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Abstract. On a Riemannian manifold of dimension n we extend the known analytic results
on Yang-Mills connections to the class of connections called Ω-Yang-Mills connections, where
Ω is a smooth, not necessarily closed, (n − 4)-form on M . Special cases include Ω-anti-self-
dual connections and Hermitian-Yang-Mills connections over general complex manifolds. By a
key observation, a weak compactness result is obtained for moduli space of smooth Ω-Yang-
Mills connections with uniformly L2 bounded curvature, and it can be improved in the case
of Hermitian-Yang-Mills connections over general complex manifolds. A removable singularity
theorem for singular Ω-Yang-Mills connections on a trivial bundle with small energy concen-
tration is also proven. As an application, it is shown how to compactify the moduli space of
smooth Hermitian-Yang-Mills connections on unitary bundles over a class of balanced manifolds
of Hodge-Riemann type. This class includes the metrics coming from multipolarizations, and in
particular, the Kähler metrics. In the case of multipolarizations on a projective algebraic man-
ifold, the compactification of smooth irreducible Hermitian-Yang-Mills connections with fixed
determinant modulo gauge transformations inherits a complex structure from algebro-geometric
considerations.
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1. Introduction

1.1. Ω-Yang-Mills equations. Let (M, g) be an oriented Riemannian manifold of dimension
n ≥ 4, Ω a smooth (n−4)-form on M , and E →M a vector bundle with a Riemannian metric1.
The Ω-Yang-Mills equations for a metric connection A on E with curvature FA are

(1.1) d∗A (FA + ∗(FA ∧ Ω)) = 0 ,

and a solution A to (1.1) will be called an Ω-Yang-Mills connection (or Ω-YM connection, for
short). This equation is the Euler-Lagrange equation of the functional

(1.2) YMΩ(A) =

∫
M
|FA|2 dV −

∫
M

tr(FA ∧ FA) ∧ Ω

which may be viewed as a gauge invariant function on the infinite dimensional space of metric
connections on E. The first term in (1.2) is the usual Yang-Mills functional YM(A). If we
assume Ω is closed, then the second term in (1.2) is topological for compact M (or with respect
to compactly supported variations), and so the critical points of YMΩ are identical to those
of YM, i.e. the Yang-Mills connections. Indeed, (1.1) reduces to d∗AFA = 0 in this case. The
main goal of this paper is to extend the analysis of Yang-Mills connections to the more general
solutions of (1.1) for the case where Ω is not closed and Ω-YM connections are not necessarily
Yang-Mills.

To provide some motivation, let us note an interesting special case. We define the Ω-ASD
connections to be the solutions to (1.1) of the form

(1.3) ∗ FA + FA ∧ Ω = 0

If n = 4, Ω = 1, then connections satisfying (1.3) are the much studied anti-self-dual instantons
(cf. [9, 6]). Higher dimensional instanton equations of the type (1.3) have been considered in a
variety of contexts, and their formulation goes back to [4]. In the mathematics literature, we
refer to [8, 22, 7], to list only a few of many recent papers. We again point out that an Ω-ASD
connection is not necessarily Yang-Mills unless Ω is closed.

If we assume the comass |Ω| ≤ 1, then YMΩ(A) ≥ 0, and we say A is an absolute minimizer
if YMΩ(A) = 0. We have the following simple lemma.

Lemma 1.1. Suppose |Ω| ≤ 1. Then a connection A is an absolute minimizer of YMΩ if and
only if it is an Ω-ASD connection.

Now let us suppose that M is an m-dimensional hermitian manifold, 2m = n, with Kähler
form ω (not necessarily closed). If the connection A is integrable (i.e. FA is of type (1, 1)), then

YMΩ(A) =

∫
M
|ΛFA|2 dV

1In this paper, if (M, g) is a hermitian complex manifold we assume bundles are also complex Hermitian; other-
wise, E can be real or complex.



Ω-YANG-MILLS CONNECTIONS 3

where iΛFA is the Hermitian-Einstein tensor, and Ω = ωm−2/(m − 2)!. It follows that in
this case the Ω-ASD connections are exactly the Hermitian-Yang-Mills (HYM) connections
with iΛFA = 0. In case ω is a Gauduchon metric, then nontrivial solutions arise from stable
holomorphic vector bundles on M (see [13])2. Even when M is a projective algebraic manifold,
many interesting examples of solutions can be obtained from holomorphic bundles that are
stable with respect to multipolarizations [16, 11]. For example, if ω1, . . . , ωm−1 are Kähler
forms on M , then solutions to the equations

(1.4) FA ∧ ω1 ∧ · · · ∧ ωm−1 = 0

exist for holomorphic bundles that are stable with respect to ω1, . . . , ωm−1. On the other hand,
ω1 ∧ · · · ∧ωm−1 determines a balanced hermitian metric ω, in general not Kähler, and solutions
to (1.4) are Ω-ASD for Ω = ωm−2/(m − 2)!. Note once more that these are not, in general,
Yang-Mills, even though the ωi are Kähler forms. Multipolarizations are also considered in
more detail in [3]. Another motivation is to hopefully give new nontrivial ways to deform the
moduli space of Yang-Mills connections, which fits into the higher dimensional gauge theoretic
picture described in [7, 8]. As indicated by the multipolarization case, the moduli space of HYM
connections can be deformed nontrivially by moving the metric on the base complex manifold
while at the same time giving a uniform L2 bound on the curvature for all the connections. In
general, we know the Kähler condition is often too rigid to deform nontrivially. In a sense, the
results obtained here enrich the picture over complex manifolds by providing new structures to
consider as well as examples arising from algebraic geometry.

1.2. Main results. In this paper, we always assume that (M, g) has bounded geometry in the
sense that (M, g) can be isometrically embedded in a larger Riemannian manifold so that M
has compact closure. In Section 2, we will prove a monotonicity formula and an ε-regularity
result for Ω-YM connections. As a consequence, we obtain the following version of Uhlenbeck’s
weak compactness theorem (cf. [17, 24]).

Theorem 1.2. Let {Ai} be a sequence of smooth Ω-YM connections with ‖FAi‖L2 uniformly
bounded. Define the set Σ by

Σ = {x ∈M : lim
r→0+

lim inf
i→∞

r4−n
∫
Br(x)

|FAi |2 ≥ ε20}.

Then Σ is a closed subset of finite (n − 4)-dimensional Hausdorff measure. There is a bundle
E∞ → M \ Σ with a metric that is locally isometric to E on M \ Σ. Moreover, there is and a
smooth Ω-YM connection A∞ on E∞ so that after passing to a subsequence {ji} , and modulo
to gauge transformations, Aji converges (locally in the C∞ topology) to an Ω-YM connection
A∞ outside Σ, i.e. for any compact subset K ⊂ M \ Σ, there exists a sequence of isometries

Φji
K : E∞|K → E|K so that (Φji

K)∗Aji converges to A∞ smoothly 3. Furthermore, at each point
x ∈ Σ, by passing to a subsequence, up to gauge transformations, {λ∗iAji}i converges to a smooth
nontrivial Ωx-YM connection over Rn = TxM endowed with the flat metric given by gx. Here
{λi}i denotes a sequence of blow-up rescalings centered at x.

Remark 1.3. • As pointed out in [17], we emphasize here that a priori we only know that
E∞ and E|M\Σ are isometric on compact subsets away from Σ. This is due to the
possible complexity of the topology of M \Σ. But as we will see, a global isometry does

2HYM connections over hermitian manifolds are not Yang-Mills connections in general.
3Unless otherwise specified, convergence of connections is always taken in this sense.
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exist in the case of Hermitian-Yang-Mills connections (see Corollary 7.4). This is due
to the fact that we can show Σ is a subvariety in this case.
• A slightly more general statement about the bundle isometries can be obtained as [26].

We refer the interested reader there.

We will refer to Σ as the bubbling set. By passing to a subsequence, we can assume

µi := |FAi |2 dVol ⇀ µ∞

as a sequence of Radon measures. So the limit of {Ai}i consists of a pair (A∞, µ∞). As we will
see later (see Lemma 3.1), µ∞ can recover Σ intrinsically. We will refer it as Ai sub-converges
to (A∞, µ∞).

We also generalize Tian’s results [22] for Yang-Mills connections to the case of Ω-YM con-
nections.

Theorem 1.4. Σ is (n− 4)-rectifiable.

Denote AΩ,c to be the space of smooth Ω-YM connections A on a fixed bundle E with

‖FA‖ ≤ c. Now we consider the space AΩ,c by adding limits (A∞, µ∞) of smooth Ω-YM
connections {Ai} with ‖FAi‖L2(M) ≤ c (see Section 4 for more details.) Since the space of
Radon measures {µ∞}, which come from the limits of smooth ones, is compact, we get a natural
control of the singularities of Ai. In particular, the diagonal sequence argument gives the
following (see Section 4 for details)

Theorem 1.5. AΩ,c is weakly sequentially compact in the sense that every sequence {(Ai, µi)}
in AΩ,c sub-converges to some (A∞, µ∞) ∈ AΩ,c.

Remark 1.6. • Without assuming Ai coming from limits of smooth connections, even in
the case of admissible YM connections, we do not know whether such a limit exists or
not due to lack of control of Sing(Ai).
• Again, we emphasize here that the limiting bundle E∞ is not known to be isometric to
E|M\Σ for different subsequences in general. That is why we cannot directly take the
quotient of AΩ,c mod gauge here. Due to this, it does not make sense to put a topology
on the moduli space at this point. Later in the case of HYM connections over general
complex manifolds, the results can be improved.

