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Geometric Quantization for
the Moduli Space of Vector

Bundles with Parabolic Structure

Georgios D. Daskalopoulos and Richard A. Wentworth

Abstract. We initiate a study of the geometric quantization of Chern-Simons gauge the-
ory on Riemann surfaces with punctures. We construct a moduli space of flat connections
using weighted Sobolev spaces, and then by analogy with the compact case, we construct
a line bundle over this moduli space. The line bundle exists only for certain holonomies
which correspond in a one-to-one way with representations. When the bundle does exist,
its holomorphic sections reproduce the space of states defined by Segal.
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1. Introduction

This paper was first written in June 1991 and revised in February 1992. The
motivation derived from the link, first elucidated by Witten [Wi1], between Chern-
Simons theory, conformal field theory, and the moduli spaces of flat connections on
Riemann surfaces. This point of view was further developed in the Oxford notes
[Ox] by Atiyah, Hitchin, and Segal. Our work was an attempt to understand and
make rigorous some of the ideas presented in these references.

The main mathematical question was to prove a factorization theorem for cer-
tain non-abelian versions of level k theta functions. This goal was achieved in
[D-W2, D-W3], where a proof of the Verlinde formula for SU(2) theta functions
can also be found. This paper has remained unpublished; however, since some of
the results are quoted without proof in the above references, we have decided that
it might be worth having this initial work appear in the literature, even with the
substantial delay.

We now outline the organization of the paper and the main results: in Section
2, we review some standard results concerning spaces of G representations of
the fundamental group of a Riemann surface with boundaries. These spaces admit
natural complex structures via the theorem of Mehta and Seshadri which identifies
them with moduli spaces of vector bundles with parabolic structure. We review this
work in some detail. Moreover, we show how these spaces may be used to form a
correspondence between moduli spaces of vector bundles of different degrees. This
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is essentially the notion of a Hecke correspondence (cf. [N-Rn]). For simplicity,
we shall throughout the paper restrict ourselves to the case of a single boundary
component. All of our results can be generalized to the case of many components,
with certain important modifications. Details will be presented elsewhere (see [D-
W3]).

In Section 3, we give the gauge theoretic description of these representation
spaces. We achieve this by pushing the boundary to infinity and requiring expo-
nential decay both on connections and gauge transformations. This technique was
first used by Taubes [T1] in the setting of four dimensional topology.

To be more precise, let ∇0 be a base flat connection on a trivial G-bundle over
the Riemann surface Σ obtained from Σ by removing a point (the “puncture”).
Assume that at infinity (i.e. a disk about the point) ∇0 has the form A0 = iαdθ
with holonomy exp(2πiα). Let AF,δ denote the space of flat connections ∇0 + A
such that both A and ∇0A have exponential decay, and let Gδ denote the bundle
automorphisms g with ∇0g, ∇2

0g exponentially decaying. The main theorem of
Section 3 is the following (see Theorem 3.8):

Theorem A. The space of equivalence classes of flat connections AF,δ/Gδ is home-
omorphic to the space of equivalence classes of G-representations of π1(Σ) with
value at infinity conjugate to exp(2πiα).

Having identified the spaces, we investigate their topological structure in Sec-
tion 4. Since we are interested in constructing line bundles, we focus on the low
dimensional homotopy and cohomology groups. The results are obtained by means
of transversality arguments of the type used in [D-U]. The analytic description of
the moduli spaces allows us to define a candidate Ω for the curvature two-form of
our line bundle. The form does not, however, always define an integral class, and
in Theorem 4.13, we show that for k ∈ Z, kΩ/2π is integral if and only if ikα is in
the coroot lattice of g = Lie G.

By contrast, on the quotient Fα,δ = AF,δ/G0,δ, where G0,δ denotes the subgroup
of automorphisms which are the identity at infinity, the form kΩ/2π is always
integral. In Section 5, we show how to use the cocycle (see (5.1)) to construct a
line bundle L̃⊗k

α with connection ∇̃ and curvature −ikΩ over Fα,δ. The question
of integrality of Ω on the quotient AF,δ/Gδ may now be recast as follows: the
residual gauge group Gδ/G0,δ is, for generic holonomies, a maximal torus T ⊂ G.
The infinitesimal action of T is given via ∇̃. The line bundle and connection push
down to a bundle L⊗k

α precisely when this action may be exponentiated. This
gives the following correspondence between holonomies and representations (see
Theorem 6.1):

Theorem B. Fix a maximal torus T ⊂ G. There is a one-to-one correspondence
between characters λ : T→ U(1) invariant under the center Zn of G and elements
iα ∈ Lie T such that kΩ/2π represents an integral class on Fα,δ/T.
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Invariance under the center is required for a free action on the base (recall that
we are restricting to the case of one puncture).

Finally, in Section 6, we show how the line bundles constructed in the above
manner solve a problem in geometric quantization. Namely, consider the compact
surface Σ. Let As denote the smooth stable connections on a trivial G-bundle
over Σ, and let GC

denote the group of smooth complex automorphisms. The
determinant line bundle ∆ → As descends via the action of GC

to generate the
Picard group of the moduli space As/G

C
. ∆⊗k may be regarded as a “quantum”

line bundle at level k over the symplectic manifold As, and the quotient is the
corresponding quantum bundle over the moduli space.

Instead of taking the GC
invariant sections, one may choose a highest weight λ

and consider the multiplicity space (cf. [G-S1])

Vλ = HomGC
(
V ∗λ ,H

0(As,∆⊗k)
)
,

where V ∗λ is the (dual) representation space of λ. The homomorphisms are required
to intertwine the action of GC

on H0 with the action on Vλ obtained by evaluation
at the puncture. This is essentially Segal’s definition of the space of states in [Ox].
We prove the following (see Theorem 6.6):

Theorem C. Assume G = SU(2) and g > 3. Fix a dominant weight λ : T→ U(1)
invariant under the center, and let α correspond to λ as in Theorem B above. Then
Vλ ' H0

(
Fα,δ/T, L⊗k

α

)
.

We shall show in [D-W1] that Vλ is zero for all but finitely many λ.
In addition to the papers which motivated this study back in 1991, there has

since been a plethora of work on topics related to parabolic bundles, geometric
quantization, and the Verlinde formula. We cannot hope to compile an exhaus-
tive collection of references, and so we shall content ourselves instead with briefly
mentioning some of those articles having a more or less close connection with the
present work and its sequels [DW1-3]: For proofs of the Mehta-Seshadri theorem
[Me-Se] in the spirit of Donaldson and Uhlenbeck-Yau, see [Biq], [Po], and [Si1-
2]. For more on the moduli space of parabolic bundles on Riemann surfaces, see
[Ba], [Bd], [Bd-Hu], [Bs-Rm], [Fu-St], [Ni], [Ns-St]. Geometric quantization of the
moduli space of vector bundles, first studied in [Ax] and [Ax-DP-W] (see also [A],
[Ox], [Wi1]), has since been considered by many authors. For some of these ideas,
see [Bis], [Ch], [J-W1], [R-S-W], and [V-V]. The Verlinde dimension formula [V]
was the motivation for this work and many, many others. For a description of the
formula in the context of stable bundles, see [B]. Various aspects, partial proofs,
and proofs of the formula can be found in [Bv-L], [Be], [Be-Sz], [Don2], [DW2-3],
[Fa], [G-P], [J-K], [J-W2], [K-N-Rm], [N-R], [Sz1-2], [Te], [Th1-2], [T-U-Y], [Wi2],
[Z]. Finally, we would like to mention the article [Bv] where the reader will find a
beautiful exposition of some of the recent developments in this subject.
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2. Moduli of G-bundles over
punctured Riemann surfaces

In this section we introduce the basic geometric object we shall be concerned with
throughout this paper. This is the moduli space of vector bundles on a Riemann
surface with punctures. For bundles on a compact surface, one has to restrict to an
appropriate subspace of the space of vector bundles, namely the stable bundles, in
order to obtain a “good” moduli space. The famous theorem of Narasimhan and
Seshadri states that when stability is taken into account, the moduli space is just
the equivalence classes of irreducible unitary representations of the fundamental
group.

For vector bundles on Riemann surfaces with punctures, stability must be re-
placed with Seshadri’s notion of parabolic stability. That this is the correct gener-
alization follows from the theorem of Mehta and Seshadri which again states that
the moduli space, now of parabolic stable bundles, is isomorphic to the space of
irreducible representations of the fundamental group of the non-compact surface.

2.1. Representations of the fundamental group

Let Σ be a compact Riemann surface of genus g > 0 with fixed coordinate disk
(D̃, z), i.e. z : D̃ → D is a complex analytic isomorphism with the unit disk D ⊂ C.
Let p = z−1(0), and denote by Σ the non-compact surface Σ \ {p}. We may define
new coordinates on D̃∗ = D̃ \ {p}: set w = − log z. Then

w : D̃∗ −→ C
/
(τ, θ) ∼ (τ, θ + 2π)

maps D̃∗ analytically to the semi-infinite cylinder

C =
{
(τ, θ) : τ ≥ 0, 0 ≤ θ ≤ 2π

}/
(τ, 0) ∼ (τ, 2π) .

If we use polar coordinates (r, φ) on D∗, then the map w ◦ z−1 : D∗ → C is simply
τ = − log r, φ = θ. We also make a choice of base point x0 ∈ D̃∗ ⊂ Σ and set
(τ0, θ0) = w(x0). Finally, we denote by Σ0 the Riemann surface with boundary:
Σ0 = Σ \ {x : τ(x) > τ0}.
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Let G = SU(n), and let P be the trivial principal G-bundle on Σ, E the
vector bundle associated to P via the standard representation. Let A denote the
space of all C∞ G-connections on P . We identify A ' Ω1(Σ, g) and endow it
with the obvious Fréchet topology on Ω1(Σ, g). Let G denote the group of C∞

gauge transformations on P , endowed with the obvious Fréchet topology induced
by the inclusion Map(Σ,G) ⊂ Map(Σ, gl(n,C)). Let G0 ⊂ G be the subgroup of
G preserving the base point x0. The groups G0,G act smoothly on AF , the flat
connections in A. Let M0 = AF /G0,M = AF /G be the quotient spaces.

Define the evaluation map e0 : G → G which takes g 7→ g(x0). In view of the
exact sequence of groups 1−→G0−→G

e0−→G−→1, we can identify G ' G/G0. Thus
the group G acts on M0, and we have the identifications AF /G ' M0/G ' M.
The spaces M,M0 are called the moduli spaces of flat connections and based flat
connections on P , respectively.

We choose generators {a1, . . . , ag, b1, . . . , bg} for π1(Σ, x0) whose intersection
numbers in the quotient H1(Σ,Z) satisfy #ai · bj = δij , #ai · aj = #bi · bj = 0.
Given ∇ ∈ AF , let ρ = ρ(∇) be the corresponding holonomy homomorphism. This
defines a map AF → Hom (π1(Σ, x0),G) ' G2g which is G0-invariant, where the
last identification is from {ai, bi} → {Ai, Bi}. It is well known that this induces a
homeomorphism ofM0 ' AF /G0 with Hom (π1(Σ, x0),G) ' G2g. This proves

Lemma 2.1. M0 is a smooth manifold diffeomorphic to G2g.

