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Abstract. We study the behavior of the Yang-Mills flow for unitary connections on compact
and non-compact oriented surfaces with varying metrics. The flow can be used to define a one
dimensional foliation on the space 8t/ (2) representations of a once punctured surface. This
foliation universalizes over Teichullér space and is equivariant with respect to the action of
the mapping class group. It is shown how to extend the foliation as a singular foliation over the
augmented boundary of Teiclufier space obtained by adding nodal Riemann surfaces. Continuity
of this extension is the main result of the paper.
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1. Introduction

The Morse theory of the Yang-Mills functional on the space of gauge equiva-
lence classes of unitary connections on a hermitian vector bundle over a Rie-
mann surface was introduced in the seminal paper of Atiyah and Bott [AB].
Further properties of the gradient flow of the functional were obtained in [D] and
[R]. The minimal critical set can be identified on the one hand with conjugacy
classes of (projective) unitary representations of the fundamental group of the
surface via the holonomy map, and on the other hand with the moduli space
of semistable holomorphic vector bundles via the theorem of Narasimhan and
Seshadri (cf. [NS, Do1]), and the analysis of [AB] shows that the Yang-Mills flow
can be used effectively to study the topology of this space.

In [DW2] we studied the behavior of the moduli space of vector bundles as
the conformal structure on the Riemann surface degenerates. A natural question
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to pose is whether the Yang-Mills flow itself behaves in a reasonable fashion
under similar degenerations. In the case where the metric degeneration is to a
cone metric one may regard such a description as a non-linear version of the
convergence of eigenvalues and eigenfunctions of the Laplace operator obtained
in [JW1].

The specific problem we consider is the following: ¥etdenote a compact
surface of genug > 2, with a prescribed poing, and setX* = X \ {p}. We
define

(1.1) Ro = Hom, (71(X*), SU(2)) /SU(2)

where the subscript indicates that the holonomy of the representation around
p is conjugate to the diagonal matrix with entrig€™ . We take 0< o < 1/2.
Thus, Ry is identified with conjugacy classes 8t/(2) representations of the
fundamental group of the closed surfaceFixing a conformal structuri *] on

(X, {p}) we can define a smooth, surjective map (the “Hecke Correspondence";
see [DDW] and below) ™! : R, — Ro for & # 0, 1/2, which is ans?-
fibration over the irreducibles. Roughly speaking, the map is defined as follows:
for a flat SU(2) connectionA with holonomy« about p, we act onA by a
singularcomplexgauge transformatiop to bring the connectiomy = g(A)

into the standard, trivial forrd on a neighborhood op. Thus, Ao may be
regarded as a connection on the closed surfaeeéhich is, however, no longer
flat. The map is then defined by using the Yang-Mills flow to obtain frdgra

flat connectiomg’*][A]. This definition clearly involves the choice of conformal
structure in an important way, and understanding this behavior is the motivation
for this paper.

The mapr/”*! can be generalizedto a mﬁb;*] : Ry — RpgforanyO0< g <
o < 1/2, and this will be a homeomorphism fr#£ 0 (see Sect. 2.3). We obtain
from this a (real) 1-dimensional foliatiaf"! of R = Jo_,.1/» Ra- A Similar
guestion to the one posed above is the dependence of this foliati@ briFor
example, while it may be intuitively clear th&&l®"! varies continuously with
[0*], a differentiable structure is less obvious. Our first result is thus an explicit
determination of variational formulas governitig® /. As a consequence, we
prove that the foliation i€*. The second result is a description of the behavior
when the conformal structure degenerates. Here we show that for certain kinds
of ideal boundary points on Teichuitér space, the foliations actually converge
away from some singularities.

More precisely, le7,,, (g, 1) denote the augmented Teichiiei space ob-
tained by addingnodal Riemann surfaces (cf. [A]). These are obtained by col-
lapsing a collectior® of disjoint simple closed boundary incompressible curves
on X*. In the topology of7,,,.(g, 1), nodal surfaces may be approached by the
“pinching” degeneration familiar from the Deligne-Mumford compactification
of the moduli of curves. Thus, there is a family of conformal structar&g®)
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on X* and a conformal structuke*(0) on X* \ @ such that: (ilv*(¢) — o*(0)
uniformly on compact sets of* \ @ as¢ — 0; and (ii) for eachc € @ there is
a tubular neighborhood

C={(x,y):-1<x<10<y<2r}/{(x,0)~ (x,2m)} ,

wherec is given byx = 0, ando*(¢) is given by the conformal metri¢s? =
dx?+ (€ + (1 — €)x?) k2dy? for some fixed O< « < 1. The collapsed curve
corresponding to the origin, is called thede and we shall refer to the union of

the model tubular neighborhoods toe @ as thepinching region(see Sect. 4.2

for more details). To see the effect of pinching on the representation variety, we
first make the following:

Definition 1.1. Given a systen® of disjoint simple closed boundary incom-
pressible curves oK * and an irreducible representation: 71(X*) — SU(2),

we say thafp is accidentally reduciblevith respect tod if the restriction ofp

to the fundamental group of any componenXdf\ @ is reducible. We denote

by R?® C R the closed subspace of conjugacy classes of accidentally reducible
representations.

In Sect. 5 we prove the:

Main Theorem. For each equivalence clags*(0)] of nodal conformal struc-
tures onX*\ @ there exists a smooth 1-dimensional foliatiBlf @ ¢ R\ R?
such that for all pathgo*(¢)] — [0*(0)]in Tau, (g, 1) as aboveFlo” Ol —s
Flo*Ol yniformly on compact sets & \ R? in the Hausdorff sense.

This result is in contrast to the algebraic situation: for each conformal struc-
ture [c*] one can identify the spacR, with the moduli space of parabolic
stable bundles\!*™! (cf. [MS]). This universalizes oveT (g, 1) to define a

holomorphic fibratioM. Furthermore, the Mehta-Seshadri Theorem defines
an identification onith the trivial fibrationf%va =T(g, 1) x R,. Inthis
setting, the mapel”"! : M7l — M is the elementary transformation pt

for 0 < g < a < 1/2, 751 is simply the identity. Using algebro-geometric

methods, it is possible to compact@{\: and M over the Deligne-Mumford
compactification ofM (g, 1) by adding the appropriate moduli space of torsion-
free sheaves on nodal curves. Furthermore, one can show that therffidps
extend holomorphically over the compactification. This is similar in spirit to the
degeneration used in [DW2]. But the map defined in the Main Theorem differs
significantly from this algebraic compactification in the sense that there does not
appear to be a version of the Narasimhan-Seshadri theorem relating the moduli
space of torsion-free sheaves on a nodal curve to the subspRgenoéntioned
above.

The definition of accidental reducibles, Def. 1.1, may be motivated as follows:
in the case where the Yang-Mills flow starting from a connedtibirconverges to
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an irreducible flat connectidrB], one can find a complex gauge transformation
g such thaf B] = g[A]. This is not true, however, {fB] is reducible. A9 B]
moves closer to the reducibles one expects to lose control aftte@und ong.
Reducibility of[ B] can be detected via the existence of a kernel for the associated
Laplace operaton 3 acting on the traceless, skew-hermitian endomorphisms of
E.As[B] approaches the reducibles, the first eigenvalue of this operator goes to
zero, and one might therefore look for an expliét bound ong which depends
on[B] only through the first eigenvalue dfs. Such an estimate exists and will be
used in Sect. 5. As the surface degenerates to a cone metric we have convergence
of eigenvalues. Th€® bound ong mentioned in the previous paragraph will
persist, provided that the limiting eigenvalues are non-zero.

This paper is organized as follows: in Sect. 2 we review Donaldson’s approach
to the Yang-Mills flow and Réle’s version of L. Simon’s estimate for the behavior
of the curvature along the flow (see Prop. 2.1). This takes the form

(1.2) IDLFall = cllFall

whereA is a connection along the flow;, is its curvature, and is a constant.

The norms are taken with respect to the metrics¥drand theSU (2) bundle.

We also discuss Simpson’s flow for singular metrics and show that the flow at
infinity of a singular connection preserves the conjugacy class of the holonomy
about the singularity (see Cor. 2.4). An interpretation of this construction via
branched covers is provided. All this permits a definition of the foliatfof |

and of the extended map§, ©". Sect. 3 contains the proof of the first variational
formula Thm. 3.1 for the action of the complex gauge group. In particular, we
show that the first variation for a path. A, ] of gauge equivalence classes of flat
connections is independent of the derivaiiva his may be regarded as a kind of
analogue of Ahlfors’result for the first variation of the hyperbolic area element for
qguasi-conformal maps. In Sect. 4 we prove estimates for the eigenvalue problems
for sections of vector bundles and degenerations to cone metrics, i.e. families of
the typeds? above. Finally, the Main Theorem is proved in Sect. 5.

Let us here briefly outline the proof of the Main Theorem (see Sect. 5.1 for
more details). Lefo*(£)] — [0*(0)] be a degeneration of conformal structures
associated to a collectiah of simple closed curves. It suffices to show that for
[A] € R, away from the accidental reducibles, and fosufficiently close to
o, the family 75 “'[A] converges tar5 ®'[A]. Convergence of a conjugacy
class of flat connections amounts to convergence of the associated holonomy
maps onm1(X*). The problem naturally divides into two parts: convergence
of the holonomy about closed loops supportedin\ @, and convergence of
the “gluing parameters," which essentially measure the holonomy across arcs
transverse to the pinching curveg @. These two considerations are dealt with
in Thm.’s 5.1 and 5.2, respectively.
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To show convergence of the holonomy Xt \ @, the key idea is to show
that the estimate (1.2) holds with respect to a uniform constamiependent
of the degeneration parametefsee Prop. 5.9). This is achieved by choosing
a conic degeneration of representative metrics §i*€¢) conformal metrics of
the formds? in the pinching region) and using the results of Sect. 4. This basic
estimate can then be used to obtain exponential decay of the curvature along the
flow (Prop. 5.8), which in turn gives control over the connection, and hence the
holonomy, away from the pinching region.

For the second part, we use the fact that the connections before and after the
flow are flat in the pinching region. By the formula for the change of curvature
under a complex gauge transformation (5.2) this means that the bundle metric
relating the two connections is harmonic. A Bochner formula then gives us °
priori control of the metric, and therefore also of the gluing parameters, within
the pinching region. An important ingredient in all of these arguments i€ the
bound on the gauge transformatigmentioned above.

A word concerning notation: i& is a Riemannian metric on a surfa&e
then integrals oveK, unless otherwise specified, will be assumed to be taken
with respect tar. If o is a conformal metric and a conformal coordinate, we
sometimes writer (z)|dz|? for the area form. Iff is a function onX, or more
generally a section of a vector bundtewith a fiber metricH, andv > 1, we

set n
£l = {/X|f| }

Inthe above, iff is a section, thenf| = | f|g involves the fiber metriél . When
we want to emphasize the choice of metrics, we will wiiif|,.; or || fllv.o.x

or perhaps eveiif|,.x when there is no risk of confusion of the two metrics.
Other Sobolev norms will be denoted with an explicit subscript, |¢efq.L§(a),
with || £l oo (resp.|| fll.z) for the L> norm of| f| (resp.| f| ). Finally, we also
use the following abbreviation for 2 diagonal matrices:

. A 0
dlag(kl, )\.2) = (01 AZ) .

