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Abstract. We prove that the multiplicity spaces appearing in Chern-Simons
theory, as defined by Segal, vanish unless they are associated to integrable repres-
entations. This and other links with conformal field theory are examined.

1. Introduction

The purpose of this paper is to prove a conjecture attributed to Segal con-
cerning the vanishing of certain multiplicity spaces appearing in the geo-
metric quantization of SU(2) Chern-Simons gauge theory (see [Wi]). The result
is closely related to the fact that only the Integrable representations of the
loop group of SU(2) play a role in the theory. The method used in this paper is
the analytic description of certain moduli spaces of vector bundles developed
in [D-Wl].

Let us begin by describing the main result. Throughout the paper, let Σ
denote a compact Riemann surface of genus g > 3; let p be a distinguished point
of Σ, Σ = Σ\{p}, and fix G = SU(2). We shall denote by jtfs the stable, smooth
connections on a trivial G-bundle over Z, and by A -+ stfs we shall mean
the determinant line bundle. For any integer k §; 0, let H°(srfs, A®k) denote
the infinite dimensional space of holomorphic sections of A®k. For / a non-
negative half-integer, let Vλ denote the irreducible representation of G of
dimension 2/1+1. The complex gauge group ^ c acts on the determinant bundle,
and also on Vλ via evaluation at the point p. Following Segal, we define the space
of states

(see [Ox]), where the homomorphisms are required to intertwine the actions of (S€

In Sect. 3 we shall prove the
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Main Theorem. For λ > k/2, Ψ\ vanishes.

This theorem was conjectured in [Wi] to be the manifestation in Chern-
Simons theory of the integrability criterion for the Wess-Zumino-Witten model (cf.
[G-Wi]). In the latter, the Ward identities show that the primary operators
associated to representations of Kac-Moody algebras for level greater than k de-
couple from the theory; i.e. the space of conformal blocks should vanish for these
insertions. In [Ox], Segal proposed the space Yλ as the Hubert space appearing in
Chern-Simons theory, and by the arguments in [Wi] this should be the same as the
space of conformal blocks for WZW (see also [E-M-S-S, Gaw]). Our theorem is
therefore a Chern-Simons version of the two-dimensional result.

Let us say a few words about the method of proof of the Main Theorem.
Associated to λ and k we have a matrix

jm o
\0 -λ/k

and a space Jiα, the moduli space of parabolic stable bundles with weight λ/k
at p (cf. [D-Wl], Sect. 2.2). Strictly speaking, this interpretation only works
for a = exp(2τπα) φ + /, so care needs to be applied to these cases. Nevertheless,
in [D-Wl], Sect. 2.3, we showed that the spaces Ma form correspondence
varieties between the moduli spaces ^#(2,0) and Jί(2y — 1) of semistable
vector bundles of rank 2 and degree 0 and —1, respectively. More precisely,
there exist holomorphic maps p0, px from Jίa to y#(2, 0) and Jί(2y — 1), respect-
ively, with generic fiber P 1 in both cases (see Theorem 2.1). On the other hand,
one of the main goals of [D-Wl] was to construct on Jίa a holomorphic
line bundle if (fe, λ) via the Chern-Simons functional whose space of holo-
morphic sections was isomorphic to yx. The restriction of if(/c, /) on the fiber
of p 0 is always a positive bundle, and indeed, this is what produces the represen-
tation Vλ. However, if / > k/2, then J?(k,λ) over the fiber of pι is negative,
thus proving the vanishing of i^λ.

In Sect. 4 of the paper, we conclude with a few observations concerning the
relationship between the moduli space point of view and the WZW model. In
particular, we shall show that the correspondence varieties mentioned above
interpolate between the SU(2) and SO(3) theories in a manner similar to the
orbifold techniques of conformal field theory. In a later work, we shall treat the case
of higher rank and multiple punctures [D-W2].

2. The Quantum Line Bundle

In this section we shall review the construction from [D-Wl] of a line bundle
whose space of holomorphic sections realizes the space of states Yλ. This is
essential in the proof of the vanishing theorem in the next section. Here we recall
the notion of the moduli space of vector bundles with parabolic structure and the
construction of a line bundle over this space. Moreover, we compute the Chern
class of this line bundle in terms of an explicit set of generators for the second
cohomology group of the moduli space.

Recall the notation Σ, Σ, p, and G from the Introduction. Let E denote the
trivial G-bundle over Σ and let Jί0 denote the space of based equivalence classes of
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flat connections on E. According to [D-Wl], Sect. 2.1, Jί0 is a smooth manifold
diffeomorphic to G2g. Let

q: ,£0 -> G

denote the map measuring the holonomy of based loops around the puncture p.
Then q is a ίibration away from the identity ([D-Wl], Proposition 2.3). Let J^
denote the fiber of q over aeG. For a Φ + /, let Ύa denote the normalizer of a in G.
Tα is clearly a maximal torus acting on J^, and the quotient space J^/Tα may be
identified with the space of isomorphism classes of flat connections with holonomy
about p conjugate to a (cf. [D-Wl], Proposition 2.4).

