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1 Introduction

In this paper we study the behavior of the moduli space of rank two vector bundles
on a compact Riemann surface and its associated “theta functions” as the surface
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degenerates to a reducible curve. More precisely, let X, be an analytic family of
compact Riemann surfaces degenerating as t — 0 to a reducible curve X, with
a single separating node po. Let 2 * U X~ denote the normalization of Z,, and let
p& e Z* denote the pre-image of p, under the map £+ U X~ — X,. Our goal is to
“factorize” the moduli space of rank two vector bundles on Z, and the space of
holomorphic sections of a line bundle on the moduli space and express them in
terms of the corresponding objects on £*. Let us introduce our theorem by first
illustrating what is meant by factorization in a simpler situation.

Consider the case of line bundles of fixed degree, say zero. In this case, the
moduli space is a complex torus, J(Z,), the Jacobian variety of Z,. The behavior of
J(Z,) and the theta divisor ©, as the surface X, degenerates to X, may be
understood by first studying the abelian differentials on Z, (cf. [Fay, Y]). One finds,
for example, that the period matrix associated to X, becomes block diagonal over
the fiber ¢ = 0. The Jacobian therefore degenerates to a product torus J (ZH)x
J(£7). The analytic family of theta divisors @, has irreducible fibers, except att = 0
where the components are @* xJ(£~) and J(Z*)x ©~. Hence, the space of
holomorphic sections of the k-th power of ©, may be seen to degenerate to the
product of sections of [©@*]®* and [@~]®*. The dimensions of these spaces
factorize: k% = k8+*9- = k9+ . k9-.

We shall prove an analogue of the above result for holomorphic sections of the
determinant line bundle 4 over the moduli space .# of rank two semi-stable vector
bundles on X with fixed trivial determinant. The space .# is the same, by the theorem
of Narasimhan and Seshadri, as the space of equivalence classes of flat SU(2) con-
nections on Z. We call holomorphic sections of 4* rank two theta functions of level k.

A fundamental difference in this type of factorization for rank two as opposed
to rank one theta functions is the appearance of representations of the group SU(2)
(cf. [Ox]). Consider the compact surfaces £* with marked points p§ identified in
X, as a node as before. If o#F denotes the infinite dimensional space of stable
holomorphic structures on a trivial rank two bundle E* - Z*and 99 the complex
automorphisms, then 4 acts on the determinant bundles 4, — o/, and the theta
functions may be described by the invariant sections H°(s/E, 4%)#%. They are
holomorphic sections of a corresponding bundle on the quotient &/F/4%. By
a theorem of Drezet and Narasimhan [Dr-N7], these extend uniquely as sections of
an invertible sheaf on the compactification of o/ F/%4%.

Given an irreducible representation ¥ of SU(2) of dimension 24 + 1 where 4 is
a half-integer, we may let ¥< act on ¥, by evaluation at pj. We then form the
multiplicity space

(L1) ¥,(E*) = Homge (V;, HO(AE, 4%))

where the homomorphisms intertwine the % action. It was shown in [D-W1] that
¥,(£%) may be identified with holomorphic sections of a particular line bundle
2, (k, ) over the moduli space of parabolic bundles on Z*. Note that since the
center Z, = 9% acts trivially on &/ and 4%, ¥;(Z*) vanishes trivially unless 4 is
an integer. In [D-W2], we showed that ¥;(Z'*) also vanishes for 1 > k/2. Strictly
speaking, in the latter reference we needed the technical assumption that the genera
of £* be >3.* This requirement is due to the existence of singularities in some of
the moduli spaces involved. We are now prepared to state the

*Note added: This assumption will be removed in part II of this paper.
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Main Theorem. Suppose Z* have genera greater than three. Then the degeneration
X, = X, defines an isomorphism of vector spaces

(1.2) HA A~ D 7EH®7I(ET).
0 Ask/2

The isomorphism is given explicitly by the composition of the maps (6.15), (6.16),
and (6.17). It is also worth mentioning that the higher cohomology of A* for
positive k can be shown to vanish; we prove the same result for the bundles
Lk, 4) for 0 < 1 £ k/2 (see Theorem 6.9). Thus the Main Theorem is equivalent
to the following equality between Euler characteristics of holomorphic line
bundles:

(1.3) 14 = Y (Ll D) (L-(k, 1) .
0SAZK/2

The method of proof of the Main Theorem is conceptually quite simple. We first
restrict the holomorphic sections of 4* to certain real (smooth, compact) hyper-
surfaces .#, in the moduli space defined by fixing the conjugacy class of the
holonomy around the separating cycle. We show that the restriction map induces
an isomorphism between H(.#, 4¥) and H2:(#,, 4%), the space of global sections
of A4* on #, satisfying the tangential Cauchy-Riemann equations (CR-sections). By
degenerating the complex structure on .#, we construct a limiting CR-structure on
#,, and a limiting CR-line bundle for 4*. Then by a semi-continuity theorem for
HY analogous to that for ordinary Dolbeault cohomology we show that the
dimension of HZ(#,, 4*) does not jump at the limit. There we identify the space
with the direct sum (1.2), and this establishes the Main Theorem.

It may at first seem unnatural to restrict to one hypersurface .#,. The necessity
for doing so stems from two facts: First, the construction of a line bundle over the
moduli space of parabolic bundles given in [D-W1] cannot be extended simultan-
eously for all holonomies; this is due to a simple topological obstruction (see [Fr]
for a discussion of this point). Second, it is not clear how to produce an analytic
family of complex structures on the whole moduli space .# which extends past
t = 0. Our construction does this provided the set of points corresponding to
connections with central holonomy around the separating cycle is discarded. This
set has real codimension three and so does not affect the holomorphic sections.
However, because the remaining manifold is open one does not a priori have the
semi-continuity results alluded to above. )

The purpose of this paper is two-fold: The first is to describe the degeneration of
the moduli space of stable bundles, at least locally, as we approach a nodal curve.
Our method is similar to the “conic degeneration” of the d-operator considered by
Seeley and Singer (cf. [S-S, S, B-S]). The second, motivated by the Main Theorem,
is to analyze the complex geometry of the real hypersurfaces .#, and their
associated boundary cohomology groups H2? = HP4(#,, 4%).

We present the details as follows: In Sect. 2 it is shown how the based moduli
spaces fiber. We give explicit descriptions of the tangent spaces involved in terms of
solutions to the Neumann boundary value problem. In order to lift holomorphic
vector fields, we define connections on the based moduli spaces and investigate the
signs of their curvatures in certain canonically defined directions. In Sect. 3 we
describe the local degeneration of the moduli spaces of stable bundles. We prove
a result similar to that describing the aforementioned behavior of holomorphic
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differentials near a nodal curve - in the present case, the differentials are coupled to
the adjoint bundle gy associated to the underlying holomorphic bundle E. We
define an operator D, acting on an appropriate Sobolev completion of the smooth
sections of 7*Xo ® gz. The kernel of D, may be identified with meromorphic
1-forms with simple poles at p& and residues lower (resp. upper) triangular with
respect to a fixed identification of the fiber (gE) pi: The diagonal parts of the residues
on each component X* are required to be opposite one another (see Proposi-
tion 3.12). The tangent space to the moduli space .# (t) (with the induced complex
structure from X,) is described by the kernel of the corresponding operator D,
acting on sections of 7*Z, ® gg,. The “local degeneration” of the moduli space is
then given by the following

(1.4) Theorem (see Proposition 3.23, Corollary 3.24, and Proposition 4.13). The
family {D,} of unbounded Fredholm operators is continuous D, — Dy in the graph
norm.

Instead of degenerating the moduli space associated to the closed surface X, one
can first restrict to the components X with boundary and consider the Neumann
problem mentioned above. The “local factorization” of the moduli space is the
statement that either degenerating the closed surface, or first restricting and then
degenerating, are compatible operations. In other words, the solutions to the
Neumann problem converge in the kernel of D, as well (see Corollary 3.21). The
analysis relies on explicit constructions of parametrices for the various operators
involved.

In Sect. 4, we restrict our attention to the real hypersurfaces .#, of .# consisting
of equivalence classes of connections with holonomy around the separating cycle
conjugate to ae SU(2)\{+I}. The complex structure on .#(¢) induces a CR-
structure on .#,(t). We show that as ¢ — 0, the family .#,(t) has a well-defined limit.
Precisely,

(1.5) Theorem (see Theorem 4.11). There is a limiiing CR-structure #,(0) on 4,
such that the #,(t) form a differentiable family M , of CR-manifolds parameterized by
the disk.

Given a CR-manifold, the Levi form is a measure of its holomorphic convexity. For
the family M, we prove

(1.6) Theorem (see Theorem 4.19 and Corollary 4.20). For sufficiently small choice
of the degeneration parameter t, the Levi form of #,(t) has everywhere at least two
positive and two negative eigenvalues.

Theorem 1.6 is proven by relating the Levi form of the limiting CR-structure to the
curvature of the universal bundle over the Hecke correspondence and using the
results of [D-W2]. The indefiniteness of the Levi form, combined with a Hartog’s
type argument due to Lewy, Andreotti and Grauert, imply the following extension
theorem.

(1.7) Theorem (see Theorem 4.25). For a sufficiently small choice of the degener-
ation parameter t, the restriction map

p:HO(A (), 4%) — HE&(A,(t), 4°)

is an isomorphism.



Factorization of rank two theta functions. I 421

Theorem 1.7 reduces the Main Theorem to the problem of identifying H 2 (.#,, 4%)
in terms of the ¥3’s. We do this by letting the degeneration parameter ¢ — 0. We
first construct a family L* of CR-line bundles on 9M,. Explicitly, for t & 0 we
set L(t)* to be the restriction of the determinant line bundle 4* on .,(f) as
a hermitian bundle with connection constructed as in [R-S-W], whereas for t = 0
we set L(0)* to be the hermitian line bundle with connection constructed in
[D-W1]. Then we prove in Theorem 6.6 that L* is a differentiable family of CR-line
bundles on MM,.