AcknowledgementsWe would like to thank Peter Li and Karen Uhlenbeck for discussions and
the Max-Planck Institute in Bonn and the MSRI for their generous hospitality. Thanks also to G.
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of the paper as well as numerous suggestions for improvement.
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2. Gauge theory
2.1. Review of the Yang—Mills flow

Let E be a rank 2 hermitian vector bundle on a closed, compact sukfacae
Yang-Mills flow is given by the equation:
dA(t

(2.1) d—j) + Dy Fary =0,
where A(¢) is a time dependent connectiofi, is the curvature, an®d* =
— % D x is the L? formal adjoint of covariant differentiatio®, with respect to
the connectiom. Eq. (2.1) depends on a choice of a Riemannian metri& on
through the Hodge star, and this dependence will be the main theme of the paper.

Let A denote the space of unitary connections forand & the group of
unitary gauge transformations. Donaldson proved in [Do2] that the Yang-Mills
flow equations (2.1) with initial condition:

(2.2) A0) = Ao,

have a unique solution for all time it/ &. Subsequently, &le was able to prove
that the initial value problem (2.1)-(2.2) has a unique solution for all timd in
beforewe mod out by the gauge groupa&e’s estimates on the asymptotics of
the flow as — oo will be important for our arguments.

Eq. (2.1) is theL?-gradient flow for the Yang-Mills functiona¥ M (A) =
| F4ll3, and for a solutiom (¢) of (2.1),

d
(2.3) 7 YMA@) = —VYM(A®)) = — D} Fawl5 -

The critical points ofY M (A) are solutions of the Yang-Mills equations; F, =
0, and the minima are given by the Hermitian-Yang-Mills (or projectively flat)
equation«F, = T for a constanj.

Donaldson’s approach to solving eq.’s (2.1)-(2.2) up to gauge is to solve
instead the non-linear heat equation:

dH(t)
dt
for a family of metricsH (¢) with initial conditions:

(2.4) H () —=1%F5, i

(2.5) H(0) = Hp.

Inthe aboveF;, 5, denotes the curvature of the unique connection compatible
with holomorphic structuréz on E and unitary with respect to the metif(z).

The two systems yield the same solutiondi®, for if A(t) = g(¢)Ag is
a solution of (2.1), therl (1) = g(¢)g(t)*Hp is a solution to (2.4); conversely,
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if H(t) = h(t)Hp is a solution to (2.4), thed(t) = h¥/?(t)A, is real gauge
equivalent to a solution of (2.1). See [Do2] for more details. Also notice that it
is easy to factor out the trace part of the connection and gauge transformations
in eq.’s (2.1)-(2.2) and (2.4)-(2.5). Therefore, in the following we shall assume
that the solutions to the above equations all preserve determinants.

We now review the analogue of L. Simon'’s result, due &m&’concerning
the asymptotics of the solutions to (2.1)-(2.2):

Proposition 2.1 ([R, Prop. 7.2]).Let A, be anirreducibleYang-Mills connec-
tion. There exist constandg, ¢ > 0such that for any satisfying|A — A |14 <
&1, we have:

(2.6) |DXFall2 > c|lYM(A) — YM(A)IY? .

Let adE denote the bundle of skew-hermitian endomorphism& paind let

(adE)q denote the subbundle of traceless ones. Then the constantdepend

only on the first eigenvalue of the Laplacian associatetltaacting on sections
of (ad E)o and on the constant governing the inclusign— L* (notice that by
Kato’s inequality this is essentially the Sobolev constarfbr functions — see
(4.2) below).

The initial value problem (2.4)-(2.5) has solutions over non-compact surfaces
as well. More precisely, leX be a compact Riemann surface as before, choose
“punctures”py, ..., pr € X, and letX’ = X \ {p1, ..., px}. Fix a metric on
X' whose expression in terms of a conformal coordinate X centered at any
one of thep;’s has the formis? = o (z)|dz|?, with:

(2.7) f 0 (@)IP]dzP? < oo,
X

for somep > 1 (cf. [Sil, Prop. 2.4] and note that the finiteness of (2.7) is
independent of the choice of coordinate, though the actual value of the integral
may vary). LetE be a holomorphic bundle oki. Given a hermitian metriéi,

on E with || x Fj,_ Il < 00, we define:

deg E, Ho) = «/—1/ Tr (xF3, 4,) -
X
ThenE is said to beHy-stable(resp.semistablif for any proper holomorphic
subbundleF’ of E we have:

deq F, Hy) dedqE, Hp)
<
rk F rk E

(resp. <) .

Simpson proved the following:
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Theorem 2.2 (cf. [Sil], Prop. 6.6 and the proof of Thm. 1)(i) Given a holo-
morphic vector bundl& on X" with hermitian metridiy suchthat|x F, g Il oo, 1o
< 00, there exists a unique solutidii(z) = h(¢) Ho to (2.4)-(2.5) with constant
determinant and having the property that for any firfite- 0O,

(2.8) SUP [17(1) ]| ocspp < 00 -

T>t>0

(i) If, in addition, E is Hyp-stable, then (2.8) holds uniformly for &l. Further-
more,H (t) = h(t) Ho converges weakly ing,w toasolutionH (00) = h(oc0) Hy
of the Hermitian-Yang-Mills equation witfh (c0) ||« 1, < 00.

This result has important consequences which we will need in the proof

of our main theorem: given a holomorphic bundle— X* as above and a
puncturep € X \ X*, choose a local holomorphic coordinate U — A
centered ap and defined on a neighborho6d and a local holomorphic frame
{f1, f»} over U such thatHj is in the standard form didty|%, |z|=%%). The
identification is chosen so that a unitary frafag e,} is given bye; = |z|™* f1,

e2 = |z]% f2, and the hermitian connectidpy with respect to this frame is in the
form Dy = d + diag(ia, —ix)do6.

Proposition 2.3. The gauge transformatioh(co) from Thm. 2.2, Part (i), is
independent of the choice of conformal metric satisfying (2.7). Furthermore, if
a < 1/2 thenh(oco) extends continuously at, andi(co)(p) is diagonal with
respect to the framgey, e;}.

Proof. For the first statement, note that the action of the complex gauge group
&C on A is independent of the conformal factor. Therefore,@ebound from
Thm. 2.2, (ii), and the argument in [Do1] prove uniqueness. To show:ta)
extends ife < 1/2, denote byDg the hermitian connection oA associated to
Hy. Let g, be a singular gauge transformation of the fggm= diag(|z| 7, |z|*)
nearp. Thengi(Dg) = d nearp. Furthermore, there exists€ g < 1/2 and

a real gauge transformatidnwith det¢ = 1 such that ifg, = diag(|z|7#, |z|#)
near p, then g2¢hY2(c0)(Dg) = d (cf. [DW1, Lemma 2.7]). It follows that
g2LhY2(00)g1 1 (d) = d, henceg2th'/?(c0) g1 * is holomorphic on the punctured
disk A*. On the other hand, singe + 8| < 1, this matrix cannot have a pole at
p, and it therefore extends continuously. Thus, we may write:

1/2 _1_ (ab

wherea, b, ¢, d are holomorphic imA. Then:

12, _ —1f(ab _( 1z2P%a |z**Pb
Lh*(00) = 82 (c d) 81 = (|Z|—(a+/3)c |Z|a—/3d :
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Suppose that < 8. Since the entries of the last matrix are bounded, we must
havec(0) = 0 andd(0) = 0, which contradicts dét'/?(c0) = 1 (as mentioned
above we always fix the determinant by projecting away the trace part of the
connection; see [Sil]). A similar argument holds for> . Hence,x = B.
Finally, sinceb andc are holomorphicg(0) = 0, and¢hY?(oc0) is diagonal at

p. In particular,(£h/?(00))* (€h*?(00)) (p) = h(co)(p) is diagonal app. O

Corollary 2.4. If E is a holomorphic bundle o&X* which is Hy-stable, then the
Yang-Mills flow at infinity preserves the conjugacy class of the holonomy around
the punctures.

Proof. The case O< o < 1/2 follows from the proof of Prop. 2.3 above. For
a = 0, the metricHy is smooth ap and the flow (2.4)-(2.5) extends smoothly
on X. It follows that the holonomy of the limit remains trivial. The case- 1/2
also follows from the proof of Prop. 2.3, for § < 1/2 then we again have
e + B|] < 1, and the same argument gives a contradiction. O

Remark 2.51t follows by the arguments in [Si2] that iHy is of the form
diag(|z]%*, |z|~%*) with respect to a holomorphic franié;, f»} nearp, thenHg-
stability coincides with Seshadri’s parabolic stability with respect to the weights
{a, —a}. For more details we refer to [DW1,DW2].

2.2. Representation varieties and branched covers

Let X be a compact surfacg, € X, andX* = X \ {p}. We denote byR (X*) the
space of conjugacy classes$i (2) representations of the free group(X™).

We may also identifyR(X*) with the space of gauge equivalence classes of
flat connections on a trivial rank two hermitian bundieon X*. Given a real
number 0< « < 1/2, we denote byR, the subspace of flat connections Bn
with holonomy matrix conjugate to diggr™ '@, e~27'%) around the puncture.
ThenR, is naturally identified with the spad@(X) of equivalence classes of
flat connections on the trivial bundle over the compact surfaddotice that for

a # 0, R, consists entirely of irreducible representations. For future reference,
we letR(X);» C R(X) denote the open set of irreducible representations of
m1(X).

In this section, we will sketch how to reduce certain analytical questions for
the Yang-Mills flow onE over X* to the flow on a bundle over a branched cover
of the compact surfack. Let 8 = k/n wherek, n are positive coprime integers.
Consider a regular, cyclie:-fold, holomorphic branched covef of X with p
in the ramification divisoB. Letg : X — X be the covering mag = ¢~1(p),
B=q¢B),X*=X\{p},U =g (U),andU* = UNX*. LetE = X* x C2
be the trivial rank 2 vector bundle aXi*. We construct a bundI€ over X by
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gluingg*(E) on X \ U with U x C2 via the gauge transformation:

R R (e—zke 0 )
s:U"— SU2) : sw)=3s,0) = .
0 e*lk@

Since def = 1, it follows that degf = 0; hence E is isomorphic to the trivial
bundle. Although there is no natural global trivialization, there is a trivialization
of E|. =9

On E we fix the tr|V|aI hermitian metntHo Also, sinces is unitary, the tr|V|aI
metrics ong*E andU x C2 glue together to define a hermitian metHg on E.
Let. A4 denote the space of unitary connectiong @in X *, flatin a neighborhood
of p with holonomy conjugate to didg?#, e=2*f). GivenA € Ag, choose a
real gauge transformatignsuch that:

g(A)|, =d+ (lg 0/3) de .

ik O
ﬁ*:d+(0 )d@

By gluing ¢*g(A) with the trivial connectiond; via §, we obtain a unitary
connectiond on E. Let A denote the space of unitary connectiongoefine:

G: Ay — A, G(A) =q* (g HA

where in the abovey*(g) = g oq. Itis easily checked thdtis well-defined and
real gauge equivariant. In particular, it induces a japiR s — R=R(X) =
Aﬁa,/(’ﬁ WhereAﬂa, are the flat connections dnand@ is the real gauge group.
We note the following:

Proposition 2.6.1f § = k/n with n odd, theng(Rg) C Ri,,. Furthermore,
given a collection® of simple closed boundary incompressible curveXin
mutually disjoint and disjoint fronB, ® = ¢~1(®), and[A] € R4 which is
not accidentally reducible with respect t (see Def. 1.1), thef([A]) is not
accidentally reducible with respect @.

