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Abstract. Let X be a compact connected Riemann surface. Fix a positive integer r
and two nonnegative integers dp and dz. Consider all pairs of the form (F , f), where F
is a holomorphic vector bundle on X of rank r and degree dz − dp, and

f : O⊕rX −→ F
is a meromorphic homomorphism which an isomorphism outside a finite subset of X
and has pole (respectively, zero) of total degree dp (respectively, dz). Two such pairs
(F1 , f1) and (F2 , f2) are called isomorphic if there is a holomorphic isomorphism of F1

with F2 over X that takes f1 to f2. We construct a natural compactification of the
moduli space equivalence classes pairs of the above type. The Poincaré polynomial of
this compactification is computed.

1. Introduction

Take a compact connected Riemann surface X. Fix positive integers r and d. Consider
pairs of the form (E , f), where E is a holomorphic vector bundle on X of rank r and
degree d, and

f : O⊕rX −→ E

is an OX–linear homomorphism which is an isomorphism outside a finite subset of X.
This implies that the total degree of zeros of f is d. Two such pairs (E1 , f1) and (E2 , f2)
are called equivalent if there is a holomorphic isomorphism

φ : E1 −→ E2

such that φ ◦ f1 = f2. Such pairs are examples of vortices [BDW], [Br], [BR], [Ba],
[EINOS].

For any pair (E , f) of the above type, consider the dual homomorphism

f ∗ : E∗ −→ (O⊕rX )∗ = O⊕rX .

The quotientO⊕rX /image(f ∗) is an element of the Quot scheme Quot(r, d) that parametrizes
all torsion quotients of O⊕rX of degree d. Conversely, given any torsion quotient

O⊕rX
ψ−→ T

of degree d, consider the homomorphism

O⊕rX = (O⊕rX )∗
ψ′−→ kernel(ψ)∗
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induced by the inclusion kernel(ψ) ↪→ O⊕rX . The pair (kernel(ψ)∗ , ψ′) is clearly of the
above type. Therefore, the moduli space of equivalence classes of pairs (E , f) is identified
with the Quot scheme Quot(r, d).

Here we consider pairs of the form (E , f), where E is a holomorphic vector bundle on
X of rank r and degree d, and

f : O⊕rX −→ E

is an OX–linear meromorphic homomorphism which is an isomorphism outside a finite
subset of X. We assume that the total degree of the poles of the meromorphic homo-
morphism is dp. This implies that the total degree of the zeros of the meromorphic
homomorphism is d + dp. As before, two such pairs (E1 , f1) and (E2 , f2) will be called
equivalent if there is a holomorphic isomorphism

φ : E1 −→ E2

such that φ ◦ f1 = f2. The equivalence classes of pairs can be considered as examples of
meromorphic vortices.

We construct a natural compactification of the moduli space of these meromorphic
vortices. We compute the Poincaré polynomial of this compactification.

2. Notations and Conventions

Let S be a scheme and Y −→ S a smooth projective morphism. Given a coherent sheaf
F on Y flat over S and a numerical polynomial r(t), we denote by Quot(F/S, r(t)) the
Grothendieck Quot scheme over S parametrizing quotients of F with Hilbert polynomial
r(t) [Gr]. There is a universal exact sequence on Quot(F/S, r(t))×S Y

0 −→ Kuniv
Quot(F/S,r(t)) −→ π∗YF −→ Quniv

Quot(F/S,r(t)) −→ 0 ,

where πY : Quot(F/S, r(t)) ×S Y −→ Y is the natural projection. Often we will just
drop the subscripts and write Kuniv or Quniv instead. This construction is well behaved
with respect to pull-backs, so let us record the following:

Lemma 2.1. For any morphism g : T −→ S, the base change

Quot(g∗F/T, r(t)) ∼= Quot(F/S, r(t))×S T

holds.

Proof. This follows by examining the corresponding representable functors. �

We will mostly be interested in the case where Y −→ S is a smooth, connected and of
relative dimension one, that is a relative curve, and F is locally free of rank r. Further,
we will only consider torsion quotients of rank zero and degree d. This Quot scheme will
be denoted by Quot(F/S, d). When r = 1 and S is a point, then

Quot(O, d) = Symd(Y ) ,

the d-th symmetric power of Y .
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Given an positive integer d by a partition of length k > 0 of d we mean a sequence
P = (p1 , p2 , · · · , pk) of non-negative integers with

∑k
i=1 pi = d. For such a partition

define d(P) :=
∑k

i=1(i− 1)pi. We will write

SymP(Y ) = Symp1(Y )× · · · × Sympr(Y ) .