By the analogue of semi-continuity for Dolbeault cohomology, which holds
also for 0, cohomology under the convexity properties of .#, described in
Theorem 1.6 (see Theorem 5.8), in order to show that the dimension of H 2z (A, (1),
L(t)*) is constant near t = 0, it suffices to show HY' ! (#,(t), L(t)*) vanishes at t = 0.
We prove this by first realizing .#,(0) (with the limiting CR-structure) as the
boundary of a compact complex manifold D(.#,). Indeed, the manifold D(.#,) is
nothing but the holomorphic disk bundle associated to the circle bundle
My~ M) x My, where #F are the moduli spaces of parabolic bundles on
Z* with weight a. The line bundle L(0)* extends as a holomorphic bundle on
D(.#,). We then relate the boundary cohomology of .#,(0) to the absolute co-
homology of D(.#_,). We prove

(1.8) Theorem (see Theorem 5.11 and Corollary 6.12). For k =0,
HY (M,0), LO))=0.

The proof of the Main Theorem then follows by decomposing the CR-sections on
A,(0) in terms of irreducible representations of the circle action and using the
results of [D-W1] and [D-W2].

In the past few years a great number of papers on this subject have appeared,
all of them treating the problem from a different point of view. We refer the
reader to the following articles: [Be, Be-Sz, C, Don, Fa, J-W, N-R, Sz, Th,
T-U-Y, Wi, Z]. This list is most probably not complete, and apologies are
made for any omissions. For clarity of exposition, we have restricted ourselves
in this paper to the simple case of degeneration of a compact surface by
pinching a single separating cycle. The more general case will be treated in the
sequel.

2 Gluing flat connections

The purpose of this section is to give a description of the gluing of moduli spaces
of flat vector bundles. In Subsect. 2.1 we describe the gluing via a fiber product
on the level of based moduli spaces (Proposition 2.5 and Corollary 2.6). In
Subsect. 2.2 we explain an alternative description of the gluing in terms of the
Neumann problem on Riemann surfaces with boundary. Such a description
is necessary in order to understand the degeneration of the moduli spaces treated
in Sect. 3. Finally, in order to be able to lift vector fields to the based moduli
spaces we need to introduce certain connections on the fiber products. This is
accomplished via the universal connections of Atiyah and Singer. In Subsect. 2.3
we outline the construction of the connections and investigate the sign of their
curvatures.
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2.1 Fibrations of moduli spaces

Let I+ andj? ~ be compact Riemann surfaces of genera g, g with fixed coordi-
nate disks (D, z,) and (D -, z_), respectively. Thus

Z:I::bi - D

are complex analytic isomorphisms with the unit disk D < €. Given a complex
number ¢ in the punctured disk D*, we define the compact Riemann surface X, of
genus g = g, + g_ by gluing Z*\{|z.| < |t|} and 27\ {|z_| < |t|} via the equa-
tion z,z_ =t. Let ¢ = |t|!/3, and let C, denote the circle in Z, defined by the
equation |z.| = & Then C, is a separating cycle, i.e. Z,\ C, consists of two compo-
nents. We shall refer to the neighborhood |t| < |z.| < 1 of C, in Z, as the pinching
region. The closure of each component is a Riemann surface with boundary which
we shall denote by Z; and X;, respectively. Clearly,

T =xJzr.
Ce
Let CE = 9(Z%) with the induced orientations. We give C, the orientation from
C7, which is of course opposite to the orientation of C; . Finally, we choose a base
point xo,0n C, « Z,. Let p¥ = z3'(0)and denote Z* = Z*\{pF}, Lo =2 U2 .
We also fix a smooth family of difftfomorphisms

(2.1) Xe:2o —»Z,\{Ce} s

satisfying yo = id. Furthermore, we require x, = id outside the pinching region for
all z. We shall denote by yi the restriction of x, to Zf.

For the rest of Subsect. 2.1 fix t % 0 and set
Z=Et; zi=Z§t’ C=Ce, x0=£0,£, and X=Xt

Since we are not interested in complex structures in this section, there is no
ambiguity in using the same notation for a punctured Riemann surface and
a surface with boundary.

Let G = SU(2), g = Lie G the Lie algebra of G, and let PZ*, P be the trivial
G-bundles over £, X, and E*, E the vector bundles associated via the standard
representation. Let o/ %, o be the spaces of C® connections and ¥*, ¢ the groups
of C® gauge transformations on P, P, respectively. Let ¥, 9, be the subgroups
of #*, 4 consisting of based gauge transformations, i.e. those which are the identity
at x,. We topologize all spaces via the C® Fréchet topologies. The groups ¢+,
%% 4,%, then act smoothly on & % oA, the flat connections in o *, /. Let

22) ME=AEGE  ME = oly/F*
./(o = ij/go M= 'dF/g

be the quotient spaces. 4 * and .# are called the moduli spaces of flat connections
on P, P*, and #§, #, are called the based moduli spaces of flat connections. The
residual groups 9/4, ~ G and ¥*/#& ~ G act on #, and 43, and # = M,/G,
M* = #E/G. For the following proposition we refer to [D-W1, Subsect. 2.1] and
[Ak-M].
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(2.3) Proposition. .#3 is a smooth manifold diffeomorphic to G***, and the holonomy
map q . : ME — G which measures the holonomy around C*, (C~)™?, respectively, is
a smooth map. Moreover, q, has the following properties:
(i) q4 is surjective;
(i) {critical points of q.} = {reducible connections};
(iii) {reducible connections} = q3*(I);
(iv) g3 (pt)\{reducible connections} is a C* manifold of dimension 6g, — 3.
(v) q4:AF\qz'(I)> G\{I} is a trivial fiber bundle.

Let g: #, —» G denote the map measuring the holonomy around C. Let #§ < #,
be the subspace of irreducible connections, and let .#° = .# be the image of
MY < My under the obvious quotient map. For the next two propositions we refer
to [Ak-M1].

(2.4) Proposition. .#, is a real manifold of dimension 6g — 3 and Mo\ A5 < q~1(I).
Furthermore, the natural quotient map My — #° is a principal SO(3) bundle.

(2.5) Proposition. q:.#,\q ™ '(I) = G\ {I} is the fiber product of g : M \q3*(I) >
G\{I} and q_: M 5\q_*(I) = G\{I}, and therefore q is also a trivial fiber bundle.
Moreover, if T, < G is a maximal torus, a T -equivariant deformation retract of
G\ {1} induces T,-equivariant trivializations of q, q . compatible with the fiber product.

Below is a diagram of this fiber product:

Mo\q ™ (I)
P+ v N P
Mi\g7H(T) la Mo \qZ (D)
g+ N v q-
G\{I}.

Given a e G\{I} we let #, = q~1(a), FT = q1'(a) denote the fibers of ¢, q ;.
Moreover, let G-a denote the adjoint orbit in G through a, and let #,,=
g Y (G-a), #F,=49:"(G-a). We let #,, #* denote the images of #, ., #E,
under the natural quotient maps.

(2.6) Corollary. If a % I, #, ., #E, are smooth submanifolds of Mo, #% and the
restrictions of q, q . are trivial fiber bundles with fibers #,, & * respectively. Further-
more, the restrictions of q, q4 to My ., M, form a trivial fiber product

Mo,
| N\ P- .
M3 la Mo,
g4+ ™ Y 4q-
G-a.

(2.7) Proposition. (i) Ifa + I, #,, #F are smooth submanifolds of M, #* and the
natural quotient maps

+ +
Moo My, M5 o M,
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are principal SO(3) bundles. (ii) If a + +1, then
Foor My, FEoME
are principal T,/Z , bundles, where T, = SU(2) denotes the maximal torus through a.

Proof. The action of SO(3) on #, 4, #§ , is free and admits local slices. Similarly
for the action of T,/Z, on %, #%. The Proposition follows from a general
theorem on group actions (cf. [V, Lemma 2.9.11]).

2.2 Description via the Neumann conditions

We now turn to a different description of the spaces .# 5, .# * and the fiber product
(2.6) in terms of the Neumann boundary value problem. We continue our notation
=12, 2* = X% Again, as we are not interested in complex structure in this
section there is no ambiguity in identifying a punctured Riemann surface with
a surface with boundary.

We first recall the following standard slice theorem on the space & (cf. [Fr-U,
Theorem 3.2]).

(2.8) Theorem. Let V € s be an irreducible connection and let [ V'] be the resulting
orbit in M.
(i) A neighborhood of [V] in # is diffeomorphic to

Ky={BeC®(T*2®gg): V=0, Vxf =0} .
(i) A neighborhood of [V] in M is SO(3)-equivariant diffeomorphic to Ky x SO(3).
(iii) Under the identifications
Tivy# =Ky,
Tiyy#o =Ky ® Vg

as subspaces of C*(T*X ® gg), the derivative of the natural quotient map #o — M
corresponds to projection onto the first factor.

The above theorem generalizes to the case of manifolds with boundary as follows
(cf. [T1, Proposition 2.1 and 2.2]):

(2.9) Theorem. Let V* € o # be an irreducible connection, and let [ V*] denote the
resulting orbit in M *.
(i) A neighborhood of [V*] in # * is diffeomorphic to

Kier = {Be C™(T*Z* ®ggt): VEB=0, VExf =0, and xf|c =0} .
where * B|c denotes the restriction of x§ to C. .
(ii) Aneighborhood of [V*]in M & is SO(3)-equivariant diffeomorphic to K ;3" x
SO(3).
(i) Under the identification Typey M * = Kyi', Trpsy M§ = K@ vig as
subspaces of C*(T*Z* ® ggt), the derivative of the natural quotient map M § — M *
corresponds to projection onto the first factor.