It follows that:

Proof. We first prove:

Lemma 2.7. Consider an exact sequence of grodps> H - G — Q — 1,
and suppose thap is abelian with no index 2 subgroup. Then the restriction to
H of any irreducibleSU (2) representation o€ is also irreducible.

Proof. Suppose, to the contrary, that there is an irreducibleG — SU(2)
which is reducible o . Then there is a maximal tordsin SU (2) such that the
image ofH lies inT. SinceQ is abelian ancg is irreducible, the image off
cannot be contained entirely in the centeS&f(2). This implies that the image
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of G lies in N(T), the normalizer off. Now we have the exact sequence for
the Weyl group 1- T — N(T) — Z/27Z — 1. Since the image af is not
contained inT, we must have a surjectiap — Z/27 — 1; contradiction. O

Continuing with the proof of Prop. 2.6: as remarked above, a gdinte R
gives a conjugacy class of irreducible representationg @f*) which, in turn,
induce irreducible representationszof(X \ B). Now g[A] is irreducible as a
representation of,(X) if and only if it induces an irreducible representation of
(X \ B). The first statement then follows from Lemma 2.7 by settihg=
71(X \ B), G = my(X \ B), andQ = Z/nZ. For the second statement, consider
a connected componeiit of X \ . If Y N B # ¢, thenY = g NY)is a
connected component of \ P, and the argument is as aboveYIin B = 0,
then for each connected compone(nbf g X)), nl(Y) ~ 71(Y), sog[A] is
irreducible there as well. O

Now consider the effect of eq.’s (2.4)-(2.5) undeFirst we choose a confor-
mal metrico on X \ B with the following property: for every € B, express the
mapgq locally asz = w" for coordinates on centered at andw centered ab.
Then we assume that(z) = 1/72|z|?3~Y"_ Notice that such a metric satisfies
condition (2.7). This is an example of a cone metric (see (4.1))sLbke the
pull-back metric onx \ B. Then the condition on implies thats extends to a
smooth conformal metric oX.

Next, fix a connectiom on E over X* and IetXO = G(Ag). Let H(t) =
h(t)Hy be a solution of (2. 4) (2.5) o over X \ B, where the holomorphic
structure onE is defined bon ' ThenH(t) = ¢*H(t) = h(t)Hpis a solution
of the same equations dh\ B with respect to the holomorphic structhm
Sinceq is smooth andi () satisfies the estimate (2.8), the same is trueror.
Hence, by the uniqueness properties of the flow, we obtain

Lemma 2.8. The restriction of the flow (1) to X \ B coincides withy* H (1).

This allows us to reduce estimatesidf) over X* to estimates o (r) over X.
For example:

Lemma 2.9. Let £2 be an open set with compact closureXn\ B. Then there
exists a constant = C(£2) such that:

1ROl ) < CIAOI 2@ -

In the above/(z) is the solution to (2.4)-(2.5) oX™, andh(r) is the solution
overX.

2.3. Definition of the foliation

Let X, X* be as above. Given & 8 < a < 1/2,0r0< a < B < 1/2,
and[o*] € T (g, 1), we will now give a rigorous definition of the twist maps
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7811 Ry — Ryg. The conformal structure ofi* extends taX. Leto denote
a choice of smooth metric ol compatible with this conformal structure. Let
z : U — A be a holomorphic coordinate centeregpatind letp; be a smooth
cut-off function supported im 1,3 and identically equal to 1 oA,,6. We define

a singular complex gauge transformationfoby setting:

(2.9)

Gup(8) = (exp{%(z@))(a — B)log|z(®)]} 0 )
v 0 explo1(z(£)) (5 — o) 10g |2(£)])

for & € U and extending by the identity elsewhere. Gijetj € R,, choose

a representativ in the standard form didéx, —ia)d® when pulled back to

A via z. ThenA = g.p(A) will be of the form diagiB, —ip)do over Ay.
Furthermore, it is easy to check (cf. [MS,DW1]) that the holomorphic structure
induced byA is parabolic stable, and hence by Remark 2.5 we can flow the
connectionA with respect to the metrie at infinite time. Thm. 2.2 guarantees
thatA flowsto a flat connection (oo) which, by Cor. 2.4 has holonomy conjugate
to diage?™#, e=?71F). We set:

(2.10) 7l Al = [A(c0)]

the class ofd(c0) in Ry.

It is straightforward to show that the definition mﬁ‘;*] is independent of
the choices made, i.e. the coordinatethe cutoff functiong;, the lift of the
conformal structure, and the lift §fA]. In other words, the only dependence of

% is through the clasg*] € T(g, 1). SetR = gy .12 Ra € R(X*). The
next two lemmas are left to the reader:

Lemma2.10.ForO <y <8 <a <1200 <a < B <y <1/2and
[0*]1 € T (g, 1), Jr[” = Tl’f[}y o n&‘; I

Lemma 2.11.Given[o*] € T(g,1), @ € (0,1/2), and[A] € R,, the map
[0,1/2] > R : B né‘; I[A] is continuous. Furthermore, its restriction to
(0, 1/2) is smooth.

For convenience, fof = o we deflnen " 'to be the identity.

Definition 2.12. Fix [0*] € T(g, 1), [A] € R., 0 < o < 1/2, and let:

(0] _ [0*] (o] _ [o*]
Frar = U T (Al F 0= Uf[A]-
0<p<1/2 [AleR*

It follows from the above discussion th&t” ! is a smooth 1-dimensional folia-
tion of R* = R \ hol~%{0, 1/2}.

We now turn to the definition of the limiting foliatiaf!*"©! discussed in the
Introduction. Let® denote a collection of disjoint simple closed curves¥on



The Yang-Mills Flow 13

and leto*(0) be a conformal structure on the pinched surfsige= X*\ @. Let
us elaborate on this (see Sect. 4.2 for more details). By definition, the conformal
structure on the pinched surfa&g arises from a conformal structuse on X *
as follows: for eaclr € @ there is a tubular, cylindrical neighborhogtof ¢
which is conformally equivalent, with respect ¢d, to the intersection irC?
of a neighborhood of the origin with the annulg = ¢ for some non-zero
complex numbek. In these coordinates,is the set wheréz| = |w| = |¢|Y2.
The conformal structure* (0) then replace€ with a neighborhood of the origin
of the pinched annulusw = 0.

LetR® C R bethe set ofp-accidental reducibles. GivgA] € R, \R?, let
A be alift of[A]to aconnection which has the standard farrdiag(iy, —iy)do
in a coordinate neighborhoqdf eachc € @ as described above. Of course, the
holonomyy depends on the componantBy assumption, the restriction df
to any component ok is irreducible. Hence, fos([A]) > O sufficiently small
and|B —a| < e([A]), the holomorphic structure associated to the twisi$A)
on X§ is parabolic stable for the choice of weigiftaind{y.}.co.

SetA(0, co) to be the flow ofg.s(A) (atinfinite time) with respect to a metric
on X compatible with the conformal structure and satisfying the condition (2.7).
As before, the real gauge equivalence c[ag®, oo)] of A(0, 00) is independent
of all the choices made.

Theorem 2.13.There is a well-defined lift dfA (0, co)] to an element iR 4.

Proof. Let U, be coordinate neighborhoodsandw corresponding to a curve
c € @ as before, and suppose the holonomy .ighus we have:

_ iy 0
Al,, =d= (0 _l.y) doy

with respect to unitary frames’, e; of E|y,. By Cor. 2.4 there are real gauge
transformationg.. of E|y, such that:

(2.11) g+ (A(O, oo))|Ui =d=* (lg _?y) do. .

Theg. may be extended to a global real gauge transformatafe | x; whichis

the identity away from a small neighborhood6f. By using the identification of

the framele;, e3 } with {e7, e5 }, (2.11) implies that the pull-back @{ A (0, 00))

to X* \ ¢ extends smoothly over. By repeating the above for every curve @

we obtain a flat connection oK* with the correct holonomy. The resulting
conjugacy class is unique, because a conjugacy class of connectidnig;on
together with gluing data determine a unique conjugacy class of connections on
E|x+. O
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The construction above may be summarized as follows: the connettion
on X* determines a flat connection off \ @, along with “gluing parameters"
across the curvese @. The twisted connectiog,z(A) has a small amount of
curvature in the component of X* \ @ containing{p}, and it agrees withi
on all the other components. The flow(0, co) then runs the Simpson flow on
Y, applied tog,s(A), and leaves the connection on the other components fixed.
Since the holonomies around the curves @ boundingY remain unchanged
for the flow at infinite time (Cor. 2.4), we may use the original gluing parameters
to reconstruct a flat connection ofi.

For each[A] € R, and g satisfyingla — B| < e([A]) as above, define
n&‘;*(oﬂ[A] to be the lift of[A (0, oo)] described in Thm. 2.13. Furthermore, we

set:
[0*(0)] ]
F U THIA].
a—e([A])<B<a+e([A])

It is straightforward to check a composition rule as in Lemma 2.10. We may
therefore define:

Flo* O] U ]_—[a ©)
[AleR

ThenF1e Ol is a smooth foliation ofR \ R?.

3. Differentiability of the foliation
3.1. First order variational formula

In describing the behavior of the Yang-Mills flow applied to a connectias the
conformal structurer on a closed surface varies, there are two considerations:
first, the complex gauge transformatigescribing the flow, i.e. such thafA)
is flat, will depend in a complicated way en Second, while the real gauge
group acts on the space of unitary connections in a manner independent of the
conformal structure, the complex gauge group does not.

Assume that we have fixed a conformal structureXoriet u, be a differ-
entiable family of Beltrami differentials oX with g = 0, [LE|8:0 =v. Letg,
be a differentiable family of complex gauge transformationgonith go = g,
g£|820 = ¢. Finally, let A, be differentiable family of unitary connections on
E with Ag = A, A,| _, = A. Sety, = g.A, andy = y.| _,. We emphasize
that the action of the complex gauge group is with respect tutheeformed
conformal structure. Also, we regard Beltrami differentialss endomorphisms
2L0(X) - 2%1(X), which extend to endomorphisms on forms with values in
E.
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Theorem 3.1.Letu,, g., A¢, andy, be as above. Then:
Ot =G (678) = v[(948") (€97 + (g M0ag"] + 1AM,

where thg0, 1) part is taken with respect to the fixed conformal structur&on
andg* denotes the fiberwise adjoint gfwith respect to the background metric
Hp.