Suppose Ai sub-converges to (A∞, µ∞) as above. In Section 5, it is straightforward by the
argument in [22] to define a notion of bubbling connections associated to the sequence. Also the
tangent cones associated to (A∞, µ∞) are shown to exist. Unlike [22] where the tangent cone
is defined for stationary admissible Yang-Mills connections, the tangent cone here is defined
for the pair (A∞, µ∞) rather than just for A∞. This comes from the fact that a monotonicity
formula still holds for the energy density of µ∞ which suffices for our use.

By restricting to the case of Ω-ASD instantons, we can generalize Tian’s results ([22]) without
requiring Ω be closed.

Theorem 1.7. Ω restricts to a volume form of TxΣ at Hn−4 a.e. x ∈ Σ.

In Section 6, using the argument in [20], we generalize the removable singularities theorem
for Yang-Mills connections of Tao-Tian [21] to the case of Ω-YM connections.

Theorem 1.8. The removable singularities theorem holds for Ω-YM connections on a trivial
bundle with small energy concentration away from a closed Hausdorff codimension 4 set.
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In the last section, we restrict our discussion to the case of HYM connections over general
complex manifolds. If we assume (A∞, µ) is the limit of a sequence of Hermitian-Yang-Mills con-
nections over a compact Hermitian manifold, then by using the argument in [22] for Hermitian-
Yang-Mills connections over Kähler manifolds and the extension theorem in [1], we can show
that (A∞, µ) are all holomorphic and Σ is a complex subvariety of codimension at least 2. In
particular, we can now take the quotient of AΩ,c mod gauge to get MHYM,c. There exists a way
to give it a topology that coincides with the four dimensional case (see [6]) so that

Theorem 1.9. MHYM,c is a first countable sequentially compact Hausdorff space.

Assume now (X,ω) is balanced of Hodge-Riemann type (see Section 7.2 for definitions). It
turns out there exists a natural L2 bound for the HYM connections in this case. By choosing c
large for MHYM,c, we get the analytic compactification of smooth HYM connections on a fixed

unitary bundle, which we denote it as MHYM .

Theorem 1.10. Over a compact balanced Hermitian manifold of Hodge-Riemann type, MHYM

is a first countable sequentially compact Hausdorff space.

Remark 1.11. Here the Hodge-Riemann type condition on the metrics can give us a uniform
bound on the curvature of all the Ω-YM connections considered. We also refer the interested
readers to [7, Section 3.1 (Property B′)] where a notion of taming forms has been introduced
for almost Spin(7) manifold to achieve the L2 bound of the curvature as well as a discussion
reduced to dimension 6 (see [7, eqn. (28)]).

By the main results in [23], this gives the following

Corollary 1.12. Over a complex Hermitian manifold (X,ω) so that ωm−1 = ω0 ∧ · · ·ωm−2

where ωi are positive (1, 1) forms with dωm−1 = 0 and d(ω1 ∧ · · ·ωm−2) = 0, MHYM is a first
countable sequentially compact Hausdorff space.

Remark 1.13. We emphasize here that by [23], ω0∧ · · ·ωm−2 is always strictly positive and thus
defines a positive (1, 1) form on X through ωm−1 = ω0 ∧ · · ·ωm−2.

In particular, we have

Corollary 1.14. Assume (X,ω) is a compact Kähler manifold, MHYM is a first countable
sequentially compact Hausdorff space.

Remark 1.15. • As mentioned in Theorem 1.5 above, the novelty here is that we do not
need to consider a larger space as [22] (explained below). Rather, we use the crucial
condition that the connections considered come from limits of smooth connections. The
latter gives a natural control of the singularities of the singular connections on the
boundary.
• In [22], in order to compactify the moduli space, a notion of ideal HYM connection is

introduced that generalizes the situation in four dimension (see [6]); namely, those pairs
(A,Σ) with certain natural curvature conditions but not necessarily coming from limits
of smooth ones. In the case of four manifolds, the compactification works essentially
due to the good control of the bubbling set, which consists of points, and Uhlenbeck’s
removable singularity theorem. In higher dimensions, essential difficulties arise if we
insist on such a large space of ideal objects. One is the lack of control of Sing(A). Also,
the removable singularity theorem does not automatically apply in this situation due to
the fact that the limiting bundle E∞, defined only away from the singular set, does not
necessarily extend to all of M as a smooth bundle.
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• In higher dimensions, and assuming (X,ω) is projective, it is shown in [10] that the
space of ideal HYM connections modulo gauge is indeed compact. This is essentially
due to a boundedness result from the algebraic geometric side which gives control of
Sing(A), and a version of the removable singularity theorem for HYM connections by
Bando and Siu ([1]). With this, one can take the closure of the space of smooth HYM
connections mod gauge in such a space to get a compactification.
• It is an interesting question to find a characterization of the ideal HYM connections

added on to the boundary of MHYM , i.e. determine whether a given ideal HYM con-
nection be approximated by the smooth ones.

Following from the argument in [10], and using the results on compactification of semistable
sheaves via multipolarizations in [11], we explain how to give a complex structure to the com-
pactification M∗HYM , where M∗HYM is the moduli space of smooth irreducible HYM connections
with fixed determinant.

Finally, consider a finite energy HYM connection A∞ over a complex Hermitian manifold, and
denote by E∞ the corresponding reflexive sheaf. Given the analytic results above the following
follows directly from the argument in [2], to which we refer the interested reader for the concepts
involved. Here the tangent cone can be directly defined for A∞ (not necessarily coming from
the limit of smooth ones).

Theorem 1.16. The analytic tangent cone of A∞ at a point x is uniquely determined by the
optimal algebraic tangent cones of E∞ at x.

Acknowledgements. The authors are grateful for comments on this paper from Daniel Greb,
Ben Sibley, Song Sun, Matei Toma, and Thomas Walpuski.

2. Sequential compactness of smooth Ω-Yang-Mills connections

2.1. Monotonicity. Following the argument used by Price for Yang-Mills connections [18], we
will show that a monotonicity formula holds for Ω-YM connections. We also refer to [22, Thm.
2.1.1] for a slightly more general version of the following for Yang-Mills connections.

Theorem 2.1. There exist positive constants a and r0, depending only on the geometry of (M, g)
and Ω, with the following significance. If A is a smooth solution to (1.1) and 0 < r1 < r2 ≤ r0,
then ∫

Br2 (x)\Br1 (x)
r4−near|ι∂rFA|2 ≤ ear2r4−n

2

∫
Br2 (x)

|FA|2 − ear1r4−n
1

∫
Br1 (x)

|FA|2.

Remark 2.2. If we denote the scale invariant Lp norms by:

(2.1) fp(x, r) :=

{
r2p−n

∫
Br(x)

|FA|pdV

}1/p

then Theorem 2.1 implies, in particular, that earf2(x, r) is increasing for sufficiently small r.

Proof of Theorem 2.1. Let π : P →M be the orthogonal (or unitary) frame bundle of E. Given

any connection B on E, denote by B̃ the associated connection 1-form on the principal bundle

P . Given a vector field X on M with compact support, we denote by X̃ the unique horizontal

lift of X to P . Let Φ̃t (resp. Φt) be the family of diffeomorphisms generated by X̃ (resp. X).
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As in [18], we consider the family of connection 1-forms Ãt = Φ̃∗tω, and we denote by At the
corresponding family of connections on E. We have

δÃt(0) = ι
X̃
dÃ = π∗ιXFA

since X̃ is the horizontal lift of X. In particular, δAt(0) = ιXFA. Indeed, choosing a local

section σ of P , which gives a trivialization of E, then by definition: At = σ∗Ãt. This implies

δAt(0) = σ∗ι
X̃
dÃ = σ∗π∗ιXFA = (πσ)∗ιXFA = ιXFA

since πσ = Id. Now we look at the variation of the Yang-Mills functional along At. As for this,
there are two ways to calculate it. First, since A satisfies (1.1), we have

(2.2) d∗AFA ± ∗(FA ∧ dΩ) = 0 .

Then,

d

dt

∫
M
|FAt |2

∣∣
t=0

= 2

∫
M
〈dAδAt(0), FA〉 = 2

∫
M
〈ιXFA, d∗AFA〉

= ∓2

∫
M
〈ιXFA, ∗(FA ∧ dΩ)〉.

Alternatively, one may differentiate (1.2) at t = 0 and use the fact that A is critical for YMΩ.
In any case, this implies

(2.3)

∣∣∣∣ ddt
∫
M
|FAt |2

∣∣
t=0

∣∣∣∣ ≤ 2 sup |dΩ|
∫
M
|ιXFA||FA|.

Now the second way to calculate the variation is as in [18]. We include the details here. By
definition, we know∫

M
|FAt |2 =

∫
M
|FAt(dΦt·, dΦt·)|2(Φt·) dV =

∫
M
|FAt(dΦt(ei), dΦt(ej))|2(x)Jφ−1

t
dV

where {ei} is a local orthonormal frame near the point x. Taking derivatives and evaluating at
t = 0 gives

d

dt

∫
M
|FAt |2|t=0 =

∫
M
−|FA|2divX − 4〈FAt(LXei, ej), FA(ei, ej)〉

=

∫
M
−|FA|2divX +

∑
i,j

4

∫
M
〈FA(∇eiX, ej), FA(ei, ej)〉 .