Given a closed curve C in X or X%, fix an identification of the space of adjoint
orbits G/G,q; of G with the interval [0, 1/2], and let

(2.10) he: p(resp. & £) — [0, 1/2]
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denote the holonomy map. It is easy to verify that h¢ is continuous and is smooth
away from 0 and 1/2.
We can now state the main corollary of Theorem 2.9.

(2.11) Corollary. Let V e s/y be of holonomy a + + 1, and let V* be the restriction to
AE. Then
(i) A neighborhood of [V1,[V*] in M,, #% is diffeomorphic to
Ky ={BpeKy:(hc)sf =0}
K3E™ = {Be K31 i(hc)y B = 0}

respectively;

(i) A neighborhood of [V1,[VE]in Mo ., #§E . is SO(3)-equivariant diffeomorphic
to Kyx SO(3), K% x SO(3), respectively;

(iii) A neighborhood of [V ], [V *]in Z,, F ¥ is T,/ Z ,-equivariant diffeomorphic to
K4 xT,/Z,, K% " xT,/Z,, respectively;

(iv) Let t, = Lie T,. Under the identifications

Tty M, = K%, TrvyM#o,. = Ky x Vg
T[Vz]./l,,i - Kav,i:t,neu , T[V*]*’”(:)t,a - K?ii,neu x Vig,
Ty % =Ky x Vi, Ty F & =Ky x Vi,
the derivative of the natural quotient maps
Moo Moy Fyo M,
MEu> My, FEo M
is just projection onto the first factor.

The next corollary gives an infinitesimal description of the fibration (2.6) in terms of
the Neumann spaces above. This will be used in later sections.

(2.12) Corollary. Let V, V* be as in the previous corollary. Under the identifications
between TH# o o, THE , and harmonic 1-forms described in Corollary 2.11 we have the
following description for (p),: Let

BeTHoa~Ky® Vg Co(T*2®g5),

B+ the restriction to C*(T*E* ® gg+), and B+ the Neumann representative of B+ in
K‘;;f. Then for some g € g,

(P+)4(B) = B + Vig e Ky @ Vig=TMG, -
We end this subsection by identifying the kernel of the map g, of (2.6).
(2.13) Lemma. Under the identification in Theorem 2.8(iii),
ker gy, ivy = Kv® V(t,) .

Proof. For dimensional reasons it suffices to show that V(t,) < kerg, r; and
K% < ker g, ;vy. To show the first inclusion choose ¢ €1, and a curve y(s) in T,

such that y(0) = id and gs_l 7(s) = ¢. Since

s=0
d d
= —— 18— -1
Vo=l =] GO,
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we obtain

d
4P =5 6O =2 (9-a-39) =0,
=0

s=0 s

since y(s) commutes with a. Hence V(t,) < ker g, v7. To show the second inclu-
sion, observe that under the identification between K, and V-harmonic 1-forms,
Be Ky if and only if VB = Vxf =0, and (h¢),f = 0. The desired inclusion then
follows by the commutativity of the diagram

e

K; — R
! LN
Tpdp.

2.3 The universal connection

We continue our notation as in Subsect. 2.2. Let 4 *(2,0) (resp. #*(2, —1))
denote the moduli spaces of rank two semi-stable vector bundles on £* of degree
0 (resp. —1) and fixed determinant. These may be identified with the moduli spaces
of flat SU(2) (resp. SO(3)) connections via the Narasimhan-Seshadri Theorem (cf.
[A-B]). We would like to define connections on the principal bundles

T, /2, > FE M @+ +]).

This can be done either by identifying the spaces with flat connections on a surface
with boundary and using the Neumann boundary conditions, or by identifying the
spaces with flat connections on the punctured surface and using the universal
connection of Atiyah and Singer. We shall follow the second approach.

Let (U*, I' *) therefore denote the universal SO(3) bundle over Z* x .#* (2, —1)
with universal connection (cf. [A-S]). By pulling back (U*' I' ) via the maps

MEQ, )= {xE}xMEQ, —1)cTExMEQ, -1),
we obtain a connection on the principal bundle
S0(3) » F £, L 4t (2, —1).

This connection is easy to describe: Given [V *] e # *(2, —1), fix representative
connections V* on bundles E* of degree —1 on X*. According to the
standard slice theorem for 4 * (2, —1) (see also Theorem 2.8), the tangent space
Tiy+)# (2, —1) may be identified with a finite dimensional subspace of

CO(T*Z* ®@g;z:) « LAT*Z* ®g;+) .

Since this identification can be chosen to vary smoothly in a neighborhood of V%,
the L2-metric defines a Riemannian metric on # ;. We can now define a horizon-
tal subspace in T;y+) % % to be the perpendicular subspace to the fiber of ¢ ;. It is
easy to see, by simple integration by parts, that under the identification of
Tiv+) & %, with gz.-valued 1-forms as described above, the horizontal subspace
corresponds to the space K i+ of harmonic V* 1-formsin C*(T*Z* ® g;-). It also
follows (cf. [A-S]) that K * is the desired pullback of the connections (U*, I'*)
described above.
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By dividing # %; by the maximal torus T,/Z, < SO(3) we obtain an SO(3)-
invariant connection on

Ta/ZZ—’gi\'I —*.g'-EI/Ta.

We define K * to be the pullback of the above connection on g, via the diffeomor-
phism .#* ~ # *,/T, induced by the natural T,-equivariant trivialization of the
fibration q. (see Proposition 2.5).

Next we briefly review how a complex structure is defined on #F. Let V*
represent points in .# F. Twisting the usual d-operator by the connections, we have
the operator

By LA(T*Z )™ @ gy=) - L2(gl)

and in [D-WI1, Subsect. 3.1 and 3.2] it was shown that T[Vi]./la* may be
identified with ker d¥+. This immediately defines an almost complex structure
on #F which, by Theorem 3.13 of [D-W1], is equivalent to the complex
structure on .#} defined by the theorem of Mehta and Seshadri [Me-Se]. The
latter identify .# % with the moduli spaces of bundles on X* with parabolic
structure.

An important aspect of rank two parabolic bundles with one parabolic point is
that they form correspondence varieties; that is, there are holomorphic surjections
ng, ni linking .# *(2,0) and .# *(2, —1) via the diagram

M +

(2.14) nE ¢ N i
M E(2,0) MEQ, —1).

The maps nf are defined by simply forgetting the parabolic structure. Alterna-
tively, given a degree —1 stable bundle and a quasi-parabolic structure at a point
p one can take the kernel of the sheaf map from the bundle to the flag at p, and thus
obtain a semi-stable bundle of degree 0; this defines the maps n&. The key point is
that #& and = { are holomorphic P! bundles (off a set of codimension 3 for ng).
Since the details behind (2.14) (known as the Hecke correspondence) are presented
in [Me-Se, Be, D-W1], we shall not elaborate further.

At this point we should make a remark concerning orientations. Let Z,,
denote the surface X~ with the opposite orientation. As we have defined 1it,
F . denotes the based equivalence classes of flat connections on X, with holo-
nomy a, whereas the complex structure on the quotient .#_, was chosen to be
induced from X~. Now &, inherits a natural orientation from this complex
structure, and this is opposite the usual one coming from the complex structure on
# ; that is induced from Xg,,.

With this understood, we are now prepared to make a statement about the
indefiniteness of the curvature of K** which we shall need later on. Recall from
[D-W1] and [D-W2] that for a + +1,

m(ME)=0, and Hy(#:,Z)=ZDZ.

In the references above we explicitly defined generators B, 7.+ of H,(# E, Z) by
the requirements that f, correspond to the generators of H,(# %, Z) and 74 to
those coming from the fiber T,/Z, ~ S'. Moreover, we demanded that f, and 7,
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correspond to holomorphic cycles (see [D-W2, Sect. 2]). This fixes the signs of
B+, 7+ In particular, if 1, 1§ denote the inclusion maps of the fibers in the Hecke
correspondence (2.14), then

(2.15) (16)x[P'] =2y,
() [P']=Bs — 27z,
as elements of H, (A F, Z) (see [D-W2, Lemmas 2.2 and 3.3]). We now prove

=1
(2.16) Proposition. 7 Curv(K®?*) represents the dual classes +y% in
HY(4 7, Z).

. v -1
Proof. First consider K *. Then 7 Curv(K* *) represents the Euler class e of

the fibration g . Let y be a 1-form on & ; with the properties that its restriction to
the fiber T,/Z, of q} equals the fundamental class of the fiber and dy is co-
homologousto —(qf)*(e)in H2(#}, Z). Let B, be the generator of H,(# !, Z) as
described in [D-W2, Sect. 2]. Since [L is a cycle,

O=fy=fdh=—f@h*@=— | e=—[e=—(ep.).

oB. B. B @b+ B
On the other hand, it is easy to see that the pullback of the fibration g; via the map
1f corresponds to the homogeneous bundle
T,/Z, - SO(3) - P*
of Chern class —2. Thus )
—2={07)*e, P') =<6, (1) P*) = (e, s — 274 ) = —24e, 74 .

Therefore e, B> = 0, and <e, y, ) = +1, so e represents y* in H*(.# }, Z). This
proves the result for Curv(K* *). For Curv(K® ~), the same argument works except
that we have chosen the opposite orientation on & , (see the remarks above), hence
the minus sign.

The next Corollary is also a direct consequence of the main result of [D-W2].

=1
(2.17) Corollary. Off a set of codimension 3 in M £, o Curv(K® *) has at least

one positive and one negative eigenvalue. Moreover, the eigenvalues are uniformly
bounded away from zero.