Let c denote the loop
∏g

i=1[ai, bi] in π1(Σ, x0) and let q :M0 → G be the map
measuring the holonomy around c. We clearly have

Lemma 2.2. Under the identification M0 ' G2g the map q corresponds to the
map {A1, . . . , Ag, B1, . . . , Bg} −→

∏g
i=1[Ai, Bi].

The next proposition summarizes some important properties of the map q in
the case G = SU(2) which we shall need later on (see Theorem 4.1):

Proposition 2.3. For G = SU(2), the map q has the following properties:
(i) q is surjective ;
(ii) {critical points of q}={reducible connections};
(iii) {reducible connections} ⊂ q−1(I);
(iv) q−1(pt.)\{reducible connections} is a smooth manifold of dimension 6g−3;
(v) q :M0 \ q−1(I)→ G \ {I} is a trivial fiber bundle.

Proof. For (i)-(iv) see [Ak-M], Proposition 2.1 and Corollary 2.2. The result (v)
follows from (i)-(iii), since q is clearly proper and the base is contractible. ut

We return to the general case G = SU(n). Let G · a denote the adjoint orbit
of a in G, and let M0,a be the subspace of irreducible connections in q−1(G · a).
Clearly,M0,a is preserved by the action of G, so we setMa =M0,a/G. The next
Lemma follows immediately from the definition of the map q:
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Lemma 2.4. (i) M0,a may be identified with the space of irreducible representa-
tions ρ : π1(Σ, x0)→ G satisfying ρ(c) ∈ G · a. (ii)Ma may be identified with the
quotient of the space in (i) by the adjoint action of G.

Lemma 2.5. For every a ∈ G, PU(n) → M0,a → Ma is a principal PU(n)
bundle.

Proof. The group PU(n) = SU(n)/Zn acts freely on M0,a. The Lemma follows
from a general theorem on group actions (cf. [V], Lemma 2.9.11). ut

Let Fa denote the subspace of irreducible flat connections in q−1(a) over a ∈ G.
Then Fa is a smooth manifold of dimension (2g − 1)(n2 − 1). Let Pa denote the
normalizer of a in G. For example, for G = SU(2), Pa is a maximal torus for
a 6= ±I, and P±I = G. Then Pa/Zn, the normalizer modulo the center of G,
acts freely on Fa and we have an isomorphismMa ' Fa/Pa. Moreover, for every
a ∈ G, the principal bundle of Lemma 2.5 restricts to a principal bundle

Pa/Zn−→Fa
π−→Ma (2.6)

Fibration (2.6) will be of fundamental importance in the subsequent sections. We
finish this section with the following fairly standard

Lemma 2.7. Let ∇ be a flat connection of holonomy a ∈ G around p. Fix iα ∈ g
with a = exp(2πiα). Then we can find g ∈ G0 such that over D̃∗ we can write (in
the coordinates w) ∇g = d+ iαdθ.

A similar result holds for the group U(n). We shall refer to the form of the con-
nection d+ iαdθ as temporal gauge.

Proof. As a first step, we show that for flat connections we can find a smooth
gauge transformation g such that for τ ≥ τ0, ∇g = d+A(θ)dθ. Indeed, write

∇ = d+ a(τ, θ)dθ + b(τ, θ)dτ

and let g be a solution to the ODE: dg/dτ+b(τ, θ)g = 0, g(τ0) = I. Such a solution
exists for all τ ≥ τ0 and is invertible, hence also g−1dg/dτ + g−1bg = 0. Since b
is periodic in θ we extend the solution to the semi-infinite cylinder C. Then we
extend g to all of Σ as an element of G0 by a cut-off function. We have

∇g = d+ g−1dg + g−1agdθ + g−1bgdτ

= d+
(
g−1 ∂g

∂θ
+ g−1ag

)
dθ +

(
g−1 ∂g

∂τ
+ g−1bg

)
dτ

= d+A(τ, θ)dθ , for τ ≥ τ0 .

By assumption, the curvature F∇ = 0 so ∂A/∂τ = 0, and this completes the
proof of the first step. In order to make A independent of θ, we notice that on the
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circle any connection is gauge equivalent to constant one. We extend the gauge
transformation to Σ, constant on τ ≥ τ0. ut

2.2. The theorem of Mehta and Seshadri

In this section we review some fundamental results involving complex structures
on the spaces Ma from our point of view. The standard references are [Me-Se],
[Se], [Si1], [Si2]. We begin by stating the fundamental theorem:

Theorem 2.8. ([Me-Se], Theorem 5.3) Let Ma denote the space of isomorphism
classes of irreducible flat connections on P with holonomy around the point p
conjugate to a ∈ G. If all the eigenvalues of a are of the form exp(2πiαi), where
the αi are rational numbers, then Ma has the structure of a complex manifold of
dimension (n2 − 1)(g − 1) + dim G/Pa, where Pa is the normalizer of a in G.

Let us briefly review this theorem from our point of view. First, recall (cf. Lemma
2.7) that given [∇] an equivalence class of flat unitary connections on E of holon-
omy a ∈U(n) around p we can choose a unitary frame e1, . . . , en over the punctured
disk D̃∗ with respect to which ∇ = d+iα̂dθ where α̂ is the matrix diag(α̂1, . . . , α̂n)
and 0 ≤ α̂1 ≤ · · · ≤ α̂n < 1. Let ∂̄∇ be the corresponding ∂̄-operator. Notice that
if we define a new basis {fi} by fi = |z|α̂iei, then the fi are holomorphic with
respect to ∂̄∇. Let D×Cn → D be the trivial bundle over the disk with the trivial
∂̄-operator. Let Ē → Σ̄ denote the bundle obtained by gluing E with D × Cn via
the fi’s, and let ∂̄Ē denote the resulting ∂̄-operator on Ē. It is easy to check that
Ē is a holomorphic bundle of Chern class l = −

∑n
i=1 α̂i. (Note that the sum of

the α̂i’s is always an integer.)
The fi’s determine a complete flag of the fiber Ēp ' Cn. In general, given a

holomorphic bundle Ē of degree l, a choice of flag Fl (E) ∈ G/Pa of the fiber Ep '
Cn is called a quasi-parabolic structure. Furthermore, the pair (Fl (E); α̂1, . . . , α̂n),
where α̂1, . . . , α̂n are weights associated to Fl (E), is called a parabolic structure
on E, and E is called a parabolic bundle (see also [Se]).

Let B denote the space of holomorphic structures on E, K the group of complex
automorphisms of E, and Kp its subgroup of parabolic automorphisms, i.e. the
elements of K preserving the flag Fl (E). Given a holomorphic structure on E, let
us denote also by E the resulting holomorphic bundle. Let F ⊂ E be a holomorphic
subbundle of rank m. The flag Fl (E) induces by restriction a flag Fl (F ) on F p

with associated weights 0 ≤ α̂′1 ≤ · · · ≤ α̂′m < 1. The next definition is essential:

Definition 2.9. ([Me-Se], 1.11 and 1.13) Given a subbundle F of E we define the
parabolic degree of F by pardeg(F ) = deg(F ) +

∑m
i=1 α̂

′
i. The bundle E is called

parabolic stable if for any subbundle F of E, pardeg(F ) < 0.

Henceforth, we shall denote by Bp.s. the subspace of all parabolic stable holo-
morphic structures. The space Bp.s. is an open submanifold of B, and it is thus
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naturally (via the fixed complex structure on Σ) an infinite dimensional com-
plex manifold. The group Kp is an infinite dimensional complex Lie group acting
on Bp.s. in a holomorphic way. Therefore, the quotient Bp.s./Kp is naturally a
complex manifold whose tangent space at [∂̄Ē ] ∈ Bp.s./Kp can be identified with
H1
(
Σ̄,End+Ē

)
, where End+Ē is the sheaf of holomorphic sections of End Ē pre-

serving the flag at p. It is useful, however, to have the following slightly different
description of Bp.s./Kp. First, note that given g ∈ K, the value gp at the point p
acts on the space of flags G/Ta ' GC/B+

a . Let P denote the subspace of B×G/Ta

consisting of pairs (∂̄Ē , f), where ∂̄Ē is parabolic stable with respect to the image
of the flag f under the projection G/Ta → G/Pa and the weights α̂i. The action
of the group K preserves P, and we denote by P/K the quotient space. Then we
have the following

Proposition 2.10. The space P/K is homeomorphic to a Pa/Ta bundle over
Bp.s./Kp. In particular, if all of the weights are distinct, then P/K is homeomorphic
to Bp.s./Kp.

Returning to our equivalence class [∇], the basis {fi} along with the weights
{α̂i} determine a flag f ∈ G/Pa as in [M-S], p. 211, and ∇ and {fi} determine a
holomorphic structure ∂̄Ē . The theorem of Mehta and Seshadri states that if ∇ is
irreducible then ∂̄Ē is parabolic stable with respect to f . In light of Proposition
2.10, we have a map

µ : [∇] 7−→ [∂̄Ē ] (2.11)

which identifies Bp.s./Kp with the space of flat irreducible unitary connections on
E of holonomy conjugate to a. Therefore,Ma is a complex manifold provided we
can fix the determinant (recall that we are taking G = SU(n) rather than U(n)).
Indeed, let Jl(Σ) be the degree l component of the Picard group of Σ, and let

det : Bp.s./Kp −→ Jl(Σ) (2.12)

denote the determinant map associating to a given vector bundle E ∈ Bp.s./Kp

its determinant line bundle detE =
∧n

E ∈ Jl(Σ). The map det is a holomorphic
map of full rank whose fiber may be identified with the space Ma. This defines
a complex structure on Ma. The details behind the identification (2.11) are, of
course, quite intricate, and we refer to [Me-Se], [Si1], and [Si2] for elaboration.
In Section 4, we shall make use of this description of Ma to extract some useful
topological information.

2.3. Correspondence varieties

In this subsection, we would like to show how the spacesMa form a correspondence
between different moduli spaces of rank 2 bundles over Σ. This is an elaboration
of the concluding remarks in [Me-Se] (see also [Be]); this description, however, will
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be crucial for us in Section 6, so we explain it in some detail. Throughout this
section, we set G = SU(2).

Let M(2,−1) denote the moduli space of semistable vector bundles of rank
2 and fixed determinant of degree −1 over the compact Riemann surface Σ. In
fact, we shall assume the determinant is O(−p), where p is the puncture. Assume
a ∈ G, a 6= ±I, Ta the maximal torus in G containing a, and parameterize the
parabolic weights 0 < α < 1/2.

Proposition 2.13. For the choice of weights above, Bp.s. is equal to Bs, the set
of stable holomorphic structures on E, and Ma ' Bs ×K G/Ta. Moreover, there
exists a holomorphic projection p1 : Ma → M(2,−1) which realizes Ma as a
holomorphic P1 ' G/Ta bundle over M(2,−1).