Combined with (2.3), this implies

(2.4)

∣∣∣∣∫
M
−|FA|2divX +

∑
i,j

4

∫
M
〈FA(∇eiX, ej), FA(ei, ej)〉

∣∣∣∣ ≤ 2 sup |dΩ|
∫
M
|ιXFA||FA|.

Near the point x we fix the normal coordinates and let {e1 = ∂r, e2, · · · , en} be a normal
frame. In particular, ∇∂r∂r = 0. Choose X = ξ(r)r∂r, where ξ is a compact supported function
supported over [0, 1 + ε] with ξ = 1 on [0, 1] and ξ′ ≤ 0. Then

• ∇∂rX = (ξ′r + ξ) ∂∂r
• for i ≥ 2, ∇eiX = ξr∇ei ∂∂r = ξei + ξO(r2)
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which implies
(2.5)∑

i,j

4

∫
M
〈FA(∇eiX, ej), FA(ei, ej)〉

=
∑
j

4

∫
M
〈FA(∇∂rX, ej), FA(∂r, ej)〉+

∑
i≥2

∑
j

4

∫
M
〈FA(∇eiX, ej), FA(ei, ej)〉

=

∫
M

4ξ′r|ι∂rFA|2 +
∑
j

4

∫
M
ξ|FA(∂r, ej)|2 +

∑
i≥2

∑
j

4

∫
M
ξ|FA(ei, ej)|2 +

∫
M
O(r2)ξ|FA|2

=

∫
M

4ξ′r|ι∂rFA|2 + 4

∫
M
ξ|FA|2 +

∫
M
O(r2)ξ|FA|2.

and

divX = ξ′r + nξ + ξO(r2).

Given this, we have∫
M
|FA|2div(X)− 2 sup |dΩ|

∫
M
|X||FA|2 =

∫
M
|FA|2(ξ′r + nξ +O(r2))(2.6)

− 2 sup |dΩ|
∫
M
|X||FA|2

Plugging eqns. (2.5) and (2.6) into (2.4), we have∫
M
|FA|2(ξ′r + (n− 4)ξ +O(r2))− 2 sup |dΩ|

∫
M
ξr|FA|2

≤
∫
M

4ξ′r|ι∂rFA|2 +

∫
M
O(r2)ξ|FA|2

(2.7)

Now by replacing ξτ with ξτ (r) = ξ(τ−1r) in (2.7), and using the fact that

τ
dξτ
dτ

= −rξ′τ ,

we have ∫
M
|FA|2(−τ dξτ

dτ
+ (n− 4)ξτ )− 2 sup |dΩ|

∫
M
ξτr|FA|2

≤−
∫
M

4τ
dξτ
dτ
|ι∂rFA|2 +

∫
M
O(r2)ξτ |FA|2

i.e. ∫
M
|FA|2(τ

dξτ
dτ

+ (4− n)ξτ ) + 2 sup |dΩ|
∫
M
ξτr|FA|2

≥
∫
M

4τ
dξτ
dτ
|ι∂rFA|2 +

∫
M
O(r2)ξτ |FA|2.

Multiply the above by eaττ3−n where a is a constant to be determined later, and use the fact
that ξτr|FA|2 ≤ ξττ |FA|2, since ξτ is supported over {|x| ≤ τ}. We conclude

eaτ
d

dτ
(τ4−n

∫
M
ξτ |FA|2) + eaττ4−n2 sup |dΩ|

∫
M
ξτ |FA|2

≥4eaττ4−n
∫
M

dξτ
dτ
|ι∂rFA|2 + eaττ3−n

∫
M
O(r2)ξτ |FA|2.
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which implies

d

dτ
(eaττ4−n

∫
M
ξτ |FA|2)

≥4eaττ4−n
∫
M

dξτ
dτ
|ι∂rFA|2 + eaττ3−n

∫
M
O(r2)ξτ |FA|2 + aeaττ4−n

∫
M
ξτ |FA|2

− eaττ4−n2 sup |dΩ|
∫
M
ξτ |FA|2

.

Now choose a large so that a� 2 max{1, 2 sup |dΩ|}. Since dξτ
dτ = − r

τ ξ
′
τ is nonnegative,

d

dτ
(eaττ4−n

∫
M
ξτ |FA|2) ≥ 4eaττ4−n

∫
M

dξτ
dτ
|ι∂rFA|2 ≥ 4

∫
M
earr4−ndξτ

dτ
|ι∂rFA|2

if τ < r0 for some r0 so that eaττ4−n is decreasing over [0, r0]. By integrating the inequality
above from r1 to r2 and letting ε→ 0, Theorem 2.1 follows. �

2.2. ε-Regularity. The goal of this section is to prove the following ε-regularity result.

Theorem 2.3. There exist positive constants ε0, r0, and C, depending only on the geometry
of (M, g) and Ω, with the following property. If A is a smooth solution to the Ω-Yang-Mills
equations (1.1) on M , and x ∈M is a point for which f2(x, r) ≤ ε0 for some 0 < r ≤ r0, then

sup
Br/4(x)

r2|FA| ≤ Cf2(x, r)

There are two approaches to the regularity of Yang-Mills equations in higher dimensions,
and both make use of the monotonicity formula. Nakajima [17] uses a Bochner-Weitzenböck
formula for the curvature to directly get the bound in Theorem 2.3. This is similar to Schoen’s
approach for the harmonic map problem. Uhlenbeck [24] derives Lp estimates from L2, and
then uses a continuity method to reduce to the case of connections with Lp bounds. This has
the advantage of applying to a larger class of connections satisfying curvature bounds rather
than equations. Interestingly, both methods apply directly to the case of Ω-YM connections,
and we find it useful to present each one here.

2.2.1. Method I. Suppose A is a smooth solution to (1.1). Then (2.2) implies

∆AFA = ∓dA ∗ (FA ∧ dΩ).

In particular, by the Weitzenböck formula, we have

(2.8) ∇∗A∇AFA = ∓dA ∗ (FA ∧ dΩ) + {FA, Rg}+ {FA, FA} .

Proposition 2.4. A solution to (1.1) satisfies

1

2
∆|FA|2 ≥ −|FA|2 − c|Rg||FA|2 −

c2

4
|dΩ|2|FA|2 − c|∇dΩ||FA|2

for some constant c depending only on (M, g).
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Proof. Indeed, from (2.8) we have

1

2
∆|FA|2 = − < ∇∗A∇AFA, FA > + < ∇AFA,∇AFA >

≥ −|FA|3 − |Rg||FA|2 − |dA ∗ (FA ∧ dΩ)||FA|+ |∇AFA|2

≥ −|FA|3 − |Rg||FA|2 − c(|dΩ||∇AFA||FA|+ |∇dΩ||FA|2) + |∇AFA|2

≥ −|FA|3 − |Rg||FA|2 −
c2

4
|dΩ|2|FA|2 − c|∇dΩ||FA|2

The last inequality follows from completion of square. �

Given this, we can repeat the argument in [17, Lemma 3.1] to prove Theorem 2.3.

2.2.2. Method II. Everything is local, so we assume connections are on the trivial bundle in Rn.
Uhlenbeck’s “good gauge” theorem states:

Theorem 2.5 ([25, Thm. 1.3]). Fix n/2 < p < n. There is ε0 > 0 and a constant cn such
that if A ∈ Lp1 is a connection on B1(0) and fn/2(x, 1) < ε0, then A is gauge equivalent to a
connection (also denoted A) satisfying:

(1) d∗A = 0;
(2) ∗A vanishes on ∂B1(0);
(3) ‖A‖

L
n/2
1

≤ cnfn/2(0, 1);

(4) ‖A‖Lp1 ≤ cn‖FA‖Lp.

We will also need

Lemma 2.6. There is ε(n) > 0 such that if A is a connection on B1(0) satisfying ‖A‖Ln ≤ ε(n)
and items (i) and (ii) of the Theorem, then item (iv) holds for all p, n/2 ≤ p < n.

The following result will allow us to go from L2 estimates to Lp estimates. Let Lp(x, r) :=
Lp(Br(x)).