3. A relative Quot scheme

Let X be a compact connected Riemann surface. Let E and F be two holomorphic
vector bundles on X of common rank r. Take a dense open subset U ⊂ X, such that
the complement S := X \U is a finite set, and take an isomorphism of coherent analytic
sheaves

f : E|U −→ F|U
over U . This homomorphism f will be called meromorphic if there is a positive integer n
such that f extends to a homomorphism of coherent analytic sheaves

f̂ : E −→ F ⊗OX(nS) ⊃ F
over X, where S is the reduced divisor defined by the finite subset S. Note that since
the divisor S is effective, we have F ⊂ F ⊗OX(nS). Therefore, f is meromorphic if and
only if the homomorphism f is algebraic with respect to the algebraic structures on E|U
and F|U given by the algebraic structures on E and F respectively.

Take a meromorphic homomorphism f as above. We note that the extension f̂ is

uniquely determined by f because f and f̂ coincide over U . The inverse image

E(f) := f̂−1(F) ⊂ E
(recall that F ⊂ F ⊗ OX(nS)) is clearly independent of the choice of n. We note that

both E(f) and f̂(E(f)) are holomorphic vector bundles on X because they are coherent
analytic subsheaves of holomorphic vector bundles. Both of then are of rank r, and the
restriction

(3.1) f̂ |E(f) : E(f) −→ f̂(E(f))

is an isomorphism of holomorphic vector bundles. Define

(3.2) Qp(f) := E/E(f) and Qz(f) := F/(f̂(E(f)))

(the subscripts “p” and “z” stand for “pole” and “zero” respectively). We note that both
Qp(f) and Qz(f) are torsion coherent analytic sheaves on X. In particular, their supports
are finite subsets of X. From (3.2) it follows that

(3.3) degree(Qp(f)) = degree(E)− degree(E(f)) and

degree(Qz(f)) = degree(F)− degree(f̂(E(f))) .

Fix positive integers r, dp and dz. Set the domain E to be the trivial vector bundle O⊕rX
of rank r. Consider all triples of the form (F , U , f), where

• F is a holomorphic vector bundle on X of rank r,
• U is the complement of a finite subset of X, and
• f : O⊕rX |U = O⊕rU −→ F|U is a meromorphic homomorphism such that

degree(Qp(f)) = dp and degree(Qz(f)) = dz .
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Since f̂ |E(f) in (3.1) is an isomorphism, from (3.3) we conclude that

(3.4) degree(F) = dz − dp + degree(O⊕rX ) = dz − dp .

Two such triples (F1 , U1 , f1) and (F2 , U2 , f2) will be called equivalent if there is a holo-
morphic isomorphism of vector bundles over X

β : F1 −→ F2

such that

β ◦ (f1|U1∩U2) = f2|U1∩U2 .

Therefore, the equivalence class of (F , U , f) depends only on (F , f) and it is independent
of U . More precisely, (F , U , f) is equivalent to (F ,W , f |W ) for every W ⊂ U such that
the complement U \W is a finite set.

Let

(3.5) Q0 = Q0
X(r, dp, dz)

be the space of all equivalence classes of triples of the above form. We will embed Q0 as
a Zariski open subset of a smooth complex projective variety.

Take any triple (F , U , f) as above that is represented by a point of Q0. Consider the
short exact sequence

(3.6) 0 −→ E(f) := kernel(qp) −→ E = O⊕rX
qp−→ Qp(f) −→ 0 ,

where qp denotes the projection to the quotient in (3.2). We also have

E(f) = f̂(E(f)) ↪→ F

(recall that f̂ |E(f) in (3.1) is an isomorphism). Let

(3.7) 0 −→ F∗ −→ E(f)∗

be the dual of the above inclusion of E(f) in F . From (3.6) we have degree(E(f)∗) =
degree(Qp(f)) = dp. Therefore, from (3.4) it follows that

degree(E(f)∗/F∗) = degree(E(f)∗)− degree(F∗) = dp + dz − dp = dz

as degree(F∗) = −degree(F). These imply that we can recover the equivalence class of
(F , f) once we know the following two:

• the torsion quotient Qp(f) of O⊕rX of degree dp, and
• the torsion quotient E(f)∗/F∗ of E(f)∗ of degree dz.