Proof. Let E be a rank two parabolic stable bundle over Σ with determinant
O(−p). If F ⊂ E is a parabolic subbundle, then pardegF < 0. In particular,
degF < 0, and since degF is an integer, degF ≤ −1. In any case, µ(F ) = degF =
−1 < −1/2 = µ(E), and the first claim follows. The map p1 is just projection onto
the first factor in Proposition 2.10. ut

We next construct a map onto the degree zero moduli space. LetM(2, 0) denote
the moduli space of semistable rank two vector bundles over Σ with trivial deter-
minant, and let Ms(2, 0) be the Zariski open subset consisting of stable bundles.
Suppose E is a parabolic stable bundle. In particular, we have seen that E is stable
with determinant O(−p). Moreover, the choice of a quasi-parabolic structure σ at
p defines, via evaluation at the point p, a natural map

E
∗ −→ Cp −→ 0 , (2.14)

where Cp denotes the torsion sheaf obtained by extending E
∗
p/σ

∗ by zero. Let F
be the kernel of (2.14). It is easy to verify that F has trivial determinant and is
semistable. We define F = p0(E) to be its equivalence class inM(2, 0). All in all,
we have shown

Proposition 2.15. (cf. [Me-Se]) The spacesMa for a 6= ±I form a correspondence

Ma
p0 ↙ ↘ p1

M(2, 0) M(2,−1)

between M(2, 0) and M(2,−1).

Proposition 2.16. Assume g > 3. Then Ua = p−1
0 (Ms(2, 0)) in Ma is a Zariski

open set with complement of codimension at least 2.

Proof. Under the natural biholomorphismM(2,−1) 'M(2, 1) obtained by taking
duals, it suffices to show that the image of Ua in M(2, 1) is Zariski open with
complement of codimension at least 2. If however E ∈ Ma, then its dual E

∗
is
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stable of degree 1, and therefore E
∗

is (0,1)-semistable in the sense of Narasimhan
and Ramanan (cf. [N-Rn] Definition 5.1). Moreover, if E does not belong to Ua,
then it is easy to see that E

∗
is not (0,1)-stable. Hence, Ma \ Ua is mapped

by duality inside the variety of (0,1)-semistable and not (0,1)-stable holomorphic
bundles. By the same computation as that in the proof of Proposition 5.4 of [N-
Rn], the codimension of this variety is at least g − 2, which proves the assertion.

ut

Next, we will proceed by analogy with Proposition 2.10 to construct another P1-
bundle overM(2, 0). Let As denote the stable holomorphic structures on a trivial
rank 2 bundle on Σ and denote by GC

the group of complex automorphisms. Then
we have

Proposition 2.17. For a 6= ±I, let Na = As ×GC G/Ta, where GC
acts on

G/Ta by evaluation at p. Then the natural projection pr1 : Na → Ms(2, 0) is a
holomorphic P1 bundle.

The next Theorem will be important in Section 6.

Theorem 2.18. There is a holomorphic embedding ϕ : Na → Ma onto Ua with
holomorphic inverse ψ which makes the following diagram commute

Na
ϕ−→ Maypr1

yp0

Ms(2, 0) ⊂ M(2, 0)

Proof. We define our map ϕ first. Let (F , f) ∈ Na. This means F is a stable rank
2 bundle with trivial determinant and f ∈ G/Ta can be used to define a line in
F p, the fiber at p, via a fixed identification P(F p) ' G/Ta. Let Cp denote the
torsion sheaf obtained as the cokernel of the natural map 0 → O(−p) → O. By
Grothendieck duality, we can identify

Ext1(Cp, F ) ' H0
(
Σ, F

∗ ⊗ ω∗
Σ
⊗ Cp

)∗
' F p ,

and any f as above defines an extension

0 −→ F −→ E
∗ −→ Cp −→ 0 (2.19)

with E
∗

locally free. Moreover, by evaluation at the point p, extension (2.19)
naturally defines a line in E

∗
p which gives a quasi-parabolic structure σ on E. In

fact, it is clear that for a choice of weights as before, E is parabolic stable (cf.
Proposition 2.13). We then set ϕ(F , f) = (E, σ). One can verify that ϕ is indeed
a morphism. Moreover, as p0(E) = F , the diagram of Theorem 2.18 commutes
and the image of ϕ is Ua. Therefore, we only need construct an inverse morphism
ψ : Ua → Na. This can be done as follows: an element of Ua consists of a stable
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bundle E of determinant O(−p) and a quasi-parabolic structure σ at p. Again, as
in the definition of the map p0, σ defines a projection of E

∗
to a torsion sheaf Cp

supported at p and an exact sequence (2.19). But this defines a stable bundle F
with a flag f , dual to the kernel of the map E

∗ → Cp → 0 restricted to p. We set
ψ(E) = (F , f). It is easily verified that ψ is a morphism and an inverse to ϕ. ut

3. The L2
δ-theory

We shall now take a different approach and describe the spaces Fa and Ma via
weighted Sobolev spaces. Although much of the material in this section is quite
standard (cf. [T1], [T2], [M], and [A-P-S]), the L2

δ description of these spaces is
the key to describing the quantum line bundle in Section 5 using the cocycle.

3.1. Flat connections and the gauge group

We continue to consider the punctured Riemann surface Σ = Σ \ {p} with fixed
coordinate w = (τ, θ) : D̃∗ → C where C is the semi-infinite cylinder from Section
2.1. In addition, we make a choice of metric K on Σ compatible with the complex
structure of Σ and such that on D̃∗, K = w∗(KC), where KC = dτ2 + dθ2 is the
standard flat metric on C. It is important to extend τ to a C∞-function defined
on the whole surface Σ. We achieve this by setting τ = 0 outside a small tubular
neighborhood of ∂Σ0 in Σ0.

For δ ∈ R, we define the weighted Lp spaces of sections of E, denoted Lp
δ(E), as

the completion of the space of compactly supported sections C∞0 (E) in the norm

‖σ‖Lp
δ

=
{∫

Σ

eτδ|σ|p
}1/p

.

Given also a positive integer k we define the weighted Sobolev space Lp
k,δ(E) as

the completion of C∞0 (E) in the norm

‖σ‖Lp
k,δ

=
{∫

Σ

eτδ
(
|∇(k)

0 σ|p + · · ·+ |∇0σ|p + |σ|p
)}1/p

,

where ∇0 is a base connection in temporal gauge with holonomy a = exp(2πiα)
(see Lemma 2.7). It is not difficult to see that the spaces Lp

k,δ do not change if we
replace ∇0 with any other connection which agrees with ∇0 on the cylinder C at
infinity.

The weighted Sobolev spaces admit multiplication and embedding theorems
similar to those for compact manifolds. Therefore, all the gauge theory developed
for compact manifolds (e.g. as in [F-U]) extends quite easily to the non-compact
case provided we replace the standard Sobolev spaces by the weighted ones.
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Following [T1], Section 7, or [M], Section 3, we make the following definitions:
let ∇0 be a base connection in temporal gauge with holonomy a. We define our
space of connections Aδ = ∇0 +L2

1,δ (T ∗Σ⊗ gE). To define the appropriate gauge
group we first consider the following space of sections of gl(E). Define

R =
{
ϕ ∈ L2

2,loc.(gl(E)) : ‖∇0ϕ‖L2
1,δ
<∞

}
,

and let H denote the subspace of R consisting of harmonic sections, i.e. H ={
ϕ ∈ R : e−τδ∇∗0eτδ∇0ϕ = 0

}
, where ∇∗ = ∗∇∗ is the formal L2 adjoint.

There is another space of sections closely related to H. Let ∇0,∂ denote ∇0

restricted to the bundle gl(E)|∂Σ0 . Let ker∇0,∂ denote the space of parallel sections
of gl(E)|∂Σ0 with respect to ∇0,∂ . Since over ∂Σ0, ∇0,∂ = d/dθ + iαdθ, a =
exp(2πiα), ker∇0,∂ can be identified with the normalizer of a in gl(n,C). The
next two propositions contain all the important properties of the gauge group we
shall need.

Proposition 3.1. (cf. [M], Theorem 3.1) There is a direct sum decomposition
R = L2

2,δ(gl(E)) ⊕ H. Moreover, there is a well-defined map r : R → ker∇0,∂

given by r(ϕ)(θ) = limτ→∞ ϕ(τ, θ). The map r satisfies r−1(0) = L2
2,δ(gl(E)) and

r : H → ker∇0,∂ is an isomorphism.

Proposition 3.2. (cf. [M], Appendix) The norm

‖ϕ‖2R = ‖∇0ϕ‖2L2
1,δ

+
∫

∂Σ0

|r(ϕ)|2

gives R a Banach space structure in which the natural projection onto L2
1,δ(gl(E)),

H are continuous. Moreover, pointwise multiplication R×R → R is well-defined
and continuous, and r : R → ker∇0,∂ is a continuous linear map.

We now make the definitions

Gδ = {ϕ ∈ R : ϕϕ∗ = I,detϕ = 1} , G0,δ = {ϕ ∈ Gδ : r(ϕ) = I}

It is not difficult to see that Gδ,G0,δ are Banach Lie groups with Lie algebras

Lie(Gδ) = {ϕ ∈ R : ϕ∗ = −ϕ} , Lie(G0,δ) =
{
ϕ ∈ L2

1,δ : ϕ∗ = −ϕ
}
.

Moreover, G0,δ is a closed, normal subgroup of Gδ and Gδ/G0,δ may be identified
with the normalizer Pa of a in G. The groups Gδ,G0,δ act on the space Aδ of
connections by push forward, the usual way. The action is well-defined and smooth.

Given a connection ∇ = ∇0 + A ∈ Aδ, let F∇ = ∇0A + 1
2 [A,A] denote the

curvature of ∇. It is easy to verify that the map ∇ 7→ F∇ is smooth from Aδ to
L2

δ

(∧2
T ∗Σ⊗ gE

)
. Let AF,δ denote the subspace of irreducible flat connections.

The groups Gδ,G0,δ preserve AF,δ. Finally, we denote by Fα,δ = AF,δ/G0,δ,Mα,δ =
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AF,δ/Gδ, the quotient spaces. Then Mα,δ = Fα,δ/Pa under the identification
Pa ' Gδ/G0,δ. We conclude this subsection with the following useful

Proposition 3.3. The space G0,δ is connected and path connected.

Proof. Being a Banach manifold, G0,δ is clearly locally path connected, hence the
path components and components are identical. It suffices then to find a dense
subset of G0,δ which is connected. Actually, we shall do this for GC

0,δ, the complex
gauge group – this is sufficient, since the quotient GC

0,δ/G0,δ is clearly a contractible
space.

Let GC
1 be the group of smooth maps Σ → GC which are the identity in some

open neighborhood of p. Denote by GC
0 the group of smooth maps Σ→ GC which

are the identity at p. GC
0 is nothing but the based complex gauge group for connec-

tions on a trivial G bundle over Σ, and since G is simply connected, GC
0 is path

connected. We claim that GC
1 is a dense, connected subset of GC

0,δ. First, density:
the group of smooth compactly supported maps from Σ to gl(n,C) is dense in L2

2,δ

by definition. Any g ∈ GC
0,δ may be written as 1+ (−1+ g) with −1+ g ∈ L2

2,δ (see
Proposition 3.1). Hence, there exist smooth, compactly supported g̃j → −1 + g as
j →∞. For large j, 1 + g̃j is invertible, therefore

gj =
1 + g̃j

det(1 + g̃j)1/n
−→ g

and {gj} is a sequence in GC
1 (here we are using the multiplication theorems).