Theorem 2.7. There are positive constants κn, r0 and for every for every 2 ≤ p < n, Cp, with
the following significance: Suppose A is a solution to (1.1), and fn/2(x, r) ≤ κn for r ≤ r0.
Then

fp(x, r/2) ≤ Cp f2(x, r)

Proof. Rescale to take r = 1. Use Theorem 2.5 and Lemma 2.6 for p = 2 to find a gauge where:
d∗A = 0, and

(2.9) ‖A‖L2
1(x,1) ≤ C‖FA‖L2(x,1) = C ′f2(x, 1)

Now write the equation for the laplacian of A as:

∆A+ {A, dA}+ {A,A,A} = d∗AFA = ∗(FA ∧ dΩ)

(∆ + 1)A+ {A, dA}+ {A,A,A} = ∗(dA ∧ dΩ)(2.10)

where the brackets indicate multilinear expressions. Let L be the linear operator acting on A

on the left hand side of (2.10). Note that L
n/2
1 ↪→ Ln, so [A,A] ∈ Ln/2, and both dA and [A,A]

are small in Ln/2. We also have Lp1 × Ln/2 ↪→ Lp−1. Hence, we see that L = L0 + L1 is a

perturbation of L0 := ∆ + 1 : Lp1 → Lp−1 by L1 : Lp1 → Lp−1 of small norm. As in [24, p. 6], a
Meyers type interior estimate for L0 implies one for L :

(2.11) ‖u‖Lp1(x,1/2) ≤ Cp(‖u‖L2
1(x,1) + ‖L u‖Lp−1(x,1))
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where u = A. Now using (2.9), the Lp−1 norm of the right hand side of (2.10) is bounded by

f2(x, 1) for p = 2n/(n− 2) > 2. The estimate (2.11) then gives an improved Lp1 bound on A for
p slightly bigger than 2. Reiterating this argument, we get Lp1 bounds on A for any p < n. �

Bootstrapping (2.10) gives the estimate:

(2.12) sup
y∈Br/2(x)

r2|FA(y)| ≤ Cn f2(x, r)

Let us fill in some details. First, notice that for n/2 ≤ p < n, Lp1 × Lp1 ↪→ Lp. Moreover,
Lp1 × Lp ↪→ Lq, with q → n as p → n. Hence, from (2.10) and the Lp-elliptic estimate for the
Laplacian, we get that A ∈ Lp2,loc, for n/2 < p < n. Again applying multiplication theorems,

we get that ∆A ∈ Lp1, and hence, A ∈ Lp3,loc. This implies A is C1,α, and the estimate follows.

There is one more step:

Lemma 2.8. Suppose 4ρ < r0, f2(ξ, 4ρ) = ε < ε0. Moreover, assume fn/2(x, r) ≤ κn for some
r < ρ. Then:

fn/2(x, r/2) ≤ Cnε
sup

y∈Br/4(x)
r2|FA(y)| ≤ Knε

Proof. Apply Theorem 2.7 with p = n/2, and use (2.12). �

Notice that this Lemma says that once both fn/2 and f2 are sufficiently small, then fn/2 is
even smaller than expected. Now Theorem 2.1 and Uhlenbeck’s continuity method argument
[24, proof of Thm. 1.6] gives the proof of Theorem 2.3.

2.3. Proof of Theorem 1.2. This follows from Theorems 2.1 and 2.3 as in the Yang-Mills
case (see [17, 25]).

3. Rectifiability of the blow-up locus

The results in this section are all local. We will fix a sequence of Ω-YM connections Ai over
B1+δ0 := {x ∈ Rn : |x| < 1 + δ0} ⊂ Rn with ‖FAi‖L2(B1+δ0

) uniformly bounded and look at the

convergence over B =: B1. Here, δ0 > 0 is fixed, and B1+δ0 is endowed with any fixed smooth
metric with volume form dV . We assume the standard coordinates are geodesic normal with
respect to the metric. Define

(3.1) Σ = {x ∈ B : lim
r→0+

lim inf
i

r4−n
∫
Br(x)

|FA|2dV ≥ ε20}.

From the results in the previous section, we only know that Σ is a closed subset of B with locally
finite (n− 4)-Hausdorff measure. We will show that Σ has better structure by generalizing the
result in [22]; namely, we prove Theorem 1.4.

The proof closely follows the arguments in [14, 22]. The monotonicity formula obtained in
Theorem 2.1 is a key component.
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3.1. Elementary properties. By passing to a subsequence, we can assume

(1) up to gauge transformations, Ai converges to A∞ locally away from Σ;
(2) µi := |FAi |2dV converges weakly to µ as a sequence of Radon measures, i.e. for any

compact supported continuous function f , we have

lim
i
µi(f) = µ(f).

By Fatou’s lemma, we have

(3.2) µ = |FA∞ |2dV + ν

for some nonnegative Radon measure ν, which is called the defect measure.

Lemma 3.1. The following properties hold:

(1) For a.e. 0 < r � 1, limi µi(Br(x)) = µ(Br(x));
(2) r4−nµ(Br(x)) is increasing with r. In particular, the function

Θn−4(µ, x) = lim
r→0+

r4−nµ(Br(x))

is well-defined, and it is called the energy density of µ at x. Furthermore, Θn−4 is upper
semi-continuous and Hn−4 approximately continuous at Hn−4 a.e. x ∈ Σ.

(3) x ∈ Σ if and only if Θn−4(µ, x) ≥ ε20;
(4) for Hn−4 a.e. x ∈ Σ,

lim sup
r→0

r4−n
∫
Br(x)

|FA∞ |2dV = 0.

Proof. (1) follows from the elementary fact that µ(∂Br(x)) = 0 for a.e. 0 < r � 1. The first
part of (2) now follows from (1) and the fact that r4−nµi(Br(x)) increases as r increases. The
upper semicontinuity follows directly from the monotonicity formula. The Hn−4 approximate
continuity property follows as in [22, Lemma 3.2.2] (see also [14, p. 803]). For (3), suppose
Θn−4(µ, x) ≥ ε20, obviously, x /∈ Σ. Now suppose x ∈ Σ, if Θn−4(µ, x) < ε20, by (1), µi(Br(x)) <
ε20 for 0 < r � 1. By ε-regularity, Ai converges smoothly near x which implies x /∈ Σ. This is a
contradiction. For (4), see [22, p. 222]. �

Remark 3.2. From this, we know Σ = {x ∈ B : Θn−4(µ, x) ≥ ε20}, which recovers the statement
that Σ a closed subset of B of finite (n− 4)-dimensional Hausdorff measure. Furthermore, Σ is
intrinsically associated to µ.

In the following, we always denote

(3.3) π(µ) = Σ.

We also define

(3.4) Sing(A∞) = {x ∈ B : lim sup
r→0

r4−2n

∫
Br(x)

|FA∞ |2 > 0}

Lemma 3.3. The following holds

(1) Σ = Supp(ν) ∪ Sing(A∞);
(2) ν is absolutely continuous with respect to the (n − 4) Hausdorff measure on Σ. In

particular, ν = Θ(x)Hn−4
Σ where

ε20 ≤ Θ(x) ≤ C = C(δ0, n) sup
i
‖FAi‖L2(B1+δ0

)

for Hn−4 a.e. x ∈ Σ.
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Proof. For (1), suppose x /∈ Σ, we know Θ(µ, x) < ε20. By ε-regularity, Ai converges smoothly
near x which implies ν = 0 near x and A∞ is smooth near x. Suppose x ∈ Σ, if x /∈ Supp(ν),
then

lim
r→0

r4−n
∫
Br(x)

|FA∞ |2 = Θ(µ, x) ≥ ε20.

i.e. x ∈ Sing(A∞). For (2), by Theorem 2.1 we know that

r4−nµ(Br(x)) ≤ δ4−n
0 µ(Bδ0(x))

which implies µ is absolutely continuous with respect to the (n − 4)-Hausdorff measure. In
particular, we have

µ|Σ = Θ(x)Hn−4
Σ .

for some measurable function Θ(x). Since

lim
r→0

r4−n
∫
Bx(r)

|FA∞ |2 dVol = 0

for Hn−4 a.e. x ∈ Σ, we know

ν(x) = Θ(x)Hn−4
Σ

for Hn−4 a.e. x ∈ Σ. The conclusion follows from the density estimate above and the classical
fact that

24−n ≤ lim sup
r→0

VolHn−4(Σ ∩Br(x))

rn−4
≤ 1

for Hn−4 a.e. x ∈ Σ. �

3.2. Tangent cone measures. Fix x0 ∈ B, define

τλ : Bδ0(x0)→ Bδ0(x0) : x0 + ξ 7→ x+ λξ

For E ⊂ Bδ0(x0) measurable, let

µλ(E) = λ4−nµ(τλ(E))

In this section we prove the following (cf. [22, Lemma 3.2.1])

Proposition 3.4. For any λj ↓ 0 there is a Radon measure η such that (after passing to a
subsequence) µλj → η weakly. Moreover, η is a cone measure, in the sense that

λ4−nη(λE) = η(E)

for any λ > 0 and E ⊂ Bδ0(x0) measurable.

Proof. Let ds2
λ = λ−2τ∗λds

2 be the pull-back metric and dVλ the associated volume form. Simi-
larly, let Ai,λ = τ∗λAi. We also pull back the hermitian structure. Then:

FAi,λ = τ∗λFAi ; |FAi,λ |
2(x) = λ4|FAi |2(τλ(x))

The weak convergence of µλi → η, for some Radon measure η, follows from the monotonicity.
Notice that since

σ4−nµ(Bσ(x0)) ≤ ρ4−nµ(Bρ(x0))

we have

σ4−nη(Bσ(x0)) = Θ(µ, x0)
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We wish to show η is a cone measure. For this it suffices to show that for any radially invariant
function φ ≥ 0,

(3.5) σ4−n
∫
Bσ(x)

φdη = ρ4−n
∫
Bρ(x)

φdη

for all σ, ρ (cf. [22], top of p. 225). By a diagonalization argument we may assume

|FAi,λ |
2 dVλi −→ η

weakly. To prove (3.5), note that

σ4−n
∫
Bσ(x)

φ|FAi,λi |
2 dVλi − ρ

4−n
∫
Bρ(x)

φ|FAi,λi |
2 dVλi

=

∫ ρ

σ
ds

d

ds

{
s4−n

∫
Bs(x)

φ|FAi,λi |
2 dVλi

}

=

∫ ρ

σ
ds

d

ds

{
s4−n

∫
B1(x)

φ|Fτ∗sAi,λi |
2 τ∗s dVλi

}
(3.6)