(It should be clarified that “knowing the torsion quotient Qp(f)” means knowing the sheaf
Qp(f) along with the surjective homomorphism O⊕rX −→ Qp(f); similarly “knowing the
torsion quotient E(f)∗/F∗” means knowing the sheaf E(f)∗/F∗ along with the surjective
homomorphism from E(f)∗ to it.) Indeed, once we know Qp(f), we know the kernel E(f)
and hence know E(f)∗; if we know the quotient E(f)∗/F∗, then we know the subsheaf F∗
of E(f)∗. The dual of this inclusion F∗ ↪→ E(f)∗, namely the homomorphism

E(f) −→ F ,
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gives the meromorphic homomorphism f . In other words, we have the diagram

0y
0 −→ E(f) −→ O⊕r −→ Qp −→ 0yf̂

Fy
Qzy
0

Let Quot(r, dp) be the Quot scheme parametrizing the torsion quotients of O⊕rX of
degree dp. We have the tautological short exact sequence of coherent analytic sheaves on
X ×Q(r, dp)

(3.8) 0 −→ Kuniv −→ p∗XO⊕rX −→ Quniv −→ 0 ,

where pX is the projection of X × Quot(r, dp) to X. We write K = Kuniv. Now consider
the dual vector bundle

K∗ −→ X ×Quot(r, dp)
pQ−→ Quot(r, dp) ,

where pQ is the natural projection. Using pQ, we will consider K∗ as a family of vector
bundles on X parametrized by Quot(r, dp). For any point y ∈ Quot(r, dp), the vector
bundle K∗|X×{y} over X will be denoted by K∗|y. Let

(3.9) ϕ : Quot(r, dp, dz) := Quot(K∗/Quot(r, dp), dz) −→ Q(r, dp)

be the relative Quot scheme over Quot(r, dp), for the family K∗, parametrizing the torsion
quotients of degree dz. Therefore, for any point y ∈ Quot(r, dp), the fiber ϕ−1(y) is the
Quot scheme parametrizing the torsion quotients of degree dz of the vector bundle K∗|y.

Both Quot(r, dp) and the fibers of ϕ are irreducible smooth projective varieties. The
morphism ϕ is smooth. Therefore, the projective variety Quot(r, dp, dz) is irreducible and
smooth.

Consider Q0 defined in (3.5). We have a map

η′ : Q0 −→ Quot(r, dp)

that sends any triple (F , U , f) ∈ Q0 to the point representing the quotient Qp(f) in
(3.6). Let

(3.10) η : Q0 −→ Quot(K∗, dz) = Quot(r, dp, dz)

be the map that sends any point α = (F , U , f) ∈ Q0 to the point of ϕ−1(η′(α)) that
represents the quotient E(f)∗/F∗ in (3.7). This map η is injective because, as observed
earlier, the equivalence class of the pair (F , f) can be recovered from the quotient Qp(f)
of O⊕rX and the quotient E(f)∗/F∗ of E(f)∗. The image of η is clearly a Zariski open
subset of Quot(r, dp, dz).
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Let
∧rK −→

∧r p∗XO⊕rX = p∗XOX be the r-th exterior power of the homomorphism
in (3.8). Considering it as a family of subsheaves of OX of degree −dp parametrized by
Quot(r, dp), we have the corresponding classifying morphism

δ′1 : Quot(r, dp) −→ Quot(1, dp) = Symdp(X) .

Let

(3.11) δ1 := δ′1 ◦ ϕ : Quot(r, dp, dz) =: Q −→ Symdp(X)

be the composition, where ϕ is constructed in (3.9). Next, consider the tautological
subsheaf

S ↪→ (IdX × ϕ)∗K∗

on X×Q. Let
∧r S ↪→

∧r(IdX×ϕ)∗K∗ be the r-th exterior power of the above inclusion.
Let

(3.12) δ2 : Q −→ Symdz(X)

be the morphism that sends any y ∈ Q to the scheme theoretic support of the quotient
sheaf

(
∧r

(IdX × ϕ)∗K∗|ϕ(y))/(
∧r
S|X×{y}) −→ X .

Now define the morphism

(3.13) δ := (δ1 , δ2) : Quot(r, dp, dq) = Q −→ Symdp(X)× Symdz(X) ,

where δ1 and δ2 are constructed in (3.11) and (3.12) respectively. It can be shown that δ
is surjective. In fact, in Section 4 we will construct, and use, a section of δ.

