degenerating family,s1 → 0 if and
only if there is a separating pinching cylinder (see [JW1, Cor. 2.9]). However,
by the proposition above, the Sobolev constantss2 of the component regions,
i.e. the degenerating cylinders and their complements, all remain bounded away
from zero. Thus, applying a cut-off function to (4.2), one easily proves

Proposition 4.10.For a conic degenerating family(X, σ (�)) there is a constant
c > 0 independent of� such that for all smooth functionsf onX and all� > 0,

‖f ‖2
4;σ(�) ≤ c

(‖df ‖2
2;σ(�) + ‖f ‖2

2;σ(�)
)
.

4.3. Uniform bounds

If (X, σ (�)) is a conic degeneration, then a vector bundleV → Xwith connection
A such thatAhas the standard formb⊗dθ ,b constant diagonal, on the cylinderC,
naturally defines a family of operators∆A on(X, σ (�)). By the comments at the
end of Sect. 4.2, it is reasonable to ask whether the eigenvalues and eigenfunctions
of∆A on(X, σ (�)) converge as�→ 0 to those of the limiting cone metric. This
is what we callspectral convergence. The estimates from Thm.’s 4.1 and 4.2
are the key elements needed to prove spectral convergence for this degenerating
family (cf. [JW1,JW2]). The first step is uniformC0 bounds on eigenfunctions
and uniform growth of eigenvalues:

Corollary 4.11. If (X, σ (�)) is a conic degenerating family with vector bundle
V and connectionA, then there are constantsC1, C2 independent of� such that
if ϕ(�) is a normalized eigensection ofV with eigenvalueλ(�) then‖ϕ(�)‖∞ ≤
C1 + C2λ

5(�) for all �.

Corollary 4.12. If (X, σ (�)) is a conic degenerating family, then there is a con-
stantC and an integerN , both independent of�, such that ifλk(�) denotes the
k-th eigenvalue for the closed problem for sections ofV , thenλk(�) ≥ Ck1/3 for
all � and allk ≥ N .

The arguments in [JW1,JW2] then apply to give:

Theorem 4.13.For a conic degenerating family we have spectral convergence
for sections ofV .

Applying this to the particular case of a unitary connectionA on E and the
eigenvalueλ1 of ∆A acting on sections of(adE)0, we have:
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Corollary 4.14. LetA be an irreducible connection onX. Then for a conic de-
generating family(X, σ (�)),λ1(�)→ 0 if and only ifA is accidentally reducible.

Proof of Cor. 4.11. In the non-separating case, it follows from [JW1, Cor. 2.9 and
Thm. 2.4] that the Sobolev constants1 is bounded away from zero. The result
then follows from Part (1) of Thm. 4.1. In the separating case, following [JW2]
we divide the degenerating surface into three regionsX± andC with the induced
metrics fromσ(�) (denoted also byσ(�)). Let Ĉ ⊂ C be a fixed subcylinder and
X̂± the corresponding complementary regions. By definition, the degenerating
family (Ĉ, σ (�)) is isometric to the standard degenerating cylinder; therefore, by
Prop. 4.9 it follows that the Sobolev constants2 for (Ĉ, σ (�)) is bounded away
from zero. The same is true for(X̂±, σ (�)), since these form a smooth family of
metrics on the surfaces with boundary for� ≥ 0.

Choose a smooth cut-off functionη onX such thatη ≡ 1 on Ĉ andη ≡ 0
onX±. Supposeϕ(�) is a normalized eigensection on(X, σ (�))with eigenvalue
λ(�). We denote by((1 − η)ϕ(�))± the restriction of((1 − η)ϕ(�)) to X̂±. It
clearly suffices to find bounds on((1− η)ϕ(�))± andηϕ separately. Notice that
∆m
A((1 − η)ϕ(�))± and∆m

Aηϕ haveL2 bounds depending onm andλ(�), but
otherwise independent of�. More precisely, the bound may be taken of the form
C1 + C2λ

m(�). This is becausedη andd(1 − η) are supported in̂X± where
the higher derivatives ofϕ may be uniformly bounded by an application of the
elliptic estimate.

Let ψ±
k (�) andψC

k (�) denote normalized eigensections with eigenvalues
µ±
k (�) andµCk (�) for the Dirichlet problems on̂X± andĈ, respectively. Consider

the Fourier expansions:

((1− η)ϕ(�))± =
∞∑
k=1

a±k (�)ψ
±
k (�) , ηϕ(�) =

∞∑
k=1

bk(�)ψ
C
k (�) .

Since the Sobolev constants for the individual pieces are bounded away from
zero, it follows from Thm. 4.1 that we have uniform bounds:

‖ψ±
k (�)‖∞ ≤ Cµ±

k (�) , ‖ψC
k (�)‖∞ ≤ CµCk (�) .

Here the constantC may be chosen independent ofk and�. Hence, it suffices to
show that there is someB of the required form satisfying:

∞∑
k=1

∣∣a±k (�)∣∣µ±
k (�) ≤ B ,(4.3)

∞∑
k=1

|bk(�)|µCk (�) ≤ B ,(4.4)
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for all �. Consider (4.4). By definition, we have:

bk(�) =
∫
C

〈ηϕ(�), ψC
k (�)〉dσ(�) =

1

(µCk (�))
m

∫
C

〈ηϕ(�),∆m
Aψ

C
k (�)〉dσ(�)

= 1

(µCk (�))
m

∫
C

〈∆m
A (ηϕ(�)) , ψ

C
k (�)〉dσ(�) .