Now s4−nτ∗s dVλi = (1 +O(s2λi))dV0, so

d

ds
(s4−nτ∗s dVλi) −→ 0

uniformly as λi → 0. Since FAi has uniformly bounded L2-norm, this term vanishes. It suffices
to estimate the term coming from

d

ds
Fτ∗sAi,λi = dτ∗sAi,λi∂s(τ

∗
sAi,λi)

At this point we can assume Ai,λi is in radial gauge, i.e. ı∂rAi,λi = 0. Then

ı∂rFAi,λi = ∂rAi,λi

and so

∂s(τ
∗
sAi,λi) = rı∂rFτ∗sAi,λi

It follows that
d

ds
(φ|Fτ∗sAi,λi |

2) = 2〈dτ∗sAi,λi (rı∂rFτ∗sAi,λi ), φ Fτ∗sAi,λi 〉

Integrating by parts, we see that (3.6) is bounded by a constant times the integral of

r4−n|ı∂rFAi,λi ||FAi,λi |

over Bρ(x), where the constant depends on φ, dφ, and dΩ. By Theorem 2.1 we have∫
Bρ(x)

r4−n|ı∂rFAi,λi |
2dVλi −→ 0

and so the result follows.
�

Remark 3.5. An alternative argument follows [15, Lemma 4.1.4]. In order to show η is a cone
measure, it suffices to show that for any compactly supported function ψ over B we have

d

ds
(s4−n(τ∗s η)(ψ)) = 0.
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To prove this, note that

d

ds
(s4−n(τ∗s η)(ψ)) =

d

ds
(s4−n

∫
Rn
ψsdη)

= −s3−n
∫
Rn

((n− 4)ψs + s−1x · (∇ψ)s)dV

where ψs(x) = ψ(x/s) and (∇ψ)s(x) = (∇ψ)(x/s). So it suffices to show that∫
Rn

((n− 4)ψs + s−1x · (∇ψ)s)dV = 0.

From the proof of Theorem 2.1, we have∣∣∣∣∫
M
|FA|2(x · ∇ψ + (n− 4)ψ + ψO(r2))dV

∣∣∣∣
≤
∣∣∣∣−2 sup |dΩ|

∫
M
ψr|ι∂rFA||FA|dV +

∫
M

4ψ′r|ι∂rFA|2dV +

∫
M
O(r2)ψ|FA|2dV

∣∣∣∣ .
for any Ω-YM connection A over (M, g) and compactly supported function ψ. We plug in
(A,ψ) = (Ai,λi , ψs) and get∣∣∣∣∫

Rn
|FAi,λi |

2(s−1x · (∇ψ)s + (n− 4)ψs + ψsO(r2))dV

∣∣∣∣
≤
∣∣∣∣−2 sup |dΩi|

∫
Rn
ψsr|ι∂rFAλi ||FAλi |dV +

∫
M

4ψ′sr|ι∂rFAλi |
2dV +

∫
Rn
O(r2)ψs|FAλi |

2dV

∣∣∣∣
By taking limits the right hand side vanishes, and this gives∫

Rn
((n− 4)ψs + s−1x · (∇ψ)s)dη = 0.

Here, since the base metric converges smoothly to the flat metric on Rn, the O(r2) term vanishes
in the limit.

Now we fix a tangent measure η. Define

Lη := {x ∈ Rn : Θn−4(η, x) = Θn−4(η, 0) = Θn−4(µ, x0)}.

The following can be deduced from the monotonicity formula and the dimension reduction
argument of Federer (cf. [15, p. 27]).

Lemma 3.6. For any y ∈ Lη, η is invariant in the direction of y. In particular, Lη is a linear
subspace of Rn. Furthermore, dimLη ≤ n− 4.

Define

Σj := {x ∈ Σ : dimLη ≤ j for all the tangent measures η at x}.
Then we have

Proposition 3.7. There exists a filtration which consists of closed subsets

Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σn−4 = Σ

with the Hausdorff dimension satisfying dim(Σj) ≤ j.
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3.3. Results parallel to stationary harmonic maps and Yang-Mills connections. The
following geometric lemma can be obtained by directly replacing the energy density associated
to the harmonic map with Θn−4 in [15] or the Yang-Mills case in [22]

Lemma 3.8. Suppose Θn−4(µ, ·) is Hn−4 approximately continuous at x ∈ Σ. For any 0 <
r � 1, there exists n− 4 points xr1, · · ·xrn−4 with

• Θn−4(µ, xri ) ≥ Θn−4(µ, x)− εr where εr → 0 as r → 0;
• d(x1, x) ≥ rs and d(xi, x + span{x1 − x · · · , xn−4 − x}) ≥ rs for some s ∈ (0, 1) inde-

pendent of r.

Given the geometric lemma, we have the existence of weak tangent planes as follows

Proposition 3.9. For any point x ∈ Σ and any δ > 0, there exists rx > 0 and a tangent plane
L ∈ Gr(Rn, n−4) so that µ(Br(x)\Lδr) = 0 where Lδr denotes the δr neighborhood of L in Rn.

As a corollary, this implies the null projection property.

Proposition 3.10. Suppose E ⊂ Σ is a purely (n− 4)-unrectifiable set, then

VolHn−4(PV (E)) = 0

for any orthogonal projections PV : Rn → V ∈ Gr(Rn, n− 4).

3.4. Positive projection density. The argument for the following is the same as [15] and
[22]. We will only point out where the change is necessary and refer the reader there for more
details.

Proposition 3.11. For Hn−4 a.e. points x ∈ Σ,

lim
r→0

VolHn−4(PV (Σ ∩Br(x)))

α(n− 4)rn−4
≥ 1

2

for some projection PV : Rn → V ∈ Gr(Rn, n− 4).

Proof. Otherwise, we can find a point x0 ∈ Σ so that

lim sup
r

r4−n
∫
Br(x0)

|FA∞ |2 = 0

and Θn−4(µ, ·) is approximately continuous at x0 ∈ Σ but

lim
r→0

VolHn−4(PV (Σ ∩Br(x0)))

α(n− 4)rn−4
<

1

2
.

In particular, the tangent measure of µ at x0 takes the form Θn−4(x0)Hn−4
Rn−2 for some Rn−2 ⊂ Rn.

Recall that from the diagonalization argument we assume

µλi ⇀ Θn−4(x0)Hn−4
Rn−4 .

Define

αλi =
n−2∑
α=1

|ι∂αFAi,λi |
2 dVol

We know that for any fixed δ > 0 and i large, αλi(B3/2) ≤ δ. Now we define

Fλi : (Rn−4 × 0)× (0, 1)→ R

Fλi(x, ε) =

∫
Bn2

|FAi,λi |
2(x+ y)ψε(y1)φ2(y2) dVoly
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Here, y = (y1, y2) ⊂ Rn−4 × R4, ψε(y1) = ε4−nψ(y1/ε) where ψ is a nonnegative compactly
supported function on the unit ball in R4 with integral being 1, while φ is smooth and compactly
supported on the unit ball in Rn−4. To simplify the notation, we will denote F := FAi,λi ,

∂α = ∂
∂yα

and ∇α as the covariant derivatives. Viewing |F | as a function of y, we have

∂α|F |2 = −2 Tr(∇αFγβF γβ)

= 4 Tr(∇γFβαF γβ)

= 4∂γ Tr(FβαF
γβ(x+ y))± 4(ι∂αF, ∗(F ∧ Ω)).

For any 1 ≤ α ≤ n− 4, we have

∂

∂xα
Fλi =

∫
Bn2

∂

∂xα
(|F |2(x+ y))ψε(y1)φ2(y2) dVoly

=

∫
Bn2

∂α|F |2(x+ y)ψε(y1)φ2(y2) dVoly

=

∫
Bn2

4∂γ Tr(FβαF
γβ)(x+ y)ψε(y1)φ2(y2) dVoly

±
∫
Bn2

4(ι∂αF, ∗(F ∧ Ω)))(x+ y)ψε(y1)φ2(y2) dVoly

=

n∑
γ=n−4

∫
Bn2

4 Tr(FβαF
γβ)ψε(y1)

∂

∂yγ
φ2(y2) dVoly

±
∫
Bn2

4(ι∂αF, ∗(F ∧ Ω)))ψε(y1)φ2(y2) dVoly

+
n−4∑
γ=1

4
∂

∂xγ

∫
Bn2

Tr(FβαF
γβ)(x+ y)ψε(y1)φ2(y2) dVoly

.