Remark 3.1. LetMX(r, dz − dp) denote the moduli stack of vector bundles on X of rank
r and degree dz − dp. Since there is a universal bundle over X ×Quot(r, dp, dq), we get a
morphism

Quot(r, dp, dq) −→ MX(r, dz − dp) .

4. Fundamental group of Quot(r, dp, dz)

Proposition 4.1. The homomorphism between fundamental groups induced by the mor-
phism δ in (3.13) is an isomorphism.

Proof. We will first construct a section of δ. Let

D(dp) ⊂ X × Symdp(X)

be the divisor consisting of all (x , {y1 , · · · , ydp
}) such that x ∈ {y1 , · · · , ydp

}. Then the
subsheaf

OX×Symdp (X)(−D(dp))⊕O⊕r−1X×Symdp (X)
⊂ O⊕r

X×Symdp (X)

produces a classifying morphism

(4.1) θ1 : Symdp(X) −→ Quot(r, dp) .

Let ξ1 (respectively, ξ2) denote the projection of Symdp(X) × Symdz(X) to Symdp(X)
(respectively, Symdz(X)). Like before, D(dz) ⊂ X × Symdp(X) be the divisor consisting
of all (x , {y1 , · · · , ydz

}) such that x ∈ {y1 , · · · , ydz
}. The subsheaf

((IdX × ξ1)∗(OX×Symdp (X)(D(dp)))⊗ (IdX × ξ2)∗(OX×Symdz (X)(−D(dz))))
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⊕(O⊕r−1
X×Symdp (X)Symdz (X)

)∗ ⊂ (IdX × ξ1)∗(OX×Symdp (X)(−D(dp))⊕O⊕r−1X×Symdp (X)
)∗

produces a classifying morphism

(4.2) θ : Symdp(X)× Symdz(X) −→ Quot(r, dp, dq) .

We note that ϕ ◦ θ = θ1, where ϕ and θ1 are the morphisms constructed in (3.9) and
(4.1) respectively.

It is straightforward to check that

(4.3) δ ◦ θ = IdSymdp (X)×Symdz (X) ,

where δ is constructed in (3.13). In view of this section θ, we conclude that the induced
homomorphism between fundamental groups

δ∗ : π1(Quot(r, dp, dq)) −→ π1(Symdp(X)× Symdz(X))

is surjective (the base points of fundamental groups are suppressed in the notation).

Let

(4.4) U ⊂ Symdp(X)× Symdz(X))

be the Zariski open subset consisting of all

(x , y) = ({x1 , · · · , xdp
} , {y1 , · · · , ydz

}) ∈ Symdp(X)× Symdz(X))

such that the dp + dz points {x1 , · · · , xdp
, y1 , · · · , ydz

} are all distinct, equivalently, the
effective divisor x+ y is reduced. Let

(4.5) θ0 := θ|U : U −→ Quot(r, dp, dz)

be the restriction of the map θ in (4.2). Also, consider the restriction

(4.6) δ0 := δ|δ−1(U) : δ−1(U) −→ U .

Every fiber of δ0 is identified with (Pr−1C )dp × (P r−1
C )dz , where Pr−1C is the projective space

parametrizing the hyperplanes in Cr and P r−1
C is the projective space parametrizing the

lines in Cr (so P r−1
C parametrizes the hyperplanes in (Cr)∗). From the homotopy exact

sequence associated to δ0 it follows that the induced homomorphism of fundamental groups

δ0,∗ : π1(δ
−1(U)) −→ π1(U)

is an isomorphism. The variety Quot(r, dp, dz) is smooth, and δ−1(U) is a nonempty
Zariski open subset of it. Therefore, the homomorphism

ι∗ : π1(δ
−1(U)) −→ π1(Quot(r, dp, dz))

induced by the inclusion ι : ϕ−1(U) ↪→ Quot(r, dp, dz) is surjective. Since δ0,∗ is an
isomorphism, this implies that the homomorphism

θ0,∗ : π1(U) −→ π1(Quot(r, dp, dz))

induced in θ0 in (4.5) is surjective. Since θ0 extends to θ, this immediately implies that
the homomorphism

θ∗ : π1(Symdp(X)× Symdz(X)) −→ π1(Quot(r, dp, dz)

induced in θ in (4.2) is surjective. Since θ∗ is surjective, and the composition δ∗ ◦ θ∗ is
injective (see (4.3)) we conclude that δ∗ is also injective. �
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5. Cohomology of Quot(r, dp, dz)