Since we assume uniformL2 bounds on∆m
A (ηϕ(�)), we obtain a uniform bound

µCk (�) |bk(�)| ≤
(
C1 + C2λ

m(�)
)
(µCk (�))

1−m ,

where the constantsC1, C2 may be chosen independent of�. By Part (2) of Thm.
4.2 above we haveµCk (�) ≥ C ′k1/3 for some constantC ′ independent ofk and
�. Hence,

µCk (�) |bk(�)| ≤
(
C ′

1 + C ′
2λ
m(�)

)
k(1−m)/3 ,

where the constantsC ′
1, C

′
2 may be chosen independent ofk and�. Since the

sum overk of the terms on the right hand side converges form ≥ 5, the desired
bound in (4.4) is obtained. The proof for (4.3) is similar. ✷

Proof of Cor. 4.12.In the non-separating case, it follows from [JW1, Cor. 2.9 and
Thm. 2.4] that the Sobolev constants1 is bounded away from zero. The result
then follows from Part (1) of Thm. 4.2. In the separating case, consider the three
regionsX±, C as in the proof of Cor. 4.12 above. By domain monotonicity, it
suffices to prove the result for the Neumann spectra for(X±, σ (�))and(C, σ (�)).
Since(X±, σ (�)) form a smooth family of metrics on the surfaces with boundary,
it follows that the Sobolev constantss1 for these regions are uniformly bounded
away from zero; hence, by Part (1) of Thm. 4.2 the Neumann spectra of these
surfaces has uniform growth as in the statement of the corollary. By Prop. 4.9,
the Sobolev constants2 for (C, σ (�)) is also uniformly bounded away from
zero. Hence, by Part (2) of Thm. 4.2 the Dirichlet spectra of these surfaces has
uniform growth as in the statement of the corollary. On the other hand, because
the connection is rotationally symmetric onC, the Neumann spectrum may be
bounded below by the Dirichlet spectrum after shifting the index by two as in
[W]. This completes the proof. ✷

4.4. Heat kernel estimates

It is well-known that eigenvalue and eigenfunction estimates produce estimates
on solutions to the linear heat equation. This will also be useful in the non-linear
Yang-Mills flow. The result we need is the following:

Theorem 4.15.Let (X, σ (�)) is a conic degenerating family and fixT > 0.
There is a constantC depending onT but independent of� such that ifv(t, x)
is the solution to the heat equation with initial conditionsv(0, x) = v0, then
supx |v(t, x)| ≤ C‖v0‖2;σ(�) for all t ≥ T .
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Proof. The solutionv(t, x) may be written:

v(t, x) =
∞∑
i=0

e−tλi aiϕi(x) ,

where|ai | ≤ ‖v0‖2;σ(�). By Cor. 4.11 for the ordinary Laplacian on functions,
there are constantsC1 andC2 independent of� such that:

sup
x

|v(t, x)| ≤ ‖v0‖2;σ(�)
∞∑
i=0

e−tλi (�)
(
C1 + C2λ

5
i (�)

)
.

Thus, we must show that for fixedT0 > 0 there is a constantC depending only
onT0, C1, andC2 such that for allt ≥ T0 and all� > 0,

∞∑
i=0

e−tλi (�)
(
C1 + C2λ

5
i (�)

) ≤ C̃ .

First chooseΛ0 such that for allΛ ≥ Λ0 we haveΛ6(C1+C2Λ
5
i )e

−ΛT ≤ 1. Now
by Cor. 4.12 we can find a constantC3 independent of� such thatλi(�) ≥ C3i

1/3,
for i sufficiently large, sayi ≥ N , and all�. We further prescribeN such that
for i ≥ N , λi(�) ≥ Λ0. Finally, let:

C4 = sup
Λ>0

(C1 + C2Λ
5
i )e

−ΛT .

Then fort ≥ T and all�,

∞∑
i=0

e−tλi (�)(C1 + C2Λ
5
i ) =

N−1∑
i=0

e−tλi (�)(C1 + C2Λ
5
i )+

∞∑
i=N

e−tλi (�)(C1 + C2Λ
5
i )

≤ NC4 + 1

C6
3

∞∑
i=N

1

i2
.

This proves the result.

5. Proof of the main theorem

5.1. Outline of the proof

Let [σ ∗(�)] be a degeneration inTaug.(g,1) to a nodal Riemann surface with
conformal structure[σ ∗(0)] associated to a collectionΦ of simple closed curves.
Recall thatRΦ ⊂ R denotes theΦ-accidentally reducible representations. In this
section we are going to show that for a given[A] ∈ Rα \RΦ , and|β − α| < ε0,
whereε0 is sufficiently small as in Sect. 2.3,
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lim
�→0

π
[σ ∗(�)]
αβ [A] = π

[σ ∗(0)]
αβ [A] .(5.1)

By standard compactness arguments, this will suffice to prove the Main Theo-
rem. As representatives for the degenerating conformal structure we may choose
lifts σ ∗(�) → σ ∗(0) to be a conic degeneration as in Sect. 4.2 with cone angle
0 < κ < 1. The fact thatκ may be chosen strictly less than 1 will be important
(see (5.12)). Given[A] ∈ Rα \RΦ , letgαβ(A) denote the twists ofA in the stan-
dard form around the pointp. Let A(�, t), A(0, t) denote the Yang-Mills flow
of gαβ(A) = A0 with respect toσ ∗(�), σ ∗(0), respectively. Since a conjugacy
class of flat connections is completely determined by its holonomy around all
homotopy classes of closed curves onX∗, our strategy of proof will be to first
show that the holonomies ofA(�,∞) converge for curves supported away from
the pinching cylinders. This does not suffice, however. Indeed, this statement,
combined with the results on Simpson’s flow from Sect. 2, show only that the
limiting holonomies ofA(�,∞) around the pinching cylinders return to the ini-
tial holonomies ofA0 as� → 0. This would still allow for the possibility of a
change of framing, or gluing parameters, across the cylinder (cf. the discussion
in the second to last paragraph of Sect. 2.3). So the second part of the proof is
to show that the holonomiesacrossthe pinching cylinders, as measured with
respect to the framing coming fromA0, are very nearly trivial. We present these
two results as Thm.’s 5.1 and 5.2 below:

Theorem 5.1.For any set{Ξj }Nj=1 of closed curves supported inπ1(X
∗
0)we have{

holΞj A(�,∞)
}N
j=1

−→ {
holΞj A(0,∞)

}N
j=1

,

modulo overall conjugation bySU(2).