This implies ∇Fλi = ~fλi + div ~Gλi , where

(~fλi)α =
n∑

γ=n−4

∫
Bn2

4 Tr(FβαF
γβ)ψε(y1)

∂

∂yγ
φ2(y2) dVoly

±
∫
Bn2

4(ι∂αF, ∗(F ∧ Ω)))ψε(y1)φ2(y2) dVoly

and

(~Gλi)
γ
α =

∫
Bn2

4 Tr(FβαF
γβ)(x+ y)ψε(y1)φ2(y2) dVoly .

Here the divergence of ~Gλi is taken for each vector component of ~Gλi . Since αλi ⇀ 0, we know
that for any δ > 0,

‖~fλi‖L2(Bn−4
2 ) + ‖~Gλi‖L2(Bn−4

2 ) ≤ δ

for i sufficient large and λ sufficiently small. Given this, by [15, Lemma 4.2.10] we know for any
δ1 there exist constants Cλi(ε)

‖Fλi(·, ε)− Cλi(ε)‖L1(Bn−2
2 ) ≤ δ1.
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Letting ε→ 0, we have for some constants Cλi ,∣∣∣∣∣
∫
Bn−4

2

|FAi,λi |
2(a, y2)φ2(y2)dy2 − Cλi

∣∣∣∣∣ ≤ δ1

when i large. As in [14, 22], this then implies limCλi = Θn−4(µ, x0). It then follows as in those
references that the projection from Rn → Rn−4 × 0 will give a contradiction. �

3.5. Proof of Theorem 1.4. Now we are ready to finish the proof for Theorem 1.4 as in
[14, 22]. By the Besicovitch-Federer decomposition theorem, we can write Σ = Σr ∪ Σu, where
Σr is (n − 4)-rectifiable while Σu is purely (n − 4)-unrectifiable. Furthermore, if Σu 6= ∅, then
VolHn−4(Σu) > 0. By Proposition 3.10, we know

VolHn−4(PV (Σu ∩Br(x))) = 0

while by Proposition 3.11, we have

VolHn−4(PV (Σu ∩Br(x))) > 0

for 0 < r � 1. This is a contradiction. In particular, this implies VolHn−4(Σu) = 0, and so
Σu = ∅. Thus, Σ is (n− 4)-rectifiable.

4. Weak compactification of the moduli space of smooth Ω-Yang-Mills
connections

In this section, we will study the compactification of the moduli space of smooth Ω-YM
connections on a fixed bundle E with bounded L2 norm of curvature over (M, g). We denote
the moduli space as

AΩ,c := {A ∈ A : d∗A(FA + ∗(FA ∧ Ω)) = 0,

∫
M
|FA|2 ≤ c}

Given a sequence Ai ∈ AΩ,c, by passing to a subsequence, we can assume |FAi |2 dVol converges
to µ a sequence of Radon measures, and modulo gauge transformations, Ai converges to A
outside π(µ). Define AΩ,c to be the space of such pairs (A,µ).

Definition 4.1. Given a sequence (Ai, µi) ∈ AΩ,c, we say Ai converges to a finite energy Ω-YM
connection (A∞, µ∞) if

(1) µi converges to µ∞ weakly as a sequence of Radon measures;
(2) up to gauge transforms, Ai converges to A∞ outside π(µ∞).

Theorem 4.2. AΩ,c is weakly sequentially compact in the sense that every sequence {(Ai, µi)}
in AΩ,c sub-converges to some (A∞, µ∞) ∈ AΩ,c.

Proof. Given a sequence (Ai, µi) ∈ AΩ,c, by assumption, for each i, we can find a sequence
of {Aij}j so that µij = |FAij |2 dVol converges to µi weakly as a sequence of Radon measures.
By a diagonal sequence argument, we can assume µij and µi both converge weakly to µ∞ as
sequences of Radon measures. The following now is needed to guarantee the existence of the
limit of Ai

(4.1) lim sup
i

π(µi) ⊂ π(µ∞).
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Suppose this is not true. By passing to a subsequence, there exists a sequence of points xi ∈
π(µi) which converges to x∞ /∈ π(µ∞). In particular, we have for 0 < r < dist(x∞, π(µ∞))

µ∞(∂Br(x∞)) = 0,

which implies r4−nµi(Br(xi)) ≤ ε0/2, for r sufficiently small. This, of course, contradicts with
the assumption that xi ∈ π(µi). Given this, up to gauge transforms, we can assume Ai sub-
converges to A∞ outside π(µ∞) smoothly. Indeed, a priori, we only know that Ai converges to

A∞ outside a closed subset Σ̃ ⊂M \ π(µ∞) of Hausdorff codimension at 4 set. However, since
we already know that µ∞|M\π(µ∞) = |FA∞ |2 dVol, by Lemma 3.1, we know

r4−nµi(Br(x)) ≤ ε0/2

for i large. This implies that Ai converges to A∞ smoothly over Br(x). In particular, we know

Σ̃ = ∅, i.e. Ai sub-converges to A∞ smoothly outside π(µ∞). Now by a diagonal sequence argu-
ment again, we can assume Aij sub-converges to A∞ smoothly outside π(µ∞). The sequential
compactness follows. �

Remark 4.3. • For general finite energy Ω-YM connections on a fixed bundle over M , or
even YM connections, we do not know whether we can take a limit or not due to lack
of control of Sing(Ai). It is very crucial to assume they all come from limits of smooth
connections here.
• The compactness we obtain here is very weak due to the fact that the limiting bundles
E∞ are not known to be isometric to E|M\Σ. This does, however, hold in the case of
Hermitian-Yang-Mills connections over general complex manifolds (see Corollary 7.4)

5. Singularity formation

5.1. Bubbling connections at a generic point. Using the proof of Proposition 3.11, the
argument in [22, Prop. 4.1.1] for the case of Yang-Mills connections gives

Proposition 5.1. Fix a point x ∈ Σ so that

• the tangent plane of Σ at x exists uniquely;
• Θn−4(µ, ·) is Hn−4-Hausdorff continuous at x ;
• lim supr r

4−n ∫
Br
|FA∞ |2 = 0.

By passing to a subsequence, up to gauge transforms, Ai,λi converges to a Ωx-YM connection

B∞ over Rn with Rn = TxΣ× (TxΣ)⊥ satisfying ιvFB∞ = 0, for any v ∈ TxΣ.

Following [22], we call B∞ a bubbling connection of the sequence {Ai} at x.

5.2. Tangent cones of the limits. Denote (Aλ∞, µ
λ
∞) = λ∗(A∞, µ∞) where λ : Bλ−1δ0(x) →

Bδ0(x).

Proposition 5.2. By passing to a subsequence,

• µλ∞ converges to a cone measure η;
• up to gauge transforms, Aλ∞ converges to Ac∞ outside

π(η) = {x ∈ Rn : Θn−4(η, x) ≥ ε20}

which is scaling invariant. Furthermore, ι∂rFAc∞ = 0.
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Proof. The first statement follows from Proposition 3.4. Given this, it follows the same as
Theorem 4.2 that

lim sup
λ

π(µλ∞) ⊂ π(η).

Now up to gauge transforms, we can assume Aλ∞ sub-converges to Ac∞ smoothly outside π(η).
It follows from the monotonicity formula that ι∂rFAc∞ = 0, outside π(η). Since η is a cone
measure, we know also π(η) is also a cone. �

We call (Ac∞, η) a tangent cone of (A∞, µ∞) at the point x. A priori, we donot know whether
it is unique or not since this involves a choice of the subsequence.

Remark 5.3. In [22], the tangent cones of general stationary Yang-Mills connections are shown
to exist where the stationary condition is needed for the monotonicity formula. Here as long as
we know (A∞, µ∞) comes from the limit of smooth connections, it already has a monotonicity
property that suffices for use.

5.3. Ω-ASD instantons and calibrated geometries. Given the analytic results above, it
is straightforward to see that the results in [22] hold for general Ω-ASD instantons without
assuming Ω to be closed. More precisely, we assume (A∞, µ∞) is an finite energy Ω-ASD
instanton which comes from the limit of a sequence of smooth Ω-ASD instantons with uniformly
bounded L2 norm on curvature. We also write

µ∞ = |FA∞ |2 dVol +Θn−4(x)Hn−4
Σ

as before. Similar to Proposition 4.2.1 in [22], the following holds

Proposition 5.4. A bubbling connection B∞ of (A∞, µ∞) at Hn−4 a.e. x ∈ Σ is a Ωx-ASD
instanton. In particular, Ωx induces a volume form of Σ at x.

This implies the following, as pointed out in the Yang-Mills case in [22, p. 242, Remark 5]).
The proof is exactly the same.

Theorem 5.5. For the limiting connection (A∞, µ∞)

• 1

8π2
Θn−4(x) is integer valued at Hn−4 a.e. x ∈ Σ;

• Ω restricts to a volume form of TxΣ at Hn−4 a.e. x ∈ Σ.

6. Removable Singularities

In this section, using the main results in [20] we generalize the removable singularity theorem
for stationary Yang-Mills fields in [21] to the case of Ω-YM connections. The argument closely
follows [20, Theorem 10]. Below we will denote by A an Ω-YM connection defined on the trivial
bundle over M \ Σ, where M = [−4, 4]n endowed with a smooth Riemannian metric, Ω is a
smooth (n−4)-form on M , and Σ is a closed subset of U of finite (n−4)-dimensional Hausdorff
measure.

Theorem 6.1. If supx∈M supσ f2(x, r) is sufficiently small, then for any Br(x) ⊂ Ω, there
exists a gauge transform g over Br(x) \ Σ so that g(A) extends to a smooth connection over
Br(x).
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Proof. Denote f = |FA|. It suffices to show that f satisfies

(6.1) −∆f + α
|df |2

f
− c|FA|2f ≤ Cf

over M \Σ for some α > 0. Indeed, given (6.1), by [20, Thm. 9] we know that f ∈ L∞([−1, 1]n).
Now the existence of the gauge transformation follows from [20, App. C, Thm. 19]. It remains
to show that f satisfies the inequality (6.1). By (2.8) we have

−1

2
∆|FA|2 = −|∇AFA|2 + (∇∗A∇AFA, FA)

= −|∇AFA|2 + ({FA, FA}, FA) + ({Rg, FA}, FA) + ({dΩ,∇AFA}, FA)

which implies

− 1

2
∆|FA|2 + |∇AFA|2 + |dAFA|2 + |d∗AFA|2

≤({FA, FA}, FA) + ({Rg, FA}, FA) + ({dΩ,∇AFA}, FA) + |dΩ ∧ FA|2

≤C|FA|3 + Cε|FA|2 + ε|∇AFA|2

where the last line follows from Hölder’s inequality, and 0 < ε � 1 is to be determined later.
This then implies

(6.2) − 1

2
∆|FA|2 + (1− ε)(|∇AFA|2 + |dAFA|2 + |d∗AFA|2)− C|FA|3 ≤ Cε|FA|2.

