A GENERALIZED QUOT SCHEME AND MEROMORPHIC VORTICES

INDRANIL BISWAS, AJNEET DHILLON, JACQUES HURTUBISE, AND RICHARD A. WENTWORTH

Abstract

Let X be a compact connected Riemann surface. Fix a positive integer r and two nonnegative integers d_{p} and d_{z}. Consider all pairs of the form (\mathcal{F}, f), where \mathcal{F} is a holomorphic vector bundle on X of rank r and degree $d_{z}-d_{p}$, and $$
f: \mathcal{O}_{X}^{\oplus r} \longrightarrow \mathcal{F}
$$ is a meromorphic homomorphism which an isomorphism outside a finite subset of X and has pole (respectively, zero) of total degree d_{p} (respectively, d_{z}). Two such pairs $\left(\mathcal{F}_{1}, f_{1}\right)$ and $\left(\mathcal{F}_{2}, f_{2}\right)$ are called isomorphic if there is a holomorphic isomorphism of \mathcal{F}_{1} with \mathcal{F}_{2} over X that takes f_{1} to f_{2}. We construct a natural compactification of the moduli space equivalence classes pairs of the above type. The Poincaré polynomial of this compactification is computed.

1. Introduction

Take a compact connected Riemann surface X. Fix positive integers r and d. Consider pairs of the form (E, f), where E is a holomorphic vector bundle on X of rank r and degree d, and

$$
f: \mathcal{O}_{X}^{\oplus r} \longrightarrow E
$$

is an \mathcal{O}_{X}-linear homomorphism which is an isomorphism outside a finite subset of X. This implies that the total degree of zeros of f is d. Two such pairs $\left(E_{1}, f_{1}\right)$ and $\left(E_{2}, f_{2}\right)$ are called equivalent if there is a holomorphic isomorphism

$$
\phi: E_{1} \longrightarrow E_{2}
$$

such that $\phi \circ f_{1}=f_{2}$. Such pairs are examples of vortices [BDW], [Br], [BR], [Ba], [EINOS].

For any pair (E, f) of the above type, consider the dual homomorphism

$$
f^{*}: E^{*} \longrightarrow\left(\mathcal{O}_{X}^{\oplus r}\right)^{*}=\mathcal{O}_{X}^{\oplus r} .
$$

The quotient $\mathcal{O}_{X}^{\oplus r} / \operatorname{image}\left(f^{*}\right)$ is an element of the Quot scheme Quot (r, d) that parametrizes all torsion quotients of $\mathcal{O}_{X}^{\oplus r}$ of degree d. Conversely, given any torsion quotient

$$
\mathcal{O}_{X}^{\oplus r} \xrightarrow{\psi} T
$$

of degree d, consider the homomorphism

$$
\mathcal{O}_{X}^{\oplus r}=\left(\mathcal{O}_{X}^{\oplus r}\right)^{*} \xrightarrow{\psi^{\prime}} \operatorname{kernel}(\psi)^{*}
$$

2000 Mathematics Subject Classification. 14H60, 14D21, 14D23 .
Key words and phrases. Generalized Quot scheme, meromorphic vortices, moduli space, Poincaré polynomial.
induced by the inclusion $\operatorname{kernel}(\psi) \hookrightarrow \mathcal{O}_{X}^{\oplus r}$. The pair $\left(\operatorname{kernel}(\psi)^{*}, \psi^{\prime}\right)$ is clearly of the above type. Therefore, the moduli space of equivalence classes of pairs (E, f) is identified with the Quot scheme $\operatorname{Quot}(r, d)$.

Here we consider pairs of the form (E, f), where E is a holomorphic vector bundle on X of rank r and degree d, and

$$
f: \mathcal{O}_{X}^{\oplus r} \longrightarrow E
$$

is an \mathcal{O}_{X}-linear meromorphic homomorphism which is an isomorphism outside a finite subset of X. We assume that the total degree of the poles of the meromorphic homomorphism is d_{p}. This implies that the total degree of the zeros of the meromorphic homomorphism is $d+d_{p}$. As before, two such pairs $\left(E_{1}, f_{1}\right)$ and $\left(E_{2}, f_{2}\right)$ will be called equivalent if there is a holomorphic isomorphism

$$
\phi: E_{1} \longrightarrow E_{2}
$$

such that $\phi \circ f_{1}=f_{2}$. The equivalence classes of pairs can be considered as examples of meromorphic vortices.

We construct a natural compactification of the moduli space of these meromorphic vortices. We compute the Poincaré polynomial of this compactification.

2. Notations and Conventions

Let S be a scheme and $Y \longrightarrow S$ a smooth projective morphism. Given a coherent sheaf \mathcal{F} on Y flat over S and a numerical polynomial $r(t)$, we denote by $\operatorname{Quot}(\mathcal{F} / S, r(t))$ the Grothendieck Quot scheme over S parametrizing quotients of \mathcal{F} with Hilbert polynomial $r(t)$ [Gr]. There is a universal exact sequence on $\operatorname{Quot}(\mathcal{F} / S, r(t)) \times{ }_{S} Y$

$$
0 \longrightarrow \mathcal{K}_{Q u \operatorname{uot}(\mathcal{F} / S, r(t))}^{\text {univ }} \longrightarrow \pi_{Y}^{*} \mathcal{F} \longrightarrow \mathcal{Q}_{\text {Quot }(\mathcal{F} / S, r(t))}^{\text {univ }} \longrightarrow 0
$$

where $\pi_{Y}: \operatorname{Quot}(\mathcal{F} / S, r(t)) \times_{S} Y \longrightarrow Y$ is the natural projection. Often we will just drop the subscripts and write $\mathcal{K}^{\text {univ }}$ or $\mathcal{Q}^{\text {univ }}$ instead. This construction is well behaved with respect to pull-backs, so let us record the following:

Lemma 2.1. For any morphism $g: T \longrightarrow S$, the base change

$$
\operatorname{Quot}\left(g^{*} \mathcal{F} / T, r(t)\right) \cong \operatorname{Quot}(\mathcal{F} / S, r(t)) \times_{S} T
$$

holds.
Proof. This follows by examining the corresponding representable functors.
We will mostly be interested in the case where $Y \longrightarrow S$ is a smooth, connected and of relative dimension one, that is a relative curve, and \mathcal{F} is locally free of rank r. Further, we will only consider torsion quotients of rank zero and degree d. This Quot scheme will be denoted by $\operatorname{Quot}(\mathcal{F} / S, d)$. When $r=1$ and S is a point, then

$$
\operatorname{Quot}(\mathcal{O}, d)=\operatorname{Sym}^{d}(Y)
$$

the d-th symmetric power of Y.