Proof. Let 13,1$ be as above. Then by (2.15),
(2.18) )L P = (L, 00). P = +2
EP)*E P = (L 0P = -2.

On the other hand, since n¢ and nf are SO(3) invariant, it follows that the
inclusions i and 1¥ of P! into .#, are SO(3) equivariant. Hence, the pullbacks of
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the SO(3) invariant K* * via 1}, 1} are the homogeneous connections on P, hence
the cohomological statements (2.18) and Proposition 2.16 actually imply

+(E)* (V —! Curv(K“'i)) >0

2n

+(E)* (V 2;1 Curv(K® i)) <0,

with uniform bounds.

3 Local degeneration of the moduli space

In this section we show how to locally degenerate the moduli space around
a connection V and prove Theorem 1.4 of the Introduction. Our method is very
similar to techniques used in “conic degeneration”, and much of this section is
a straightforward generalization of [S-S] (see also [B-S] and [S]). Perhaps the only
novelty is the somewhat curious choice of weighted Sobolev spaces which, as we
shall see, is more or less dictated by the requirement of a smooth limit as the surface
degenerates.

There are really two distinct problems to consider: The first is to degenerate the
operator acting on sections over the closed glued surface. The latter may be
regarded as sections over the surfaces with boundary satisfying some “matching
conditions” on the boundary. This we treat in Subsect. 3.2. The second is to
degenerate the Neumann problem defined on the surfaces with boundary, and this
we do in Subsect. 3.3. An important point is that the Neumann and matching
conditions degenerate to the same conditions in the limit once restrictions coming
from the holonomy map are taken into account.

3.1 Preliminaries

We first set up some notation. Throughout this section, nothing special to SU(2) is
used, so unless otherwise specified we allow for arbitrary rank. Let ~ denote the
punctured surface £* or ™. Let E — Z be the trivial SU(n) bundle, and suppose
[V ]is an equivalence class of flat unitary connections on E of holonomy a € U(n)
around p. Then according to [D-W1, Lemma 2.7], we may choose a unitary frame
ey, ... ,e, over the punctured disk D* with respect to which V = d + i&d6, where
& is the matrix diag(@q,...,d&,) and

0 =2...56,<1.

Clearly, for holonomy a~! we can find a frame with respect to which the connec-
tion has the form d — i&d6. Let 9 be the corresponding é-operator. If we define
a new basis {s;} by s; = |z|*e;, then the s; are holomorphic with respect to Op.

The bundle E and operator 0y may be extended to a holomorphic bundle
E - X by gluing in a disk via the transition function z* on the universal cover of
2 (cf. [M-S]). Note that in the case of rank two we may also normalize the weights
a; = &, o, = —o. Twisting by the transition function z* extends E to a holomor-
phic bundle F of degree zero. The maps E — E and E — F are the two projections
Ty, o, respectively, in the Hecke correspondence (2.14). We shall denote the
adjoint bundles associated to E and E by g and g, respectively.
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As in Sect. 2, let X, be a glued Riemann surface degenerating as t — 0 to
Zo=2%uUZ", and let & = |t|*’2. We shall work locally in the pinching region
& <|z4| <1, and we denote by ZF the surfaces Z*\{|z4| < &}. Furthermore, we

write z4 = rie“’i and t=¢ e‘” The cylindrical metrics on X* and X~
ds? = dv;d0., where 1. = —logr., naturally glue together to form a smooth
metric on X,.

Given flat connections V¥ on E* — X* of holonomy a, a™ %, respectively, we
assume the connections have the form expressed above, namely

V' =d+iadb.,
V™ =d—iédf_

with respect to frames {e,*} Then by identifying e; = ¢} = ¢;, we obtain a bundle
E, — X, with (flat) connection V. We will be 1ntcrested in relating the L? sections of
bundles associated to E, with the weighted L? sections of bundles associated with
E — X,. These are defined as follows: Let V* be connections on E* - X% as
above. For d e R we define the weighted L? spaces of sections of E*, denoted
L3 (E*), to be the completion of the space of compactly supported sections
C& (E *) with respect to the norm

1/p
lu®lp =< | e=ju*P, .
z&

Similarly, for a positive mteger k we define the weighted Sobolev spaces Lj, ;(E *) as
the completion of CZ (E *) in the norm

1/p
w1l ={ ) e’*"(l(V*)""uiI"+~-+IV*u*I"+Iu*l”)} .
(¥} P

For more details, we refer to [T2] in general and [D-W1, Sect. 3], for our situation.

3.2 Boundary parametrix for the closed problem

For t + 0, we have a continuous family of Fredholm operators:
3.1 03:L1 5 (T*2)*' @ of) — L3 (oF) .

The L? spaces with the weighting factor are equivalent to the usual L2 spaces, and
the kernel of (3.1) may be identified with the tangent space to # at[V,]. On X, we
have the same operator, now acting on LI ; ((T*2,)*! ® g€), but for purely
dimensional reasons we know that this operator cannot contmuously fill in the
pomt t = 0(cf. [D-W1, Subsect. 3.2]). We therefore extend dy to a larger domain in

2 (T*2)1 ® gE) (we could equally well have chosen — &' for any sufficiently
small ¢’; the same o is chosen for convemence) More prec1se1y, let D,,, be the
maximal subspaoe of L%, mapped to L? by the operator in (3.1). Denote by D, the
operator in (3.1) and by D, the same operator defined on ID,y,,,. As in [B-S, S, S-S],
we will cut the domain to a subspace D, by imposing matching conditions. For the
moment, however, let us consider the local problem on X, (we temporarily drop
the +).
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In the local unitary frame {e;} we have V =d + idd6, hence

dz
Vole = —Ea, _z®e,.

. . dz
Let u be a section of (T*ZX)*! ® g&. Then we may write u = uij?z ®e®ef, so

ou;; dz 1, .._dznadz
‘70,1*“__ {azj dz®e,®e, 2(, aj)uji——l—z-|7—®e,-®ef}.

Expanding locally,

uu Z’Z) Z “u k(r) elw

keZ
and using
ALY LA
oz 2\or rof)’

we have

Aiie
*VOolsy=Y r{uij,,,+ Sk e ®er,

keZ
where the dot means d/dr and A;;, =k + & — &;. Note that the A;;, are the

d
eigenvalues of the boundary operator — + id. We now fix J to be less than the first

do
non-zero eigenvalue of the boundary operator (cf. [D-W1, Sect. 3]). Hence,
(32) 0<d< M'ij,kl for A'ij,k *0.

Note further that since the &’s are normalized between 0 and 1, 4;;, = O only if
k=& —0a;=0.

We want to solve * V% 1xu = f, where f € L2 (gS). Write f (z, Z) = fiz, 2D)e®ef,
and expand

fu = Z Sij i) e?
keZ
We must solve

Aij 1
N j. k
Uik + ——r Uij,k = ;ﬁj,k s

The general solution is
r
wyji(r) = 7k { § dxxPux=1 f, 4 (x) + Vij,k(t)} )
where the lower endpoint will be ﬁxed by requmng convergence as t — 0.
Since the f;; x are assumed in L2, the integral is convergent for arbitrary lower

end-point if and only if
2%ik—1+06> -1
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which by (3.2) is equivalent to A;;, = 0. We therefore define (restoring the +)

P [ dxxMiem L (3) if Ay <0
1
(33) uihp(®) =< Jdxx"  fijo(x) ifk=d—d=0

P Ak {jdxx*”-"‘lfi}:k(X) + yi-;,k(t)} if 4;>0.

Setting 75, =0 for A;;x =0 is not strictly necessary, but this will satisfy the
matching conditions, which we now discuss.
On 2, we have locally z,z_ = ¢, so

dz, dz_

Zy z_

1, dz

Therefore Vole, == §; z'_® e;, and Egs. (3.3) solve *V®!xy~ =~ provided

2
we substitute &; — — d;. Hence
r_lﬂ'k_‘.dxx}'ﬂ'k_lﬁj—:k(x) lf A-ji,k <O
1
B4 uj () = {Jdxx7 fij0(x) ifk=d—a=0

roA {f dxx*eT1 fim (x) + ?i}.k(t)} if 2;x>0.
On the overlap,
dz dz_
u.—}'-(2+,2'+)z—+®ei®e§‘ =ujz-,2-)——Qea®ef
+ -

= ui‘; (eei&, Ee—iﬂ.) _ _ui} (Eeiﬁ—iﬂ*’ 8e—iﬂ+ie+) .
In terms of the Fourier coefficients

uf(ze,21) = Y uu(rs)e™®™
keZ

we have the matching conditions
(3.5 ujje(e) = —e ™ uj _4(e).

Noting that A;; , = —Aj;, &, the matching conditions require

1
Via(e) = —e” Mg [ dyy= Cut D £G4 (3); Aija >0

(3.6) .
() = —e kB 2441k j‘ dxx""‘"»"“’ﬁjf_k(x); A;x>0.

&
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(3.7). Proposition. Regarded as a map from L} — L2;, Egs. (3.3) and (3.4) with
constants (3.6) define a family of compact operators Q, which is also defined at t = 0.
Moreover, Q, = Qo in norm.

Proof. Ignoring for the moment the constants y, we want to estimate the integral
operator defined by the kernel K, (r, x) = r~*u*x*3%~1 To show this is compact
on each eigenspace, it suffices to show that the modified kernel

K,(r,x) = r 300K, (r, x)x?+9
is Hilbert-Schmidt as a map from L? — L2, Setting u = % (1 — J), we have

e<r=x<l; A;r<0;

—ijetu) ydije—u  f
r X 1
{£<x5r<1; )“ij,kZO;

K,(r,x) =
0 otherwise.
By direct computation, this operator is Hilbert-Schmidt on each eigenspace.
Explicitly,
20
2|kl + 6

for all 4;; x. The above is uniformly bounded as & — 0.