It follows from the theorem of Mehta and Seshadri that the space J^/Tα admits
naturally the structure of a complex manifold. Indeed, there is a natural identifica-
tion of J*α/Tα with the moduli space of parabolic stable bundles with weights
determined by a (for a precise statement of the above theorem, see [D-Wl], Sect. 2.2).

Next we fix a trivialization of the fibration

This can be done, since for G = SU(2), the space G\{/} is Tα-equίvariantly
contractible. Since q is a G-map, this induces a Tα-equivariant identification of J^
with #"__,. Let

denote the obvious quotient maps. Then qa and g_7 are principal Ύa/Έ2, G/
Z2 = SO(3) bundles, respectively.

Use the identification between #"_7 and J^α, and the Mehta-Seshadri theorem
to put complex structures on the spaces J^_7/Tα ~ Jίa, a φ ±1. Also, let Ji{2, 0)
and JM(2, —1) denote the moduli spaces of semistable vector bundles of rank 2,
with fixed determinant of degree 0 and — 1, respectively. In particular, in the
former case we shall take the determinant to be trivial, in the latter we take it to be
Θ{ — p\ where p is the puncture. The next theorem lies at the heart of our
construction:

Theorem 2.1. (see [D-Wl], Proposition 2.15) The spaces Jtafor αΦ ± I form
a correspondence

p 0 ι/ \ Pi -

^(2,0) Jί(2,-1)

Moreover, the map p0 is a holomorphic Ψι-bundle over Jis{2,0), the subvariety of
stable points in Jί(2,0), and pγ is a holomorphic Ψ1-bundle over .Jί(2, —1).

For the purpose of the next section, it KS very important to fix an explicit set of
generators for H2{Jia^) — n1{Jίa). Let β1 denote a choice of generator of

π2(J((29 -\))~H2{Ji{2, - 1 ) , Z ) - Z

such that the Poincare dual βx* in Hβ9~8(Jί(2, — \\TL) corresponds to the unique
ample generator J£? 1 of Pic(c/#(2, — 1)) ~ TL. Choose β a generator of π2(^Γ-/) such
that under the map q-ι we have q-i*β = 2β1. Also choose a generator γ of
π1(Ύa/Z2) ^ %. Observe that β is uniquely determined, and y is so up to sign.
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From the long exact sequence in homotopy associated to the fibration qa9 we
obtain

0 - π 2 ( ^ _ 7 ) — ^ — π2(Jίa) ^ πγ (Tβ/Z2) - 0 .

We define generators β, y of n2(Jίa)
 a s follows: first, let β = qa*(β) Let y be any

element of π2(Jίa) — H2(Jίa, Z) such that d(y) = y and under the Poincare duality
pairing </?*, y> = <y*> β ) = 0 Again /? is uniquely determined but y is only
determined up to sign. In order to fix the sign of y we proceed as follows: let
p0: Jίa -• Jί (2,0) be the map of Theorem 2.1. Let ι0: F x -> Jίa denote the inclusion
of the fiber of p0 over a point in Jis{2,0). Let [Ψ1^\eH2(Ψ\ Z) denote the
fundamental class of F 1 . Then

Lemma 2.2. Jw H2(Jϊa, Z) ~ π2(./#α), z0* [ P 1 ] = ±2y.

Consider the long exact sequence in homotopy associated to the map p0. As
Jίa\Po1(Jίs(2i0)) has complex codimension at least 2 (see [D-Wl], Proposition
2.16, and recall that g > 3) we have

π ^ F 1 ) ^ + π2{Jίa) - ^ π2(.Jf (2,0)) ^ 0

(F1, z) H 2 (^ α , z) #2Mr(2,0), z ) .

According to [D-Wl], Proposition 4.2, Po*(β) generates the free part of
π 2 ( ^ ( 2 , 0)) ĉ  Z ® Z 2 . Thus, Ϊ O ^ Γ 1 ? 1 ] = ± 27» proving our lemma.

Henceforth, we fix the sign of y so that Ϊ O * ! ! ^ 1 ] = 2y. Thus, ^ and 7 in
π2(-^α) — H2(Jίa, Έ) are now uniquely determined.

We next restrict to a certain class of holonomies corresponding to representa-
tions of the group G = SU(2). This correspondence was explained in detail in
[D-Wl], Sect. 6 for SU(n). We shall review this here for n = 2.