Next, recall from Thm. 2.13 that the manner by which a connection[A(0,∞)]
produces a point inRβ is to use the initial framings. Consider a cylinder(C, ds2

� )

inX∗ on which the twisted initial connectionA0 is flat, and recall the coordinates

C = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 2π}/ {(x,0) ∼ (x,2π)}
from Sect. 4.2. We may choose a unitary frame{e1, e2} such thatA0 has the form
dA0 = d+diag(iγ,−iγ )dy. We fix this frame once and for all throughout the de-
generation. Now for a small transverse arcΓε = {(x, y) ∈ C : −ε ≤ x ≤ ε, y =
y0} and flat connectionA(�,∞), we measure the holonomy holΓε (A(�,∞)) by
parallel translating the frame{e1, e2} alongΓε. For example, notice that by our
choice of lift [A(0,∞)] in Thm. 2.13, holΓε (A(0,∞)) = I for any choice ofε.

Since any closed curve onX∗ may be written, up to homotopy, as a con-
catenation of curves of the formΞ in Thm. 5.1 and transverse arcsΓ i

ε , one for
each componentci ∈ Φ, we see that (5.1) will follow from Thm. 5.1 and the
following:
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Theorem 5.2.For anyδ > 0 there isε0 > 0 and�0 such that for allΓ i
ε0

and all
� ≥ �0, ∣∣∣holΓ iε0 (A(�,∞))− I

∣∣∣ < δ .

The proof of Thm. 5.1 will occupy the next two subsections, and the proof of
Thm. 5.2 will be given in subsection 5.4. One of the key ingredients in the proofs
is theC0 estimate for the metric and the curvature found in Cor. 5.10 below.

5.2. Proof of Theorem 5.1

Throughout this section,Ω is an open set with compact closure inX∗ \ Φ. As
before, we fix[A] ∈ Rα. Choose a representativeA, and letA0 = gαβ(A) be
the twist ofA atp. We assume thatβ = k/n, wherek, n are positive coprime
integers, andn is odd.

We denote byA(�, t) the solution of theYang-Mills flow (2.1)-(2.2), byh(�, t)
the solution to the non-linear heat equation (2.4)-(2.5) on(X∗, σ ∗(�)), and by
h(0, t) the solution to the same equations onX∗

0 = X∗ \Φ with the degenerate
metricσ ∗(0), the holomorphic structure on the bundle being determined byA0.

As a first step, we show that as we degenerate the metric onX∗, h(�, t)
converges toh(0, t)uniformly on compact sets. In the following,p is any number
strictly greater than 1. Also,∗� and∗0 will denote the Hodge stars onX∗ and
X∗ \Φ with respect to the metricsσ ∗(�) andσ ∗(0), respectively.

Proposition 5.3.GivenT > 0, logh(�, T ) → logh(0, T ) weakly inLp2,loc.. In
particular, the convergence is strong inC1(Ω).

Proof. In Sect. 5.3, we will obtainC0 bounds forh(�, t) and∗�FA(�,t) indepen-
dent of� (see Cor. 5.10). Assuming these results, since

h−1/2(�, t)FA(�,t)h
1/2(�, t) = FA0 + ∂̄A0

(
h−1(�, t)∂A0h(�, t)

)
,(5.2)

standard elliptic estimates implyLp2,loc. estimates forh(�, t) uniform in � and
0 ≤ t ≤ T . By eq. (2.4), this implies anLp2,1,loc. estimate onX∗×[0, T ], uniform
in �, where the 1 refers to the time derivative. It follows thath(�, t) converges
to someh̃(0, t) weakly inLp2,loc.. The uniformC0 bounds imply that̃h(0, t) and
∗0F∂̄A0,h̃(0,t)H0

are also bounded uniformly fort ∈ [0, T ]. The uniqueness part of

Thm. 2.2 shows that̃h(0, T ) = h(0, T ) as desired.

Corollary 5.4. Givenε > 0 there existsT > 0 and�0 = �0(ε, T ) > 0 such that
for � ≥ �0,

‖ logh(�, T )− logh(0,∞)‖C1(Ω) < ε ,

and similarly,
‖h1/2(�, T )A0 − h1/2(0,∞)A0‖C0(Ω) < ε .
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Proof. By Thm. 2.2,h(0, t)→ h(0,∞) uniformly inC1(Ω), so we can choose
T1 such that for allt ≥ T1,

‖ logh(0, t)− logh(0,∞)‖C1(Ω) < ε/2 .

TakeT ≥ T1. By Prop. 5.3,∃ �0 = �0(ε, T ) such that for all� ≥ �0,

‖ logh(�, t)− logh(0, T )‖C1(Ω) < ε/2 .

The result follows.