Remark 3.2If y, is a path of flat connections, then i/® a representative

for the tangent vectofy %] may be taken to be harmonic. Projecting to the
harmonics, we see that the first term in the expression above vanishes. Hence,
we conclude that the first variation of the Yang-Mills flow is independergt of

Proof of Thm. 3.1We first note how the Cauchy-Riemann operators deform: fix
a unitary connectiod on E and a Beltrami differentigl.

Lemma 3.3. Letd, , : 2°E) — 2°4(X,, E) C 2*(E) be thed-operator on
X, associated toA. Thend, , is given by

da s = (045 — s + fLdas — |M|23AS) ,

1—|ul?
for smooth sections € 2°(E).

Proof. By choosing local frames, the lemma follows from the corresponding
statement fob acting on functions. Thus, Igtbe a functionz a local conformal
coordinate onX, andw = w, solutions to the Beltrami equatian: = uiw..
Here we have expressgd= uidz ® (9/9z). Write:

df = fdz+ fzdz = fudw + fadw ,
and uselw = w_(dz + uidz) to obtain:
Jfo = fow, + f@wzﬁi s fi= fwsz§ + fow; .
Multiplying the first equation by: and subtracting the second, we have:
fow: (L= 1ul?) = fo = funl .
Now multiply through bydz + [idz to obtain:

duf = fodw = (fedZ — pidz f, + iidzf; — |l fodz)

1—1ul?
The result follows by observing that:

pidzf, = pidz ® (3/92)(fodz) = ndf
fiidzf: = iidz ® (8/92)(f:dZ) = R f .
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Continuing with the proof of Thm. 3.1: the action of the complex gauge group
is given by:

(81) g(Da)=d+g A% g+ g" A" + g7 0ug — (3,8 (M,
where
A% = Apdw = A:d7 — ev(A,dz) + e0(A:d7) + O(s?) ,
A0 = A, dw = A,dz — eD(A:d7) + ev(A.dz) + O(c?) .
From Lemma 3.3 we have:
3.8 =38 +¢ (08 —v(dg) + 1(3g)) + O(e?)

98" = 0g" +e(3g" —D(dg") +v(3g")) + 0(?).

Applying this and (3.2) to (3.1) yields the result. O

(3.2)

3.2. Differentiability of the twisted connection

The aim of this section is to prove the following:

Proposition 3.4. Let ¢ be a continuously differentiable family of the metrics
representing a patlic] C 7 (g, 1). Then there is a family of singular gauge
transformationsg;; such thatg;,(A) is a continuously differentiable path of

connections.

Proof. We differentiate at = 0. Let u. be the differentiable path of Beltrami
differentials onX with yg =0 and/jag}gzo = v, associatedto. Letz : U — A
be a local coordinate on a neighborhotidof p, conformal with respect to
the conformal structure determined by. Fix ¢g a smooth cut-off function
supported inA and identically 1 om /3. We obtain Beltrami differentialg on
C by extendingpou by zero. Fore > 0 small, we consider the solutian. to the
Beltrami equation oft:

(3.3) wz = ﬁ;wz >
normalized such that:
(3.4) we(0) =0, w,(D) =1, we(o0)=00.

Letw denotedw, /de ate = 0. We also sef = ji.

To compute the derivative, we must take into account the change of frame.
The problem is local, so suppose we have a fixed (trivial) hermitian rank 2
vector bundle over the complex plane with global unitary framend singular
connection4, such that:

(3.5) Djer = Fiadf Qe .

Let 6, denote the theta coordinatewf.
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Lemma 3.5. Define a frame* = exp{=iuf,} e* such thatD,e* = +iadf, ®
ex. Normalize by setting’,(1) = 0, ug(z) = 0, and seti, = L’t§|8=0. Then

. o (b W
lua(Z):E(z—z> .

Proof. Differentiate to obtain:

Dyef =idu, ® ef +iadd @ e = dul, = adb, — adb .

&

Hencedii, = adf. Now:

1 - . 1 . e
o, = 2 () o= 2 a () —a(®))
2i \ w w 2 z Z
Sincew (1) = 0 by the normalization (3.4), the result follows upon integration.
O

We now choose one more smooth cut-off function in additiapytande; : let
@2 be smooth, supported oftand is identically 1 om\y/s. Setug, = ug, — uj,

and define the complex gauge transformation:

. (exp{icpzu;,3 +¢p1(@ — ) logue| | 0 )

g =
" 0 exp|—ivauy; — pr(@ — B)loglw |}

Now consider the family of singular connectiops= g. A,, where the action

of the complex gauge transformation is with respect to the complex structure
The derivative in the* direction, for example, is given by (see Thm. 3.1):

d a—pB ([w w
- 0,1 _ : y _ —
™, = 5 |:l§02uaﬁ + o (Z +- )}

a
—2(a = )iz (pulogzI°) -

By Lemma 3.5 this is:

oy 0 |ppa=pB) f[fw W
5 = 22| (- )
. ra 8
+ @1 (E + E)}:| —2(a — B)v— ((pl |Og|Z|2) .
z 07

By the choice of cut-off functions it is easily verified that the suppost®f lies
in the annulus 26 < |z| < 2/3. The continuity follows from this expressiona
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3.3. Differentiability

We combine Thm. 3.1 and Prop. 3.4 to prove:
Theorem 3.6.Let o, be a continuously differentiable family of metrics repre-

[o)]

senting a pathio] € 7 (g, 1). Then for eachA] € R,, T, [A] is a continu-
ously differentiable path ifR.

As an immediate consequence:

Corollary 3.7. Given0 < 8 < a < 1/2, the universal Hecke correspondence
7ap © Re — Rp is continuously differentiable. The same is true o= 0 on
the preimage of the irreducible representations.

Proof of Thm. 3.6First, notice that by choosing a rational numpet k/n < o
and using Lemma 2.10 it suffices to prove the result for rational holonomies.
Second, by the definition (2.10) of the foliation and Prop. 3.4 it suffices to
show that given a continuously differentiable path of connectidnss Ag,
the path[A.(c0)] € Ry is also continuously differentiable. Finally, by pass-
ing to a branched cover as in Sect. 2.2, it suffices to prove the result for closed
surfaces. We continue with the notation as in Sect. 2.2.

LetA, € Abea continuously differentiable path. Note that by Prop. 2.6 and
Lemma 2.8 we may assume the are stable. Sinca, (co) = ggAs, whereg, is
a complex gauge transformation, it suffices by the first variational formula (Thm.
3.1) to show that, is a smooth family of complex gauge transformations. This
can be achieved by the implicit function theorem as follows: consider the map

f:2°=1at E) x Ayapie x Met_; — 2°(/=1ad E)
flu, A,6) == 85 (0% .
It is easily verified that the map is smooth, and:
Guf )iz Bu) = A%, 2(8u) .

By the implicit function theorem, the solution= u(A, &) depends smoothly
on (A, ), and this completes the proof.

4. Eigenvalue and eigenfunction estimates

4.1. Estimates

We shall need eigenfunction and eigenvalue estimates on sections of a vector bun-
dle V equipped with a Riemannian metric, a metric connecioand Laplace
operatorA 4. In the following, we shall assume is a compact surface, possibly

with boundary, with a smooth metric of araaWe define (cf. [Li, eq. (0.4)])
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the Sobolev constar; to be the supremum over all constantsatisfying:
sinf,cr |If — all3 < |ldf|3, for all smooth functionsf. In cased X # @, we
define another constant associated to the Dirichlet problems; led the supre-
mum over all constantssatisfying:s || £115 < ||df 2, for all smooth compactly
supported functiong'. In this section we prove the following:

Theorem 4.1.There is a universal constait with the following property: let
¢ be an eigensection &f with eigenvalue.. Then:

(1) IfoX =¢dorif 0X # ¥ andy satisfies Neumann boundary conditions, then:

- 4\?
nwéscGﬂ+<z>a)wﬁ.

(2) If 3X # ¢ andg satisfies Dirichlet boundary conditions, then:

4N\?
nw;sc(—)awﬁ.
52

We also need a lower bound on the growth of eigenvalues. While heat kernel
estimates as in [CL] might perhaps give more precise estimates, we shall only
need the following:

Theorem 4.2. There is a universal constant with the following property:

(1) If », denotes thé-th eigenvalue for sections &f for the closed or Neumann
boundary problem, then:

Aa\®
ksCrkV<l+5—ka> .
1

(2) If ux denotes thé-th eigenvalue for sections &ffor the Dirichlet boundary
problem, then:

4 3
kgCrkV(Mka) .
52

Thm.’s 4.1 and 4.2 stated above are generalizations of the results of P. Li [Li]
(see also [CL]) on eigenvalues and eigenfunctions of the Laplacian on forms. For
the sake of completeness, however, we shall sketch the important steps involved
in the proofs of the results for sections. We point out that the main difference in
the estimates is the extra tesm! in Thm. 4.1, Part (1), and the 1 in Thm. 4.2,
Part (1). These are basically due to the lack obgpriori lower bound on the
eigenvalues in terms of Sobolev constants. The key estimate is the following (cf.
[Li, eqg. (2.7) and (3.1)]):
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Lemma 4.3. Lety be a smooth section &fandA a smooth metric connection on
V.If 90X # ¢, we assume that satisfies either Dirichlet or Neumann boundary
conditions. Then for any > 1,

f 0|2 ~%(p, Aap) >

Proof. Using 2¢, D4¢) = d|¢|?, we have fon > 1:

v—1
(Da (Ip]* %), DA¢)=T|¢|2“—4<d|so|2,d|<p|2>+|<o|2”—2|DA¢|2.

By Kato’s inequality, the right hand side above is

v—1 2v —
> ——lol* i)’ digl’) + lol* " IdlolI* = —

The lemma then follows from integration by parts. O
Proof of Thm. 4.1We shall only prove Part (1), the proofs of the other statements

being similar. Assume\ s = Ap. Applying (4.2)tof = |¢|* and using Lemma
4.3, we obtain:

) 151 - 1/2 B
f|so|2 (a v (/ |<o|4“) —a 1/ el )
X X

2 1/2\ 1/2v

_ Ve 4dia

a V24 l@llzy = ll@lla -
2v—1 S1

or,

Setv = 2 to obtain, by iteration,

.
~ 22j  gygl/? 1/2/
||<p||21_[( V2 4 2]+1—_1T) > llgligse -

Lett ields [|¢|12 a1y 2 M " Th
etting k — oo yields |2 < ll¢l3a jlj[ +2,+1—_15_1 . The
result then follows from the following simple:

Lemma 4.4.Fix y > 0. Then forg > 1 there is a constan€ (8) independent
of y such that:

(e 22) " <comwer
1+ — ) <CB A+y"P) .
T g1
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Proof of Thm. 4.2Again, we shall concentrate on Part (1). Let the firsigen-
values and eigensections be denoteckOr; < ... < A, andes, ..., ¢,
respectively.