Given an positive integer d by a partition of length $k>0$ of d we mean a sequence $\mathbf{P}=\left(p_{1}, p_{2}, \cdots, p_{k}\right)$ of non-negative integers with $\sum_{i=1}^{k} p_{i}=d$. For such a partition define $d(\mathbf{P}):=\sum_{i=1}^{k}(i-1) p_{i}$. We will write

$$
\operatorname{Sym}^{\mathbf{P}}(Y)=\operatorname{Sym}^{p_{1}}(Y) \times \cdots \times \operatorname{Sym}^{p_{r}}(Y)
$$

3. A relative Quot scheme

Let X be a compact connected Riemann surface. Let \mathcal{E} and \mathcal{F} be two holomorphic vector bundles on X of common rank r. Take a dense open subset $U \subset X$, such that the complement $S:=X \backslash U$ is a finite set, and take an isomorphism of coherent analytic sheaves

$$
f:\left.\left.\mathcal{E}\right|_{U} \longrightarrow \mathcal{F}\right|_{U}
$$

over U. This homomorphism f will be called meromorphic if there is a positive integer n such that f extends to a homomorphism of coherent analytic sheaves

$$
\widehat{f}: \mathcal{E} \longrightarrow \mathcal{F} \otimes \mathcal{O}_{X}(n S) \supset \mathcal{F}
$$

over X, where S is the reduced divisor defined by the finite subset S. Note that since the divisor S is effective, we have $\mathcal{F} \subset \mathcal{F} \otimes \mathcal{O}_{X}(n S)$. Therefore, f is meromorphic if and only if the homomorphism f is algebraic with respect to the algebraic structures on $\left.\mathcal{E}\right|_{U}$ and $\left.\mathcal{F}\right|_{U}$ given by the algebraic structures on \mathcal{E} and \mathcal{F} respectively.

Take a meromorphic homomorphism $f_{\widehat{\jmath}}$ as above. We note that the extension \widehat{f} is uniquely determined by f because f and \widehat{f} coincide over U. The inverse image

$$
\mathcal{E}(f):=\widehat{f}^{-1}(\mathcal{F}) \subset \mathcal{E}
$$

(recall that $\mathcal{F} \subset \mathcal{F} \otimes \mathcal{O}_{X}(n S)$) is clearly independent of the choice of n. We note that both $\mathcal{E}(f)$ and $\widehat{f}(\mathcal{E}(f))$ are holomorphic vector bundles on X because they are coherent analytic subsheaves of holomorphic vector bundles. Both of then are of rank r, and the restriction

$$
\begin{equation*}
\left.\widehat{f}\right|_{\mathcal{E}(f)}: \mathcal{E}(f) \longrightarrow \widehat{f}(\mathcal{E}(f)) \tag{3.1}
\end{equation*}
$$

is an isomorphism of holomorphic vector bundles. Define

$$
\begin{equation*}
\mathcal{Q}_{p}(f):=\mathcal{E} / \mathcal{E}(f) \quad \text { and } \quad \mathcal{Q}_{z}(f):=\mathcal{F} /(\widehat{f}(\mathcal{E}(f))) \tag{3.2}
\end{equation*}
$$

(the subscripts " p " and " z " stand for "pole" and "zero" respectively). We note that both $\mathcal{Q}_{p}(f)$ and $\mathcal{Q}_{z}(f)$ are torsion coherent analytic sheaves on X. In particular, their supports are finite subsets of X. From (3.2) it follows that

$$
\begin{gather*}
\operatorname{degree}\left(\mathcal{Q}_{p}(f)\right)=\operatorname{degree}(\mathcal{E})-\operatorname{degree}(\mathcal{E}(f)) \quad \text { and } \tag{3.3}\\
\operatorname{degree}\left(\mathcal{Q}_{z}(f)\right)=\operatorname{degree}(\mathcal{F})-\operatorname{degree}(\widehat{f}(\mathcal{E}(f)))
\end{gather*}
$$

Fix positive integers r, d_{p} and d_{z}. Set the domain \mathcal{E} to be the trivial vector bundle $\mathcal{O}_{X}^{\oplus r}$ of rank r. Consider all triples of the form (\mathcal{F}, U, f), where

- \mathcal{F} is a holomorphic vector bundle on X of rank r,
- U is the complement of a finite subset of X, and
- $f:\left.\mathcal{O}_{X}^{\oplus r}\right|_{U}=\left.\mathcal{O}_{U}^{\oplus r} \longrightarrow \mathcal{F}\right|_{U}$ is a meromorphic homomorphism such that

$$
\operatorname{degree}\left(\mathcal{Q}_{p}(f)\right)=d_{p} \quad \text { and } \quad \operatorname{degree}\left(\mathcal{Q}_{z}(f)\right)=d_{z}
$$

Since $\left.\widehat{f}\right|_{\mathcal{E}(f)}$ in (3.1) is an isomorphism, from (3.3) we conclude that

$$
\begin{equation*}
\operatorname{degree}(\mathcal{F})=d_{z}-d_{p}+\operatorname{degree}\left(\mathcal{O}_{X}^{\oplus r}\right)=d_{z}-d_{p} \tag{3.4}
\end{equation*}
$$

Two such triples $\left(\mathcal{F}_{1}, U_{1}, f_{1}\right)$ and $\left(\mathcal{F}_{2}, U_{2}, f_{2}\right)$ will be called equivalent if there is a holomorphic isomorphism of vector bundles over X

$$
\beta: \mathcal{F}_{1} \longrightarrow \mathcal{F}_{2}
$$

such that

$$
\beta \circ\left(\left.f_{1}\right|_{U_{1} \cap U_{2}}\right)=\left.f_{2}\right|_{U_{1} \cap U_{2}} .
$$

Therefore, the equivalence class of (\mathcal{F}, U, f) depends only on (\mathcal{F}, f) and it is independent of U. More precisely, (\mathcal{F}, U, f) is equivalent to $\left(\mathcal{F}, W,\left.f\right|_{W}\right)$ for every $W \subset U$ such that the complement $U \backslash W$ is a finite set.