Now letA(�, t) be the solution of theYang-Mills flow onX∗ as before. Write

A(�,∞) = g̃(�, t)A(�, t) , h̃(�, t) = g̃∗(�, t)g̃(�, t) .(5.3)

Proposition 5.5.Givenε > 0, there is aT0 > 0 independent of� such that for
all t ≥ T0, | log h̃(�, t)|C1(Ω) < ε.

We shall also prove this result in the following subsection. Here we show
how Prop. 5.5 implies Thm. 5.1. LetT = max(T0, T1), whereT0 andT1 are
as in Prop. 5.5 and Prop. 5.3, respectively. Let�0 be chosen as in Cor. 5.4, and
choose� ≥ �0. Notice that bothh1/2(�, T )A0 and h̃1/2(�, T )A(�,∞) are real
gauge equivalent toA(�, T ). We therefore can write:

h̃(�, T )A(�,∞) = k(�, T )h1/2(�, T )A0 ,

wherek(�, T ) is a real gauge transformation. By Cor. 5.4:∥∥∥h̃1/2(�, T )A(�,∞)− k(�, T )h1/2(0,∞)A0

∥∥∥
C0(Ω)

≤ c ε ,

for c depending only on the Sobolev embeddingLp1(Ω) ↪→ L∞(Ω), and may
be taken independent of�. On the other hand, by Prop. 5.5:∥∥∥h̃1/2(�, T )A(�,∞)− A(�,∞)

∥∥∥
L∞(Ω)

≤ varepsilon .

It follows that:∥∥A(�,∞)− k(�, T )h1/2(0,∞)A0

∥∥
L∞(Ω) ≤ (c + 1)ε .

SinceA(�,∞) andk(�, T )h1/2(0,∞)A0 areC0-close, their holonomies around
theΞj are also close. Finally, sincek(�, T )h1/2(0,∞)A0 andA(0,∞) are real
gauge equivalent, the theorem follows.
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5.3. Proof of Proposition 5.5

We begin with some preliminary results:

Proposition 5.6.Let [A] ∈ Rα be as before. Then givenε0 > 0 there isδ > 0
such that for|β − α| < δ there exists a twistA0 = gαβ(A) and a flat connection
A∞ with the standard form of holonomyβ aroundp, and such that‖A0 −
A∞‖4;σ(�) < ε0.

Proof. LetC denote a component of the pinching region andA0 the twist ofA
atp �∈ C. Let h denote the flow at∞ for eq.’s (2.4)-(2.5) associated to∂̄A0, the
initial hermitian structureH0, and the degenerate metricσ(0) onX∗

0. Let Ã∞
denote the hermitian connection associated to∂̄A0 andhH0. We may assume that
A0 is in the standard formd + diag(iγ,−iγ )dθ on a slightly larger cylinder
C1 ⊃ C. Let C2 be an open cylinder such thatC ⊂ C2 ⊂ C2 ⊂ C1. Since
the initial curvature‖ ∗ FA0‖∞ can be made arbitrarily small for|β − α| small,
and sinceA0 is stable onX∗

0, it follows (cf. [Si1]) that‖ logh‖C1(V ), and hence
also‖A0 − Ã∞‖C0(V ), can be made arbitrarily small for a relatively compact set
V ⊂ X∗

0. By [DW1, Lemma 2.7] there is a real gauge transformationg such that
g(Ã∞) = A0 onC2. Moreover, it is clear from the proof of that lemma that by
takingV so thatX \ V ⊂ C and using the fact that‖A0 − Ã∞‖C0(V ) is small,
we may conclude that‖ logg‖C0(C1\C2) is small. By bootstrapping we find that
‖ logg‖L4

1(C1\C2)
is small; hence, we can extendg to a real gauge transformation

ofE overX∗ with g ≡ I onX\C1 and‖g−I ‖L4
1(X\C2)

small. SetA∞ = g(Ã∞).
ThenA∞ extends to a connection overX∗, and the desired estimate holds.

In order to get our estimate for the metric inX∗, we need again to pass to
branched covers. Assume thatp ∈ X∗ \ X is outside the pinching region, and
let q : X̂ → X be a regular cyclic branched cover of degreen, chosen so that
all branch points lie outside the pinching region. We choose metricsσ̂ (�) on X̂
so thatσ̂ (�) → σ̂ (0) is a conic degeneration, and with respect to the induced
conformal structures from̂σ(�) andσ(�), the mapq is holomorphic. Recall the
mapq̂ : Ak/n → Â : A #→ Â.

Lemma 5.7.Let A ∈ Ak/n be a flat connection which is lies outside theΦ-

accidental reducibles. Then there is aλ such thatλ1
(
∆
σ̂(�)

Â

) ≥ λ > 0 for all
�.

Proof. According to Cor. 4.14,λ1
(
∆
σ̂(�)

Â

) → 0 if and only if Â is accidentally
reducible on̂X0. But this is ruled out by the assumptions and Prop. 2.6.

The next step is to reduce to the case of a closed surface. First, notice that it
suffices to getC0 estimates for̂h(�, t) and∗�FÂ(�,t). Also, by Lemma 2.9, and
shrinkingΩ slightly to avoid branch points, it suffices to show:
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∥∥log˜̂h(�, t)∥∥
C1(Ω̂)

< ε .(5.4)

Note also that by Prop. 5.6 we have a flat connectionÂ∞ such that‖Â∞ −
Â0‖4 < ε0, whereε0 can be taken arbitrarily small. Furthermore, by Lemma
5.7 we may assume thatλ1

(
∆
σ̂(�)

Â

) ≥ λ > 0 uniformly in �. It follows by the
fundamental estimate [R, Prop. 7.2 – second method] that ifε0 is less than a
universal constantε1, depending only onλ, then∥∥∥D∗�

Â0
FÂ0

∥∥∥
2,σ̂ (�)

≥ c
∥∥∗�FÂ0

∥∥
2,σ̂ (�) .(5.5)

Since from now on we will work on a closed surfacêX, we henceforth omit the
hats from the notation. Again,σ(�)→ σ(0) is a conic degeneration of a closed
surfaceX. We begin with the following:

Proposition 5.8.LetA(�, t) be a solution of theYang-Mills flow with initial con-
dition A0,
‖ ∗� FA0‖∞ < B, and such that the fundamental estimate∥∥D∗�

A(�,t)FA(�,t)
∥∥

2;σ(�) ≥ c
∥∥∗�FA(�,t)∥∥2;σ(�) ,

holds for a constantc independent of� and for0 ≤ t < T̂ ≤ ∞. Then there are
constantsc1, c2 depending onc andB, but independent of� andT̂ , such that for
all 0 ≤ t ≤ T̂ :

(1)
∥∥∗�FA(�,t)∥∥∞ ≤ c1e

−ct/2; and,
(2) ‖h(�, t)‖∞ ≤ c2.

Proof. For (1), first note that from (2.3):

d

dt

∥∥∗�FA(�,t)∥∥2;σ(�) = −1

2

∥∥D∗�
A(�,t)FA(�,t)

∥∥2

2;σ(�)
∥∥∗�FA(�,t)∥∥−1

2;σ(�)

≤ −c
2

∥∥D∗�
A(�,t)FA(�,t)

∥∥
2;σ(�) ,

(5.6)

from which we obtain
∥∥∗�FA(�,t)∥∥2;σ(�) ≤ c̃1e

−ct/2, wherec̃1 depends only onB

and an upper bound for the total area ofσ(�). Letu(t, x) = ∣∣∗�FA(�,t)∣∣ (x) be the
pointwise norm. By [Do2, Prop. 16] it follows thatu̇ +∆σu ≤ 0, where∆σ is
the ordinary Laplacian with respect to the metricσ . By the maximum principle,
supx u(t, x) ≤ supx u(0, x) ≤ B, and therefore there is a constantc1 as in the
statement of the proposition such thatu(t, x) ≤ c1e

−ct/2 for 0 ≤ t ≤ 1. For
t > 1, we apply Thm. 4.15 to findC independent of� such that

sup
x

u(t, x) ≤ C‖u(t − 1, x)‖2;σ(�) ≤ Cc̃1e
−c(t−1)/2 = (

Cc̃1e
c/2
)
e−ct/2
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By adjustingc1 if necessary, (1) follows.
For (2) consider the metric flow (2.4):

h−1dh

dt
= −√−1 ∗� FhH0 , h(0) = I .

Multiplying the equation through byh and taking traces, we find:

d

dt
log Trh ≤ C̃

∥∥∗�Fh(t)H0

∥∥∞ ,

for some numerical constant̃C. By (1), the right hand side is uniformly integrable
on 0≤ t ≤ T̂ . Since deth(t) = 1, the result follows.

Proposition 5.9.LetA0 be as before and‖ ∗� FA0‖∞ < ε2. Then there exists a
constantc independent of� such that:∥∥D∗�

A(�,t)FA(�,t)
∥∥

2;σ(�) ≥ c
∥∥∗�FA(�,t)∥∥2;σ(�) ,(5.7)

for all t ≥ 0, whereA(�, t) is the solution of theYang-Mills flow (2.1) with initial
conditionA(�,0) = A0, and with respect to the metricσ(�).

Proof. By (5.5), there isc > 0 such that:∥∥D∗�
A(�,0)FA(�,0)

∥∥
2;σ(�) ≥ c

∥∥∗�FA(�,0)∥∥2;σ(�) ,

uniformly in �. Let J = {t ∈ [0,∞) : the estimate (5.7) holds on[0, t]}. Then
J �= ∅. Let T = supJ . We assumeT <∞, and derive a contradiction.

Claim 1.For the constantc appearing in (5.7),‖A(�, t)−A(�,0)‖2;σ(�) < c−1ε2.

By (5.6),

d

dt

∥∥∗�FA(�,t)∥∥2;σ(�) ≤ −c ∥∥D∗�
A(�,t)FA(�,t)

∥∥
2;σ(�) = −c

∥∥∥∥∂A∂t (�, t)
∥∥∥∥

2;σ(�)
.

Hence, by integrating,

− ∥∥∗�FA(�,0)∥∥2;σ(�) ≤
∥∥∗�FA(�,t)∥∥2;σ(�) −

∥∥∗�FA(�,0)∥∥2;σ(�)

≤ −c
∫ t

0

∥∥∥∥∂A∂t (�, s)
∥∥∥∥

2;σ(�)
ds ≤ −c

∥∥∥∥∫ t

0

∂A

∂t
(�, s)ds

∥∥∥∥
2;σ(�)

= −c ‖A(�, t)− A(�,0)‖2;σ(�) .

It follows that

‖A(�, t)− A(�,0)‖2;σ(�) ≤ c−1
∥∥∗�FA(�,0)∥∥2;σ(�) < c−1ε2 ,

and hence the claim.
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Claim 2. Write A(�, T ) = g(�)A0, h(�) = g(�)g∗(�). Then ‖g(�)‖∞ and
‖g−1(�)‖∞ are uniformly bounded independent of�.

This is immediate from Prop. 5.8.

Claim 3. There exists a real gauge transformationu(�) such that

‖u(�)A(�, T )− A0‖L2
1(A0);σ(�) < c ε2 ,

wherec is independent of�.