Lemma 4.5. For anyy € span{gs, ..., ¢} and anyl > 1,

1/2+1-1
[ || pr+2 - (1+ 4ica 22 ) / [ || o412
- 1

a1/21+2 51 2[+1_ a1/21+1 :

Proof. By Lemma 4.3 fov = 2/ and (4.2) we have:

(21+1 . 1) 5 B B B
) IR LA AR T4 sb/|wﬂ“'%¢>AAw>
X

(21+171)/21+l 1/21+1
[+1 [+1
gL/wz} {/mwﬁ} :
X X

Write ¢y = Zle cje;- Now it follows as in [Li, Lemma 17] that there is a subset
J C{1,...,k}suchthat:

1/21+1 1/2[+2
{f |AAW|2/+1} 5 {/ |AA1//|2[+2} a1/2[+2
X X

B 1/21+2 1/21+2
2l+2 1 2/+2 21+2 1/2/+2
[ 121w ST ) ST N
j=1 jeJ
1 2/+2
< Ml llzs2at
Therefore,
2[+1_1 2]

12 (I llz BRIV ST 1 P

20+1 ] - ol+2

¥l 2+ -1 Il

Using the fact thall /|1 < a2 ||y ||+2, we have:

2l+1_1q 2]
<||W||21+2) < ( T A 2 a1/2> a2

11l 2+ 5p 27t —1
from which the lemma follows. O
For eachl > 1, choose); € span{gs, . .. , ¢} SO thatlgllz+2|[¥ll2 < [[¥il2+2
llpll2 for all ¢ € span{¢y, ..., ). Then repeated application of Lemma 4.5
gives:
221 1/2/+1_1

lplloo _ lIvolla_1 1—[< 4)»ka )
el — ||1/fo||2 al/4 sp (2+1-1)
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From Lemma 4.3 and (4.2) we also have:
2
||¢0||4 < a,]_/z (1+ 4)\,](&) .
1¥oll5 51

Using Lemma 4.4 and the fact that(®** — 1) < 1/2' we conclude that for all
@ € spanfes, ... , ¢}

2 3
lells < Cat (1+ 4/\ka) '
lells 51

Part (1) of Thm. 4.2 now follows from the following:

Lemma 4.6 ([Li, Lemma 11]). Let W be a finite dimensional subspace Iot
(V)N CP. Then there ig € W such thatdim W [¢|13 < (rk V) all¢]2, .

4.2. Conic degeneration

Recall the notion of a cone metric on a manifadY) = (0,1) x Y (cf.
[Ch1], [Ch2], [JW1]): this is a metric of the formis? = dr? + r?G, where
& is a (smooth) metric ory. An n-dimensional manifold{ with metrico on
X \ {p} is said to have a cone metric if for some choice(Bf5) and some
neighborhoodJ of p in X, U \ {p} is isometric toC(Y); in this case we call
p a cone point. We generalize this notion to that of a cone double point, by
which we mean locally the union of two copies 6{Y) with the singular-
ity identified. For example, for surfaces it is natural to view such a singular-
ity as arising from the following family of degenerating metrics: on the cylin-
derC = {(x,y): —=1<x =<1 0=y <2r}/{(x,0) ~ (x, 27)}, define, for
0 < ¢ < 1, the metricsds? = dx? + (€ + (1 — €)x?) k’dy®. The parameter
0 < « < 1, introduced here for convenience, is a fixed cone angle. The metric
for ¢ = 0 has a cone double point as described above. We shall refer to a family of
metricso (£) on a compact, connected surfaceas aconic degenerating family
if X contains a finite collection of disjoint cylinde€s, . . . , Cy, all of which are
isometric toC(¢) = (C, dsl?), ando (¢) converges smoothly to a Riemannian
metriconX \ C1 U --- U C;.

Eigenvalue problems are still well-behaved on compact manifolds with cone
metrics. We shall be considering the following situation:Agbe a connection
on a (real) vector bundlgé — X with Riemannian metric. IX has cone points,
then we allowA to be singular at those points. It will suffice to assume further
that with respect to some choice of orthonormal frame and conformal coordi-
nates(r, 0) near the cone point4 has the formb ® d6, whereb is a constant
diagonal matrix. Consider the operatds = D’ D4 acting on sectiong of V
satisfyingy, D@, A in L2 Then by a generalization of the result in [Ch1],
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Stokes theorem holds for sectionsioind the cone metric. Hence, théexten-
sion of A, is self-adjoint. Moreover, the spectrum af, is discrete with finite
multiplicity, and the eigenfunctions are smooth away from the singularities (cf.
[Ch2)).

We will be using three important properties of conic degenerating families.
The first follows from a direct computation:

Proposition 4.7. Let(X, o (£)) be a conic degenerating family of surfaces. Then
the eigenvalues of the Ricci curvature tensor are uniformly bounded by a constant
timesl/¢.

Proof. We briefly sketch the computation: it clearly suffices to compute the Ricci
tensorR;’' for C(¢) = (C, dsf). We use coordinateg = x, x, = y, so that:

(1 0
%=\o(e+@a-ox?)k?)
Then one finds for the Christoffel symbol§}, = '3 = I', = '3 = 0, and

1 80‘22 1 80‘22 (1 — K)x

1 2 2 22

=—1-¢ , I'h=— = .
( i 12759 Ty 4+ (1 —0)x2

2= "9 ox

The operator

or, or;
i lj ! k i i
R =a” (a_ = ot F T = FF) :

From this, one verifie®;2 = R,* = 0, and

Rll — 022 8F212 _ 21 — —Z(l — E)
ox PRI+ A-0x)2°
Rf:_mﬁ_ 22 _ _ —tA-0
9x 124 12 (ﬁ + (1 _ E)XZ)Z )
The result follows. O

The second fact is a comparison between conic degeneration and the well-
known “plumbing" construction used to study holomorphic degenerating fam-
ilies of Riemann surfaces (cf. [DW2]). Consider the annuli given By:=
{(zow) € C?: |z], lw| <1, zw = &}. This is a holomorphic family foe in a
punctured disk, but we will taketo be real. The central fiber= 0 is a “pinched"”
annulus — two disks with coordinatesindw identified at; = w = 0. We shall
be interested in metrics o, which are conformal with respect to the com-
plex structure induced frord2 and which degenerate to cone metdsg on 15
proportional to metrics of the following form: for some© « < 1 and in the
coordinatez,
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(4.1) dsg = k?|z2* "V |dz|?

(cf. [JW1, Lemma 6.1]). These can always be constructed:

Proposition 4.8. Fix k, 0 < ¥ < 1. Then there is a function = ¢(¢) depending
onk and a conformal conic degenerating family of metricQon, converging to
the metric (4.1). Furthermore, the parameteind/ are related by the following
bound:
2/k y

A% <el@) <",
for ¢ < 3/4.
Proof. We solve for conformal coordinates= re’” onthe portion off,) where
0<x <1 Taked =0(y) = y,andr = f(x, ¢) for f increasing,f (1, ¢) = 1.
For such a solution, we may writs? = o (z, £)|dz|?, or:

dr?
(f)%(x, 0)

where f’(x, £) is the partial derivative with respect 1o This implies:

+ (L + A= 0OxDHK2do? = o (z, £)(dr? + r?°do?) .

1
K€+ (1—0Ox2)l2

i log f(x,£) = o(z,0) =
ox

(fH2(x, 0)

Applying the initial condition, we find the solution

1/k(1-)1/2
(1- 0" a-o7 |, ¢ /
fx, 0= 7 Byt T
1+1-0Y2 14+ Q-0Y 1-¢

) 1/k(1—0)2/2
u+«1—@U%4

d@zﬂ@@z[

Notice that the relationship betweerand f in the second line follows from
the fact that the middle of the cylinder correspondszto= |w| = /¢. The
convergence and bounds et) easily follow. O

Lastly, we comment on the behavior of the Sobolev constants under conic
degeneration. We quote the following result:

Proposition 4.9 ([JW1, Thm. 2.4 and Prop. 2.6]).For the conic degenerating
cylinder C(¢) in Sect. 4.2, there is a constansuch thats,(C(¢£)) > ¢ > Ofor
all ¢ > 0.
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This result bears on the inclusidrj — L*. Recall that for a smooth function
f the definition of the Sobolev constant implies (see [Li, Lemma 4]):

(4.2) IdfIE = %5 (2171 = a A1)

wherea denotes the area &f. For a conic degenerating family, — 0 if and

only if there is a separating pinching cylinder (see [JW1, Cor. 2.9]). However,
by the proposition above, the Sobolev constantsf the component regions,

i.e. the degenerating cylinders and their complements, all remain bounded away
from zero. Thus, applying a cut-off function to (4.2), one easily proves

Proposition 4.10. For a conic degenerating familiX, o (£)) there is a constant
¢ > Oindependent of such that for all smooth functionson X and all£ > 0,

2 2 2
||f||4;,7(z) =c (”dez;g(e) + ||f||2;g(z)) .

4.3. Uniform bounds

If (X, o(£))isaconicdegeneration, then avector buridle> X with connection

A suchthatd has the standard fora®d6, b constant diagonal, on the cylindér
naturally defines a family of operatars, on (X, o (£)). By the comments at the

end of Sect. 4.2, itis reasonable to ask whether the eigenvalues and eigenfunctions
of A, on(X, o (£)) converge ag — 0 to those of the limiting cone metric. This

is what we callspectral convergencd he estimates from Thm.’s 4.1 and 4.2

are the key elements needed to prove spectral convergence for this degenerating
family (cf. [JW1,JW2]). The first step is unifor@® bounds on eigenfunctions

and uniform growth of eigenvalues:

Corollary 4.11.. If (X, o(£)) is a conic degenerating family with vector bundle
V and connectior, then there are constant;, C, independent of such that

if (£) is a normalized eigensection &fwith eigenvalue.(¢) then||¢(£)|| <

C1 + CoA5(¢) for all £.

Corollary 4.12. If (X, o (£)) is a conic degenerating family, then there is a con-
stantC and an integerV, both independent df, such that if\,(¢) denotes the
k-th eigenvalue for the closed problem for section¥ pthen, (¢) > CkY? for

all candallk > N.

The arguments in [JW1,JW2] then apply to give:

Theorem 4.13.For a conic degenerating family we have spectral convergence
for sections ofV'.

Applying this to the particular case of a unitary connectibron E and the
eigenvalue., of A, acting on sections qadE)g, we have:
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Corollary 4.14. Let A be an irreducible connection oK. Then for a conic de-
generating family X, o (£)), A1(£) — Oifand onlyifA is accidentally reducible.

Proof of Cor. 4.11In the non-separating case, it follows from [JW1, Cor. 2.9 and
Thm. 2.4] that the Sobolev constantis bounded away from zero. The result
then follows from Part (1) of Thm. 4.1. In the separating case, following [JW2]
we divide the degenerating surface into three regivhsindC with the induced
metrics fromo (£) (denoted also by (£)). LetC C C be afixed subcylinder and
X* the corresponding complementary regions. By definition, the degenerating
family (C, o (£)) is isometric to the standard degenerating cylinder; therefore, by
Prop. 4.9 it follows that the Sobolev constapfor (6, o (£)) is bounded away
from zero. The same is true foK %, o (£)), since these form a smooth family of
metrics on the surfaces with boundary for 0.