Let

$$
\begin{equation*}
\mathrm{Q}^{0}=\mathrm{Q}_{X}^{0}\left(r, d_{p}, d_{z}\right) \tag{3.5}
\end{equation*}
$$

be the space of all equivalence classes of triples of the above form. We will embed Q^{0} as a Zariski open subset of a smooth complex projective variety.

Take any triple (\mathcal{F}, U, f) as above that is represented by a point of Q^{0}. Consider the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{E}(f):=\operatorname{kernel}\left(q_{p}\right) \longrightarrow \mathcal{E}=\mathcal{O}_{X}^{\oplus r} \xrightarrow{q_{p}} \mathcal{Q}_{p}(f) \longrightarrow 0 \tag{3.6}
\end{equation*}
$$

where q_{p} denotes the projection to the quotient in (3.2). We also have

$$
\mathcal{E}(f)=\widehat{f}(\mathcal{E}(f)) \hookrightarrow \mathcal{F}
$$

(recall that $\left.\widehat{f}\right|_{\mathcal{E}(f)}$ in (3.1) is an isomorphism). Let

$$
\begin{equation*}
0 \longrightarrow \mathcal{F}^{*} \longrightarrow \mathcal{E}(f)^{*} \tag{3.7}
\end{equation*}
$$

be the dual of the above inclusion of $\mathcal{E}(f)$ in \mathcal{F}. From (3.6) we have $\operatorname{degree}\left(\mathcal{E}(f)^{*}\right)=$ $\operatorname{degree}\left(\mathcal{Q}_{p}(f)\right)=d_{p}$. Therefore, from (3.4) it follows that

$$
\operatorname{degree}\left(\mathcal{E}(f)^{*} / \mathcal{F}^{*}\right)=\operatorname{degree}\left(\mathcal{E}(f)^{*}\right)-\operatorname{degree}\left(\mathcal{F}^{*}\right)=d_{p}+d_{z}-d_{p}=d_{z}
$$

as degree $\left(\mathcal{F}^{*}\right)=-\operatorname{degree}(\mathcal{F})$. These imply that we can recover the equivalence class of (\mathcal{F}, f) once we know the following two:

- the torsion quotient $\mathcal{Q}_{p}(f)$ of $\mathcal{O}_{X}^{\oplus r}$ of degree d_{p}, and
- the torsion quotient $\mathcal{E}(f)^{*} / \mathcal{F}^{*}$ of $\mathcal{E}(f)^{*}$ of degree d_{z}.
(It should be clarified that "knowing the torsion quotient $\mathcal{Q}_{p}(f)$ " means knowing the sheaf $\mathcal{Q}_{p}(f)$ along with the surjective homomorphism $\mathcal{O}_{X}^{\oplus r} \longrightarrow \mathcal{Q}_{p}(f)$; similarly "knowing the torsion quotient $\mathcal{E}(f)^{*} / \mathcal{F}^{* \prime \prime}$ means knowing the sheaf $\mathcal{E}(f)^{*} / \mathcal{F}^{*}$ along with the surjective homomorphism from $\mathcal{E}(f)^{*}$ to it.) Indeed, once we know $\mathcal{Q}_{p}(f)$, we know the kernel $\mathcal{E}(f)$ and hence know $\mathcal{E}(f)^{*}$; if we know the quotient $\mathcal{E}(f)^{*} / \mathcal{F}^{*}$, then we know the subsheaf \mathcal{F}^{*} of $\mathcal{E}(f)^{*}$. The dual of this inclusion $\mathcal{F}^{*} \hookrightarrow \mathcal{E}(f)^{*}$, namely the homomorphism

$$
\mathcal{E}(f) \longrightarrow \mathcal{F}
$$

gives the meromorphic homomorphism f. In other words, we have the diagram

Let $\operatorname{Quot}\left(r, d_{p}\right)$ be the Quot scheme parametrizing the torsion quotients of $\mathcal{O}_{X}^{\oplus r}$ of degree d_{p}. We have the tautological short exact sequence of coherent analytic sheaves on $X \times \mathcal{Q}\left(r, d_{p}\right)$

$$
\begin{equation*}
0 \longrightarrow \mathcal{K}^{\text {univ }} \longrightarrow p_{X}^{*} \mathcal{O}_{X}^{\oplus r} \longrightarrow \mathcal{Q}^{\text {univ }} \longrightarrow 0 \tag{3.8}
\end{equation*}
$$

where p_{X} is the projection of $X \times \operatorname{Quot}\left(r, d_{p}\right)$ to X. We write $\mathcal{K}=\mathcal{K}^{\text {univ }}$. Now consider the dual vector bundle

$$
\mathcal{K}^{*} \longrightarrow X \times \operatorname{Quot}\left(r, d_{p}\right) \xrightarrow{p_{Q}} \operatorname{Quot}\left(r, d_{p}\right)
$$

where p_{Q} is the natural projection. Using p_{Q}, we will consider \mathcal{K}^{*} as a family of vector bundles on X parametrized by $\operatorname{Quot}\left(r, d_{p}\right)$. For any point $y \in \operatorname{Quot}\left(r, d_{p}\right)$, the vector bundle $\left.\mathcal{K}^{*}\right|_{X \times\{y\}}$ over X will be denoted by $\mathcal{K}_{\mid y}^{*}$. Let

$$
\begin{equation*}
\varphi: \operatorname{Quot}\left(r, d_{p}, d_{z}\right):=\operatorname{Quot}\left(\mathcal{K}^{*} / \operatorname{Quot}\left(r, d_{p}\right), d_{z}\right) \longrightarrow \mathcal{Q}\left(r, d_{p}\right) \tag{3.9}
\end{equation*}
$$

be the relative Quot scheme over $\operatorname{Quot}\left(r, d_{p}\right)$, for the family \mathcal{K}^{*}, parametrizing the torsion quotients of degree d_{z}. Therefore, for any point $y \in \operatorname{Quot}\left(r, d_{p}\right)$, the fiber $\varphi^{-1}(y)$ is the Quot scheme parametrizing the torsion quotients of degree d_{z} of the vector bundle $\mathcal{K}_{\mid y}^{*}$.