Representations of SU(2) are characterized by a non-negative half-integer /,
the spin of the representation. We also think of / as a character of a maximal
torus (or weight) T c G , λ: T -» ί/(l). The dimension of the representation
space Fλ associated to the λ is 2λ + 1. Assume that the weight / is invariant
under the center Έ2 of G. This corresponds to taking / to be an integer. Let a
be defined

/λ/fc 0

and let a = exp(2πiα) denote the corresponding element in G. For the next
theorem, assume a φ +/.

Theorem 2.3. Let /, α α ^ a be as above. Then there is an hermitian line bundle
j£?(/c, /) with connection over .Jίa, constructed via the Chern-Simons functional, and
such that

cί(£l'(k,λ)) = kβ + λy,

where β, y are the generators for H2(,Jίa, Έ) ~ H2(Jίa, Έ) described before.

Even when a is in the center, we can show the following
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Theorem 2.4. Let /, α as before with exp(2πia) = ± J. Choose a e G \ { ± /}. Then,
there is a line bundle ί£(/c, λ) with connection over J(a, constructed via the Chern-
Simons functional, and such that

where β, y are the generators for H2(Jίa, 7L) ~ H2(Jia> %) described before.

As we do not need the details behind the construction of the line bundle if (7c, λ), we
shall refer to [D-Wl], Sects. 4.2 and 5 for further details. The importance of the line
bundle if(/c, A) is indicated in the next theorem which states that if (fc, λ) is
a quantum line bundle on Ma whose space of holomorphic sections is isomorphic to
°Vλ. More precisely,

Theorem 2.5. ([D-Wl], Theorem 6.6) Let λ be a weight invariant under the center
and let α, a be associated to λ (and k) as before. Then

As a final remark, we note that since — / acts trivially on the determinant
bundle A, i^λ vanishes identically for λ not invariant under the center. This is built
into the construction of the line bundle if(/c, λ) (cf. [D-Wl], Theorem 6.1).

3. Proof of the Main Theorem

The proof of the vanishing theorem stated in the Introduction will occupy most of
this section. We continue with all the notation of the previous section.

Lemma 3.1. Pi*(β) = 2βx.

Proof Clearly, we have g_7 = Pι°qa, and so we obtain, by evaluating at βe
π2(#"_j) ~ H2(&_u TL\ that

But, by definition q-^β = 2β1 and qa*β = β, hence the lemma follows.

Lemma 3.2. p1 %(y) = βγ.

Proof. Since π2(^#(2, — 1)) is generated by j8l5 it is enough to show that under the
Poincare pairing

However, in the case where the holonomy matrix is diag(l/2, —1/2), then
p*β* corresponds to the line bundle if(2, 1). Moreover, by the computation
given_ in [D-Wl], Theorem 4.12, <JS?(2, 1), y) = ± 1 . On the other hand, if
<pΐβΐ,y>= - 1 then

<^oP?iS?,IP1> = < p ΐ ^ ΐ , lo . lP 1 ) = <PΪβϊ, 2>>> = - 2 ,

which contradicts the assumption that β* is the ample generator of
Pic(^#(2, —1)). This proves the lemma.
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Lemma 3.3. Let [ P 1 ] denote the fundamental class of ΨHn H2(1P\%) ^ π 2 ( F 1 )
and iχ the inclusion map into Jίa. Then ιγ ^ [ P 1 ] = β — 2y.

Proof Since H2QP\ Έ) ~ TL, the image of ix * in H2{Jίa,Έ) is generated by ^ *
[IP1]. On the other hand, by exactness, image (h *) = ^ e r ( P i *)? a n c ^ ^ m s ^s

generated by β — 2y, as is seen from Lemmas 3.1 and 3.2.

Proposition 3.4. pf/j? - 2β* + y* m H6g~6{Jίa, TL\

Proof Since H6g~6(Jΐa,Z) is generated freely by /?* and y*5 we can write p*
jδ* = mβ* + ny*, where m,neZ. Moreover, we know that pi ° ii = constant map,
so we obtain that

o = <?!/??, ί^DP 1 ]) .

On the other hand, by substituting p\β\ = m/?* + nγ* and ^ * [ P 1 ] = β - 2γ, we
obtain

0 = (mβ* + nγ*, β - 2y) = m - In ,

since (β*, y) = (γ*, β) = 0. Hence, m = In and ptβΐ = n(2β* + γ*). However,

and (p*1β-t,β} =

Therefore n= \.

Corollary 3.5. For λ = k/2, k even,

r m - HΌ(j(a, &(k, λ)) = H°{Jί{2, - l ) , sefkβ).

Proof By Theorem 2.4 and Proposition 3.4,

C l(<?(*,/)) = ^(2)5 + y) = Cl(p?JSf f */2) .

Since ^#α is compact and simply connected, Hodge theory and the exponential
sequence show that i?(fc,/) and pX^fk/2 are holomorphically equivalent. The
Corollary follows immediately.