Choose a smooth cut-off functionon X such that) = 1 onC andn = 0
on X*. Suppose (£) is a normalized eigensection 0K, o (£)) with eigegvalue
A(£). We denote by(1 — n)¢(£))* the restriction of(1 — n)e(£)) to X*. It
clearly suffices to find bounds @il — 1)@ (£))* andne separately. Notice that
A1 — ne)* and A%ng have L? bounds depending am andA(¢), but
otherwise independent 6f More precisely, the bound may be taken of the form
C1 4+ CoA™(£). This is becausdn andd(1 — n) are supported iX* where
the higher derivatives gf may be uniformly bounded by an application of the
elliptic estimate.

Let y5(¢) and £ (¢) denote normalized eigensections with eigenvalues
/Lki (€) andu{ (¢) for the Dirichlet problems o * andC, respectively. Consider
the Fourier expansions:

(L=me@)* =D afOPEO) , ne) =Y bOY () .
k=1 k=1

Since the Sobolev constants for the individual pieces are bounded away from
zero, it follows from Thm. 4.1 that we have uniform bounds:

IE@lloo < CE@ Y Ollo < Cul ).

Here the constar@ may be chosen independentkaéind?. Hence, it suffices to
show that there is some of the required form satisfying:

(4.3) la;F (O] u) < B,

Me L1]e

(4.4) lbr(O)| 1f () < B,

x~
[|
=
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for all ¢£. Consider (4.4). By definition, we have:

b (6) = / (np(©), ¥ (O)do (&) = (np(0), ALY (©)do (0)
C

o)
(up ()™ Je

1
=——— [ (A" (ne(0)), ¥ (£))do (L) .
(uf(e»m/c< " (10(0), WE (O)dor (6)

Since we assume uniforit? bounds oM\ (ng(¢)), we obtain a uniform bound

1 (€) 1bi(0)] < (Cr+ C22™ (0)) (g ()",

where the constants;, C; may be chosen independentoBy Part (2) of Thm.
4.2 above we havef (¢) > C'k/? for some constant’ independent ok and
£. Hence,

g (0) [be(0)] < (Cp+ CHA" (1)) kA=
where the constants;, C; may be chosen independent/ofind£. Since the
sum overk of the terms on the right hand side convergesiior 5, the desired
bound in (4.4) is obtained. The proof for (4.3) is similar. O

Proof of Cor. 4.12In the non-separating case, it follows from [JW1, Cor. 2.9 and
Thm. 2.4] that the Sobolev constantis bounded away from zero. The result
then follows from Part (1) of Thm. 4.2. In the separating case, consider the three
regionsX*, C as in the proof of Cor. 4.12 above. By domain monotonicity, it
suffices to prove the result for the Neumann spectréxXer, o (¢£)) and(C, o (£)).
Since(X*, o (¢£)) form a smooth family of metrics on the surfaces with boundary,

it follows that the Sobolev constantgfor these regions are uniformly bounded
away from zero; hence, by Part (1) of Thm. 4.2 the Neumann spectra of these
surfaces has uniform growth as in the statement of the corollary. By Prop. 4.9,
the Sobolev constant, for (C, o (£)) is also uniformly bounded away from
zero. Hence, by Part (2) of Thm. 4.2 the Dirichlet spectra of these surfaces has
uniform growth as in the statement of the corollary. On the other hand, because
the connection is rotationally symmetric ¢h the Neumann spectrum may be
bounded below by the Dirichlet spectrum after shifting the index by two as in
[W]. This completes the proof. a

4.4, Heat kernel estimates

It is well-known that eigenvalue and eigenfunction estimates produce estimates
on solutions to the linear heat equation. This will also be useful in the non-linear
Yang-Mills flow. The result we need is the following:

Theorem 4.15.Let (X, o (£)) is a conic degenerating family and fix > O.
There is a constant’ depending orf" but independent of such that ifv(¢, x)
is the solution to the heat equation with initial condition®, x) = vg, then
sup, [v(t, x)| < Cllvollze@ forallz > T.
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Proof. The solutiorw (¢, x) may be written:
o
v(t,x) =Y e Mapi(x),

where|a;| < |lvoll2.0(¢)- By Cor. 4.11 for the ordinary Laplacian on functions,
there are constants; andC, independent of such that:

suplu(, x)| < ||Uo||2U(e)Z RO (O + CA20)
i=0

Thus, we must show that for fixey > O there is a constart depending only
on Ty, C1, andC5 such that for alk > Tp and all¢ > 0,

o0

Y e MO (Cr+Ca) < C.
i=0

Firstchoosetg suchthatforalt > Aowe haveA®(C1+CpA2%)e~ 4T < 1. Now
by Cor. 4.12 we can find a consta®y independent of such thai; (¢) > Czi /3,

for i sufficiently large, say > N, and all£. We further prescrib&/ such that
fori > N, A;(£) > Ap. Finally, let:

Cy = SUp(Cy + C2AD)e T |
A>0

Then forr > T and all¢,

00 N-1
Z —tA (K)(C + C2A5) _ Z e —tA; (l)(cl + C2A5) + Ze tAi (()(C + C2A5)
i=0 i=0 i=N
— 1
< NCa+ 8 Z iz’
3 i=N
This proves the result. O

5. Proof of the main theorem
5.1. Outline of the proof

Let [c*(¢)] be a degeneration if,,, (g, 1) to a nodal Riemann surface with
conformal structur§o*(0)] associated to a collectiah of simple closed curves.
RecallthaR? c R denotes the-accidentally reducible representations. In this
section we are going to show that for a gijeri € R, \ R?, and| — «| < &g,
wheregg is sufficiently small as in Sect. 2.3,
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) im 715141 = 213 (4],

By standard compactness arguments, this will suffice to prove the Main Theo-
rem. As representatives for the degenerating conformal structure we may choose
lifts o*(£) — o*(0) to be a conic degeneration as in Sect. 4.2 with cone angle
0 < k¥ < 1. The fact thak may be chosen strictly less than 1 will be important
(see (5.12)). GivepA] € R, \ R?, letg,s(A) denote the twists of in the stan-
dard form around the point. Let A(¢, 1), A(O, t) denote the Yang-Mills flow
of gus(A) = Ao with respect tar*(€), o*(0), respectively. Since a conjugacy
class of flat connections is completely determined by its holonomy around all
homotopy classes of closed curvesXt our strategy of proof will be to first
show that the holonomies df(¢, oo) converge for curves supported away from
the pinching cylinders. This does not suffice, however. Indeed, this statement,
combined with the results on Simpson’s flow from Sect. 2, show only that the
limiting holonomies ofA (£, co) around the pinching cylinders return to the ini-
tial holonomies ofdy as¢ — 0. This would still allow for the possibility of a
change of framing, or gluing parameters, across the cylinder (cf. the discussion
in the second to last paragraph of Sect. 2.3). So the second part of the proof is
to show that the holonomieacrossthe pinching cylinders, as measured with
respect to the framing coming frony, are very nearly trivial. We present these
two results as Thm.’s 5.1 and 5.2 below:

Theorem 5.1.For any se{ &; }j’.":1 of closed curves supportedan(Xj) we have
{hols, A, oo)}f:l — |holg; A0, oo)}jN:1 :

modulo overall conjugation b§yU (2).

Next, recall from Thm. 2.13 that the manner by which a conne¢tdaf, co)]
produces a pointifk is to use the initial framings. Consider a cylind€y, ds?)
in X* on which the twisted initial connectiofy, is flat, and recall the coordinates

C={(x,y):-1<x=<1 0=<y=<2r}/{(x,0) ~ (x,27)}

from Sect. 4.2. We may choose a unitary fraj@e e,} such thatdy has the form
da, = d+diag(iy, —iy)dy. We fix this frame once and for all throughout the de-
generation. Now forasmalltransverse &fc= {(x,y) e C: —e <x <¢, y =
yo} and flat connectiod (¢, co), we measure the holonomy holA (¢, c0)) by
parallel translating the framfey, e,} along ;. For example, notice that by our
choice of lift[A (0O, oco)] in Thm. 2.13, hof, (A(0, c0)) = I for any choice of.
Since any closed curve aki* may be written, up to homotopy, as a con-
catenation of curves of the ford@ in Thm. 5.1 and transverse arfs, one for
each component; € @, we see that (5.1) will follow from Thm. 5.1 and the
following:
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Theorem 5.2.For any$ > Othere isgg > 0 and{g such that for alll‘e"0 and all
£ > Lo,

holr; (A(¢,00)) —1I| <.

The proof of Thm. 5.1 will occupy the next two subsections, and the proof of
Thm. 5.2 will be given in subsection 5.4. One of the key ingredients in the proofs
is theC? estimate for the metric and the curvature found in Cor. 5.10 below.

5.2. Proof of Theorem 5.1

Throughout this sectiorf? is an open set with compact closureXri \ @. As
before, we fix[A] € R,. Choose a representativg and letAy = g.5(A) be
the twist of A at p. We assume tha = k/n, wherek, n are positive coprime
integers, and is odd.

We denote by (¢, r) the solution of the Yang-Mills flow (2.1)-(2.2), By(¢, )
the solution to the non-linear heat equation (2.4)-(2.5)%h, o*(¢)), and by
h(0, t) the solution to the same equations¥f= X* \ @ with the degenerate
metrico*(0), the holomorphic structure on the bundle being determineddy

As a first step, we show that as we degenerate the metri&*or (¢, t)
convergesta (0, ¢) uniformly on compact sets. In the following is any number
strictly greater than 1. Alsos, and = will denote the Hodge stars axi* and
X*\ @ with respect to the metries*(£) ando*(0), respectively.

Proposition 5.3.GivenT > 0, logh(¢, T) — logh(0, T) weakly inL5 . In
particular, the convergence is strong ' (£2).

Proof. In Sect. 5.3, we will obtairC°® bounds fork (¢, 1) ands, Fa.,) indepen-
dent of¢ (see Cor. 5.10). Assuming these results, since

(5.2) WY O Faqunh™?(, 1) = Fag + a, (1€, 1)dx0h (L, 1))

standard elliptic estimates imply5 . estimates for(¢, r) uniform in £ and
0 <r <T.Byeq.(2.4),thisimplies ang’l,loc. estimate ork™* x [0, T'], uniform
in £, where the 1 refers to the time derivative. It follows that, r) converges
to someh (0, 1) weakly inL3 . The uniformC® bounds imply thak (0, r) and
*0F5, io.H, 8T8 also bounded uniformly fere [0, T']. The uniqueness part of

Thm. 2.2 shows that(0, T') = h(0, T) as desired. O

Corollary 5.4. Givene > Othere existd” > 0and{y = £o(e, T) > Osuch that
for ¢ > £,
[ logh(€, T) —1ogh(0, 00)|lcre) < €,

and similarly,
IR*2(e, T)Ao — hY2(0, 00) Aoll o) < € -
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Proof. By Thm. 2.2,4(0, t) — h(0, co) uniformly in C1(£2), so we can choose
T such that for alt > Ty,

[logh (O, 1) —logh(0, 0)|lcre) < &/2.
TakeT > Ti. By Prop. 5.33 £9 = £o(e, T) such that for alt > ¢,
[logh(£,t) —1ogh(0, T)|lcrq) < &/2.
The result follows. O
Now let A (¢, ¢) be the solution of the Yang-Mills flow ok* as before. Write
(5.3) AL, 00) =g, DAL, 1) , h(l,1)=g " DG, 1).