Both $\operatorname{Quot}\left(r, d_{p}\right)$ and the fibers of φ are irreducible smooth projective varieties. The morphism φ is smooth. Therefore, the projective variety $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$ is irreducible and smooth.

Consider Q^{0} defined in (3.5). We have a map

$$
\eta^{\prime}: \mathrm{Q}^{0} \longrightarrow \operatorname{Quot}\left(r, d_{p}\right)
$$

that sends any triple $(\mathcal{F}, U, f) \in \mathrm{Q}_{0}$ to the point representing the quotient $Q_{p}(f)$ in (3.6). Let

$$
\begin{equation*}
\eta: \mathrm{Q}^{0} \longrightarrow \operatorname{Quot}\left(\mathcal{K}^{*}, d_{z}\right)=\operatorname{Quot}\left(r, d_{p}, d_{z}\right) \tag{3.10}
\end{equation*}
$$

be the map that sends any point $\alpha=(\mathcal{F}, U, f) \in \mathrm{Q}_{0}$ to the point of $\varphi^{-1}\left(\eta^{\prime}(\alpha)\right)$ that represents the quotient $\mathcal{E}(f)^{*} / \mathcal{F}^{*}$ in (3.7). This map η is injective because, as observed earlier, the equivalence class of the pair (\mathcal{F}, f) can be recovered from the quotient $\mathcal{Q}_{p}(f)$ of $\mathcal{O}_{X}^{\oplus r}$ and the quotient $\mathcal{E}(f)^{*} / \mathcal{F}^{*}$ of $\mathcal{E}(f)^{*}$. The image of η is clearly a Zariski open subset of $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$.

Let $\bigwedge^{r} \mathcal{K} \longrightarrow \bigwedge^{r} p_{X}^{*} \mathcal{O}_{X}^{\oplus r}=p_{X}^{*} \mathcal{O}_{X}$ be the r-th exterior power of the homomorphism in (3.8). Considering it as a family of subsheaves of \mathcal{O}_{X} of degree $-d_{p}$ parametrized by Quot $\left(r, d_{p}\right)$, we have the corresponding classifying morphism

$$
\delta_{1}^{\prime}: \operatorname{Quot}\left(r, d_{p}\right) \longrightarrow \operatorname{Quot}\left(1, d_{p}\right)=\operatorname{Sym}^{d_{p}}(X) .
$$

Let

$$
\begin{equation*}
\delta_{1}:=\delta_{1}^{\prime} \circ \varphi: \operatorname{Quot}\left(r, d_{p}, d_{z}\right)=: Q \longrightarrow \operatorname{Sym}^{d_{p}}(X) \tag{3.11}
\end{equation*}
$$

be the composition, where φ is constructed in (3.9). Next, consider the tautological subsheaf

$$
\mathcal{S} \hookrightarrow\left(\operatorname{Id}_{X} \times \varphi\right)^{*} \mathcal{K}^{*}
$$

on $X \times \mathrm{Q}$. Let $\bigwedge^{r} \mathcal{S} \hookrightarrow \bigwedge^{r}\left(\operatorname{Id}_{X} \times \varphi\right)^{*} \mathcal{K}^{*}$ be the r-th exterior power of the above inclusion. Let

$$
\begin{equation*}
\delta_{2}: \mathrm{Q} \longrightarrow \operatorname{Sym}^{d_{z}}(X) \tag{3.12}
\end{equation*}
$$

be the morphism that sends any $y \in \mathrm{Q}$ to the scheme theoretic support of the quotient sheaf

$$
\left(\bigwedge^{r}\left(\operatorname{Id}_{X} \times \varphi\right)^{*} \mathcal{K}_{\mid \varphi(y)}^{*}\right) /\left(\left.\bigwedge^{r} \mathcal{S}\right|_{X \times\{y\}}\right) \longrightarrow X
$$

Now define the morphism

$$
\begin{equation*}
\delta:=\left(\delta_{1}, \delta_{2}\right): \operatorname{Quot}\left(r, d_{p}, d_{q}\right)=\mathrm{Q} \longrightarrow \operatorname{Sym}^{d_{p}}(X) \times \operatorname{Sym}^{d_{z}}(X), \tag{3.13}
\end{equation*}
$$

where δ_{1} and δ_{2} are constructed in (3.11) and (3.12) respectively. It can be shown that δ is surjective. In fact, in Section 4 we will construct, and use, a section of δ.
Remark 3.1. Let $\mathcal{M}_{X}\left(r, d_{z}-d_{p}\right)$ denote the moduli stack of vector bundles on X of rank r and degree $d_{z}-d_{p}$. Since there is a universal bundle over $X \times \operatorname{Quot}\left(r, d_{p}, d_{q}\right)$, we get a morphism

$$
\operatorname{Quot}\left(r, d_{p}, d_{q}\right) \longrightarrow \mathcal{M}_{X}\left(r, d_{z}-d_{p}\right)
$$

4. Fundamental group of $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$

Proposition 4.1. The homomorphism between fundamental groups induced by the morphism δ in (3.13) is an isomorphism.