This proves that GC
1 is dense. Second, we show that GC

1 is path connected, hence
connected. Given g ∈ GC

1 , since GC
0 is path connected we can find a smooth path

γt in GC
0 with γ0 = I, γ1 = g. We want to push γt into GC

1 . But this is easily
done: choose a small neighborhood U of the origin on which exp : gC → GC is a
diffeomorphism. For a sufficiently small disk B about p, we may assume γt(z) ∈ U
for all z ∈ B and 0 ≤ t ≤ 1. Hence, we may write γt(z) = expΓt(z), where Γt

is a smooth map B → U , Γ0 ≡ 0. Choosing B sufficiently small, we may also
assume Γ1 ≡ 0. Now choose a smooth cut-off function η : B → [0, 1] which is one
in a neighborhood of ∂B and zero in a neighborhood of the origin. Define γ̃t to
be equal to γt on Σ \B, and γ̃t(z) = exp(η(z)Γt(z)) for z ∈ B. Then γ̃t is clearly
smooth and in GC

1 . Moreover, γ̃0 ≡ I and γ̃1 = g, so this gives the desired path
and completes the proof. ut

3.2. Application of the index theorem

Our next goal is to show that the spaces Fα,δ,Mα,δ are finite dimensional man-
ifolds of given dimension. To do this we will have to digress a bit to study the
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Fredholm properties of the ∂̄-operator defined on the L2
k,δ spaces via the index

theorem of Atiyah, Patodi, and Singer.
Let ∇ be a flat connection, and let us denote also by ∇ the associated operator

on g-valued forms. Let

δ∇ : L2
1,δ (T ∗Σ⊗ gE) −→ L2

δ

(
2∧
T ∗Σ⊗ gE

)
⊕ L2

δ(gE) (3.4)

denote the operator δ∇ =
(
∇, e−τδ∇∗eτδ

)
. As we shall see presently, the kernel of

the operator δ∇ is closely related to the tangent spaces of Fα,δ,Mα,δ at the point
[∇]. We first prove

Proposition 3.5. There exists a δ0 > 0 such that for every δ ∈ (0, δ0), the
operator δ∇ is a bounded, Fredholm operator of index 2(g−1)(n2−1)+dim(G/Pa).
Moreover, dim coker δ∇ = dimPa.

Proof. First, the cokernel of δ∇ is the kernel of the operator

(δ∇)∗ : L2
1,δ(gE)⊕ L2

1,δ

(
2∧
T ∗Σ⊗ gE

)
−→ L2

δ (T ∗Σ⊗ gE)

(δ∇)∗(ϕ, ω) = ∇ϕ+ e−τδ∇∗eτδω .

Since∇ is flat, ker(δ∇)∗ consists of pairs (ϕ, ω) such that∇ϕ = 0, e−τδ∇∗eτδω = 0.
Since ϕ, ω are exponentially decaying the only possibility is ϕ = 0, ∗ω ∈ e−τδPa,
hence dim coker δ∇ = dimPa.

Next, we observe that it suffices to prove the result for the operator δ̃∇ defined
by composing δ∇ with the continuous inclusion

L2
δ

(
2∧
T ∗Σ⊗ gE

)
⊕ L2

δ(gE) ↪→ L2
δ/2

(
2∧
T ∗Σ⊗ gE

)
⊕ L2

δ/2(gE) .

Indeed, the kernels of δ∇ and δ̃∇ coincide and δ∇ has closed range if δ̃∇ does.
Moreover, the cokernels are isomorphic under the continuous injection

L2
δ/2

(
2∧
T ∗Σ⊗ gE

)
⊕ L2

δ/2(gE) ↪→ L2
δ

(
2∧
T ∗Σ⊗ gE

)
⊕ L2

δ(gE) ,

coming from multiplication by e−τδ/2. This is clear, since by the previous para-
graph, if ψ = (0, ω) ∈ coker δ∇, then eτδψ is bounded, so in particular eτδ/2ψ is
in L2

δ/2.
We also may assume without loss of generality that ∇ = ∇0 is a connection

in temporal gauge (see Lemma 2.7). Thus, locally near the puncture ∇ = d +
iαdθ. This is because for general ∇, δ̃∇ − δ̃∇0 is a multiplication operator by an
element of L2

1,δ. Since the inclusion L2
1,δ ↪→ L4

δ/2 is compact, and the multiplication
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L4
δ/2 × L4

δ/2 → L2
δ/2 is continuous, we see that δ̃∇ − δ̃∇0 is in fact a compact

operator. Therefore, δ̃∇ is Fredholm if and only if δ̃∇0 is Fredholm, and index δ∇ =
index δ̃∇ = index δ̃∇0 . Let

δ̃0∇0
: L2

1,δ (T ∗Σ⊗ gE) −→ L2
δ/2

(
2∧
T ∗Σ⊗ gE

)
⊕ L2

δ/2(gE)

denote the operator (∇0,∇∗0). Since all the derivatives of τ are in L∞, the operator
δ̃∇0 − δ0∇0

is a multiplication operator by a function in L∞, hence by the com-
pactness theorems for weighted Sobolev spaces δ̃∇0 − δ̃0∇0

is a compact operator.
Then δ̃∇0 is Fredholm if and only if δ̃0∇0

is Fredholm, and again they have the
same indices.

Via the identification T ∗Σ⊗ gE ' T ∗Σ0,1 ⊗ gC
E ,
∧2

T ∗Σ⊗ gE ⊕ gE ' gC
E , the

operator δ̃0∇0
is nothing but the formal L2-adjoint of the ∂̄-operator associated to

∇0:

∂̄∗∇0
: L2

1,δ

(
T ∗Σ0,1 ⊗ gC

E

)
−→ L2

δ/2(g
C
E) (3.6)

Following Atiyah, Patodi, and Singer, we can define the same operator ∂̄∗∇0
on the

modified spaces:

∂̄∗∇0
: L2

(
T ∗Σ0,1 ⊗ gC

E

)
−→ L2

ext.(g
C
E) (3.6′)

By L2
ext.(g

C
E) we mean the space of extended L2-sections of gC

E as defined in [A-P-
S], Proposition 3.11.

At this point, we require δ0 to be less than the first positive eigenvalue of ∇0,∂

on E|∂Σ0 , and let δ ∈ (0, δ0). It follows in exactly the same way as in [A-P-S],
Proposition 3.11, that the kernel of (3.6) is the same as the kernel of (3.6′) and
hence is finite dimensional (see also Lemma 3.12 below). We claim also that the
cokernels are the same. Indeed, the cokernel of (3.6) may be identified with{

ϕ ∈ L2
δ/2(g

C
E) : e−τδ∂̄∇0e

2τδϕ = 0
}

which, under the isometry eτδ/4 : L2
δ/2 → L2, corresponds to{

ϕ ∈ L2(gC
E) : ∂̄∇0e

τδ/4ϕ = 0
}
.

The cokernel of (3.6′) is the space
{
ψ ∈ L2

ext.(g
C
E) : ∂̄∇0ψ = 0

}
. We assert that

the map ϕ 7→ ψ = ϕeτδ/4 is an isomorphism. This follows as in [A-P-S] by the
following argument: let ϕ ∈ L2(gC

E), ∂̄∇0(e
τδ/4ϕ) = 0. Expand ϕ near the boundary

ϕ(τ, θ) =
∑

λ fλ(τ)ϕλ(θ) where ϕλ(θ) form an orthonormal basis of eigenfunctions
of ∇0,∂ . Since ∂̄∇0(e

τδ/4ϕ) = 0, we have

d

dτ

(
eτδ/4fλ(τ)

)
+ λ

(
eτδ/4fλ(τ)

)
= 0 ,
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hence ϕ(τ, θ) =
∑

λ e
−(λ+δ/4)τfλ(0)ϕλ(θ). Since ϕ ∈ L2, the summation is over

λ ≥ 0, hence ϕ(τ, θ) = e−τδ/4
∑

λ≥0 e
−λτfλ(0)ϕλ(θ). But then the image ψ(τ, θ) =

eτδ/4ϕ(τ, 0) =
∑

λ≥0 e
−λτfλ(0)ϕλ(θ) belongs to the cokernel of (3.6′). The inverse

map is constructed in the same way.
By the Atiyah, Patodi, Singer Index Theorem (see [A-P-S], Theorem 3.10), ∂̄∗∇0

is Fredholm, hence so is δ̃0∇0
, and index δ̃0∇0

= index(∂̄∗∇0
). Moreover,

index(∂̄∗∇0
) = −(n2 − 1)

∫
Σ

c1 −
h

2
, h = dim(Pa ⊗ C) .

Hence, since
∫
Σ
c1 is the Euler characteristic of Σ = 1− 2g, we have

index(∂̄∗∇0
) = (n2 − 1)(2g − 1)− dimPa = 2(g − 1)(n2 − 1) + dim(G/Pa) .

ut

Let us denote by H1
δ,∇ the kernel of the operator δ∇ of (3.4). According to

Proposition 3.5, H1
δ,∇ is a vector space of dimension (2g − 1)(n2 − 1). Let H be

the space of harmonic 0-forms, and let r0 : H → H1
δ,∇ be the map r0(ϕ) = ∇ϕ.

Let H1
δ+,∇ = H1

δ,∇/ im r0. The importance of the spaces H1
δ,∇,H

1
δ+,∇ is illustrated

in the theorem below.

Theorem 3.7. (i) Fα,δ is a smooth manifold of dimension (2g − 1)(n2 − 1).
Moreover, for [∇] ∈ Fα,δ, T[∇]Fα,δ ' H1

δ,∇. (ii) Mα,δ is a smooth manifold of
dimension 2(g− 1)(n2− 1)+dim(G/Pa). Moreover, for [∇] ∈Mα,δ, T[∇]Mα,δ '
H1

δ+,∇. (iii) Mα,δ naturally has the structure of an almost complex manifold.

Proof. The proof of (i) and (ii) follows from standard arguments (cf. [Ko]) using
our Proposition 3.5 and Theorem 3.4 of [M] (see also Sections 7 and 8 of [T1]
for a very similar situation). In order to prove (iii) we proceed as follows: Given
[∇] ∈ Mα,δ, lift to a representative ∇ ∈ AF,δ and let ∂̄∗∇ denote the operator
associated to ∇ as in (3.6′). Let σ∇ : H1

δ,+ → ker ∂̄∗∇ be the linear map defined as
follows: Given X ∈ H1

δ,+ ' H1
δ / im r0, lift to

αX ∈ H1
δ ⊂ L2

1,δ (T ∗Σ⊗ gE) ⊂ L2 (T ∗Σ⊗ gE)

perpendicularly in the L2-norm to the subspace im r0 ⊂ H1
δ . Let βX be the image

of αX under the natural isomorphism L2 (T ∗Σ⊗ gE) ' L2
(
T ∗Σ0,1 ⊗ gC

E

)
, and

let γX = σ∇(X) be the L2-projection of βX in ker ∂̄∗∇. We claim that σ∇ is an
isomorphism. Indeed, as both spaces have the same dimension, it suffices to check
that σ∇ is injective. Assume therefore that γX = 0. Then βX = ∂̄∇ψ, for some
ψ ∈ L2

ext.