Write A(�, T ) = g(�)A0 as before. By Claim 1,‖g−1(�)∂̄A0g(�)‖2;σ(�) ≤ c ε2,
and by Claim 2,‖∂̄A0g(�)‖2;σ(�) ≤ cε2 (here and for the remainder of the
proof,c will denote a generic constant independent of� but possibly depending
uponT ; sinceT = supJ is fixed throughout the argument, we omit the ex-
plicit dependence of the constants onT ). By elliptic regularity and the fact that

λ1

(
∆
σ(�)
A0

)
≥ λ > 0 (see Prop. 2.6) it follows that

‖∂A0g(�)‖2
2;σ(�) ≤ ‖dA0g(�)‖2

2;σ(�) ≤ ‖g(�)⊥‖2
L2

1(A0);σ(�)
≤ λ−1‖∂̄A0g(�)

⊥‖2
2;σ(�) = λ−1‖∂̄A0g(�)‖2

2;σ(�) ≤ c ε2 ,

whereg(�)⊥ is theL2-orthogonal projection to the perp space of kerdA0. This
result, combined with Claim 2, implies that‖h−1(�)∂A0h(�)‖2;σ(�) ≤ c ε2. On
the other hand,

g−1(�)FA(�,t)g(�) = FA0 + ∂̄A0

(
h−1(�)∂A0h(�)

)
.

Hence, by again applying elliptic regularity,‖h−1(�)∂̄A0h(�)‖L2
1(A0);σ(�) ≤ c ε2.

Since the connection defined from̄∂A0 andh(�)H0 is real gauge equivalent to
A(�, T ), the proof of Claim 3 is complete.

For notational simplicity, setA∼(�,0) = u(�)A(�, T ). Then:∥∥∥A∼(�,0)− A0

∥∥∥
L2

1(A0);σ(�)
< c ε2 .(5.8)

Claim 4. Let A∼(�, t) denote the Yang-Mills flow with initial conditionA∼(�,0)
and with respect to the metricσ(�). Then there isδ > 0 and a real gauge
transformationv(�, t) such that:∥∥∥v(�, t)A∼(�, t)− A0

∥∥∥
4;σ(�)

< ε1/2 ,

for 0< t < δ and all�. Here,ε1 is the universal constant so that R˚ade’s estimate
(2.6) holds.
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The proof of Claim 4 will be accomplished in three stages:
(i) Givenη > 0, ∃ δ1 > 0 such that for 0≤ t ≤ δ1 and all�, ‖ logh∼(�, t)‖∞ <

η, whereh∼(�, t) is the solution of (2.4)-(2.5) with respect to the holomorphic

structure defined bȳ∂A∼(�,0)
. This follows by Prop. 5.8, as in Claim 2.

(ii) Given η > 0, ∃ δ2 > 0 such that for 0≤ t ≤ δ2 and all�, ‖A∼(�, t) −
A∼(�,0)‖2;σ(�) < η. This obtains from the following inequalities:

‖A∼(�, t)− A∼(�,0)‖2;σ(�) =
∥∥∥∥∫ t

0

d

dt
A∼(�, t)dt

∥∥∥∥
2;σ(�)

≤
∫ t

0

∥∥∥∥ ddt A∼(�, t)
∥∥∥∥ dt = ∫ t

0

∥∥∥∥D∗�
A∼(�,t)

FA∼(�,t)

∥∥∥∥
2;σ(�)

dt

≤ t1/2

(∫ t

0

∥∥∥∥D∗�
A∼(�,t)

FA∼(�,t)

∥∥∥∥2

2;σ(�)
dt

)1/2

= t1/2(∥∥∥∗�FA∼(�,0)∥∥∥2

2;σ(�)
−
∥∥∥∗�FA∼(�,t)∥∥∥2

2;σ(�)

)
≤ c t1/2ε .

(iii) Let A∼(�, t) = g
∼
(�, t)A∼(�,0), h∼(�, t) = g

∼
∗(�, t)g

∼
(�, t), andδ = min(δ1, δ2).

As in Claim 3, we first obtain‖∂̄A∼(�,0)g∼(�, t)‖2;σ(�) ≤ c η for 0 ≤ t ≤ δ. On the

other hand, by choosingε2 sufficiently small, it follows by (5.8) that we may
assume thatλ1

(
∆
σ(�)

A∼(�,0)
) ≥ λ/2> 0. As in Claim 3, we obtain for 0≤ t ≤ δ,

‖h∼
−1(�, t)∂̄A∼(�,0)

h∼(�, t)‖L2
1

(
A∼(�,0)

)
;σ(�) ≤ c(ε2 + η) .

By taking ε2 andη sufficiently small with respect toε1, and applying this re-
sult together with Kato’s inequality and the uniform embeddingL2

1 ↪→ L4 for
functions (see Prop. 4.10), we obtain Claim 4.

Now we are ready to complete the proof of the proposition. By Claim 4,
and by takingε0 in Prop. 5.6 sufficiently small, it follows that‖v(�, t)A∼(�, t)−
A∞‖4;σ(�) < ε1; hence,∥∥∥∥D∗�

A∼(�,t)
FA∼(�,t)

∥∥∥∥
2;σ(�)

=
∥∥∥∥D∗�

v(�,t)A∼(�,t)
Fv(�,t)A∼(�,t)

∥∥∥∥
2;σ(�)

≥ c

∥∥∥∗�Fv(�,t)A∼(�,t)∥∥∥2;σ(�)

= c

∥∥∥∗�FA∼(�,t)∥∥∥2;σ(�)
(0 ≤ t ≤ δ)

wherec is the same constant as before (cf. [R, Proof of Prop. 7.2, second method])
depending onλ1(∆A∞) and Sobolev constants coming from the embedding
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L2
1 ↪→ L4 (see Prop. 4.10). It follows again by the real gauge equivalence of the

heat flow and the invariance of theL2 norm that∥∥D∗�
A(�,t)FA(�,t)

∥∥
2;σ(�) ≥ c

∥∥∗�FA(�,t)∥∥2;σ(�) ,

for 0 ≤ t ≤ T + δ, contradicting the assumption thatT = supJ .