Proof. We will first construct a section of δ. Let

$$
D\left(d_{p}\right) \subset X \times \operatorname{Sym}^{d_{p}}(X)
$$

be the divisor consisting of all $\left(x,\left\{y_{1}, \cdots, y_{d_{p}}\right\}\right)$ such that $x \in\left\{y_{1}, \cdots, y_{d_{p}}\right\}$. Then the subsheaf

$$
\mathcal{O}_{X \times \operatorname{Sym}^{d_{p}}(X)}\left(-D\left(d_{p}\right)\right) \oplus \mathcal{O}_{X \times \operatorname{Sym}^{d_{p}}(X)}^{\oplus r-1} \subset \mathcal{O}_{X \times \operatorname{Sym}^{d_{p}}(X)}^{\oplus r}
$$

produces a classifying morphism

$$
\begin{equation*}
\theta_{1}: \operatorname{Sym}^{d_{p}}(X) \longrightarrow \operatorname{Quot}\left(r, d_{p}\right) \tag{4.1}
\end{equation*}
$$

Let ξ_{1} (respectively, ξ_{2}) denote the projection of $\operatorname{Sym}^{d_{p}}(X) \times \operatorname{Sym}^{d_{z}}(X)$ to $\operatorname{Sym}^{d_{p}}(X)$ (respectively, $\operatorname{Sym}^{d_{z}}(X)$). Like before, $D\left(d_{z}\right) \subset X \times \operatorname{Sym}^{d_{p}}(X)$ be the divisor consisting of all $\left(x,\left\{y_{1}, \cdots, y_{d_{z}}\right\}\right)$ such that $x \in\left\{y_{1}, \cdots, y_{d_{z}}\right\}$. The subsheaf

$$
\left(\left(\operatorname{Id}_{X} \times \xi_{1}\right)^{*}\left(\mathcal{O}_{X \times \operatorname{Sym}^{d_{p}(X)}}\left(D\left(d_{p}\right)\right)\right) \otimes\left(\operatorname{Id}_{X} \times \xi_{2}\right)^{*}\left(\mathcal{O}_{X \times \operatorname{Sym}^{d_{z}(X)}}\left(-D\left(d_{z}\right)\right)\right)\right)
$$

$$
\oplus\left(\mathcal{O}_{X \times \operatorname{Sym}^{d_{p}}(X) \operatorname{Sym}^{d_{z}}(X)}^{\oplus r-1}\right)^{*} \subset\left(\operatorname{Id}_{X} \times \xi_{1}\right)^{*}\left(\mathcal{O}_{X \times \operatorname{Sym}^{d_{p}}(X)}\left(-D\left(d_{p}\right)\right) \oplus \mathcal{O}_{X \times \operatorname{Sym}^{d_{p}}(X)}^{\oplus r-1}\right)^{*}
$$

produces a classifying morphism

$$
\begin{equation*}
\theta: \operatorname{Sym}^{d_{p}}(X) \times \operatorname{Sym}^{d_{z}}(X) \longrightarrow \operatorname{Quot}\left(r, d_{p}, d_{q}\right) \tag{4.2}
\end{equation*}
$$

We note that $\varphi \circ \theta=\theta_{1}$, where φ and θ_{1} are the morphisms constructed in (3.9) and (4.1) respectively.

It is straightforward to check that

$$
\begin{equation*}
\delta \circ \theta=\operatorname{Id}_{\operatorname{Sym}^{d_{p}}(X) \times \operatorname{Sym}^{d_{z}}(X)}, \tag{4.3}
\end{equation*}
$$

where δ is constructed in (3.13). In view of this section θ, we conclude that the induced homomorphism between fundamental groups

$$
\delta_{*}: \pi_{1}\left(\operatorname{Quot}\left(r, d_{p}, d_{q}\right)\right) \longrightarrow \pi_{1}\left(\operatorname{Sym}^{d_{p}}(X) \times \operatorname{Sym}^{d_{z}}(X)\right)
$$

is surjective (the base points of fundamental groups are suppressed in the notation).
Let

$$
\begin{equation*}
\left.U \subset \operatorname{Sym}^{d_{p}}(X) \times \operatorname{Sym}^{d_{z}}(X)\right) \tag{4.4}
\end{equation*}
$$

be the Zariski open subset consisting of all

$$
\left.(x, y)=\left(\left\{x_{1}, \cdots, x_{d_{p}}\right\},\left\{y_{1}, \cdots, y_{d_{z}}\right\}\right) \in \operatorname{Sym}^{d_{p}}(X) \times \operatorname{Sym}^{d_{z}}(X)\right)
$$

such that the $d_{p}+d_{z}$ points $\left\{x_{1}, \cdots, x_{d_{p}}, y_{1}, \cdots, y_{d_{z}}\right\}$ are all distinct, equivalently, the effective divisor $x+y$ is reduced. Let

$$
\begin{equation*}
\theta_{0}:=\left.\theta\right|_{U}: U \longrightarrow \operatorname{Quot}\left(r, d_{p}, d_{z}\right) \tag{4.5}
\end{equation*}
$$

be the restriction of the map θ in (4.2). Also, consider the restriction

$$
\begin{equation*}
\delta_{0}:=\left.\delta\right|_{\delta^{-1}(U)}: \delta^{-1}(U) \longrightarrow U \tag{4.6}
\end{equation*}
$$

Every fiber of δ_{0} is identified with $\left(\mathbb{P}_{\mathbb{C}}^{r-1}\right)^{d_{p}} \times\left(P_{\mathbb{C}}^{r-1}\right)^{d_{z}}$, where $\mathbb{P}_{\mathbb{C}}^{r-1}$ is the projective space parametrizing the hyperplanes in \mathbb{C}^{r} and $P_{\mathbb{C}}^{r-1}$ is the projective space parametrizing the lines in \mathbb{C}^{r} (so $P_{\mathbb{C}}^{r-1}$ parametrizes the hyperplanes in $\left.\left(\mathbb{C}^{r}\right)^{*}\right)$. From the homotopy exact sequence associated to δ_{0} it follows that the induced homomorphism of fundamental groups

$$
\delta_{0, *}: \pi_{1}\left(\delta^{-1}(U)\right) \longrightarrow \pi_{1}(U)
$$

is an isomorphism. The variety $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$ is smooth, and $\delta^{-1}(U)$ is a nonempty Zariski open subset of it. Therefore, the homomorphism