(
gC

E

)
, and hence αX = ∇ϕ, ϕ = ψ − ψ∗. But since 0 = e−τδ∇∗eτδαX =

e−τδ∇∗eτδ∇ϕ, we obtain that ϕ ∈ H, and therefore αX ∈ im r0. By the assumption
that αX is perpendicular to the latter, αX = 0, and σ∇ is therefore an isomorphism.
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The almost complex structure on Mα,δ is now defined by pulling back the
complex structure from ker ∂̄∗∇ to T[∇]Mα,δ via σ∇. This completes the proof of
Theorem 3.7. ut

3.3. Equivalence of the two descriptions

We shall now show that the L2
δ description produces the same moduli spaces

as the ones described in Section 2 via representations of the fundamental group.
Moreover, the almost complex structure onMα,δ defined in Theorem 3.7 coincides
with that of Mehta and Seshadri (cf. Section 2.2). We start by showing

Theorem 3.8. There is a natural Pa ' Gδ/G0,δ diffeomorphism Φ : Fα,δ → Fa.
Moreover, Φ induces a diffeomorphism Mα,δ →Ma.

Proof. The construction of Φ proceeds as follows: let [∇] ∈ Fα,δ. First, choose a
smooth representative ∇ ∈ AF,δ such that over the punctured disk ∇ = d+ iαdθ.
This can be achieved as in Lemma 2.7 by noticing that if in the ODE in the proof
of 2.7, b ∈ L2

1,δ, then g ∈ Gδ; we then use g multiplied by the inverse of its value at
∞ (cf. Propositions 3.1 and 3.2). We set Φ[∇] to be equal to the class of ∇ inM0.
Clearly, Φ[∇] ∈ Fa. We claim that Φ is surjective. Let [∇̂] ∈ Fa. Using Lemma
2.2, choose a representative ∇̂ = d+As such that on the disk D̃∗, As = iαdθ. Let
A = ∇̂ − ∇0, and observe that A is compactly supported. Hence, ∇0 + A ∈ Aδ

and Φ[∇0 + A] = [∇̂]. To show that Φ is injective, let Φ[∇1] = Φ[∇2]. Choose
representatives ∇1 = ∇0 +A1, ∇2 = ∇0 +A2 as before. By assumption, ∇2 = ∇g

1

where g ∈ G0. Hence, over D̃∗ and via the cylindrical coordinates (τ, θ) we obtain
∂g/∂τ = 0,∇0,∂g = 0. The above equations together with the fact that g at the
base point is I imply g|D̃∗ ≡ I, hence g ∈ G0,δ. Thus [∇1] = [∇2] in Fα,δ, proving
that Φ is injective. We have shown Φ to be a bijection – we must verify that Φ and
Φ−1 are smooth. The smoothness of Φ follows from the fact that the holonomy
map is smooth, plus the commutativity of the diagram:

AF,δ
hol.−→ Hom (π1(Σ),G)yP

y
AF,δ/G0,δ = Fα,δ

Φ−→ Fa ⊂M0

The smoothness of Φ−1 is obtained as follows: let {ρξ} be any smooth family in
Hom (π1(Σ),G), and let {Aξ} be any smooth family in AF,δ such that holonomy
Aξ = ρξ. Then Φ−1(ρξ) = P (Aξ), and hence is smooth in ξ (recall that the C∞-
structure on M0, and hence also that on Fa, was defined via the identification
M0 ' Hom (π1(Σ),G). In order to complete the proof of Theorem 3.8, we need to
check the equivariance of Φ. Let φ ∈ Pa ' Gδ/G0,δ. Let gφ be the unique harmonic
gauge transformation satisfying r(gφ) = φ. Then

Φ(φ · [∇]) = Φ [∇gφ ] = Φ
[
∇(gφ·φ−1)·φ

]
= Φ[∇]φ = φ · Φ[∇] .
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The diffeomorphism Mα,δ 'Ma follows. ut

To prepare for the proof of the equivalence of almost complex structures, recall
from Section 2.2 that a flat unitary connection∇ gives rise to a flag f . Let us denote
by b+ (resp. b−) the endomorphisms of the fiber Ēp which are upper triangular
(resp. lower triangular) with respect to the flag, and by u+ and u− we mean the
strictly upper and lower triangular endomorphisms, respectively.

Let S denote the sheaf of meromorphic sections of EndĒ ⊗ Ω1 with at most a
simple pole at the parabolic point p. We denote also by S0 the subsheaf of traceless
endomorphisms, and by S− and S−0 those with residue strictly lower triangular at
p with respect to the fixed flag f . We have the following

Lemma 3.9. Hermitian conjugation gives a complex anti-linear injection ker ∂̄∗∇
↪→ H0

(
Σ̄,S−0

)
.

Proof. The hermitian conjugate of an element of ker ∂̄∗∇ is an L2 holomorphic (1,0)
form ω with values in End E. We must show ω extends as a meromorphic form
on Σ̄ with residue strictly lower triangular. Near the point p we write ω(z) =
ωij(z)dz⊗ fi⊗ f∗j , where ωij are holomorphic functions on the punctured disk D̃∗

and {fi} is the basis of holomorphic sections introduced in Section 2.2. Writing in
terms of the orthonormal basis {ei}, ω(z) = |z|α̂i−α̂jωij(z)dz ⊗ ei ⊗ e∗j , hence

‖ω‖2L2 ∼
∫
|dz|2|ωij |2|z|2(α̂i−α̂j) < +∞ .

Since |α̂i−α̂j | < 1, the ωij may have at most a simple pole at z = 0. If α̂i−α̂j > 0,
the residue may be arbitrary, but if α̂i − α̂j ≤ 0, the residue must vanish. This
proves the Lemma. ut

Lemma 3.10. Serre duality gives a complex linear isomorphism H0
(
Σ̄,S−

) ∼−→
H1
(
Σ̄,End−Ē

)∗
.

Proof. Since EndĒ is locally free we have the exact sequence

0−→EndĒ ⊗O(−p)−→EndĒ−→glC−→0 .

Restricting to lower triangular endomorphisms, we have via evaluation End−Ē
→ b− → 0. Let Q denote the kernel of the sequence above. Then we have the
following commutative diagram of exact sequences:
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0 0y y
0 −→ Q −→ End−Ē −→ b− −→ 0∥∥∥ y y
0 −→ EndĒ ⊗O(−p) −→ EndĒ −→ glC −→ 0y y

u+ = u+y y
0 0

where the isomorphism Q ' EndĒ⊗O(−p) is easily proven. Looking at the exact
(dual) sequence in cohomology, we have

0x
b+ ←− H1(Σ̄,Q)∗ ←− H1(Σ̄,End−Ē)∗ ←− 0x ∥∥∥
glC

res←− H1
(
Σ̄,EndĒ ⊗O(−p)

)∗x
u−x
0

By Serre duality, H1
(
Σ̄,EndĒ ⊗O(−p)

)∗ may be identified with the holomor-
phic sections of EndĒ ⊗ O(p) ⊗ Ω1, and the map to glC is just the residue.
Requiring the residue to be strictly lower triangular identifies H0(Σ̄,S−) with
ker() ' H1(Σ̄,End−Ē)∗. This proves the Lemma. ut

Combining Lemmas 3.9 and 3.10 with the identification (cf. Section 2.2)

T[∂̄Ē ] (Bp.s./Kp) ' H1
(
Σ̄,End+Ē

) ∗−→H1
(
Σ̄,End−Ē

)∗
and the holomorphic inclusion S−0 ↪→ S−, we obtain

Proposition 3.11. The injection ker ∂̄∗∇ ↪→ T[∂̄Ē ] (Bp.s./Kp) is complex linear.

Now let Ψ = Φ−1 in Theorem 3.8. If Aa
F denotes the space of smooth traceless

hermitian flat connections on E with holonomy around p conjugate to a, then we
clearly can lift Ψ to a map Ψ̃ : Aa

F → Mα,δ. Given ∇ ∈ Aa
F , the map a → a0,1

induces a linear isomorphism between ker ∂̄∗∇ in (3.6′) and space

W =
{
a ∈ L2 (T ∗Σ⊗ gE) : ∇a = 0 , ∇ ∗ a = 0

}
.
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Recall the map σ∇ from Theorem 3.7. We have the following

Lemma 3.12. Under the identification W ' ker ∂̄∗∇, the restriction of Ψ∗ to W
corresponds to σ−1

∇ .

Proof. Let a ∈ W. By our choice of δ and the equality eτδ = |z|−δ, it is evident
from the proof of Lemma 3.9 above that a0,1 ∈ L2

1,δ

(
T ∗Σ0,1 ⊗ gC

E

)
, hence a ∈

L2
1,δ (T ∗Σ⊗ gE) (see also, [A-P-S], Proposition 3.11). But σ−1

∇ (a) is nothing but
the class of a in H1

δ,+, which by definition of Ψ̃ equals Ψ∗(a). ut

Finally, note that the map µ from (2.11) lifts to a map µ̃ : Aa
F → Bp.s./Kp. It

is clear from Lemmas 3.9, 3.10, and 3.12 that the following diagram commutes:

σ−1
∇ ker ∂̄∗∇

∗−→ H0
(
Σ̄,S−0

)
−→ H0

(
Σ̄,S−

)
↙ ‖ ‖

T[∇]Mα,δ W H1
(
Σ̄,End−Ē

)∗
‖ Ψ̃∗

⋂
µ̃∗ ‖∗

T[∇]Mα,δ ←− T∇Aa
F −−− −−− −→ T[∂̄Ē ]Bp.s./Kp

‖
y ‖

T[∇]Mα,δ ←→ T[∇]Ma ←− −−− −→ T[∂̄Ē ]Bp.s./Kp

By Proposition 3.11 we now have

Theorem 3.13. With respect to the almost complex structure defined on Mα,δ

in Theorem 3.7 and the complex structure on Ma defined via the Mehta-Seshadri
theorem, the map Φ :Mα,δ →Ma is biholomorphic.

4. Topological results

We now examine the topological properties of the spaces we have defined. The key
idea is the interplay between the different descriptions. The analytic description
will allow us to define a closed, integral two-form on the spaces Fα,δ which will
serve as the curvature for the pre-quantum line bundle. Topological restrictions
will prevent the line bundle descending, except in special cases.

4.1. The topology of the moduli spaces

In this section we analyze the topology of the spaces Ma ' Fa/Pa for a ∈ G.
The case G = SU(2) is rather simple and essentially follows via Proposition 2.3
from the results of Atiyah and Bott [A-B]. For higher rank, there is not such a
simple description, and instead we will make use of certain transversality results
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developed in [D-U]. In this general case, we have to make the additional assumption
that the genus of Σ is strictly greater than two.

To begin, let us assume that G = SU(2). Recall from Proposition 2.3 that the
map q :M0 → G is a fibration away from the identity. Therefore, the fiber Fa of
q over a 6= I is homotopy equivalent to F−I . By the results of Atiyah and Bott
[A-B], π1(F−I) = 0, π2(F−I) = Z, and therefore the same is true for Fa, a 6= I.
Looking at the long exact sequence in homotopy for the fibration (2.6) for a 6= ±I,
we obtain

Theorem 4.1. Suppose G = SU(2), a ∈ G, and a 6= ±I. Then Ma is connected
and simply connected, and π2(Ma) is free abelian of rank 2.