The following corollary is an immediate consequence of Prop.’s 5.8 and 5.9,
and completes the proof of theC0 estimate:

Corollary 5.10. LetA0 be as in Prop. 5.9. Then there are constantsc1, c2, and
c3 independent of� andt such that

(1)
∥∥∗�FA(�,t)∥∥∞ ≤ c1e

−c2t for 0 ≤ t ≤ T̂ ;
(2) ‖h(�, t)‖∞ ≤ c3.

We now proceed with the proof of (5.4):

Corollary 5.11. Let Ω ⊂ X be as before. WriteA(�, t) = g̃(�, t)A(�,∞),
h̃(�, t) = g̃∗(�, t)g̃(�, t). Givenε > 0, ∃ T0 > 0 independent of� such that for
all t ≥ T0, ‖ log h̃(�, t)‖C1(Ω) < ε.

Proof. By Prop.’s 5.9 and 5.8, we have
∥∥∗�FA(�,t)∥∥∞ → 0 ast → ∞ uniformly

in �, and: ∫ ∞

0

∥∥∗�FA(�,t)∥∥∞ dt <∞ ,

uniformly in �. From this we deduce as in Claims 1 and 2 that:

lim
t→∞‖A(�, t)− A(�,∞)‖2;σ(�) = 0 ,

and that‖g̃(�, t)‖2;σ(�) and ‖g̃−1(�, t)‖2;σ(�) are bounded, all uniformly in�.
Hence,

‖∂̄A(�,∞)g̃(�, t)‖2;σ(�) ,

can be made arbitrarily small independent of�. Sinceλ1
(
∆
σ(�)

A(�,∞)

) ≥ λ > 0
uniformly in �, it follows that ‖g(�, t)‖L2

1;σ(�) can be made arbitrarily small
uniformly in �. Finally, by using the curvature estimate:

g̃−1(�, t)FA(�,t)g̃(�, t) = ∂̄A(�,∞)

(
h̃−1(�, t)∂A(�,∞)h̃(�, t)

)
,

we obtain the corollary by bootstrapping inΩ.

This proves (5.4), and thus completes the proof of Prop. 5.5.
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5.4. Proof of Theorem 5.2

Let h(�,∞) denote the limit at infinite time of the solution to eq.’s (2.4)-(2.5).
Then up to real gauge,A(�,∞) ish1/2(�,∞)·A0. It suffices to obtain an estimate
of the form:∫ ε0

√
ε(�)

∣∣ı∂/∂r {h−1/2(�,∞)∂A0h
1/2(�,∞)− c.c.

}∣∣ dr < δ ,(5.9)

for sufficiently smallε0 and�. In the above, the coordinater is |z| for the con-
formal coordinates on(C, ds2

� ) from Prop. 4.8, andı∂/∂r denotes contraction of
the form in ther direction. The notationc.c. means hermitian conjugation of
the previous term. Also, note that we have taken the square root

√
ε, since with

respect to the conformal coordinates in Sect. 4.2 this corresponds to a point in
the middle of the cylinder, i.e.x = 0. The estimate for the whole arcΓ i

ε0
follows

from the estimates in thez andw coordinates separately.
The square root of the gauge transformationh is difficult to work with directly,

so we will eliminate it by using aC0 bound. Namely, to prove (5.9), is suffices
to prove:

(1) There isB independent of� such that‖h(�,∞)‖ ≤ B for all �;

(2)
∫ ε0

√
ε(�)

∣∣ı∂/∂r {h−1∂A0h− c.c.
}∣∣ dr < δ for ε0 sufficiently small and

√
ε(�) ≤

ε0.

We further reduce this with the following:

Proposition 5.12.Suppose that there is a constantB such that (1) holds. Suppose
in addition that‖h−1∂A0h− c.c.‖2;σ(�) ≤ B for all �. Then (2) also holds.

Proof. Setu = h−1∂A0h − c.c.. The first step of the proof is to show that the
hypotheses imply an estimate of the form:

‖u‖4
4;σ(�) ≤ B/�2 ,(5.10)

whereB is independent of�. Consider the function|u|. By Prop. 4.10, it suffices to
estimated|u|. By Kato’s inequality,|d|u||2 ≤ ∣∣∇A0u

∣∣2. So it suffices to estimate
the right hand side. We now apply the Weitzenb¨ock formula for a 1-formu with
values in the self-adjoint bundle:

∆A0u = −∇∗
A0
∇A0u+ {R, u} + {

FA0, u
}
.