$$
\iota_{*}: \pi_{1}\left(\delta^{-1}(U)\right) \longrightarrow \pi_{1}\left(\operatorname{Quot}\left(r, d_{p}, d_{z}\right)\right)
$$

induced by the inclusion $\iota: \varphi^{-1}(U) \hookrightarrow \operatorname{Quot}\left(r, d_{p}, d_{z}\right)$ is surjective. Since $\delta_{0, *}$ is an isomorphism, this implies that the homomorphism

$$
\theta_{0, *}: \pi_{1}(U) \longrightarrow \pi_{1}\left(\operatorname{Quot}\left(r, d_{p}, d_{z}\right)\right)
$$

induced in θ_{0} in (4.5) is surjective. Since θ_{0} extends to θ, this immediately implies that the homomorphism

$$
\theta_{*}: \pi_{1}\left(\operatorname{Sym}^{d_{p}}(X) \times \operatorname{Sym}^{d_{z}}(X)\right) \longrightarrow \pi_{1}\left(\operatorname{Quot}\left(r, d_{p}, d_{z}\right)\right.
$$

induced in θ in (4.2) is surjective. Since θ_{*} is surjective, and the composition $\delta_{*} \circ \theta_{*}$ is injective (see (4.3)) we conclude that δ_{*} is also injective.

5. Cohomology of $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$

5.1. Generalization of a theorem of Bifet. Let $S_{1}, S_{2}, \cdots, S_{k}$ be a smooth connected projective varieties over \mathbb{C}. Fix some line bundles \mathcal{L}_{i} on $S_{i} \times X$ of relative degree d_{i} over S_{i}. In other words

$$
\operatorname{deg}\left(\left.\mathcal{L}_{i}\right|_{s \times X}\right)=d_{i}
$$

for each point $s \in S_{i}$. Set $S=S_{1} \times \cdots \times S_{k}$. Let

$$
\pi_{S_{i} \times X}: S \times X \longrightarrow S_{i} \times X
$$

be the natural projection. Define

$$
\widetilde{\mathcal{L}}_{i}:=\pi_{S_{i} \times X}^{*} \mathcal{L}_{i} .
$$

Let

$$
\phi: \operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right) \longrightarrow S
$$

be the relative Quot scheme that parametrizes the torsion quotients of degree d. So for any $s=\left(s_{1}, \cdots, s_{k}\right) \in S$, the fiber $\phi^{-1}(s)$ parametrizes the torsion quotients of $\left.\oplus_{i=1}^{k} \mathcal{L}_{i}\right|_{s_{i} \times X}$ of degree d. By deformation theory, ϕ is a smooth morphism of relative dimension $k d$, so $\operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)$ is smooth of dimension $\operatorname{dim}(S)+k d$. The torus \mathbb{G}_{m}^{k} acts on $\operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)$ via its action on $\bigoplus_{i=1}^{k} \widetilde{\mathcal{L}_{i}}$.

For any positive integer p, let $\operatorname{Quot}\left(\mathcal{L}_{i} / S_{i}, p\right) \longrightarrow S_{i}$ denote the relative Quot scheme parametrizing the torsion quotients of \mathcal{L}_{i} / S_{i} of degree p. So the fiber of $\operatorname{Quot}\left(\mathcal{L}_{i} / S_{i}, p\right)$ over any $s \in S_{i}$ parametrizes the torsion quotients of $\left.\mathcal{L}_{i}\right|_{s \times X}$ of degree p.

Proposition 5.1. There is a bijection between the partitions $\mathbf{P}=\left(p_{1}, p_{2}, \cdots, p_{k}\right)$ of d of length k and the connected components of the fixed point loci of the \mathbb{G}_{m}^{k} action on Quot $\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)$. The component corresponding to the partition $\sum_{i=1}^{k} p_{i}=d$ is the product of Quot schemes

$$
\operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right):=\operatorname{Quot}\left(\mathcal{L}_{1} / S_{1}, p_{1}\right) \times \operatorname{Quot}\left(\mathcal{L}_{2} / S_{2}, p_{2}\right) \times \ldots \times \operatorname{Quot}\left(\mathcal{L}_{k} / S_{k}, p_{k}\right)
$$

with the obvious structure morphism to S.
Proof. On applies the argument used to prove Lemme 1 in [Bif].
As all schemes and morphisms are assumed to be projective it is possible to choose a one parameter subgroup

$$
\mathbb{G}_{m} \hookrightarrow \mathbb{G}_{m}^{k}
$$

so that

$$
\operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)^{\mathbb{G}_{m}}=\operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)^{\mathbb{G}_{m}^{k}} .
$$

Further, the above one-parameter subgroup can be chosen to be given by an increasing sequence of weights $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{k}$.

There is an induced action of \mathbb{G}_{m} on the tangent space at a fixed point x. The action preserves the normal space to the fixed point locus and we wish to describe the subspace of positive weights.

Take a partition $\mathbf{P}=\left(p_{1}, \cdots, p_{k}\right)$ of D. As before, let

$$
\operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right) \subset \operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)^{\mathbb{G}_{m}^{k}}
$$

be the connected component corresponding to \mathbf{P}. For a point $x \in \operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right)$, its image in S_{i} will be denoted by x_{i}. The line bundle $\left.\mathcal{L}_{i}\right|_{x_{i} \times X}$ on X will be denoted by \mathcal{L}_{i}^{x}. The point x_{i} is given by the exact sequence

$$
0 \longrightarrow \mathcal{L}_{i}^{x} \otimes \mathcal{O}_{X}\left(-D_{i}\right) \longrightarrow \mathcal{L}_{i}^{x} \longrightarrow \mathcal{O}_{D_{i}} \longrightarrow 0
$$

where D_{i} is an effective divisor on X with $\operatorname{deg} D_{i}=p_{i}$. The relative tangent bundle for the projection ϕ is

$$
T_{x} \operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right) / S=\bigoplus_{i, j=1}^{k} \operatorname{Hom}\left(\mathcal{L}_{i}^{x} \otimes \mathcal{O}_{X}\left(-D_{i}\right), \mathcal{O}_{D_{j}}\right)
$$