To show that the direct sum over the eigenspaces converges, and hence
converges to a compact operator, we use the Schur test (cf. [H-S]). For 4;;,, < 0, we
estimate

[ | dxdrK,(r, x)* = ! { % (1—e¥)+

= 2|Aijal+d _ 1
Wl =8 ¢ ’}

i, ~ p~ Guietu) N "
sup dx |K (r, x)| = sup _____—(1 — priikTR )
e<r<1ir ) e<r<1 )»ij,k —pu+1
= sup | — k)
e<r<t | Aijx—H+1

=0(1+k7Y,

uniformly as ¢ —» 0 and k sufficiently large. Similarly,

= Aijk
_1—_. xa_ E g’ sl—ux—u
—)uij,k—l,l'f‘l X

=0((1+ k7

uniformly as ¢ » 0 and k sufficiently large. A similar result holds for 0 < A;; .
Therefore the direct sum over all the eigenspaces converges uniformly as ¢ — 0.
Finally, we estimate the constants y ;. For 4;;; > 0, i.e. 3}, we compute

e 1/2
< eZlu,k { j' dyy-ZlU,k-l'*"} "fi}:—k"[,}
1

sup [dr|K,(r,x)| < sup

e<x<1le £<x<1

€
g [ dyy~ Bt D f ()
1

1 —_— 8214'!',‘_6

1/2
— p0/2+Aij K , -
=g - .
{ 2/1(;,1; 0 } "ﬁj' k"l‘f
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Also,

1
j drr—2).u_k— 1+4

&
so the L2 ; norm of r=%sxyf (¢) is
S CQA— ) e (1 — &%) || fij el -

By the choice of J, this bound is uniform as ¢ — 0. The constants y;j , have similar
bounds. This completes the proof of the proposition.
Now let us consider the formal adjoint D; of D,. It is easy to verify that locally

D;f= eté VO, 1 (et&f) .

We define D, = L%(gS) to be the maximal subspace mapped into L% ; by D,.
A parametrix for D, is constructed in the same way as for D,. We must solve

_sfr 0 _ A-i', -
r "(55(" s ij,k)—_é'ﬁr "fij,k)=“ij,k-

The general solution is

1/2 1 — 621‘1]’,;‘—6 1/2
— gﬁ/l‘lu‘k
’
21,‘_,',1‘ — 0

f}j,k(r) = 27"”’k+6 {I dxx“l””‘—(l_‘” u,»j_;,(x) + ,uij,,‘(t)} .

Since the u;;, are assumed to be in L%, the integral is convergent for arbitrary
lower endpoint only if

-Z)Vij,k+5>0»
and we therefore obtain the criterion 4;;,, < 0. Define
(3.8) 2r’1”"‘+6 j dxx— Aije=(1-9) u,-*]f‘,‘(x) if iij,k >0
1 .
fiin) = €20 [ dxx™ "Dyl 5 (x) if k=& —a=0

&

2r Aianctd { fdxx ™ Rarm(A=0) yb (x) + ﬂﬁ,k(t)} if 4;,x<0.

€

A similar solution holds for f;j with A;;, — 4;; . The matching conditions are

clearly
fie®) = fi - e ™,

and as in (3.6) the y’s may be chosen to satisfy these conditions. Take

&
pis () = e~ g™ 2Rk [ dyyhius=C=Dys (v Ay < 0
39) .
pizi(t) = e™*Bgm 2k [ dxxx A==yt (x); Ay <O
1

The above, together with Egs. (3.8) define a local parametrix Q; for D; which is also
well-defined at ¢ = 0. As in Proposition 3.7, one verifies that Q; — Qg in norm.

To describe the domain ID,, we must check what happens to the matching
conditions as t — 0 (see Lemma 2 of [S-S]).
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(3.10). Lemma. Suppose ue L*; and Dou € L? in the region 0 < |z| < 1. Then for
Aij,x + 0, the Fourier coefficients u;; (r) are O(r*?). For i,;, = O, the coefficients
uyj,0(r), &; = d;, have limits asr — 0. Suppose also that f € L} and D}, f € L* ;. Then all
the Fourier coefficients f; (r) are O(r®).

Proof. We write Dyu = f. Then as above,

Ui =r" o { -“ dxxlu'k_lfiiy"(x) + Yk } ’

1

for some constants y;; x. For 4,5, =0,

Uy, (r) = {jdxx’l i,k (X) + y"f"‘}
1

1
d { - Idxx_lftj,k(x) + ?ij,k} >
0
which exists by the assumption that f € L]. For 4;;, > 0,

r 1
lim [ dxx*sx=1 fio (x) = — [ dxx?e=1 £, ()
r-0 1 0

exists by the same assumption, but since r~ *#x ¢ L2 ;, we must have

1
Vi = [ dxx*x=1 £ (x)
0
Then

r
Uy (r) = r= 2o [ dex 2okt fy; 4 (x)
0

|uij,k(")| =< C-r? “fij,k ||L: .

For 4;;,x <0, we have by the same computation,

I dxx’l”-"_ lﬁj,k(x)

0

S Corhuxtd2| £, "Lj )

and the first part of the lemma is proven. For the second part, we write D} f = u.
Then

r
1

and we argue as above.
Lemma 3.10 determines the domain ID,. More precisely, Eq. (3.5) reduces to

@3.11) uif0(0) = —uj0(0); when & =g;.

By the lemma, the other coefficients u , vanish at 0, so (3.5) is satisfied automati-
cally for these. Note that the matching conditions vanish for the adjoint, so
]D(/) = Dl’an'

Let us complete this subsection by identifying the kernel of the operator D, in
IDo. Recall from Subsect. 3.1 that the connection V defines bundles E* on Xt with
an identification of the fibers E,,E =~ E,-. Let E denote the bundle on the disjoint
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union Z* U 2~ and Endy E the sheaf of germs of traceless endomorphisms of E.
Note that we have a natural identification of the fibers

(EndoE—)p; = (EndoE_‘-)po- = gc .

(3.12) Proposition. Hermitian conjugation gives a complex anti-linear isomor phism

identifying ker Do with meromorphic sections @ of (T*Z2,)"° ® Endo E having at

most simple poles at pg with residue lower (resp. upper) triangular and satisfying
Projperes (; pg ) = —Pprojperes (@; po ) ,

where the projection is onto the Lie algebra p of the stabilizer of a in GC.

Proof. The hermitian conjugate of an element of ker D, is a holomorphic (1, 0)
form w on X* U X~ with values in EndoE. We must show w extends as
a meromorphic form with the residue as stated above. Near p; we write

w(z4) = wy(z+)dz+ ® st @ (sT)*,

where w;; are holomorphic functions on the punctured disk D* and {s} } is the local

holomorphic basis introduced in Subsect. 3.1. Writing in terms of the orthonormal

basis {e;}, :
@(z4) =z4 "% wy(z4)dz. ® e ® er .

Locally near pg , we have a similar expression with & — — &;. Using the relation
e "% = |z,|° we have

lolls ~ Y [ ldzy [lwy)? |z, G-+
i
+ j ldz_ |2 |C()ij|2(éj—a‘)+ s < 4+ 0 .

Now for &; — &; = 0, we have chosen § to satisfy )
Therefore, w;; may have at most simple poles at pg. If &; — &; 2 0, the residue at
po may be arbitrary. If & — &; < 0, then

—2<20@—a)+06<0,
and the residue must vanish at pg . Similarly for p . Finally, note that when &; = &;,

res (w;;; pg) = lim z, w;5(z+) = lim “i; (z4) = uij',o(o) .
z,-0 z, =

The last part of the proposition is therefore a consequence of the matching
conditions (3.11). .

3.3 Boundary parametrix for the Neumann problem

We now carry out a similar construction of a boundary parametrix for the
Neumann problem on the surfaces ¥ with boundary. Our limiting operator will
again be defined on the weighted Sobolev spaces associated to Z§ — the Neumann
conditions will degenerate to play the role of the matching conditions of the last
section.
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Let X, denote either ;" or X,”. As in Subsect. 2.2, we have the operator
2 2 2 2
0 L= 5(T* 2, ® gg) > D™ — L;j (/\ T*Z,® QE)@LJ(QE) ,

where ID*** denotes the subspace of forms f mapped into L% by 6, = (V, V*) and
satisfying the Neumann boundary conditions *f],z, = 0. As before, we wish to find
an operator 6, which is a continuous limit of §,. Let D, < L25(T*ZQ® gz) be the
maximal subspace mapped into LE (A T*X ®gg) @ Li(gs) by the operator
(V, V*). By the isomorphisms

2
T*Z, @0 ~(T*2)" ' ®gF, AT*Z,®g:@gr>0f,
we define a parametrix Q7" for 6, by Eqgs. (3.3). The constants y;;, are now
determined by the Neumann conditions: If § € L} (T* Z, ® gz) is written ff = u — *
. . dz
u where ue L2((T*2,)>' ® of), and if we write u = uij?z ® e;® e, then the
condition *p|,5, = 0 implies

0= (u,'j "‘iz‘z‘ - lﬁjl d__z>

z

1zl =¢

|z]=¢
= — (ui,- + lﬂj,)l |z1=sid0 .
In terms of the Fourier coefficients u;; , we have
(3.13) uj, k(&) = — iy, -4 (e) .
We therefore take the constants y to be
(314) Yij, ,,(8) = — i821u' "jdxx_u”' k+1) f—:ﬁ’ _,,(.x); A'ij, k> 0.

1
By Lemma 3.10 and Eq. (3.13), we see that the limiting conditions are
(3.15) uij,0(0) = — it 0(0), & =4;,

with all other Fourier coefficients vanishing, and we define D™ < D, to be
the subspace satisfying (3.15). One easily verifies the following version of Proposi-
tion 3.7.