Now the improved Kato inequality (see [20, Thm. 5]) gives

|∇AFA|2 + |dAFA|2 + |d∗AFA|2 ≥
n

n− 1
|d|FA||2.

Combined with (6.2) this gives

−1

2
∆|FA|2 + (1− ε) n

n− 1
|d|FA||2 − C|FA|3 ≤ Cε|FA|2.

Substituting f = |FA| and u = |FA|2, we have

−1

2
∆f2 +

(1− ε)n
n− 1

|df2|2 − Cuf ≤ Cεf2.

A straightforward calculation now shows

−∆f +

(
(1− ε)n
n− 1

− 1

) ∣∣∣∣dff
∣∣∣∣2 − Cu ≤ Cεf.

Choose ε so that α =
(1− ε)n
n− 1

− 1 > 0, and (6.1) follows. �

7. Hermitian-Yang-Mills connections over general complex manifolds

7.1. Improvement of the analytic results. In this section, we will generalize Tian’s holo-
morphic cycle theorem for Hermitian-Yang-Mills connections over Kähler manifolds [22, Thm.
4.3.3] to the case of Hermitian manifolds. More precisely, we fix Ai to be a sequence of HYM
connections over an m-dimensional Hermitian manifold (X,ω) with ‖FAi‖ ≤ C. These are not
Yang-Mills connections in general. As before, let

Σ = {x ∈ B : lim
r→0+

lim inf
i

r4−2m

∫
Bx(r)

|FA|2 ≥ ε20}.
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Then we can assume

• µi := |FAi |2 dVol ⇀ µ = |FA∞ |2 dVol +ν where supp(ν) is equal to the pure complex
codimension 2 part of Σ;
• up to gauge transforms, Ai sub-converges to A∞ outside Σ.

Remark 7.1. Strictly speaking, without assuming the Hermitian-Einstein constant vanishes, i.e.√
−1ΛFA = 0, HYM connections are not exactly Ω-ASD instantons in the sense of (1.3), where

Ω = ωm−2/(m− 2)!. But it is projectively Ω-ASD connections in the sense that

∗(F⊥A ∧ Ω) = −F⊥A
where F⊥A = FA − µ Idω satisfying F⊥A ∧ ωm−1 = 0. It is straightforward to see that the results
for Ω-YM connections holds for this case by using the same argument. There is another way to
see this. By the Bochner-Kodaira-Nakano identity (see [5, Theorem 1.1]), we have

d∗AFA = ρFA

for some ρ = ρ([Λ, ∂ω], [Λ, ∂̄ω]), for which the same arguments as for Ω-YM connections apply.
The results in the previous sections hold in this case.

The following can be deduced easily from [1, Thm. 2].

Proposition 7.2. (1) E∞ can be extended uniquely as a reflexive sheaf E∞ over M . For
any local section s ∈ E∞, log+ |s|2 ∈ H1

loc ∩ L∞loc. Furthermore, A∞ can be extended to
be defined over M \Sing(E∞). In particular, Tr(FA∞ ∧FA∞) is closed across Σ, thus the
current

c2(Σ) = lim
ji

Tr(FAji ∧ FAji )− Tr(FA∞ ∧ FA∞)

is closed.
(2) Σ = Sing(E∞) ∪ ∪kΣk is a complex subvariety of M and

(7.1) c2(Σ) =
∑

mk[Σk].

In particular, ν =
∑
mkH2n−4

Σk
where Σk are the irreducible pure codimension 2 compo-

nents of Σ and

(7.2) µ∞ = |FA∞ |2 dVol +
∑
k

mkH2n−4
Σk

.

Proof. For (1), locally by replacing ω with any Kähler metric, it does not change the fact that
‖FA∞‖L2

loc
< ∞ . By Theorem 2 in [1], we know that E∞ can be extended uniquely as a

reflexive sheaf E∞ over M . Furthermore, for any local section s ∈ E∞, log+ |s|2 ∈ H1
loc. Then

the local L∞ bound follows from Moser iteration. Given this, one can directly repeat the proof
for Proposition 1 in [1] to extend A∞ by extending the metric H∞ locally. Now we use Simpson’s
trick to show the closedness of Tr(FA∞ ∧ FA∞) (see [19, p. 71]). By proceeding with stratum
of Sing(E∞) which has codimension at least 6, we can choose a point x ∈ Sing(E∞) which is
smooth at x ∈ Sing(E∞). Let ψ be a smooth (n − 5)-form which is compactly supported near
x.

• Suppose ψ has vanishing constant coefficients. We can choose a family of cut-off function
φε which vanishes over an ε-neighborhood of x and d(φεψ) is uniformly bounded. In
particular, we have∫

M
Tr(FA∞ ∧ FA∞) ∧ dψ = lim

ε→0

∫
M

Tr(FA∞ ∧ FA∞) ∧ d(φεψ) = 0.
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• In general, since Sing(E∞) has codimension at least 6, we know that ψ =
∑

i dxi ∧ ωi,
where xi are defining coordinates for Sing(E∞). Now ψ −

∑
i d(xiωi) vanishes along

Sing(E∞) and satisfies d(ψ −
∑

i d(xiωi)) = dψ. By the special case above, we know∫
M

Tr(FA∞ ∧ FA∞) ∧ dψ = 0.

Now we prove (2). We first show Sing(E∞)∪∪kΣk ⊂ Σ. From the above, we know Sing(A∞) ⊂
Sing(E∞). It remains to show that Supp(ν) is a pure codimension 2 subvariety of M . Indeed,
we know Σ is calibrated by ωm−2/(m− 2)!, which implies TxΣ is a complex analytic subspace
of TxM . Given this, it follows from part (1) and Theorem 5.5 that c2(Σ) is a closed integral
current. Then by King’s theorem [12] we can express c2(Σ) in the form (7.1) for some integers
mk and pure codimension 2 subvarieties Σk of M . This implies Σ ⊂ Sing(E∞)∪∪kΣk., through
which the top pure codimension 2 parts are identified. For the other direction, suppose not,
there exists a point x ∈ Sing(E∞) with Θn−4(µ∞, x) = 0. As Theorem 4.2, we can conclude
that r4−2nµi(Br(x)) < ε0/2, for i large and r small. This implies that Ai sub-converges to A∞
smoothly near x, which gives a contradiction. In sum, we have Σ = Sing(E∞) ∪ ∪kΣk. �

Remark 7.3. • It follows by exactly the same argument that Proposition 7.2 (1) holds for
general admissible Hermitian-Yang-Mills connections over complex Hermitian manifolds,
i.e. smooth Hermitian-Yang-Mills connections defined away from a closed Hausdorff
codimension 4 set.
• It is straightforward to see that the proof for the closedness part holds for general finite

energy Ω-YM connections with mild singularities; for example, when the singular set
can be stratified by smooth manifolds of real codimension at least 6. In general, it is
conjectured that the set of essential singularities of finite energy Ω-ASD instantons when
Ω is closed has Hausdorff codimension at least 6 (see [22]).

Corollary 7.4. As a smooth bundle, E∞|M\Σ ∼= E|M\Σ. In particular, we can assume there
exists a sequence of bundle isometries Φji : E∞ → E|M\Σ so that Φ∗jiAji locally converges to
A∞ smoothly away from Σ.

Given this, let E be a Hermitian bundle over a compact Hermitian manifold (M,ω). Denote
MHYM,c to be the space of limits of smooth Hermitian-Yang-Mills connections on E with L2

norm of curvature bounded by c mod gauge (smooth wherever the connections are smooth). We
give MHYM,c a topology by specifying a basis of open neighborhood as U~ε,φ([A,µ]) consisting

of [(A′, µ′)] ∈MHYM,c satisfying

• A′ lies in the ε1 neighborhood of A outside a ε1 neighborhood of π(µ);
• |µ(φ)− µ′(φ)| < ε2.

Here ~ε = (ε1, ε2) with εi > 0 for i = 1, 2 and φ is a continuous and bounded function.

Remark 7.5. When m = 2, this topology coincides exactly with the topology in the case of four
dimensional manifolds (see [6, Section 4.4]).

Given this, we have the following improved version of Theorem 4.2

Theorem 7.6. MHYM,c is a first countable sequentially compact Hausdorff space.