We wish to define a pair of generators for π2(Ma) ' H2(Ma,Z), a 6= ±I,
explicitly. Let β be the image of a generator of π2(Fa) ' Z in π2(Ma) under
the map π∗. Let γ be an element of π2(Ma) whose image under the boundary
homomorphism ∂ is a generator of π1(Ta/Z2) ' Z and which is perpendicular
to β with respect to the dual pairing. This defines β and γ up to sign. We fix
the signs to be compatible with the complex structure onMa. Recall the map ϕ :
Na → Ua ⊂Ma of principal P1 bundles overMs(2, 0) (see Theorem 2.18). Let β, γ
denote the generators of π2(Na) defined via projection onto the first and second
factors, respectively. Note that (pr1)∗β generates the free part of π2(M(2, 0)) '
Z⊕Z2. The torsion in π2(M(2, 0)) implies another important fact: if [P1] denotes
the fundamental class of the fiber in the fibration P1 ı−→Na

pr1−→M(2, 0), then in
H2(Na,Z), ı∗[P1] = 2γ. We now prove

Proposition 4.2. Assume a 6= ±I, and g > 3. Then the map ϕ induces an
isomorphism ϕ∗ : π2(Na)→ π2(Ma) given by β → β, γ → γ.

Proof. By Theorem 2.18 and Proposition 2.16, ϕ clearly gives rise to an isomor-
phism ϕ∗ : π2(Na) ' H2(Na,Z) → π2(Ma) ' H2(Ma,Z). In addition, we have
the homotopy equivalences Na ∼ B(GC

p/Z2) and Ma ∼ B(Kp/Z2) (see Propo-
sitions 2.10 and 2.17). Therefore, tensoring with the rationals, there is an iso-
morphism ϕ∗ : H2(BG

C
p ,Q) → H2(BKp,Q). According to [A-B], Section 2 and

[Ni], Proposition 3.2, the P1 fibrations BGC
p and BKp over BGC

and BK, respec-

tively, are trivial in rational homology. Moreover, it easy to see that H2(BG
C
,Q) '

H2(BG
C
0 ,Q), and similarly for BK and BK0. Hence, ϕ∗ defines a map

ϕ∗ : H2(BG
C
0 ,Q)⊕H2(G/Ta,Q) −→ H2(BK0,Q)⊕H2(G/Ta,Q) .

By the definition of ϕ, this map preserves the summands. Now from [A-B], Sec-
tion 2, β is half the generator of π2(BG

C
0 ), and by the Mehta-Seshadri theorem

(cf. [Si1] and [Si2]), BK0 is homotopy equivalent to BG0,δ ' Fα,δ. The assertion
that β → β follows from Theorem 3.8, our definition of β, and the fact that ϕ∗
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is an isomorphism on integral homology. The Proposition then follows from the
commutativity of the diagram

0 → π2(Fa) → π2(Fa/Ta) → π1(Ta/Z2) → 0
‖ ‖

0 ← π2(BKo) ← π2(BKp) ← π2(G/Ta) ← 0 .

ut

We return now to the general case G = SU(n), g ≥ 3. We shall analyze
the topology of Ma via the techniques developed in [D-U]. We first recall from
Section 2.2 that Ma can be identified with the fiber of the determinant map
det : Bp.s./Kp → Jl(Σ), where Bp.s. denotes the subspace of parabolic stable
holomorphic structures on E and Kp is the group of parabolic automorphisms of
E. The next proposition parallels [D-U], Theorem 2.4.

Proposition 4.3. The inclusion Bp.s. in B is an homotopy equivalence up to
dimension 2(n− 1)(g − 2) + 1.

Proof. The proof is similar to the one in [D-U] with the only difference being the
existence of a parabolic structure. From Theorem 2.4 in [D-U], the inclusion of
Bp.s. is B is an homotopy equivalence up to an integer d where

d+ 2 {(1− g)m(n−m) +ml − nc} < 0 .

Here l is the degree of E and c is the degree of a destabilizing subbundle of rank
m. The above inequality has to be satisfied for every possible such subbundle of
E, i.e. for every integer m between 1 and n − 1 and every integer c such that
c+
∑m

i=1 α
′
i ≥ 0, where {α′i} is a subcollection of the weights {αi}. In other words,

the inclusion of Bp.s. in B is an homotopy equivalence if

d < 2
{

(g − 1)m(n−m) +mn

(
c

m
− l

n

)}
for all m, c as above. But since pardegE = l +

∑n
i=1 αi = 0, we obtain −l/n =

−
∑n

i=1 αi/n. On the other hand, pardegF = c +
∑m

i=1 α
′
i ≥ 0, hence c/m ≥

−
∑
α′i/m. Therefore,

{
(g − 1)m(n−m) +mn

( c
m
− l

n

)}
≥

{
(g − 1)m(n−m) +mn

(
− 1
m

m∑
i=1

α′i +
1
n

n∑
i=1

αi

)}

=

{
(g − 1)m(n−m) +mn

(
1
m

n−m∑
i=1

α′′i −
n−m
mn

m∑
i=1

α′i

)}
> {(g − 1)m(n−m)−m(n−m)} = (g − 2)m(n−m) .
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Since both quantities are integral,

(g − 1)m(n−m) +mn

(
c

m
− l

m

)
≥ (g − 2)m(n−m) + 1 .

The right hand side is minimized at m = 1, and the proposition follows. ut

Therefore, for g ≥ 3, n ≥ 3, the inclusion Bp.s. ↪→ B is an homotopy equivalence,
at least up to dimension 5. This is sufficient to compute the low dimensional
homotopy and cohomology groups of the moduli spaceMa that we are interested
in.

From the Proposition 4.3, we obtain, as in the ordinary case [D-U],

πi (Bp.s./Kp) ' πi (B(Kp/C∗)) ; i = 0, 1, 2.

We are going first to compute πi(BK); i = 0, 1, 2. Let K denote as before the full
complex gauge group of E. Then the relation between BKp and BK is given in
the following fibration (cf. [Ni], eq. (3.2))

G/Pa −→ BKp −→ BK (4.4)

(observe that if Na denotes the normalizer of a in U(n), and Pa the normalizer in
G = SU(n), then U(n)/Na ' G/Pa). Since π1(G) = π2(G) = 0, we obtain

π1(G/Pa) ' π0(G/Pa) ' 0 , π2(G/Pa) ' π1(Pa) .

Thus, via the long exact sequence in homotopy associated to (4.4) we obtain for
i = 0, 1, πi(BKp) ' πi(BK), whereas for i = 2 we have the short exact sequence

0 −→ π1(Pa) −→ π2(BKp) −→ π2(BK) −→ 0 (4.5)

Finally, in order to compute πi(BKp); i = 0, 1, 2, we consider the fibrations

BC∗ −→ BKp −→ B (Kp/C∗) (4.6)

induced from BC∗ → BK → B (K/C∗). Via the long exact sequence in homotopy
associated to (4.6) and using (4.4) we obtain the short exact sequence

0 −→ π1(Pa) −→ π2(BKp) −→ π2 (B(Kp/C∗)) −→ 0 .

In particular, since the rank of π2 (B(K/C∗)) is one (cf. [A-B], Section 2), we
obtain rankπ2 (B(Kp/C∗)) = rankπ1(Pa) + 1. Summarizing, we have shown that

π0 (Bp.s./Kp) = 0 ,

π1 (Bp.s./Kp) ' H1

(
Σ,Z

)
,

rankπ2 (Bp.s./Kp) = rankπ1(Pa) + 1 .

In order to compute πi(Ma) for i = 0, 1, 2, we consider the long exact sequence in
homotopy associated to the fibration det. Since Jl(Σ) is a torus and det induces an
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isomorphism det∗ : π1 (Bp.s./Kp) ' π1(BK)→ π1(Jl

(
Σ)
)

(cf. [A-B], Section 9), we
obtain π0(Ma) = π1(Ma) = 0, and rankπ2(Ma) = rankπ1(Pa) + 1. Combining
this with Theorem 4.1, we can now state

Theorem 4.7. Assume that either G = SU(2), g ≥ 2, or G = SU(n), n ≥ 3, g ≥
3. Then the moduli spaceMa is connected, simply connected, and rankπ2(Ma) =
r + 1, where r = rankπ1(Pa).

Corollary 4.8. The second cohomology of Ma is free of rank r + 1.

Proof. Since Ma is simply connected, H2(Ma,Z) is torsion free. The rest follows
from Theorem 4.7 and the Hurewicz isomorphism. ut

As in the case of SU(2), we would like to understand explicitly the generators
of H2(Ma,Z); hence, we need to understand the topology of the space Fa. By the
long exact sequence in homotopy associated to (2.6) we obtain

0−→π2(Fa) π∗−→π2(Ma) ∂−→π1(Pa/Zn)−→π1(Fa)−→π1(Ma) = 0 . (4.9)

Since rankπ2(Ma) = rank(Pa)+1 and rankπ1(Pa/Zn) = rankπ1(Pa), we clearly
have rankπ2(Fa) = 1 and rankπ1(Fa) = 0. Let β be the image of a generator
of Free π2(Fa) in π2(Ma) ' H2(Ma,Z) under the map π∗. Let γ1, . . . , γr be the
elements of Free π2(Ma) ⊂ π2(Ma) ' H2(Ma,Z) such that their image under ∂
form a set of generators for Free π1(Pa). Then we have shown

Corollary 4.10. Assume G = SU(n), n ≥ 3, g ≥ 3. The free part of the
group H2(Ma,Z) is generated by the elements β, γ1, . . . , γr as above, where r =
rankπ1(Pa).

Remark 4.11. Analogous results to 4.7, 4.8, and 4.10 hold also for the spaces
Fa/Ta, where Ta is a maximal torus in Pa.

4.2. Integrality of the symplectic form

In this subsection, we shall consider the class of a certain closed two-form Ω on the
spaces Fα,δ,Mα,δ. This is in preparation for the next section, where we shall con-
struct a line bundle over Fα,δ with a connection whose curvature is −iΩ. Whether
the connection pushes down toMα,δ amounts to the question of integrality of the
class Ω onMα,δ.

On the space AF,δ, defined as in Section 3.1 with respect to some base connec-
tion ∇0 which at infinity is in temporal gauge, we define the two-form

Ω∇(β1, β2) =
1
2π

∫
Σ

Tr (β1 ∧ β2) .
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This is well-defined, since by the inclusion L2
1,δ ↪→ L2 the integral is convergent. Ω

is a closed two-form, and integration by parts shows that it is degenerate in the G0,δ

directions. Hence, Ω descends to a closed form on Fα,δ, and the normalization has
been chosen such that Ω/2π is a representative of an integral class in H2(Fα,δ,Z).

Recall that for a ∈ G, a = exp(2πiα), we denote by Pa the normalizer of a
and by Ta some choice of maximal torus in Pa. Suppose β is an arbitrary tangent
vector to Fα,δ and φ1, φ2 ∈ LieTa. Then letting φ̃1, φ̃2 denote the unique harmonic
extensions satisfying r(φ̃i) = φi, i = 1, 2, we have

Ω∇(β +∇φ̃1,∇φ̃2) =
1
2π

∫
Σ

Tr
(
(β +∇φ̃1) ∧∇φ̃2

)
= − 1

2π

∫
Σ

Tr
(
∇(β +∇φ̃1) ∧ φ̃2

)
+

1
2π

∫
∂Σ

Tr
(
∇φ̃1 · φ̃2

)
=

1
2π

∫
∂Σ

Tr ([A0, φ1]φ2) =
1
2π

∫
∂Σ

Tr (A0[φ1, φ2]) = 0 ,

since φ1 and φ2 commute. In the above computation, we have written ∇0 = d+A0,
and by the integral over ∂Σ we mean the usual limiting procedure τ →∞.