(3.16) Proposition. Regarded as maps from L} — L%;, the Q™" form a family of

neu

compact operators with continuous limit Q7" — Q 5°".

Let §, denote the formal adjoint of 6, acting on sections of A2T*Z,® gg@® gg. The

condition
6B, @) = <B, 6:(¥s @)
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requires [5;, Tr(f*y) = 0. Writing ¢ = *Im fwhere fe L2(gS) and f = u — *u, we
have

Z (“ij mji)(ﬁ'j_i}i)llzl=:d9

O‘—;N O'—ﬂN

Z“u(fu fji)llzl .df

by the Neumann conditions (3.13). Then

2n
0= % ;&)™ (fyx(e) — Fir, -x(€))e™ db

0 i,j,k,!
= 2752 ij, -1(e) (fij i (e) "fjt, -(8)) .
i,j,k
Since u is arbitrary the conditions on the domain of the adjoint are

Jijk(8) =f_ji, -x(e) .
Therefore, the parametrix (Q7°")’ may be defined by Egs. (3.8) with constants

€
Bij, (€)= &7 2k fdex G0Ny, () 4y <0
1

The analogous statement to Proposition 3.16 for (@)’ is then straightforward to
prove.

Recall from Corollary 2.11(iv) that the tangent space to .4 may be described
via the Neumann conditions with the additional requirement that the vectors be in
the kernel of the holonomy map. The following discussion shows that on the
degenerate surface £, = X *UX "~ this condition corresponds to the other half of the
matching condition (3.15).

(3.17) Proposition. Let feker d, satisfy (hc,),f = 0. Then in terms of the representa-
tion B = u — xu where u is a section of (T* Eo )° ! ® gf with Fourier coefficients u;; i ko
we have

wij,0(0) = itj;, 0(0), for &;=d;.

Proof. Consider the map -
hc, -4 F ™ G

measuring the holonomy around the circle (with basepoint) C,. Let c, be the matrix

_ ) —(uij(0) + u5(0)) if &; = a;;
(co)u = { otherw:sje

Then we have the following
(3.18) Lemma. Let V, B be as above. Then

lim(hc,) B = exp(2nid) - co .

Assuming the lemma, the proposition follows from the fact the h¢, = hc, for all
e>0.
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Proof of Lemma 3.18. Choose a family of flat connections V, = d + A, such that
over D*,

A;=8.

. d
Ay = idd0, I -

With respect to the unitary frame {e;}, we write
o dz - dz
B=u—x*u= <r“"°‘f u;(z, 2) 5 + ir* " d5(z, 2) -Z—>®e,~®e;" .

If Bs denotes the d6 component of f§, then
Bo = (= ir~Huy(0) — r*~%d,;(0) + 0(°)) e ®@e .

The term O(r°) follows by our choice of é in (3.2). By (3.11), u;;(0) = O whenever
&; — &; < 0, so the terms divide into terms with & = &; and those with & — &; > 0.
In terms of the matrix ¢, we may write

Bo = ((coki; + O(r?))e;®e} .

the J-term again coming from our choice (3.2). Moreover, the matrices i¢ and c,
clearly commute. Next, write
Ay = azdr + bydl ,

where b, has a Taylor expansion
by(r, 0) = i8 + sco + sroé,(r, 0) + s2b,(r0) ,

and &, b, are smooth as s — 0. In order to compute holonomy around C,, it suffices
to find a global parallel frame on C, with given initial conditions. By writing
Y (0) = Y (e 0) for a section over C,, we have to solve the linear system of ODE’s

Vo000 = ¥'(0) + bs(e, 0) ¥ (6) = 0
Y(0) =y°.

We solve (3.19) by Picard iteration. Define the operator

(3.19) {

0 ~ ~ ~
P, (0) = y° — [dOb,(e, 0)y(6)
0

acting on the space of C' matrix valued functions with initial condition y°. Define
also the operators

Ry (0) = y°— fdé'(io% + sco) ()
(1]

R, ¥(8) = — ss"?déa,(e, O)y(0) — s fde”tl(s, 0)w(d).
(o) 0

Observe that P, ; = R, + R, ;, and assume that all are contraction mappings for
0 < 0y. Let y, be the fixed point of R,. It is easy to see that

¥s(0) = exp(8(i& + sco))-Y° .
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Let ¥, ; be the fixed point of P, ;. We then have the following estimate (using sup

norms):
“‘l’e,s- ‘l’s"ﬂseo = “Pa,s'ﬁe,s"sts"Bs 6o
= "ste,s + Rs,s'//e,s_Rs'psuﬁsoo
§ "Rs!l’e,s"" Rs‘/’s“ﬁseo + ”Re,s!/’e,s”(?sao-

Since R, is a contraction mapping,

(320) ” ‘;bs,s - l//s ” é C”Rz,s l/’s,s”t)st‘)o
< C(O(s8%) + O s, sl 6 < go-

Patching together the solutions v, , to (3.19), we can extend to the interval [0, 2n]
maintaining the estimate (3.20). Writing

we,s = hC;(As) * '100 ’
we have
Ihc,(4s) - Y° — exp(2m(id + sco))- YO |l < (O(se®) + O(*)) [ We.sllo << 25 -

Since /° was arbitrary, and y, , is continuous with respect to variation of para-
meters, we have in matrix norm

lhe.(4s) — exp(2(id + sco)) | < O(se’) + O(s?) .

for sufficiently small s and e. Now since hc,(4,) = exp(27i&) and i¢ commutes with

Co, W€ have
I(he,)x B — exp(2mid)-co || < O(%) ,

which, upon taking ¢ — 0, completes the proof of the lemma.

Now consider the disjoint union of the two Neumann problems on
Zo=ZXZ%*UZXZ~. We have the operator 8, with domain ID5. The following is
immediate from the condition (3.15) and Propositions 3.12 and 3.17.

(3.21) Corollary. The isomorphism T*Z,® gz ~ (T*Z,)* ' ® g§ identifies
ker don ker (hc; ) nker (hc; ), c D3

with the subspace in ker Dy satisfying the condition that the residues at pi be strictly
lower (resp. upper) triangular. In the notation of Proposition 3.12,

Projyg res(w; pg) = — projyg res(w; py ) = 0.

3.4. Global parametrices

In this subsection we patch the boundary parametrices constructed in Subsect 3.2
and Subsect 3.3 together with interior parametrices and show that the operators D,
and 6, converge continuously in the graph norm to D, and J,, respectively. Graph
continuity, along with the assumption of irreducibility of the corresponding con-
nection, are enough to show the bundles ker D, and ker 6, extend continuously past
t = 0. We shall closely follow Sect. 4 of [S-S] and Sect. 3 of [S].
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We focus on the operator D,. The formulation for §, is completely analogous.
As reviewed in Subsect 3.1 the connection V defines a 0-operator on End E, where
E is the bundle on the disjoint union X*UX~. Let Q™ denote the usual pseudo-
differential parametrix for this d-operator. Thus

5:& Qint =1+ Rint ,

where R™™ is smoothing.
Choose C® cut-off functions on X, = ZTUX ™, '™, @, Y™, P, satisfying

w J1 i1z > 172,
PT=0 if 1z <14,

cpt __ 1 lf Iz:t'<3/4,
P70 i 2y > 1,

it = L if |z, >3/4,
0 if |zy <1/2,

and y°P = 1 — /'™, Let Q, be the operator defined by Egs. (3.3), (3.4), and (3.6), and
define (for small |t]) o
Q:ot — (pmt th !//mt + g[,c:pt Qt l/]cpt .
Then
D¢Q:°t — *(é(pint A% Qim wint) + (pint DrQiml//im
+ 2@ ~* Q™) + ¢ DQ Y
— (pim(l + Rint) l/lim + (,DcPtIlllcpt
+ *(E(pim A% Qim ¢int) + *(5(pcpt A Q: lpcpt) .

By the choice of cut-off functions, ¢™™y™ =y'™ and @Y =y, so
@it yint 4 (pcpt Y = I. Hence,

DO =1+R™,
where
R:ol = ‘Pim Rint Wint + *(éwim AX Qim wint) + *(5¢cpt A*Q'./,cpt) .

By Proposition 3.7, R}* is a continuous family of compact operators. Analogously,
one constructs a total parametrix for — D} which combined with the one for D,
gives 0t and R}™ satisfying

Bg =1+ R,

~ I o i
D, = .
=, 77)
Again by Proposition 3.7 and the same result for Q;, R is a continuous family of
compact operators.

where
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Let  denote the diffeomorphism X, — Z,\C, (see (2.1)). Then y, defines an
operator

Ut L25((T*26)> ' @ g) o Dy, — D,y

as follows: First express u € D,,, locally as u;; % ® e; ® e Then the functions

uj o (%) " are clearly in L? in light of Lemma 3.10. U, is defined to be this map,
followed by the obvious inclusion

(3.22) LY((T*Z)* ' ® %) G Doy = L2 5((T*20)> 1 ® gE)

obtained by extending by zero. Similarly, define a map U} by first restricting to the
image Z, G Z, and then pulling back by y,. Using U, and U*, we may pull the
operators D, and D, back to act on the fixed Hilbert space L2 ;. We denote these by
U*D,U,and U D, U,. It now follows exactly the same way as in [S-S] and [S] that
UXD,U, possesses a continuous inverse. The existence of such proves the following

(3.23) Proposition. The operators U} D, U, form a continuous family of (unbounded)
Fredholm operators with respect to the graph norm, and its limit as t > 0 is D,. The
same is true for (U )*8E U — 6¢.