Proposition 5.5. Givene > 0, there is aly > 0 independent of such that for
all t > To, | logh(€, t)|crq) < €.

We shall also prove this result in the following subsection. Here we show
how Prop. 5.5 implies Thm. 5.1. L&t = max(Ty, T1), WhereT, and T; are
as in Prop. 5.5 and Prop. 5.3, respectively. &gbe chosen as in Cor. 5.4, and
choosel > ¢,. Notice that bothh/2(¢, T)Ag andhY2(¢, T)A(¢, o) are real
gauge equivalent td (¢, 7). We therefore can write:

h(€, T)A(L, 00) = k(¢, T)RY?(¢, T) Ao,
wherek (¢, T) is a real gauge transformation. By Cor. 5.4:

<ce¢,

|72, YA 00) — k(e TIRY?(0,00)Ao| | =
o)

for ¢ depending only on the Sobolev embedditfy(§2) < L*(£2), and may
be taken independent éf On the other hand, by Prop. 5.5:

”le/Z(g, TYA(,00) — A(L, OO)HLDC(Q) < varepsilon .
It follows that:
| Ace, 00) = k(e, TIRYZ(0, 00) Ao () < (¢ + Dt .

SinceA (¢, oo) andk (¢, T)h?(0, 0o) A areCP-close, their holonomies around
the Z; are also close. Finally, sindég¢, T)h/2(0, co)Ag and A(0, oc) are real
gauge equivalent, the theorem follows.
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5.3. Proof of Proposition 5.5

We begin with some preliminary results:

Proposition 5.6. Let[A] € R, be as before. Then giveg > 0there is§ > 0
such that forlg — «| < 6 there exists a twistig = g.5(A) and a flat connection
Ao With the standard form of holonom§ around p, and such that|Aq —

Axllaq) < €o-

Proof. Let C denote a component of the pinching region andhe twist of A
atp ¢ C. Leth denote the flow abo for eq.’s (2.4)-(2.5) associated &ao,Lhe
initial hermitian structurep, and the degenerate metric0) on Xj. Let A,
denote the hermitian connection associateii\gmntho. We may assume that
Ay is in the standard fornd + diag(iy, —iy)d6 on a slightly larger cylinder
C; D C. Let C, be an open cylinder such tha&t ¢ C, ¢ C, c C;. Since
the initial curvaturg| % F,,| - can be made arbitrarily small f¢ — «| small,
and sinceA is stable onXg, it follows (cf. [Sil]) that| log4|c1(vy, and hence
also||Ag — Oollco(v), can be made arbitrarily small for a relatively compact set
V C Xg. By [DW1, Lemma 2.7] there is a real gauge transformagisuich that
g(Ax) = Ag on Cz. Moreover, it is clear from the proof of that lemma that by
taking V so thatX \ V C C and using the fact thdtAo — Al oy is small,
we may conclude thatlog gllco(c,\c,) IS small. By bootstrapping we find that
I |098||L4(c1\c2) is small; hence, we can extegdo a real gauge transformation

of EoverX*withg =TonX\C;and|g—1 ||L4(X\C2) small. Setd, = g(AOO)
ThenA, extends to a connection ovEr, and the desired estimate holds.o

In order to get our estimate for the metric ¥, we need again to pass to
branched covers. Assume thate X* \ X is outside the pinching region, and
letg : X — X be aregular cyclic branched cover of degreehosen so that
all branch points lie outside the pinching region. We choose meiii¢son X
so thato (¢) — & (0) is a conic degeneration, and with respect to the induced
conformal structures from (¢) ando (¢), the mapy is holomorphic. Recall the
mapg : Agm — A: A A.

Lemmab5.7.Let A € Ay, be a flat connection which is lies outside tie

accidental reducibles. Then there isiasuch thatiy(4%") > A > 0 for all
L.

Proof. According to Cor. 4. 1431(2%") — 0/if and only if A is accidentally
reducible onX,. But this is ruled out by the assumptions and Prop. 2.6. O

The next step is to reduce to the case of a closed surface. First, notice that it
suffices to getC? estimates for (¢, t) and*gF;(L,). Also, by Lemma 2.9, and
shrinking £2 slightly to avoid branch points, it suffices to show:
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(5.4) lloght, 1) pap, < & -

__Note also that by Prop. 5.6 we have a flat connecignsuch thau|,7foo —
Aolla < €0, Wheregg can be taken arbitrarily small. Furthermore, by Lemma
5.7 we may assume thai(A%"”) > 1 > 0 uniformly in ¢. It follows by the
fundamental estimate [R, Prop. 7.2 — second method] that i less than a
universal constant;, depending only on, then

(5.5) H DX Fr

Ag” Ao

260 =c H*ﬁFﬁoHZ,&(@ :
Since from now on we will work on a closed surfaﬁewe henceforth omit the
hats from the notation. Agaiw,(¢) — o (0) is a conic degeneration of a closed

surfaceX. We begin with the following:

Proposition 5.8. Let A (¢, t) be a solution of the Yang-Mills flow with initial con-
dition Ay,
| %¢ Fa,llco < B, and such that the fundamental estimate

H DZZ(&I) Fawn Hz;a(z) zc H ke Faen ”2;0(12) ’

holds for a constant independent of and for0 < ¢ < T < oo.AThen there are
constantsy, ¢, depending o and B, but independent dfand 7', such that for
alo<r<T:

(1) || *¢Faw,n ||Oo < c1e~?; and,
(2) 1h, D)y < c2.

Proof. For (1), first note that from (2.3):

d 1 2 -1
5:6) 7 H*zFA(e,ﬁHz;g(z) =73 ” DZ‘@,,)FA(L,) Hz;a(a H*ZFA(K,Z)HZ;U(Z)

c
< ) H Djxl(e.t)FA(l”) HZ?”“) '

from which we obtain| s+, Fa.) ||2;0(£) < ¢1e7"?, wherec; depends only oB
and an upper bound for the total area®f). Letu(r, x) = |*¢Fa.n| (x) be the
pointwise norm. By [Do2, Prop. 16] it follows thét+ A,u < 0, whereA, is
the ordinary Laplacian with respect to the metridBy the maximum principle,
sup, u(t, x) < sup, u(0,x) < B, and therefore there is a constantas in the
statement of the proposition such thdt, x) < cie/2for0 < ¢t < 1. For
t > 1, we apply Thm. 4.15 to find' independent of such that

supu(t, x) < Cllu(t — 1, x) |20 < Cére™""P/% = (Cére/?) e'/?
X
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By adjustingc; if necessary, (1) follows.
For (2) consider the metric flow (2.4):

p1dh
dt
Multiplying the equation through bl and taking traces, we find:

—~=1% Fpg, . h(O)=T1.

d ~
= logTrh < C ||*¢Fraymo| o, -

for some numerical constaqt By (1), the right hand side is uniformly integrable
on0<rt < T.Since det(r) = 1, the result follows. O

Proposition 5.9. Let A be as before andl x, F4,ll < €2. Then there exists a
constantc independent of such that:

(5.7) H D::[(Z,I)FA([»’) ”2;0(4) zc ” *eFae.n ”2;0(@) >

forall r > 0, whereA(¢, 1) is the solution of the Yang-Mills flow (2.1) with initial
conditionA (¢, 0) = Ag, and with respect to the metric(¢).

Proof. By (5.5), there is: > 0 such that:
” DZZ(Z,O) Fawo ”2;0(@) zc ” *0 Fae.0) ”2;0(13) ’

uniformly in £. Let 7 = {t € [0, 0c0) : the estimate (5.7) holds df, ¢]}. Then
J £ 0. LetT =supJ.We assum& < oo, and derive a contradiction.

Claim 1. For the constantappearing in (5.7}JA(¢, t) — AL, O) |20 0y < c e,

By (5.6),

BA(Z 5
ar

a ¢ Faen | < —c | D}y Faen | ==¢
i D2 = Aln= A0 200 0]

Hence, by integrating,

— [*¢Fawo ”2;0(@) < |*eFaen Hz;a(a — [#cFawo Hz;a(m
ds < —c

"19A "9A
< -—c — (£, s)ds
0 2:0(0) o 0t

—(,s)
=—cllAl, 1) — A, O)ll 200 -

at 2:0(0)

It follows that
A, 1) — A(L, 0)||2;o(z) = ¢t H*ZFA(Z,O) Hz;a(e) < 0_182 )

and hence the claim.
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Claim 2. Write A(¢, T) = g(£)Ag, h() = g(£)g*(¢). Then|g(€)|ls and
lg~1(0) ||« are uniformly bounded independentéof

This is immediate from Prop. 5.8.

Claim 3. There exists a real gauge transformati@f) such that
lu(OAEL, T) — A0||L§(Ao);a(e) <céz,

wherec is independent of.

Write A(¢, T) = g(¢)Ao as before. By Claim 1|Jg‘1(£)5Aog(£)||2;(,(@) < cé&y,
and by Claim 2,[04,8(D) 2.0y < ce2 (here and for the remainder of the

proof, ¢ will denote a generic constant independent blit possibly depending
uponT; sinceT = supJ is fixed throughout the argument, we omit the ex-
plicit dependence of the constants Bh By elliptic regularity and the fact that

M (AZ?) > A > 0 (see Prop. 2.6) it follows that

10408 (ON3.5t) = 1410811356y = 18O N 204000
< A H8a08 (O 15,50y = 2719408 O30y < c 82,

whereg(¢£)* is the L2-orthogonal projection to the perp space of gf. This
result, combined with Claim 2, implies thM*l(E)ath(£)||2;U(g) < cé&y. On
the other hand,

8 N O Fa@ng(0) = Fag + dao (hH(0)340h (D)) .

Hence, by again applying elliptic regulariM*l(ﬁ)éth(E)||L%(AO);U(£) < cey.
Since the connection defined frody, andx () Hy is real gauge equivalent to

A(L, T), the proof of Claim 3 is complete.
For notational simplicity, se (£, 0) = u(¢)A(¢, T). Then:

(5.8) Hi‘“’ 0) — Ao

<Ccéy.
L2(Ag)i0(0)

Claim 4. Let AL, 1) denote the Yang-Mills flow with initial conditio@(ﬁ, 0)

and with respect to the metrie(¢). Then there i > 0 and a real gauge
transformatiorv (¢, ) such that:

Hv(z, DAL, 1) - AO‘

<e1/2,
4;0(0)

for0 < ¢t < 8 and all¢. Here,s; is the universal constant so thaadRe’s estimate
(2.6) holds.
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The proof of Claim 4 will be accomplished in three stages:
(i) Givenn > 0,381 > 0 such that for O< r < 81 and all¢, || logh(l, )]s <

n, whereh (¢, t) is the solution of (2.4)-(2.5) with respect to the holomorphic

structure defined béé(e,o). This follows by Prop. 5.8, as in Claim 2.
(i) Given n > 0,38, > 0 such that for 0< 1 < &, and all¢, AL, 1) —
A(L, 0)ll2.0(cy < 1. This obtains from the following inequalities:

"d
IAC, 1) — AL, O)ll20¢0) = ”/ d—A(ﬁ, ndt

2;0(¢)
t d t .
< d—é(ﬁ,t) dt = DA(E,t)Fé(lJ) dt
o lat 0 ~ 2:0(0)
, 5 12
1/2 1/2
<t / / D:l(e’t)Fé(Z,t) dt =Y
0 ~ 2:5(6)
2 2
(” *éﬂ(z,m‘ - H *eFacn ) <ct'?e.
~ 2;0(0) ~ 2;0(0)

(iii) Let A(¢, 1) = g(¢, )AL, 0), h(€, 1) = g* (£, 1)g(L, 1), ands = min(éy, &2).
As in Claim 3, we first Obtaiméé(g’o)g(e, Dll2e@ <cnfor0 <t <4§.0nthe

other hand, by choosing sufficiently small, it follows by (5.8) that we may
assume that1 (A% o) = »/2 > 0. As in Claim 3, we obtain for & ¢ < 5,

-1 =
15758 034005 Dl 5y ) = 21

By taking e, andn sufficiently small with respect te;, and applying this re-
sult together with Kato’s inequality and the uniform embeddirfg— L* for
functions (see Prop. 4.10), we obtain Claim 4.