Proof of Main Theorem. Let / be a non-negative half-integer, and let α, a be the
corresponding holonomy matrices associated to / as above. If / is not in fact an
integer, then by the remark following Theorem 2.5, there is nothing to show. We
therefore assume / is an integer. By Theorem 2.5 it suffices to show that
H°(Jίa, J5f (fc, A)) = 0 for / > k/2. According to Theorems 2.3 and 2.4,

J£?(fc, λ) = kβ* + λy* .

Hence

= (kβ* + λy*9 β -2y} = k-2λ .

Thus if / > fc/2, the bundle ι*Jίf(k,λ) on P 1 is negative, and therefore has no
non-zero sections. This implies if (7c, /) cannot have any either, and this proves the
theorem.
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4. Discussion

In this section, we would like to present an informal discussion of the results from
the point of view of conformal field theory. More precisely, (i) we interpret
Corollary 3.5 as a statement about orbifold models, (ii) we consider a particular
selection rule, and finally (iii) we show how Corollary 3.5 plus the SU(2) theory
produces the result of Thaddeus [Th].

It follows from Donaldson's version of the Narasimhan-Seshadri Theorem (cf.
[Don], or [A-B], Sect. 6) that the moduli space of flat SO(3) bundles is equivalent
to ^ ( 2 , -1). More precisely, let P be an SO(3) = SU(2)/Z2 bundle over Σ with
w2(P) + h i e of non-trivial topological type. If we denote by j / the irreducible
connections on P, srfF the subspace of flat connections, and ̂  the connected
component to the identity of the group of automorphisms of P, then we have that
J 5 V / # is diffeomorphic to Jt(2, -1) .

Therefore, Kahler quantization of the space J / at level k, k even, reproduces the
space H°(Jί(2, -1), JSPfk/2) (cf. [Ax-DP-Wi]). The fact that k must be even is, in
conformal field theory, a consequence of the requirement of modular invariance (cf.
[Dj-Wi, M-Sl]). In the context of this paper, the requirement is integrality of the
symplectic form (see Theorem 4.12 of [D-Wl]).

On the other hand, it was argued in [E-M-S-S] that quantizing j / should be
equivalent to the Wess-Zumino-Witten model based on the group SO(3). The
WZW model based on SO(3) = SU(2)/Z2 may be treated using orbifold techniques.
The twisted sector of the theory, which corresponds to non-trivial SO(3) bundles,
may be generated from the SU(2) theory by insertion of a twist field φ. For k = 0
mod 4, this field has (chiral) spin fc/2 (cf. [G-Wi, M-Sl]). Hence, the space of
conformal blocks is, according to Segal, isomorphic to i^k/2- Thus, Corollary 3.5 is
nothing but the statement that the conformal blocks for the twisted sector of the
SO(3) theory correspond to the conformal blocks for the SU(2) theory, twisted
by φ.

Let &ΐ(g; φnί,. . . , φnι) denote the Friedan-Shenker bundle associated
to the primary fields φHj inserted on a compact Riemann surface of genus g.
The integers rij correspond to twice the spin of the associated representation.
Let Smn be defined

Then the Verlinde dimension is (see [V, M-S2])

k o o

rankje{g;φnί,. . . 9 φ n ι ) = Σ (Smo) i9 ? ' " ^

Let us denote by μ the spectral flow μ(m) = k —m (cf. [M-Sl]). Then it is easy to
see that

and so if F = Σ)= i nh

k o o k o o

Σ /o \-2(q- 1) m " i °mnι _ ( \\F V f ? \-2(g- 1) °mnι ^mm

l^moJ "^ T; —y~i) 2^ v̂ moJ "^ ' ' ' "c
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From this we obtain the familiar selection rule that ffl{g\ φnχ,. . . , φnι)is zero unless

F is even1. In particular, the only 1-point contributions come from integral spin. In

Theorem 6.1 of [D-Wl], we showed that integral spin was necessary for the very

construction of the quantum line bundle if (k, λ). This in turn was a consequence of

the requirement of invariance under the center of the gauge group (see also the

remark following Theorem 2.5 above). In [D-W2], we shall show that the more

general selection rule, i.e. for multiple insertions, has a similar interpretation.

For one insertion of spin k/2, k even,

o c / 1 \ m C
^mk — °mμ(O) ~~ V ι) °mθ

by (4.1), so

τankje(g;φk)= £ ( " I H S M O ) " 2 " " 1 1 .
m = 0

By Corollary 3.5, the predicted dimension for the space of holomorphic sections is

therefore

άimH°{Jί(2, -1), ̂ ®kβ) = άimi^k/2 = ran

This was the result conjectured in [Th] and proven recently in [Sz]. In light of

Corollary 3.5, we see that the formula follows immediately from the SU(2) theory

and Segal's definition of the space of conformal blocks.

Acknowledgement. We wish to express our thanks to Aaron Bertram for his invaluable sugges-
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