We conclude from the above that Ω descends as a closed two-form on Fα,δ/Ta.
We now have the following

Theorem 4.12. For k ∈ Z, the form kΩ/2π on Fα,δ/Ta. defines an integral
class if and only if ikα is in the coroot lattice. Thus, a must have the form a =
diag(e2πiλ1/k, . . . , e2πiλn/k), where λ1 + · · ·+ λn = 0 and all the λi’s are integers.

We should point out that this is the form of the holonomy matrix which is im-
portant in the geometric quantization of Chern-Simons theory (cf. [A]). We shall
have more to say about the consequences of this in Section 6 and in [D-W1].

Proof. By the simple connectivity of Fα,δ/Ta and the Hurewicz isomorphism, it
suffices to evaluate kΩ on the generators β, γ1, . . . , γr from Proposition 4.10 (cf.
also Remark 4.11 and note that in this case, r = n−1). On β, kΩ/2π is integral by
the choice of normalization. For the γi’s, we use the following explicit realization:
fix a winding number φ = diag(φ1, . . . , φn), where φi’s are all integers, and iφ is
in the integer lattice of LieTa. Choose m, p integers, 1 ≤ p ≤ n, and let εp denote
the n× n matrix with a single entry 1 in the p-th row, p-th column. Set

f(t) = exp
{

2πitφ+ 2πitm
(

1
n
· I − εp

)}
.

This defines a map [0, 1] → Ta which descends to a closed loop on Ta/Zn, and
every such loop can be obtained from loops of this form. Fix a point [∇] ∈ Fα,δ,
with representative ∇0 + A. We write ∇0 = d + A0 and take A ∈ L2

1,δ(∇0). Let
As = A0 +A. Then Af

s = f−1Asf defines a closed loop in Fα,δ which projects to
a the point [∇] ∈ Ma. By definition of the boundary homomorphism in (4.9) we
may find a disk DAs

with ∂DAs
= im

(
Af

s

)
. The projection of DAs

inMa is then
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a sphere and is the realization of the element of π2(Ma) corresponding to φ. Let
d̃ denote the trivial connection on the unit disk D ⊂ C and A the map D → DAs .
Then

k

2π

∫
DAs

Ω =
k

4π2

∫
D

∫
Σ

Tr
(
d̃A ∧ d̃A

)
=

k

8π2

∫
Σ

∫
∂D

Tr
(
Ad̃A

)
=

k

8π2

∫
Σ

∫ 1

0

dtTr
(
f−1Asf [f−1Asf, f

−1f ′]
)

=
k

8π2

∫
Σ

∫ 1

0

dtTr
(
f ′f−1[As, As]

)
Since As is flat, [As, As] = −2d(A+A0). Integrating by parts, and using the fact
that A0 = iαdθ = idiag(α1, . . . , αn)dθ at infinity,

k

2π

∫
DAs

Ω =
−k
4π2

∫ 1

0

dt

∫
∂Σ

Tr
(
f ′f−1A0

)
= k

{
n∑

i=1

αiφi +
m

n

n∑
i=1

αi −mαp

}

The middle term vanishes, since iα ∈ g. By choosing different φi’s, m, and p, we
see that the expression above is an integer for all such choices only when kαp ∈ Z
for p = 1, . . . , n. This completes the proof of the theorem. ut

5. Construction of the line bundle

We now proceed to define a line bundle with a connection 1-form over the spaces
Fα,δ via a cocycle defined on the space of connections. The topological restrictions
of Section 4.2 will prevent this line bundle from descending to Fα,δ/Ta, Ta ⊂ Pa,
except in certain cases. We make this precise in Theorem 5.8, which is the main
result of this section.

5.1. The cocycle and connection

Fix a base connection ∇0 = d+A0 where A0 is in temporal gauge with associated
holonomy matrix iα. Let G0,δ be the gauge group defined as in Section 3.1. We
define G̃0,δ to be the space of smooth paths γ in G0,δ which are the identity at
an endpoint; hence we take γ : [0, 1] → G0,δ with γ(0) = I. The evaluation map
e1 : G̃0,δ → G0,δ which takes γ to γ(1) is smooth, and by Proposition 3.3 it is
surjective. We define a map

C∇0 : L2
1,δ(gE)× G̃0,δ −→ U(1) (5.1)
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C∇0(A, g̃) = exp

{
i

4π

∫
Σ

Tr
(
(A+A0)dgg−1

)
− i

12π

∫
Σ×[0,1]

Tr
(
d̃g̃g̃−1

)3
}
.

where g = e1(g̃) and d̃ = d+ d/dt. The terms in the exponential are well-defined:
the first integral is convergent because A, dgg−1 are in L1 and L2, and A0 is in
L∞; the second integral is convergent, since for each t ∈ [0, 1], dg̃g̃−1 is in L2, and
(dg̃/dt)g̃−1 is in L∞.

The sum in the exponential of (5.1) is formally the integral of the Chern-Simons
form over Σ×[0, 1]. As was shown in [R-S-W] for the case of SU(2) (see also [Do-Sa]
and [Mick]), this expression gives rise to a cocycle in the case of smooth connections
on the compact surface Σ defining a line bundle with a natural connection which
pushes down to a holomorphic line bundle over the moduli space. The point of our
construction, as will be shown, is that the same technique may be used for the
moduli space of vector bundles with parabolic structure. We have the following

Lemma 5.2. The U(1)-valued function defined in (5.1) depends only on e1(g̃) and
therefore descends to a smooth map Aδ × G0,δ → U(1).

Proof. Fix g̃, e1(g̃) = g. Any other extension can be gotten from g̃ by multiplying
by h ∈ G̃0,δ satisfying e1(h) = I. Then

C∇0(A, g̃h) = C∇0(A, g̃) exp
{
i

12
π

∫
Σ×[0,1]

Tr
(
d̃(g̃h)h−1g̃−1

)3

− i

12π

∫
Σ×[0,1]

Tr
(
d̃g̃g̃−1

)3
}

= C∇0(A, g̃) exp
{

i

12π

∫
Σ×[0,1]

Tr
(
d̃hh−1

)3

+
i

4π

∫
Σ×[0,1]

d̃Tr
(
d̃g̃g̃−1d̃hh−1

)}
The second term in the exponential clearly vanishes upon integration by parts. By
the embedding theorems, we know that h extends as a continuous map Σ×S1 → G.
The first integral is 2πi× the integral of the generator of H3(G,Z) over the image
h(Σ× S1), and is therefore an integer (cf. [Mick]). The exponential is thus always
one, and the lemma follows. ut

By a straightforward computation along the lines indicated in the above lemma,
we also have

Lemma 5.3. The map C∇0(A, g) satisfies the cocycle condition, i.e. for any g, h ∈
G0,δ, C∇0(A, gh) = C∇0(A

g, h)C∇0(A, g).

Hence, we may use C∇0 to define a twisted principal U(1) bundle U = AF,δ ×G0,δ

U(1) over Fα,δ = AF,δ/G0,δ, where the map U → Fα,δ is just projection onto the
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first factor. We define the line bundle L̃α → Fα,δ to be the one associated to U
via the standard representation.

We now define a connection on L̃α. Let ω denote the one-form on Aδ given by
the expression ω∇0+A(β) = 1

4π

∫
Σ

Tr ((A+A0) ∧ β). The integral makes sense, as
before, by the inclusions L2

1,δ ↪→ L1, L2
1,δ ↪→ L2 and the fact that A0 ∈ L∞. By

adding the Maurer-Cartan form, ω trivially induces a connection ω̂ on AF,δ×U(1).

Lemma 5.4. ω̂ descends to a connection on U .

Proof. We must show that ω̂ is invariant under the twisting by G0,δ. It suffices to
show that for vectors V vertical to the G0,δ action, ω̂(V ) = LV ω̂ = 0. The vertical
tangent space is generated by vectors of the form (∇φ, dC∇0(∇φ, φ)), φ ∈ L2

1,δ. A
simple computation shows that ω̂ on the vector V associated to φ is

ω̂(V ) = ω(V ) + d logC∇0(∇φ, φ)

=
i

4π

∫
Σ

Tr ((A+A0) ∧ dA+A0φ) +
i

4π

∫
Σ

Tr ((A+A0) ∧ dφ)

=
i

2π

∫
Σ

Tr ((A+A0) ∧ dφ) +
i

4π

∫
Σ

Tr (φ[A+A0, A+A0])

Since 0 = d(A + A0) + 1
2 [A + A0, A + A0] and φ is exponentially decaying, the

above is

=
i

2π

∫
Σ

Tr (A+A0 ∧ dφ)− i

2π

∫
Σ

Tr (φd(A+A0)) = 0 .

upon integration by parts. From this, it follows that LV ω̂ = iV dω̂ = iV Ω = 0 by
that result of Section 4.2. This completes the proof of the lemma. ut

We summarize the results of Lemmas 5.2 to 5.4 with the following

Proposition 5.5. The trivial line bundle AF,δ×C with connection ω̂ pushes down
to an hermitian line bundle L̃α → Fα,δ and connection ∇̃ with curvature −iΩ.

Actually, in what follows, we shall always be interested in an arbitrary power of
L̃α, L̃⊗k

α , where k ∈ Z.

5.2. Pushing down the line bundle

In this subsection, we wish to go one step further; namely, we would like to obtain a
line bundle with connection L⊗k

α → Fα,δ/Ta by pushing down our construction of
the previous section via the action of the torus Ta. Clearly, there is an obstruction
to this, for if the bundle L̃⊗k

α with connection ∇̃ pushed down, the curvature
−ikΩ would have to be 2πi× an integral class. By Theorem 4.12, we know that
this occurs precisely when ikα is in the coroot lattice.
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There is a natural action of Ta on sections of L̃⊗k
α ; a section is to be regarded

as a complex valued function ψ on AF,δ satisfying the cocycle condition

ψ(Ag) = C∇0(A, g)
kψ(A) (5.6)

for g ∈ G0,δ. If t ∈ Ta, define t · ψ(A) = ψ(At). It is easily verified that t · ψ still
satisfies (5.6), and hence is a section of L̃⊗k

α .
Now consider a tangent vector V = ∇φ at ∇ ∈ AF,δ, vertical with respect to

the Ta action. A simple computation shows that the connection 1-form evaluated
on this vector is −ikω∇(V ) = −kTr(φα). Under the assumption that ikα is a
coroot, this exponentiates to a representation λ : Ta → U(1). Note that λ is
invariant under the center Zn of G (see Theorem 6.1), and so it descends to a
representation of Ta/Zn. The sections of L̃⊗k

α which are λ-covariant with respect
to the Ta/Zn action, i.e. those which satisfy t · ψ = λ(t)ψ, then automatically
satisfy ∇̃V ψ = 0 for any vertical vector V . Conversely, any section satisfying this
condition is λ-covariant.

We therefore define a line bundle L⊗k
α → Fα,δ/Ta by declaring its sheaf of

sections to be

Γ
(
Fα,δ/Ta, L

⊗k
α

)
= Γ

(
Fα,δ, L̃

⊗k
α

)λ

, (5.7)

where the right hand side denotes the λ-covariant smooth sections of L̃⊗k
α (cf.