On the other hand, the relative tangent space to the fixed point locus $\operatorname{Quot}(\mathcal{L} \cdot / S, \mathbf{P})$ is

$$
T_{x} \operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right) / S=\bigoplus_{i=1}^{k} \operatorname{Hom}\left(\mathcal{L}_{i}^{x} \otimes \mathcal{O}_{X}\left(-D_{i}\right), \mathcal{O}_{D_{i}}\right)
$$

Consequently, the normal bundle N to $\operatorname{Quot}(\mathcal{L} . / S, \mathbf{P}) \subset \operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)$ is

$$
N_{x}=\bigoplus_{i \neq j} \operatorname{Hom}\left(\mathcal{L}_{i}^{x} \otimes \mathcal{O}_{X}\left(-D_{i}, \mathcal{O}_{D_{j}}\right)\right.
$$

Also, the subspace of positive weights is

$$
N_{x}^{+}=\bigoplus_{i<j} \operatorname{Hom}\left(\mathcal{L}_{i}^{x} \otimes \mathcal{O}_{X}\left(-D_{i}, \mathcal{O}_{D_{j}}\right)\right.
$$

because the torus acts on $\operatorname{Hom}\left(\mathcal{L}_{i}^{x} \otimes \mathcal{O}_{X}\left(-D_{i}, \mathcal{O}_{D_{j}}\right)\right.$ with weight $\lambda_{j}-\lambda_{i}$. It follows that

$$
d(\mathbf{P}):=\operatorname{dim} N_{x}^{+}=\sum_{i=1}^{k}(i-1) p_{i}
$$

Proposition 5.2. The Quot schemes for line bundles

$$
\operatorname{Quot}\left(\mathcal{L}_{i} / S_{i}, p_{i}\right)=\operatorname{Quot}\left(\mathcal{O} / S_{i}, p_{i}\right)=\operatorname{Sym}^{p_{i}}(X) \times S_{i}
$$

The Poincaré polynomial of $\operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)$ is given by

$$
\begin{aligned}
P\left(\operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right), t\right) & =\sum_{\mathbf{P}} t^{2 d(\mathbf{P})} P\left(\operatorname{Quot}\left(\mathcal{L}_{i} / S_{i}, p_{i}\right), t\right) \\
& =\sum_{\mathbf{P}} t^{2 d(\mathbf{P})} P\left(S_{i}, t\right) P\left(\operatorname{Sym}^{p_{i}}(X), t\right)
\end{aligned}
$$

where the sum is over all partitions of d of length k.
Proof. The isomorphism $\operatorname{Quot}\left(\mathcal{O} / S_{i}, p_{i}\right) \xrightarrow{\sim} \operatorname{Quot}\left(\mathcal{L}_{i} / S_{i}, p_{i}\right)$ is by tensoring exact sequences with \mathcal{L}_{i}. The second equality is via (2.1).

We need to recall the theorems of [Bia] and [Ki] in our present context. The torus action determines two stratifications of the variety $\operatorname{Quot}\left(\oplus_{i} \widetilde{\mathcal{L}}_{i} / S, d\right)$. The strata are in bijection with connected components of the fixed point locus which are in turn in bijection with partitions of d of length k. Given such a partition \mathbf{P}, its corresponding strata are

$$
\operatorname{Quot}\left(\mathcal{L}_{\mathbf{\bullet}} / S, \mathbf{P}\right)^{+}:=\left\{x \mid \lim _{t \rightarrow 0} t . x \in \operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right)\right\}
$$

and

$$
\operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right)^{-}:=\left\{x \mid \lim _{t \rightarrow \infty} t \cdot x \in \operatorname{Quot}(\mathcal{L} . / S, \mathbf{P})\right\}
$$

Both of these stratifications are known to be perfect. There are affine fibrations

$$
\operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right)^{+} \longrightarrow \operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right) \quad \text { and } \quad \operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right)^{-} \longrightarrow \operatorname{Quot}(\mathcal{L} . / S, \mathbf{P})
$$

of relative dimensions $\operatorname{dim} N_{x}^{+}$and $\operatorname{dim} N_{x}^{-}$respectively, where $x \in \operatorname{Quot}\left(\mathcal{L}_{\bullet} / S, \mathbf{P}\right)$ is an arbitrary closed point. It follows that the codimension of $\operatorname{Quot}(\mathcal{L} . / S, \mathbf{P})^{-}$is $\operatorname{dim} N_{x}^{+}$ which gives the above formula for the Poincare polynomial.
5.2. The cohomology of $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$. In this subsection we describe the Poincaré polynomial of $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$. Consider the morphism φ in (3.9). There is a natural action of the torus \mathbb{G}_{m}^{r} on the target $\operatorname{Quot}\left(\mathcal{O}^{r}, d_{p}\right)=\mathcal{Q}\left(r, d_{p}\right)$. This action clearly lifts to the domain $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$ for φ.

The previous subsection provides us with a decomposition and an induced formula for the Poincaré polynomial of $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$. Let us recall it quickly in the present context. There is a bijection between connected components of fixed point locus and partitions of d_{p} of length r. Given a partition $\mathbf{P}=\left(p_{1}, p_{2}, \cdots, p_{r}\right)$, the corresponding component of $\operatorname{Quot}\left(\mathcal{O}^{r}, d_{p}\right)^{\mathbb{G}_{m}}$ is

$$
\begin{aligned}
\operatorname{Quot}\left(\mathcal{O}, p_{1}\right) \times \cdots \times \operatorname{Quot}\left(\mathcal{O}, p_{r}\right) & =\operatorname{Sym}^{p_{1}}(X) \times \cdots \times \operatorname{Sym}^{p_{r}}(X) \\
& =\operatorname{Sym}^{\mathrm{P}} X .
\end{aligned}
$$