Now we are ready to complete the proof of the proposition. By Claim 4,
and by takingsg in Prop. 5.6 sufficiently small, it follows thdw (¢, ) A(¢, t) —

Aollas@ < €1; hence,

>c H ¢ Fonacen

— *¢
= HDuw,r)A(z,z)Fv(é,t)é(z,r)
~ 2:5(0)

Do Faw.
H Ant AL 2r) 20(0)

O0<t<$)

= ¢ “*ZFA(EJ) 2;0(0)
AL,

wherec is the same constant as before (cf. [R, Proof of Prop. 7.2, second method])
depending om1(A4, ) and Sobolev constants coming from the embedding
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L% — L*(see Prop. 4.10). It follows again by the real gauge equivalence of the
heat flow and the invariance of tie& norm that

H DZ[(Z,t)FA(€>f) Hz;g(g) zc ” *eFae,n || 2:0()
for0 <r < T + 8, contradicting the assumption that= sup.7. O

The following corollary is an immediate consequence of Prop.’s 5.8 and 5.9,
and completes the proof of ti@ estimate:

Corollary 5.10. Let Ag be as in Prop. 5.9. Then there are constantsc,, and
cz independent of andr such that

(1) || *(ZFA(Z,t) ||oo < cle_CZ’ for0 <t < ,7?,
(2) Ih(€, t)|lo < c3.

We now proceed with the proof of (5.4):

Corollary 5.11. Let 2 C X be as before. WriteA(¢, 1) = g(¢, 1)A(¢, 00),
h(t,t) = g*(¢,1)g(¢, t). Givene > 0,3 Tp > 0 independent of such that for
allt > To, |[logh(f, ) crq) < .

Proof. By Prop.’s 5.9 and 5.8, we hayle: Fa.,) |, — 0ast — oo uniformly
in £, and:

oo
/ ||*£FA(Z.¢) Hoodt < 00,
0
uniformly in £. From this we deduce as in Claims 1 and 2 that:

Jim JA(L. 1) = AL, 00) 200y = O,

and that||g(¢, 1) [l2.0) @and ||g72(L, 1) [l2.0¢c) @re bounded, all uniformly id.
Hence,
104,008 (€, D) l|2:0¢)

can be made arbitrarily small independenttoSincery(A%),) = A > 0

uniformly in ¢, it follows that ||g(¢, t)||L§;(,(K) can be made arbitrarily small
uniformly in £. Finally, by using the curvature estimate:

FHE D Faend (€0 = Do) (R7HE D@0 D) |
we obtain the corollary by bootstrappingsn. O

This proves (5.4), and thus completes the proof of Prop. 5.5.
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5.4. Proof of Theorem 5.2

Let 4(¢, oo) denote the limit at infinite time of the solution to eq.’s (2.4)-(2.5).
Then up to real gaugd,(¢, co) ish/%(¢, 0o) - Ao. It suffices to obtain an estimate
of the form:

€0
(5.9) / |1a/0r {h™Y2(€, 00)a,h Y2 (€, 00) — c.c.}|dr <&,
VEW)

for sufficiently smalleg and£. In the above, the coordinateis |z| for the con-
formal coordinates olC, a’sf) from Prop. 4.8, and,,;, denotes contraction of
the form in ther direction. The notatior.c. means hermitian conjugation of
the previous term. Also, note that we have taken the square/foasince with
respect to the conformal coordinates in Sect. 4.2 this corresponds to a point in
the middle of the cylinder, i.ec = 0. The estimate for the whole afg follows
from the estimates in theandw coordinates separately.

The square root of the gauge transformatiamdifficult to work with directly,
so we will eliminate it by using &° bound. Namely, to prove (5.9), is suffices
to prove:

(1) There isB independent of such that|i (¢, co)| < B for all ¢;
€0
(2) f |tajor {h~0agh — c.c.}| dr < & for go sufficiently small and /e (¢) <
NEG)
€o.

We further reduce this with the following:

Proposition 5.12. Suppose thatthere is a consta@such that (1) holds. Suppose
in addition that||h=134,h — c.c.|l20) < B for all £. Then (2) also holds.

Proof. Setu = h19,,h — c.c.. The first step of the proof is to show that the
hypotheses imply an estimate of the form:

(5.10) ||u||ig(e) =< B/(Z2 )

whereB isindependent of. Consider the functiofx|. By Prop. 4.10, it suffices to
estimatel|u|. By Kato’s inequality)d|u||® < \VAOMIZ. So it suffices to estimate
the right hand side. We now apply the Weitzenk formula for a 1-form: with
values in the self-adjoint bundle:

AAOM = _V;;()VAOM +{R, u} + {FAO’ u} :

Now F 4, is uniformly bounded in any norm, s&, and we have\ 4 s ~194,h =

—520 Fa,, S0A 4,u isbounded as well. Therefore, the desired estimate is obtained,
provided we can estimate the tefR, u}. The explicit formula can found in
[Wu], and it involves the operat@®,’ = o/ Ry;;' (see [Wu, p. 953]). Then (5.10)
follows from Prop. 4.7.
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Now we consider the problem on a cylindé€r, ds?). Choose alocal holomor-
phic frame{ f;} for Ag adapted tde;} as in Sect. 2.1. In conformal coordinates,
we may write

hoah =) ¢l f,® ff ®dz,

nez

sincedy, (h~19a,h) = 0 (see (5.2)). The coefficienty’ depend ort, and we
wish to estimate them. For convenience, we|set|? = |c1}|2 + |c%3|%. We
assume the frame has been chosen suchﬂ‘@tfjﬂ = |z|""7%, wherey; = y,
yo = —y. We will assume thay # 0, the argument in the case= 0 being
similar. Also, since we assume tha¢¢) converges to a cone metric of the type
(4.1), the integrals below will be carried out with respect to this metric. A simple
computation shows that these estimates are valid. We have:

_ 2 ii—ii — s e
(W 0ah|" = Y el e iz

m,nez

The L2 bound onw implies one onz=19,,h|, which in turn implies that there
is a constanB independent of such that:

|ci7|? / |z|2" Y dz|> < B .
e(0)<|z|=1

Therefore, there is another constant independeat which we also denote by
B, such that:

(i) Form >0,|c;j| < B.Also,|c®2| < B;
(i) Form < —2,0r(m,i, j) = (=12, 1), |c}| < Be(t) ™21,
(iii) |c_1/?log(1/e(8)) < B.

We now apply this to:

€0
/;m ‘13/3}’ {h_lathH dr = . Z . |C%|
(m,i, j)#(—1,i,i)
€0
/ PR dr 4 2|c_y | log(1/e) .
£1/2
By the estimates (i) and (ii) above, the first term on the right hand side may be
made arbitarily small for smadl, independent of. To estimate the second term,
we use thd.* bound (5.10). Because of the log term, it suffices to show{that
vanishes as some power@fThe estimate (iii) is not sufficient.
To use the.* bound, we firstisolate the = —1 terms. Again, (5.10) implies
a similar bound on thé&* norm of |2 =19 4,4|. Write:
lecalP 12 4 1eH 2

|h 1040 |? = 5 +g.
|z
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Integrating over a subcylindér,, we have:

4 12144y 21,4 14y
C_ c” Z C~ Z
leal® 2 _p |h_18m4+g2+| R G (LT WP
’ 0 c, ° |z|4 |z|4 0

The subcylinder is given by, = {z € C : &% < |z| < &o}, Wherea will be
chosen as follows:

Claim. For:

1+« K
>a > ,
3—« 2—«

(5.12)

there is a constar®® independent of so that:
B
2,2
/a 8 dSO = 87/( .

Assuming this claim, we complete the proof. By (5.10) and Prop. 4.8 applied to
(5.11), we have:

12 /4 4 21 4 —4
/ '“'4ds2<£+/ (|c_1| 21 1ele] V)dsz
ozt T T e e, |z|4 |z|4 0

Carrying out the integrals on both sides, this implies;|* < B (24~
+¢%(1=a) By the choice of: in (5.12),(4— 2« )a — 2« > 0, so we are finished.

It remains to prove the claim. First, by the expression|fortd, k|2, note
that the terms in the series fginvolving the coefficients,, andc, are bounded
uniformly by §"*"""” for someb > 0 and|m/, |n| large, depending upom.
Therefore, to bound the integral @f, it suffices to bound the squares of the
individual terms. Of the terms which appear, there are three types which need to
be estimated:

L e ?leil [2|z[20mm+20=2), wherem, n < —2;
. [e?y|2c2Y?|z|2*= V=2 and|c1?|?|ct?|2|z|2n=D+27 wheren < —2;
N Jc_1]?|ci|?|z|2"=D, wheren < —2.

Terms of type | give integrals of the form (using (i) above):
&0 N B . B
/ |C:;i |2|C,lqj |2r2(m+’1)+2()/i—yj)—1+2/(dr < Blc% |2|C,lqj |28(2(m+n)+2(yi—yj)+2x)a
&

a

< B 2mtn)A=a)=2(yi~y))(1~a)~2(2~«a)
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But:
—2m+n)(l—a)—2(yi —y)(Ll—a) — 22— «a)
>-2m+n)1l—a)—2(1—a)—2(2—«ka)
—2m+n+3)(1—a),

\%

so these terms are, in fact, bounded. For type IlI, we apply the same estimate to
get:

€0
f |C_1|2|C;ll |2r2(n—1)—1+21(dr S B|C_1|28—2(n—l)(l—a)—2(2—/(a) .
&

a

Sincen < —2, the exponent of is > —2« by the assumption oa in (5.12).
Type Il is similar to these two computations. O

Since the hypotheses of Prop. 5.12 are satisfied by Cor. 5.10 (2), and the
uniform L2 bound on|h~Y23,,4%2|, this completes the proof of (5.1) and also
of the Main Theorem.
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