[Ax]). The connection ∇ on L⊗k
α may be defined from the connection ∇̃ on L̃⊗k

α

by the equation ∇Xψ = ∇̃X̃ψ, where X̃ is any vector which projects to X via the
map Fα,δ → Fα,δ/Ta. The λ-covariance guarantees that this is well-defined, and it
is easy to see that ∇ is a connection on L⊗k

α with curvature −ikΩ. To summarize,
we have the

Theorem 5.8. Suppose ikα is in the coroot lattice of G and λ is the associated
character Ta → U(1). There exists an hermitian line bundle L⊗k

α → Fα,δ/Ta with
connection ∇ and curvature −ikΩ whose global smooth sections are given by (5.7),
where the superscript λ denotes the subspace of sections satisfying t · ψ = λ(t)ψ
for all t ∈ Ta.

6. A problem in geometric quantization

In this final section, we would like to address the issue of holomorphic structure
on the line bundles we have constructed. We shall show that in the cases where
the line bundles descend to the space Fα,δ/Ta, the space of holomorphic sections
form the multiplicity space of a problem in geometric quantization, at least in the
case G = SU(2). The multiplicities are associated to some representation λ of the
group G. The holonomy matrices iα ∈ g correspond to the λ’s in a one to one
way. We begin by making this relationship between holonomies and representations
explicit.
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Theorem 6.1. Fix k ∈ Z and a maximal torus T ⊂ G. Then there is a one-to-
one correspondence between characters λ : T → U(1) which are invariant under
the center and elements iα ∈ LieT such that kΩ/2π defines an integral class on
Fα,δ/T.

Proof. By Theorem 4.12, kΩ/2π is an integral class on Fα,δ/T if and only if kα =
λ = diag(λ1, . . . , λn), where the λi’s are integers. The coroot iλ induces a character
of T as follows: an arbitrary element t ∈ T may be written t = diag(eiθ1 , . . . , eiθn),∑
θj = 0. Hence we define λ(t) = exp (i

∑
θjλj). The θj ’s are determined only

modulo 2π, but that does not change the definition of λ(t), since the λj ’s are
integers. It is also easy to verify that the condition

∑
λj = 0 ensures that for t in

the center of G, λ(t) = 1.
Conversely, suppose λ is a character of T. Write λ as

t = diag(t1, . . . , tn) −→ λ(t) = tλ1
1 · · · tλn

n ,

where the λi’s are integers. The multi-index (λ1, . . . , λn) is only determined up to
addition of multiples of (1, . . . , 1). If we require λ to be invariant under the center,
we have

∑
λj = 0 modn. Therefore, the index (λ1, . . . , λn) is completely deter-

mined by the requirement
∑
λj = 0. Now the matrix iα = diag(iλ1/k, . . . , iλn/k)

is an element of LieT, and by Theorem 4.12, kΩ/2π defines an integral class on
Fα,δ/T. This completes the proof of Theorem 6.1. ut

Example 6.2. For the sake of clarity, let us dwell for a moment on the case
G = SU(2). A representation λ : T → U(1) is characterized by a half-integer
j ∈ 1

2Z, the spin of the representation, by writing λ1 − λ2 = 2j. Then as above,
if t = diag(eiθ, e−iθ), λ(t) = exp (2i(jθ)). Requiring λ to be invariant under the
center means that j must in fact be an integer. If we take λ1 + λ2 = 0, then
λ1 = j, λ2 = −j, and the corresponding holonomy matrix is α = diag(j/k,−j/k).
We wish to emphasize that kα corresponds to the spin j of the representation; the
spin is required to be integral to guarantee invariance under the center.

In the case where kΩ/2π is an integral class in Fα,δ/Ta, we have constructed in
Theorem 5.8 a line bundle L⊗k

α → Fα,δ/Ta with connection and curvature −ikΩ.
By Theorems 3.7 and 3.13, it is easy to see that Ω is of type (1,1). The line bundle
L⊗k

α therefore inherits a holomorphic structure compatible with the connection.
We wish to identify the space H0

(
Fα,δ/Ta, L

⊗k
α

)
of global holomorphic sections

of L⊗k
α .

At this point, we restrict ourselves to the case G = SU(2). The reason for this
is that we have need of the correspondences between moduli spaces discussed in
Section 2.3, and these were only defined for rank two. Therefore, for the rest of
the paper we let G = SU(2). In addition, so that the maps we use are defined off
a set of high codimension, we assume g > 3.

Let us recall the construction of Section 2.3. We let As denote the smooth
stable connections on a trivial G-bundle over Σ and GC

the group of complex
automorphisms. Choose a non-negative integer λ. Regarding λ as the spin of a
representation, we have the associated representation space Vλ of dimension 2λ+1.
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As in Example 6.2, we may also regard λ as a character λ : Ta → U(1). Then we
have the natural holomorphic bundles, ∆⊗k and Bλ over As × G/Ta; ∆ is the
trivial extension of the determinant bundle over As, and Bλ is the trivial extension
of the Borel-Weil-Bott bundle over G/Ta determined by the character λ. Using a
computation similar to that of Theorem 4.12, we find c1(Bλ) = 2λ, and Vλ may be
identified with H0 (G/Ta, Bλ) via the Borel-Weil-Bott theorem (cf. [G-S2]). If λ is
invariant under the center Z2 of G, then the center acts trivially on the total space
of the line bundle ∆⊗k ⊗Bλ → As ×G/Ta, and we may take the quotient by GC

to obtain a holomorphic bundle Sλ → Na. Let α be the matrix corresponding to
λ as in Theorem 6.1. In the case where a = exp(2πiα) 6= ±I, we have by Theorem
2.18 a holomorphic embedding ϕ : Na → Fα,δ/Ta with an inverse ψ on the image.
This gives rise to

Proposition 6.3. For a 6= ±I, the bundles ψ∗Sλ and L⊗k
α over the image of ϕ

have the same first Chern class.

Proof. As in Proposition 4.2, let us denote the generators of H2(Na,Z) ' π2(Na)
by β, γ. The natural symplectic form Ω on As descends to a representative of the
class β. Using, for example, the Quillen connection on ∆⊗k, one has c1(∆⊗k) =
ikΩ/2π (cf. [Q], [Don1]). On the other hand, the Chern class of Bλ is 2λ, and
because of the torsion class in π2(M(2, 0)), we have c1(Sλ) = kβ + λγ ( see the
discussion preceding Proposition 4.2). The result now follows from Proposition 4.2
and (the proof of) Theorem 4.12. ut

Proposition 6.4. Let α correspond to λ as in Theorem 6.1. Let Ta be a maximal
torus containing exp(2πiα) and a point a 6= ±I. Then there is an isomorphism
H0 (Na, Sλ) ' H0

(
Fα,δ/Ta, L

⊗k
α

)
.

Proof. In the case exp(2πiα) 6= ±I, we may take a = exp(2πiα). Then the manifold
Fα,δ/Ta is compact and simply connected, so by the exponential sequence, bundles
are classified by their first Chern classes. By Theorem 2.18 and Proposition 6.3,
ψ∗Sλ and L⊗k

α agree outside a set of codimension ≥ 2, and so their extensions
are holomorphically equivalent. Now, since ψ is a biholomorphism outside a set of
codimension ≥ 2, the sections of Sλ are in one-to-one correspondence with sections
of ψ∗Sλ. Notice that the above argument shows that line bundles on Na are in
fact classified by their first Chern classes. In the case exp(2πiα) = I, we have
from Proposition 2.17 and Theorem 3.8 that Fα,δ/Ta is biholomorphic to Na,
hence the Proposition holds in this case again by a Chern class computation. In
the case exp(2πiα) = −I, we argue as follows: by the theorem of Narasimhan-
Seshadri, M(2,−1) is naturally diffeomorphic to F−I/SO(3) (cf. [A-B], Section
6). By Theorem 3.8, Fα,δ/Ta is then diffeomorphic to a P1-bundle overM(2,−1)
and thus inherits a natural complex structure. The construction of Section 2.3
produces a holomorphic map ϕ : Na → Fα,δ/Ta as before, and the Chern class
computation above proves the Proposition in this case as well. ut
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We can now easily identify the space of global holomorphic sections of our
bundle L⊗k

α in terms of the sections of ∆⊗k and the character λ. Let iα ∈ g
be the holonomy matrix corresponding to λ via Theorem 6.1. We shall denote
by H0

(
As,∆⊗k

)
the infinite dimensional space of global holomorphic sections of

∆⊗k over As. Following Guillemin and Sternberg [G-S1], we define the λ-covariant
subspace ofH0

(
As,∆⊗k

)
, Vλ = HomGC

(
V ∗λ ,H

0
(
As,∆⊗k

))
as follows: first, notice

that the gauge group GC
acts on Vλ by evaluating the gauge transformation at the

puncture p, and on H0
(
As,∆⊗k

)
by its standard action (cf. [Q], [Don1]). Then Vλ

consists of homomorphisms that intertwine the GC
action. Thus, Vλ is equivalent

to the GC
invariant elements of H0

(
As,∆⊗k

)
⊗ Vλ, and so

Vλ =
{
H0
(
As,∆⊗k

)
⊗ Vλ

}GC

=
{
H0
(
As,∆⊗k

)
⊗H0 (G/Ta, Bλ)

}GC

= H0
(
As ×G/Ta,∆⊗k ⊗Bλ

)GC

= H0 (Na, Sλ) ' H0
(
Fα,δ/Ta, L

⊗k
α

)
,

by Proposition 6.4. We can now state our main result as follows:

Theorem 6.6. For G = SU(2) and g > 3, let L⊗k
α be the holomorphic line bundle

constructed in Section 5, λ the character corresponding to α via Theorem 6.1.
Then Vλ = H0

(
Fα,δ/Ta, L

⊗k
α

)
.

We conclude with a few remarks. First, our λ-covariant subspace Vλ is essen-
tially Segal’s definition of the space of states (or conformal blocks) associated to a
Riemann surface with boundary labeled by λ [Ox]. Therefore, our Theorem 6.6 ex-
hibits a quantum line bundle on the moduli space of vector bundles with parabolic
structure constructed via the Chern-Simons functional and whose space of holo-
morphic sections reproduces Segal’s space. Notice also that the restriction that
λ be invariant under the center is no restriction at all: since −I acts trivially on
the determinant bundle ∆, Vλ vanishes identically if λ is not invariant. Second, it
should not be difficult to verify that all of the higher cohomology of L⊗k

α vanishes
and that therefore dimH0

(
Fα,δ/Ta, L

⊗k
α

)
is independent of the underlying com-

plex structure. This would involve computing the canonical bundle and using a
vanishing theorem as in [H]. Third, it would be interesting to generalize Theorem
6.6 to higher rank and low genus. For this it is necessary to construct the correct
correspondence variety as in Section 2.3. Finally, we note that H0

(
Fα,δ/Ta, L

⊗k
α

)
may naturally be identified with holomorphic sections of a vector bundle over the
moduli space M(2, 0). This is seen by pushing forward L⊗k

α via the fibration

G/Ta −→ Fα,δ/Tay
M(2, 0)

from Proposition 2.15. We shall discuss the implications of this point of view in
detail in [D-W1].
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