Our interest in Proposition 3.23 is the following

(3:24) Corollary. Suppose V is an irreducible connection. Then given a basis {B:IX,
for ker Do, we may find a family {B,(¢)} . such that

(i) For each i, B;(t) — P, is a continuous family as t - 0;

(i) for |t| sufficiently small, {B,(t)})X , is a basis for ker U* D, U,. Moreover, if we set
Yi(t) = U, Bi(z), then Y,(t) — B is a continuous family, and {(t)})L, is a basis for the
image of ker D, by the map (3.22).

Proof. (cf. [S-S, A]). Let Gr, denote the graph of U¥D,U, in L% ;® L?. By Prop-
osition 3.23 we have a continuous family of isomorphisms

G;:Gro—>Gr,, Go=1.

Let 7, @, denote the orthogonal projections from L2 ; @ L2 to the first and second
factors, respectively. Then

2
7'52°G,:Gr0—'>L5

is a continuous family of bounded Fredholm operators. Notice that
ker m,° Gy = ker Dy, and since V is assumed to be irreducible, 7, G, has no
cokernel. The operators

F;:Go—kerDo @ L}

defined by B+ (nf, n,°G,(f)) form a continuous family as well, and by
the irreducibility of V, F is an isomorphism. The continuity allows us to conclude
that F, is still an isomorphism for [¢| sufficiently small. Let B,(f) = F,”!(8;, 0). Then
{Bi(®)}/L 1 form a continuous family and are linearly independent. Furthermore,
@3 ° G,(Bi(t)) = 0 implies B;(t) = , > G,(Bi(¢)) is in the kernel of U*D,U,, and it is
easy to see that {f;(t)}/Z, are linearly independent. Parts (i) and (ii) of the corollary
now follow from the continuity of the index (cf. [S-S, p. 125]) which implies, since
coker Dy = {0}, that dim ker U}* D, U, = dim ker D,. Since U, - I continuously, to
prove the last statement we need only show that {y,(t)} is a basis for ker D,. Let y,
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be the image of an element of ker D, by (3.22). Then clearly U, U*y, = ¢,. This
implies, since Dy, = 0, that U*y, € ker U* D,U,, and by part (ii) we may therefore
find constants ¢;(t) such that

N

Ury, = ), c®Bilt) .

i=1

But then
N

V.= U U}y, = Z ci(O)yi(t) .

i=1

This completes the proof of the corollary.

We conclude this section with a corollary which will be used in Subsect. 4.4. The
convergence described above is not uniform with respect to the underlying connec-
tion. Consider the case of rank two, 0 < a < 1/2,and &, =, 4, = 1 — a. Then as
o — 1/2, the first positive and negative non-zero eigenvalues of the boundary
operator 4,1,0, 412,0 — 0, and it is evident from the estimates that this destroys the
uniform convergence of the parametrices Q, and Q;. However, if we project out
these eigenspaces from the domain of our operators, then the restricted operators
converge uniformly for « near 1/2. The restriction of ker Do nker(hc),, then consists
of holomorphic forms, i.e. forms of vanishing residue, and this is identified via (2.14)
with the tangent space to .# (2, —1)* x .# (2, — 1)~. Note also that the entire
construction goes through if we normalize the weights a; = a, a, = — o (see
Subsect. 3.1). Then as « — O the first non-zero eigenvalues again converge to zero.
As before, if we project out these eigenspaces the kernel of the restricted operators
converges uniformly to holomorphic forms. This subbundle is identified via (2.14)
with the tangent space to .# (2,0)" x .# (2,0)". We have thus shown

(3.25) Corollary. Let Vbe as in Corollary 3.24. Let {B;}L; be a linearly independent
set of holomorphic one forms in ker Do. Then we can choose {y}(t)}}X, a linearly
independent set in ker D, such that yi(t)— Bi is a continuous family as t — 0.
Furthermore, the family above can be chosen to vary uniformly for V in a neighbor-
hood of a connection of holonomy — 1. A similar result holds in a neighborhood of
a connection of holonomy I.

4 CR-submanifolds of the moduli space

The purpose of this section is to study certain real hypersurfaces of the moduli
space of stable bundles. We start by showing that the moduli .#,(0) of flat
connections with holonomy conjugate to a on the degenerate surface naturally
admits the structure of a CR-manifold. Moreover, .#,(0) is the limit as t - 0 of
a differentiable family {.#,(t)};cp+ of CR-manifolds, where .#,(t) is the space of flat
connections on X, of holonomy a with the CR-structure induced from .# (t) (see
Theorem 4.11 and Theorem 1.5 of the Introduction). We use this fact to show that
for sufficiently small choice of the degeneration parameter ¢, the Levi form of 4, (t)
has everywhere at least two positive and two negative eigenvalues (see Theorem
4.19, Corollary 4.20, and Theorem 1.6 of the Introduction). This implies that for the
same ¢t any CR-section of the determinant line bundle on .#, extends to a holomor-
phic section of the determinant line bundle on the whole of .# (see Theorem 4.25
and Theorem 1.7 of the Introduction).
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4.1. Preliminaries

Let Z* and 2 ~ be the punctured surfaces as in Subsect. 2.1 and X = X, the compact
Riemann surface obtained by gluing £* and X~ with the complex parameter
t € D*. All the spaces in Sect. 2 carry a parameter ¢. In particular the moduli spaces
Mo = Mo(t), M =MQ1), M5 = M5(t), and #* = M*(t). Let

q. M§— G

be the holonomy map around C as defined in Sect. 2. Since g is G-equivariant for
the usual action of G on .#§ and the adjoint action of G on itself, q induces
a continuous map

@4.1) ri#*—[0,1/2] = G/G,q .

which is smooth on the pre-image of the open interval (0, 1/2).

Let .#, = .#,(t) denote the real hypersurface in .#(t) defined by the equation
r = a, where a € (0, 1/2) denotes also the conjugacy class of ae Gg = G\{ I}
The complex structure on .# induces a CR-structure on .#,. This is defined to be
the maximal complex invariant subbundle of T.#,. We shall explain this in greater
detail presently, but first it will be useful to introduce the abstract notion of
a CR-structure.

(4.2) Definition. Let .#, be a smooth manifold of (real) dimension 2n + 1. A CR-
structure is a C* rank n subbundle &“ of the complexified tangent bundle
TH,® C of A, satisfying the properties

(i) &#°n &° = {0}, and

(i) & is closed under Lie brackets.

We say that the pair (.#,, &) gives ., the structure of a CR-manifold. We shall
sometimes omit the subbundle & when it is understood that .#, carries a CR-
structure. The examples of CR-manifolds we have in mind are the hypersurfaces
My = M,(t) in M5 = M(P).

Recall that the complex structure on .# is induced by the x-operator on Z.
More precisely, for [V] € # and under the usual identification

4.3) Tiy M = Tpy)' M

the *-operator acting on gg-valued 1-forms corresponds to multiplication by
J —lon THI.4#. Let

(4.4) y[uy] = T[V] "I{a N *T[V] '/”a .

As M, = A is a real hypersurface, the dimension of #[y; is constant equal to
6g — 8 for all [V'] € .#,, and hence it defines a subbundle #* = T.#,. Under the
identification (4.3), #° defines a CR-structure on .#,. This is the CR-structure
induced from the complex structure on 4.

(4.5) Definition. Let (#,, #*) be a CR-manifold. An hermitian CR-vector bundle
on ., is an hermitian complex vector bundle V on .4, with an hermitian
connection V whose curvature 2 satisfies the property 2(X, Y) =0 for all X,
Ye%*. A local CR-section of V is a local smooth section s satisfying Vs = 0 for
all local vector fields X € #°.
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We denote by Ocz(V) the sheaf of germs of local CR-sections of V, and let
H&(A#,, V) denote its space of global sections. For example, if we set 4, = ., ()
with the induced CR-structure from .# *(t), we can take ¥V to be the restriction of
the k-th power of the determinant bundle 4* on .#,. The line bundle has a natural
hermitian structure and hermitian connection which we shall describe in Sub-
sect. 6.1. The space H(#,, V*) is of fundamental interest in this paper.

As in the case of holomorphic bundles on complex manifolds, the sheaf Ocg (V)
only depends on the values of the connection in the directions & More precisely,
the connection Vinduces an operator J, mapping smooth sections of ¥ to smooth
sections of (£ ?)* ® V. Two connections which induce the same d,-operator give
rise to the same sheaf O (V).

We next review the definition of the Levi form [Lv] associated to a CR-
manifold.

(4.6) Definition. Given a CR-manifold (.#,, & ¢), we define the Levi form IL to be
the map

L9 >TM,QC/9°DF*: X — proj[X, X],

where L
proj: TH, QC->TH, QC/SL*D F*

is the natural quotient map.

The Levi form can be expressed in terms of a local basis of vector fields as follows:
Set dim .#, =2n +1 and let {L,,...,L,} be a set of independent local vector
fields lying in & Let N be a local vector field on ., such that the set
{Ly,...,L,,Ly,...,L, N}span T4, ® C locally. Without loss of generality we
may also assume that N is purely imaginary. Write

n n
4.7 [Li,L;]= Y afiL+ ¥ blLi+c;N .
k=1 =1

Then the coefficients c;; represent the Levi form IL expressed in terms of the local
basis {L;, L, j» N }. It follows from the invariant Definition 4.6 of the Levi form that
the number of non-zero eigenvalues and the absolute value of the signature of ¢;; at
each point are independent of the choice of basis. Therefore, conditions such as the
statement that the Levi form has at least two pairs of non-zero eigenvalues of
opposite sign are well-defined (see Definition 5.1).

In the case where .#, is the boundary of a complex manifold .# defined via the
equation r = 0 for a smooth function r such that r < 0 on the interior of .# and
r > 0 on the exterior of .#, there is yet another equivalent definition of the Levi
form (cf. [F-K, p. 56]). In this case for Le & * we have

(4.8) IL(L) =200r(L A L) .
We shall use the description (4.8) in Subsect. 4.4.