5.1. Generalization of a theorem of Bifet. Let S1 , S2 , · · · , Sk be a smooth connected
projective varieties over C. Fix some line bundles Li on Si ×X of relative degree di over
Si. In other words

deg(Li|s×X) = di

for each point s ∈ Si. Set S = S1 × · · · × Sk. Let

πSi×X : S ×X −→ Si ×X
be the natural projection. Define

L̃i := π∗Si×XLi .
Let

φ : Quot(⊕iL̃i/S, d) −→ S

be the relative Quot scheme that parametrizes the torsion quotients of degree d. So
for any s = (s1 , · · · , sk) ∈ S, the fiber φ−1(s) parametrizes the torsion quotients of
⊕ki=1Li|si×X of degree d. By deformation theory, φ is a smooth morphism of relative

dimension kd, so Quot(⊕iL̃i/S, d) is smooth of dimension dim(S) + kd. The torus Gk
m

acts on Quot(⊕iL̃i/S, d) via its action on
⊕k

i=1 L̃i.
For any positive integer p, let Quot(Li/Si, p) −→ Si denote the relative Quot scheme

parametrizing the torsion quotients of Li/Si of degree p. So the fiber of Quot(Li/Si, p)
over any s ∈ Si parametrizes the torsion quotients of Li|s×X of degree p.

Proposition 5.1. There is a bijection between the partitions P = (p1 , p2 , · · · , pk) of
d of length k and the connected components of the fixed point loci of the Gk

m action on

Quot(⊕iL̃i/S, d). The component corresponding to the partition
∑k

i=1 pi = d is the prod-
uct of Quot schemes

Quot(L•/S,P) := Quot(L1/S1, p1)×Quot(L2/S2, p2)× . . .×Quot(Lk/Sk, pk)
with the obvious structure morphism to S.

Proof. On applies the argument used to prove Lemme 1 in [Bif]. �

As all schemes and morphisms are assumed to be projective it is possible to choose a
one parameter subgroup

Gm ↪→ Gk
m

so that

Quot(⊕iL̃i/S, d)Gm = Quot(⊕iL̃i/S, d)G
k
m .

Further, the above one-parameter subgroup can be chosen to be given by an increasing
sequence of weights λ1 < λ2 < . . . < λk.

There is an induced action of Gm on the tangent space at a fixed point x. The action
preserves the normal space to the fixed point locus and we wish to describe the subspace
of positive weights.

Take a partition P = (p1 , · · · , pk) of D. As before, let

Quot(L•/S,P) ⊂ Quot(⊕iL̃i/S, d)G
k
m
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be the connected component corresponding to P. For a point x ∈ Quot(L•/S,P), its
image in Si will be denoted by xi. The line bundle Li|xi×X on X will be denoted by Lxi .
The point xi is given by the exact sequence

0 −→ Lxi ⊗OX(−Di) −→ Lxi −→ ODi
−→ 0

where Di is an effective divisor on X with degDi = pi. The relative tangent bundle for
the projection φ is

Tx Quot(⊕iL̃i/S, d)/S =
k⊕

i,j=1

Hom(Lxi ⊗OX(−Di) ,ODj
) .

On the other hand, the relative tangent space to the fixed point locus Quot(L•/S,P) is

Tx Quot(L•/S,P)/S =
k⊕
i=1

Hom(Lxi ⊗OX(−Di) ,ODi
) .

Consequently, the normal bundle N to Quot(L•/S,P) ⊂ Quot(⊕iL̃i/S, d) is

Nx =
⊕
i 6=j

Hom(Lxi ⊗OX(−Di ,ODj
) .

Also, the subspace of positive weights is

N+
x =

⊕
i<j

Hom(Lxi ⊗OX(−Di ,ODj
)

because the torus acts on Hom(Lxi ⊗OX(−Di ,ODj
) with weight λj − λi. It follows that

d(P) := dimN+
x =

k∑
i=1

(i− 1)pi .

Proposition 5.2. The Quot schemes for line bundles

Quot(Li/Si, pi) = Quot(O/Si, pi) = Sympi(X)× Si .

The Poincaré polynomial of Quot(⊕iL̃i/S, d) is given by

P (Quot(⊕iL̃i/S, d), t) =
∑
P

t2d(P)P (Quot(Li/Si, pi), t)

=
∑
P

t2d(P)P (Si, t)P (Sympi(X), t) ,

where the sum is over all partitions of d of length k.