By Proposition 7.2, the moduli space can be also viewed as consisting of pairs (A∞, Can)
mod gauge where Can =

∑
kmkΣk is a integer linear combination of pure codimension two

subvarities of X. Later we will not make a difference between them.
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7.2. HYM connections over a class of balanced manifolds of Hodge-Riemann type.
Now we assume (M,ω) is an m-dimensional compact balanced Hermitian manifold of Hodge-
Riemann type as defined in [3, Def. 2.7]. This means we can write

ωm−1 = ω0 ∧ Ω0

where ω0 is a strictly positive (1, 1) form, Ω0 is of type (m− 2,m− 2), and

(1) dωm−1 = 0;
(2) dΩ0 = 0;
(3) for any p+ q = 2, there exists a pointwise Q-orthogonal decomposition

Λp,q = Cω0 ⊕ P p,q

where P p,q = {α ∈ Λp,q : α ∧ ω0 ∧ Ω0 = 0};
(4) Q(α, β) := (

√
−1)p−q(−1)

(p+q)(p+q−1)
2 ∗ (α ∧ β ∧ Ω0) is positive definite on P p,q.

In this case, a uniform bound for the L2 norm of curvature of all the smooth irreducible
Hermitian-Yang-Mills connections is automatic by the following observation.

Lemma 7.7. Given any HYM connection A on E,∫
X
|FA|2

ωm

m!
≤ C

where C = C(c(E), ωi).

Proof. By conditions (3) and (4) we have∫
X
|FA|2

ωm−1

(m− 1)!
≤ C1(

∫
X

Tr(FA ∧ FA) ∧ Ω0 + C2

∫
X
|f |2ω0 ∧ ω0 ∧ Ω0)

where F⊥A = FA − f Idω0. Here

f = µ
ωn

n!

ω0 ∧ ω0 ∧ Ω0

In particular, we have

(7.3)

∫
X
|FA|2

ωn

n!
≤ C1(

∫
X
FA ∧ FA ∧ Ω0 + C2µ

2

∫
X

ωn

n!

ω0 ∧ ω0 ∧ Ω0

ωn

n!
).

The result follows. �

In this case, we denote the compactification of the moduli space of HYM connections mod
gauge as MHYM by choosing c large.

Theorem 7.8. On a unitrary bundle over a compact balanced Hermitian manifold (X,ω) of
Hodge-Riemann type, MHYM is a first countable sequentially compact Hausdorff space.

Now we would like to give an important class of balanced metrics of Hodge-Riemann type,
which comes from multipolarizations. Namely, for any positive (1, 1) forms ω0, · · · , ωm−2 on a
compact complex manifold X so that

ωm−1

(m− 1)!
= ω0 ∧ · · · ∧ ωm−1

d(ω0 ∧ ω1 ∧ · · · ∧ ωm−2) = 0

d(ω1 ∧ · · · ∧ ωm−2) = 0

(7.4)
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then by the main result in [23] we get a balanced Hermitian metric ω of Hodge-Riemann type
by setting Ω0 = ω1 ∧ · · · ∧ ωm−2.

Corollary 7.9. On a unitrary bundle over a compact balanced Hermitian manifold (X,ω)
satisfying (7.4), MHYM is a first countable sequentially compact Hausdorff space.

In particular, this gives the following

Corollary 7.10. On a unitrary bundle over a compact Kähler manifold (X,ω), MHYM is a
first countable sequentially compact Hausdorff space.

Remark 7.11. When (X,ω) is a projective algebraic manifold, i.e. ω = c1[L] for some line
bundle L, it is known that M∗HYM , which denotes the closure of the space of irreducible HYM

connections with fixed determinants in MHYM , admits a complex structure coming from the
algebraic geometric side. The induced complex structure makes it an algebraic space (see [10]).
We will explain how it can be generalized to the case of multipolarizations in the following by
using the same argument in [10] and the algebraic geometric results in [11].

7.3. M∗HYM for multipolarizations. In this section, we fix (E,H) to be a unitary vector
bundle over a compact complex Hermitian manifold (X,ω) so that

ωm−1

(m− 1)!
= ω0 ∧ · · · ∧ ωm−2

where [ωi] are all ample classes, i.e. [ωi] = c1(Li) for some ample line bundles Li. Set Ω0 =
ω1 ∧ · · · ∧ ωm−2. As mentioned above, we can view the moduli space M∗HYM consisting of pairs
(A∞, Can) mod gauge. It is a sequentially compact Hausdorff space. Using the argument in [10],
we briefly explain how a complex structure could be given to M∗HYM to make it an algebraic
space.

7.3.1. Moduli space of semistable torsion free sheaves via multipolarizations. In this section, we
will recall the construction for the compactification of the moduli space of semistable sheaves
with given numerical classes and fixed determinant. We refer the readers to [11] for more details.
Recall that the space of slope semistable sheaves having the same Chern classes as E over (X,ω)
is bounded, i.e. if we fix O(1) to be any polarization of X, for fixed k large enough, for any E ,
we have H i(X, E(k)) = 0, for i > 1, and E(k) is globally generated. Let

H = C⊕τ(k) ⊗O(−k)

where τ denotes the Hilbert polynomial of E . Now we know for k fixed large enough, all
such sheaves can be viewed as points [q : H → E ] in Quot(H, τ) by choosing an isomorphism

C⊕τ(k) ∼= H0(X, E(k)). Here Quot(H, τ) denotes the space of points given by surjective maps
q : H → E , where the Hilbert polynomial of E is equal to τE , modulo the equivalence: q : H → E
and q′ : H → E ′ are equivalent if and only if there exists an isomorphism f ◦ q = q′, i.e.
ker(q) = ker(q′). Furthermore, there exists a universal quotient

qU : OQuot(H,τE) ⊗H → U .
over Quot(H, τE)×X which restricts to the natural quotient at each point [q]. Now we denote
Rµss as the subscheme of Quot(E ,H) consisting of elements [q : H → E ] so that

• E is semistable;
• det(E) = J ;
• E has the same numerical classes as E ;
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• q induces an isomorphism between C⊕τ(k) and H0(X, E(k)).

Define Z as the weak normalization of the reduction of Rµss. Denote

qŨ : OQuot(H,τE) ⊗H → Ũ

as the pull-back of the universal quotient [qU ] to Z ×X. Consider the class

un−1 = − rank(E)c1(L1) · · · c1(Ln−1) + χ(c1(L1) · · · c1(Ln−1).c(E))[Ox]

where x ∈ X is a fixed point. Now consider the line bundle

Ln−1 := λŨ (un−1)

of which the higher power is a semi-ample line bundle over Z. Then one can form a formal GIT
quotient as

Mµss := Proj(⊕k≥0H
0(Z,LνNn−1)SL)

for some N . The conclusion is that this is a projective scheme with certain universal properties
and the natural surjective map π : Z → Mµss collapses the SL orbits and π(q) = π(q′) only if
the sheaves E and E ′ associated to q and q′ share the same graded sheaf GrHNS(E) ∼= GrHNS(E ′)
and C(E) = C(E ′). When dimX = 2, the converse holds.

7.3.2. Complex structure on M∗HYM induced from a continuity map Φ. Given a stable unitary
bundle over (E,H, ∂̄A) over (X,ω), the most general version of the Donaldson-Uhlenbeck-Yau
theorem states that there exists a complex gauge transformation g so that the unitary connection
given by (H, g(∂̄A)) is a HYM connection that is unique up to unitary gauge transformations.
Now this can be generalized to the case of stable reflexive sheaf using the notion of admissible
HYM connections (i.e. finite energy on the smooth locus). Suppose [q] ∈ Quot represents
a semistable torsion free sheaf E . We can take the graded sheaf GrHNS(E) associated to a
Harder-Narasimhan-Seshadri filtration of E . From this we can extract canonical algebraic data
as

((GrHNS(E))∗∗, C(E))

from which the first factor gives a unique admissible HYM connection A(E). Here

C(E) =
∑

malg
k Σk

where Σk is a pure codimension two subvariety of X and

malg
k = h0(∆, ((GrHNS(E))∗∗/GrHNS(E))|∆).

Here ∆ is a generic holomorphic transverse slice of Σk.

Definition 7.12. We define M s to be the closure of (M s)wn in Mµss where (M s)wn denotes
the weak normalization of M s.

Then we have

Theorem 7.13. There exists a continuous map

Φ : M s →M∗HYM

which restricts to the natural map

Φ : (M s)wn → (M∗HYM )wn.

More precisely, suppose [q : H → E ] represents a point in M s, then Φ([E ]) = (A(E), C(E)).
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We very briefly explain how the proof is done and refer the reader to [10] for more details. We
fix a sequence of smooth HYM connections {Ai} on E which sub-converges to (A∞, Can). By
the boundedness, we can put Ei = (E, ∂̄Ai) in a fixed Quot scheme and thus obtain an algebraic
limit which can behave badly in general. More precisely, by fixing k large and choosing an L2

orthonormal basis for H0(X, Ei(k)), we get a sequence of elements [qi] in the corresponding Quot
scheme. Then we can take an algebraic limit [q∞] of [qi] in the Quot scheme. As in [10, Sec. 4], it

can be concluded that q∞ induces a sheaf inclusion Falg∞ → E∞ which is an isomorphism outside

some codimension two subvariety. In particular, E∞ = (Falg∞ )∗∗. Using the argument in [10,
Sec. 4.3], the singular Bott-Chern formula applied to the filtration of H induced by [q∞] gives

C(Falg∞ ) = C. In particular, as in [10], this gives that the map Φ is continuous. Given this, since
all the essential algebraic geometric results [11] used in [10] are done for multipolarizations, it is
straightforward to adapt the corresponding statements in [10] to the case of multipolarizations
to obtain the following

Theorem 7.14. There exists a complex structure on M∗HYM which makes M∗HYM an algebraic

space so that the natural map Φ : M s →M∗HYM is an algebraic morphism.
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