There are universal divisors $D_{p_{i}}^{\text {univ }}$ inside $\operatorname{Sym}^{p_{i}}(X) \times X$. The component of $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)^{\mathbb{G}_{m}^{r}}$ corresponding to \mathbf{P}, that is

$$
\phi^{-1}\left(\operatorname{Sym}^{p_{1}}(X) \times \operatorname{Sym}^{p_{2}}(X) \times \cdots \times \operatorname{Sym}^{p_{r}}(X)\right)
$$

is then identified with $\operatorname{Quot}\left(\oplus_{i} \mathcal{O}_{\text {Sym }^{p_{i}}(X) \times X}\left(D_{p_{i}}^{\text {univ }}\right) / \operatorname{Sym}^{p_{i}}(X), d_{z}\right)$. As the morphism φ in (3.9) is smooth, and smooth morphisms preserve codimension, we obtain the following formula for the Poincaré polynomial:

$$
\begin{equation*}
P\left(\operatorname{Quot}\left(r, d_{p}, d_{z}\right), t\right)=\sum_{\mathbf{P}} t^{2 d(\mathbf{P})} P\left(\operatorname{Quot}\left(\oplus_{i} \mathcal{O}_{\operatorname{Sym}^{p_{i}}(X) \times X}\left(D_{p_{i}}^{\text {univ }}\right) / \operatorname{Sym}^{p_{i}}(X), d_{z}\right), t\right) \tag{5.1}
\end{equation*}
$$

To complete the calculation we need to compute the Poincaré polynomials of

$$
\operatorname{Quot}\left(\oplus_{i} \mathcal{O}_{\operatorname{Sym}^{p_{i}}(X) \times X}\left(D_{p_{i}}^{\text {univ }}\right) / \operatorname{Sym}^{\mathbf{P}}(X), d_{z}\right)
$$

Once again Proposition 5.2 applies. The connected components of the fixed point loci are in bijection with partitions of d_{z} of length r. Given a partition $\mathbf{Q}=\left(q_{1}, \cdots, q_{r}\right)$, the corresponding connected component is
$\operatorname{Quot}\left(\mathcal{O}_{\operatorname{Sym}^{p_{1}}(X) \times X}\left(-D_{p_{1}}\right) / \operatorname{Sym}^{p_{1}}(X), q_{1}\right) \times \cdots \times \operatorname{Quot}\left(\mathcal{O}_{\operatorname{Sym}^{p_{r}}(X) \times X}\left(-D_{p_{r}}\right) / \operatorname{Sym}^{p_{r}}(X), q_{r}\right)$ which is canonically isomorphic to

$$
\operatorname{Sym}^{\mathbf{P}, \mathbf{Q}} X:=\operatorname{Sym}^{p_{1}}(X) \times \cdots \times \operatorname{Sym}^{p_{r}}(X) \times \operatorname{Sym}^{q_{1}}(X) \times \cdots \times \operatorname{Sym}^{q_{r}}(X)
$$

We obtain the following formula:

$$
P\left(\operatorname{Quot}\left(\oplus_{i} \mathcal{O}^{\operatorname{Sym}^{p_{i}}}(X) \times X\left(D_{p_{i}}^{\text {univ }}\right) / \operatorname{Sym}^{\mathbf{P}}(X), d_{z}\right)\right)=\sum_{\mathbf{Q}} t^{2 d(\mathbf{Q})} P\left(\operatorname{Sym}^{\mathbf{P}, \mathbf{Q}}(X), t\right)
$$

Putting this all together we obtain the following:

Theorem 5.3. The Poincaré polynomial for $\operatorname{Quot}\left(r, d_{p}, d_{z}\right)$ is

$$
P\left(\operatorname{Quot}\left(r, d_{p}, d_{z}\right), t\right)=\sum_{\mathbf{P}} \sum_{\mathbf{Q}} t^{2[d(\mathbf{P})+d(\mathbf{Q})]} P\left(\operatorname{Sym}^{\mathbf{P}}(X), t\right) P\left(\operatorname{Sym}^{\mathbf{Q}}(X), t\right),
$$

where \mathbf{P} varies over all partitions of d_{p} of length r and \mathbf{Q} varies over all partitions of d_{z} of length r.

Poincaré polynomial of $\operatorname{Sym}^{n}(X)$ is the coefficient of t^{n} in

$$
\frac{(1+t x)^{2 g_{X}}}{(1-t)\left(1-t x^{2}\right)},
$$

where g_{X} is the genus of X [Ma, p. 322, (4.3)]. Using this and Theorem 5.3 we get an explicit expression for $P\left(\operatorname{Quot}\left(r, d_{p}, d_{z}\right), t\right)$.

Acknowledgements

We thank the National University of Singapore for its hospitality.

References

[Ba] J.M. Baptista, On the L^{2}-metric of vortex moduli spaces, Nucl. Phys. B 844 (2011), 308-333.
[BDW] A. Bertram, G. Daskalopoulos and R. Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, Jour. Amer. Math. Soc. 9 (1996) 529-571.
[Bia] A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973), 480-497.
[Bif] E. Bifet, Sur les points fixes schéma Quot $\mathcal{O}_{X / X, k}$ sous l'action du tore $\mathbf{G}_{m, k}^{r}$, Com. Ren. Math. Acad. Sci. Paris 309 (1989), 609-612.
[BR] I. Biswas and N. M. Romão, Moduli of vortices and Grassmann manifolds, Comm. Math. Phy. 320 (2013), 1-20.
[Br] S. Bradlow, Vortices in holomorphic line bundles over closed Kähler manifolds, Commun. Math. Phys. 135 (1990), 1-17.
[EINOS] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: the moduli matrix approach, J. Phys. A: Math. Gen. 39 (2006), 315-392.
[Gr] A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Exp. No. 221, 249-276.
[Ki] F. Kirwan, Intersection homology and torus actions, Jour. Amer. Math. Soc. 1 (1988), 385400.
[Ma] I. G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962), 319-343.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

Department of Mathematics, Middlesex College, University of Western Ontario, London, ON N6A 5B7, Canada

E-mail address: adhill3@uwo.ca

Department of Mathematics, McGill University, Burnside Hall, 805 Sherbrooke St. W., Montreal, Que. H3A 0B9, Canada

E-mail address: jacques.hurtubise@mcgill.ca

Department of Mathematics, University of Maryland, College Park, MD 20742, USA
E-mail address: raw@umd.edu