Proof. The isomorphism Quot(O/Si, pi)
∼−→ Quot(Li/Si, pi) is by tensoring exact se-

quences with Li. The second equality is via (2.1).

We need to recall the theorems of [Bia] and [Ki] in our present context. The torus action

determines two stratifications of the variety Quot(⊕iL̃i/S, d). The strata are in bijection
with connected components of the fixed point locus which are in turn in bijection with
partitions of d of length k. Given such a partition P, its corresponding strata are

Quot(L•/S,P)+ := {x | lim
t→0

t.x ∈ Quot(L•/S,P)}
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and
Quot(L•/S,P)− := {x | lim

t→∞
t.x ∈ Quot(L•/S,P)} .

Both of these stratifications are known to be perfect. There are affine fibrations

Quot(L•/S,P)+ −→ Quot(L•/S,P) and Quot(L•/S,P)− −→ Quot(L•/S,P)

of relative dimensions dimN+
x and dimN−x respectively, where x ∈ Quot(L•/S,P) is

an arbitrary closed point. It follows that the codimension of Quot(L•/S,P)− is dimN+
x

which gives the above formula for the Poincare polynomial. �

5.2. The cohomology of Quot(r, dp, dz). In this subsection we describe the Poincaré
polynomial of Quot(r, dp, dz). Consider the morphism ϕ in (3.9). There is a natural
action of the torus Gr

m on the target Quot(Or, dp) = Q(r, dp). This action clearly lifts to
the domain Quot(r, dp, dz) for ϕ.

The previous subsection provides us with a decomposition and an induced formula for
the Poincaré polynomial of Quot(r, dp, dz). Let us recall it quickly in the present context.
There is a bijection between connected components of fixed point locus and partitions of
dp of length r. Given a partition P = (p1 , p2 , · · · , pr), the corresponding component of
Quot(Or, dp)Gm is

Quot(O, p1)× · · · ×Quot(O, pr) = Symp1(X)× · · · × Sympr(X)

= SymPX.

There are universal divisorsDuniv
pi

inside Sympi(X)×X. The component of Quot(r, dp, dz)
Gr

m

corresponding to P, that is

φ−1(Symp1(X)× Symp2(X)× · · · × Sympr(X))

is then identified with Quot(⊕iOSympi (X)×X(Duniv
pi

)/ Sympi(X), dz). As the morphism ϕ
in (3.9) is smooth, and smooth morphisms preserve codimension, we obtain the following
formula for the Poincaré polynomial:

(5.1) P (Quot(r, dp, dz), t) =
∑
P

t2d(P)P (Quot(⊕iOSympi (X)×X(Duniv
pi

)/ Sympi(X), dz), t).

To complete the calculation we need to compute the Poincaré polynomials of

Quot(⊕iOSympi (X)×X(Duniv
pi

)/ SymP(X), dz) .

Once again Proposition 5.2 applies. The connected components of the fixed point loci
are in bijection with partitions of dz of length r. Given a partition Q = (q1 , · · · , qr), the
corresponding connected component is

Quot(OSymp1 (X)×X(−Dp1)/ Symp1(X), q1)×· · ·×Quot(OSympr (X)×X(−Dpr)/ Sympr(X), qr)

which is canonically isomorphic to

SymP,QX := Symp1(X)× · · · × Sympr(X)× Symq1(X)× · · · × Symqr(X) .

We obtain the following formula:

P (Quot(⊕iOSympi(X)×X(Duniv
pi

)/ SymP(X), dz)) =
∑
Q

t2d(Q)P (SymP,Q(X), t) .

Putting this all together we obtain the following:
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Theorem 5.3. The Poincaré polynomial for Quot(r, dp, dz) is

P (Quot(r, dp, dz), t) =
∑
P

∑
Q

t2[d(P)+d(Q)]P (SymP(X), t)P (SymQ(X), t) ,

where P varies over all partitions of dp of length r and Q varies over all partitions of dz
of length r.

Poincaré polynomial of Symn(X) is the coefficient of tn in

(1 + tx)2gX

(1− t)(1− tx2)
,

where gX is the genus of X [Ma, p. 322, (4.3)]. Using this and Theorem 5.3 we get an
explicit expression for P (Quot(r, dp, dz), t).
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