NowFA0 is uniformly bounded in any norm, sayC1, and we have∆A0h
−1∂A0h =

−∂̄∗A0
FA0; so∆A0u is bounded as well.Therefore, the desired estimate is obtained,

provided we can estimate the term{R, u}. The explicit formula can found in
[Wu], and it involves the operatorRki = σ ljRklj

i (see [Wu, p. 953]). Then (5.10)
follows from Prop. 4.7.
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Now we consider the problem on a cylinder(C, ds2
� ). Choose a local holomor-

phic frame{fi} for A0 adapted to{ei} as in Sect. 2.1. In conformal coordinates,
we may write

h−1∂A0h =
∑
n∈Z

cijn z
nfi ⊗ f ∗

j ⊗ dz ,

since∂̄A0

(
h−1∂A0h

) = 0 (see (5.2)). The coefficientscijn depend on�, and we
wish to estimate them. For convenience, we set|c−1|2 = |c11

−1|2 + |c22
−1|2. We

assume the frame has been chosen such that|fi ⊗ f ∗
j | = |z|γi−γj , whereγ1 = γ ,

γ2 = −γ . We will assume thatγ �= 0, the argument in the caseγ = 0 being
similar. Also, since we assume thatσ(�) converges to a cone metric of the type
(4.1), the integrals below will be carried out with respect to this metric. A simple
computation shows that these estimates are valid. We have:∣∣h−1∂A0h

∣∣2 =
∑
m,n∈Z

cijmc̄
ij
n z

mz̄n|z|γi−γj |dz|2 .

TheL2 bound onw implies one on|h−1∂A0h|, which in turn implies that there
is a constantB independent of� such that:

|cijm|2
∫
ε(�)≤|z|≤1

|z|2m+γi−γj |dz|2 ≤ B .

Therefore, there is another constant independent of�, which we also denote by
B, such that:

(i) Form ≥ 0, |cijm| ≤ B. Also, |c12
−1| ≤ B;

(ii) For m ≤ −2, or(m, i, j) = (−1,2,1), |cijm| ≤ Bε(t)−m−
1
2 (γi−γj )−1;

(iii) |c−1|2 log(1/ε(�)) ≤ B.

We now apply this to:∫ ε0

ε1/2

∣∣ı∂/∂r {h−1∂A0h
}∣∣ dr ≤ ∑

(m,i,j) �=(−1,i,i)

|cijm|∫ ε0

ε1/2
rm+

1
2 (γi−γj )dr + 2|c−1| log(1/ε) .

By the estimates (i) and (ii) above, the first term on the right hand side may be
made arbitarily small for smallε0, independent of�. To estimate the second term,
we use theL4 bound (5.10). Because of the log term, it suffices to show that|c−1|
vanishes as some power ofε. The estimate (iii) is not sufficient.

To use theL4 bound, we first isolate them = −1 terms.Again, (5.10) implies
a similar bound on theL4 norm of|h−1∂A0h|. Write:

|h−1∂A0h|2 = |c−1|2 + |c12
−1||z|2γ + |c21

−1||z|−2γ

|z|2 + g ,
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Integrating over a subcylinderCa, we have:

∫
Ca

|c−1|4
|z|4 ds2

0 ≤ B

∫
Ca

(
|h−1∂A0h|4 + g2 + |c12

−1|4|z|4γ
|z|4 + |c21

−1|4|z|−4γ

|z|4
)
ds2

0 .

(5.11)

The subcylinder is given byCa = {z ∈ C : εa ≤ |z| ≤ ε0}, wherea will be
chosen as follows:

Claim. For:

1+ κ

3− κ
> a >

κ

2− κ
,(5.12)

there is a constantB independent of� so that:∫
Ca

g2ds2
0 ≤ B

ε2κ
.

Assuming this claim, we complete the proof. By (5.10) and Prop. 4.8 applied to
(5.11), we have:∫

Ca

|c−1|4
|z|4 ds2

0 ≤ B

ε2κ
+
∫
Ca

( |c12
−1|4|z|4γ
|z|4 + |c21

−1|4|z|−4γ

|z|4
)
ds2

0 .

Carrying out the integrals on both sides, this implies|c−1|4 ≤ B
(
ε(4−2κ)a−2κ

+ε4γ (1−a)). By the choice ofa in (5.12),(4−2κ)a−2κ > 0, so we are finished.
It remains to prove the claim. First, by the expression for|h−1∂A0h|2, note

that the terms in the series forg involving the coefficientscm andcn are bounded
uniformly by ε(|m|+|n|)b

0 for someb > 0 and|m|, |n| large, depending upona.
Therefore, to bound the integral ofg2, it suffices to bound the squares of the
individual terms. Of the terms which appear, there are three types which need to
be estimated:

I. |cijm|2|cijn |2|z|2(m+n)+2(γi−γj ), wherem, n ≤ −2;
II. |c21

−1|2|c21
n |2|z|2(n−1)−2γ and|c12

−1|2|c12
n |2|z|2(n−1)+2γ , wheren ≤ −2;

III. |c−1|2|ciin |2|z|2(n−1), wheren ≤ −2.

Terms of type I give integrals of the form (using (i) above):∫ ε0

εa
|cijm|2|cijn |2r2(m+n)+2(γi−γj )−1+2κdr ≤ B|cijm|2|cijn |2ε(2(m+n)+2(γi−γj )+2κ)a

≤ Bε−2(m+n)(1−a)−2(γi−γj )(1−a)−2(2−κa) .
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But:

− 2(m+ n)(1− a)− 2(γi − γj )(1− a)− 2(2− κa)

≥ −2(m+ n)(1− a)− 2(1− a)− 2(2− κa)

≥ −2(m+ n+ 3)(1− a) ,

so these terms are, in fact, bounded. For type III, we apply the same estimate to
get: ∫ ε0

εa
|c−1|2|ciin |2r2(n−1)−1+2κdr ≤ B|c−1|2ε−2(n−1)(1−a)−2(2−κa) .

Sincen ≤ −2, the exponent ofε is ≥ −2κ by the assumption ona in (5.12).
Type II is similar to these two computations.

Since the hypotheses of Prop. 5.12 are satisfied by Cor. 5.10 (2), and the
uniformL2 bound on|h−1/2∂A0h

1/2|, this completes the proof of (5.1) and also
of the Main Theorem.
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