4.2 The limiting CR-structure

The notion of a differentiable family of complex manifolds (cf. [Kod]) extends
naturally to the appropriate notion of a differentiable family of CR-manifolds. This
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is nothing but a differentiable family of complex subbundles &* = T'.#, each of
which satisfies the conditions of Definition 4.2. In our case, .#, () defines a differen-
tiable family {.#,(t)},.p. of CR-manifolds parameterized by the punctured disk
D*. We wish to extend this to a differentiable family parameterized by D. The first
step is to define a limiting CR-manifold ., (0).

As before (see Subsect. 2.1), let #F denote the space of equivalence classes
of flat connections on E* over X* of holonomy aeGg = G\{+I}. Then
FI is a smooth manifold of dimension 6g, —3 with a smooth T,-action.
Moreover,

4.9) Trpey FE =kerd%: @ Vi t,,

where 8. is the operator (V%,(V*)*) of [D-W1, Proposition 3.5]. Of course,
under the usual identification between real 1-forms and complex (0, 1)-forms (see
Subsect. 3.3), ker 6%+ corresponds to the L2-ker 0%:. Let

M,0) =F} xr, Fq .
Given [Vo] = [(V*, V)] 4, 0), let
(4.10) & 17,1(0) = ker 59+ xker 69- .

Under the identification (4.9), &%(0) defines a subbundle of T.#,(0) satisfying
properties (i) and (ii) of Definition 4.2, hence it defines a CR-structure on .#,(0). We
refer to £%(0) as the limiting CR-structure on .#,. We now prove

(4.11) Theorem. Let M, = ), ., #,(t). Then M, is a differentiable family of CR-
manifolds parameterized by the disk D.

The rest of this subsection is devoted to the proof of Theorem 4.11.
Choose V, = (V*, V~), a flat connection on Ey - X, = X * U X ~ such that in
a neighborhood of the punctures

4.12) Vi =d+iddo,

with exp (27id) = a. Without loss of generality we may assume that this neighbor-
hood contains the pinching region {0 < |z | < 1}. Let V; be the connection on
E, — X, constructed by gluing V* and V™ as in Subsect. 3.1. Then V, has the form
(4.12) in the pinching region. Let T;y, 1 # (t) ~ Ky,(t) and Tiyz) A * (t) = KyAt) be
the tangent spaces of .# (t) and .# *(t), respectively, viewed as subspaces of

LYT*%, ® g5) = LX(T*X @ g:) ® LA(T*Z; @ g;)

the usual way (see Subsect.2.2). On the other hand we can apply the
map (3.22) as in Corollary 3.24(ii) to view Ky,(t) and Ky:(t) as subspaces of
L%,(T*Z, ® gg). With this understood, the next proposition is immediate from
Corollary 3.24.

(4.13) Proposition. The following are smooth families of vector spaces in
L2,(T*Z, ® gg):

(i) Ky(t) > ker Dy, where Dy is the operator in Subsect. 3.2;

(i) Ky:""(t) = ker 8§, where 8¢ is the operator in Subsect. 3.3.
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Next we are going to restrict to a fixed ae Gg. Let K%, (t), K§:*"" be the
restrictions of Ky, (t), K§+* ™" to My, ,, M & ,. Of course, we have the identifications

(4.14) Tty Ma(t) = Ky (2)
Tros M3 () = K;'fi'ne“ .
We start with the following obvious

(4.15) Lemma. Let hc:ofp (resp. /i )—[0,1/2] be the holonomy map (2.10)
measuring holonomy around the circle C = C, (resp. C¥). Then

() K5(t) = Ky(t) O ker (he)y;

(i) K m@) = K 5" (t) N ker (he), .

(4.16) Corollary. Let
7(0) = {Beker Dy: (hc), B = 0} ,

Kp:*(0) = {Bekerds: (hc) B =0},

Then the following families are smooth in t.
(i) Ky,(t) > Kv,(0);
(i) Kg* () - Kg (0).

Proof. Immediate from Proposition 4.13 and Lemma 4.15.
Recall that we are interested in the limiting behavior of #{%;(¢) as t — 0. Under
the identification (4.14), &fy(t) corresponds to the maximal complex subspace
v,(t) of K7 (t). Also, let 57 (0) be the maximal complex subspace of K7,(0). We
first show

(4.17) Corollary. #7;(t) > #7 (0) is a smooth family of complex vector spaces as
t—0.

Proof. By Proposition 4.13, Ky, — ker D, is a smooth family of complex vector
spaces as ¢t —0. Then if J, denotes the complex structure on the vector space
ker Do, *; = J,, is smooth family of vectors in the smooth family of vector spaces

Hom (Ky,(t), Ky,(t)) > Hom (ker Dy, ker D) .

The result now follows from Corollary 4.16.
In the next proposition we identify the various spaces in terms of the corres-
ponding J-operator.

(4.18) Proposition. Under the obvious identification between real 1-forms and
complex (0, 1) forms,

(i) Kp*(0) = L*-ker 8%.;

(i) #7,(0) = L*>-ker 0¥ @ L>-ker 0%-;
(i) K§x* can naturally be identified with K% (0) = L2-ker 8%.. In particular, the
CR-manifolds .#,(0) with the limiting CR-structure are mutually CR-isomorphic for
allaeGg = G\{+1}.

Proof. (i) BeKy:(0) <> B = u —=u, where u is an anti-holomorphic g5-valued one-
form with residue upper (resp. lower) triangular at p& and satisfying the Neumann
matching condition (3.15) and the condition (h¢c),f =0. By Corollary 3.21,
B = u —*u, where u is an anti-meromorphic one-form for which diagonal part
of the residue vanishes, hence wueL3?-ker o% by [D-WI1, Subsect.3.3].
(i) BeH7,(0) <> B = u —»u, where u is anti-holomorphic g& with residues as
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above. The conditions (hc), B = (hc), (* ) = O are equivalent by Proposition 3.17
to the vanishing of the diagonal part of the residue. Therefore the result follows
again by [D-W1, Subsect. 3.3]. (iii) The first statement in (iii) follows immediately
from the definition of K%.* given in Subsect. 2.3. The second statement follows by
(4.9), (4.10), the identification ker 83. = L?-ker 9%, and the fact that the derivative
of the natural identification between #F and %, induces the identification
Ky = Kyt (0).

Proof of Theorem 4.11. Let ¥7{:.#,(t)— .#,0) be defined as follows: Let
[Vi]e # (t). Choose representatives V, such that in the pinching region V, has the
form (4.12). Extend constantly to £, and take ¥¢[V,] to be the equivalence class of
the extension in .#,. Clearly, ¥ defines a diffeomorphism between .#,(t) and
#,(0). Moreover, P° = {¥}},.p. defines a bijection between |, . #,(t) and the
trivial family .#,(0) x D*. By declaring ¥* to be a diffeomorphism, this defines
a C™-structure on | J,. . .#,(t), and the family {.#,(t)},.p- extends via this dif-
feomorphism to the trivial family .#,(0)x D. In order to analyze the family of
CR-structures, we have first to understand the derivative (¥7), of ¥¢. It is not
difficult to see that under our identification

T[V,]'/”a(t) = K;.(t) c Lz_a(T*Z‘ ® gE)
Tiv, #a(0) = K,(0) « L2,(T*Zo ® gp) ,

(¥7). corresponds to the inclusion of Kj, < L2 ;(T*Z, ® gg) followed by har-
monic projection onto Ky, (0). Corollary 4.17, together with the fact that harmonic
projection equals the identity map on K7, (0), imply that

(D' 1* S = L1y 0)

is smooth as t — 0. Therefore {F(t)},ep is @ smooth family of complex vector
bundles, proving the theorem.

We conclude this subsection with two remarks. First observe that the normal
bundle % (t) to &*(¢) in ,(t) with respect to the induced L3-metric on .#(t)
defines also a differentiable family of real line bundles. Moreover, the limiting
bundle &#**(0) can be used to define a distinguished transverse direction to the
diagonal action of the gauge group on #," x &, . This will be further explained in
Lemma 4.26. The S* action is CR on .#,(0), i.e. it preserves the bundle %°°(0), but it
does not do so on ,(t) for ¢t + 0 (see Subsect. 5.2).

The second remark concerns the dependence of the families .#, upon the
parameter a. It is not hard to see that the families M, glue together for all
a€Gr/G,q; ~ (0, 1/2) to define a differentiable family of complex manifolds para-
meterized by the disk. The limiting complex structure on |, 1/ -#.(0) will be
explicitly constructed in Sect. 5 (see Proposition 5.10).

Since we will not use these facts in the rest of the paper, we shall not elaborate
further.

4.3 Indefiniteness of the Levi form

The purpose of this subsection is to prove the following properties of the Levi form
for the CR-manifolds .#,(t):

(4.19) Theorem. The Levi form IL,(0) of #,(0) has everywhere at least two positive
and two negative eigenvalues.
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(4.20) Corollary. Given ae Gy, there is an ¢y > 0 such that for all t satisfying
0 < |t] < &0, the Levi form 1L,(t) of #,(t) has everywhere at least two positive and
two negative eigenvalues.

In the language of Folland and Kohn (cf. [F-K, p. 94], and Definition 5.1 below),
the statement that the Levi form has everywhere two pairs of non-zero eigenvalues
of opposite sign means that .#,(¢) satisfies condition Y (1). As we shall see in Sect. 5,
CR-manifolds of this type have nice properties.

Proof of Theorem 4.19 and Corollary 4.20. First observe that Theorems 4.11 and
4.19 together immediately imply Corollary 4.20, so we shall prove Theorem 4.19.
Start with a basis { X }{24 of local vector fields on . (0) of type (1, 0) (recall
that .# [ (0) has a complex structure via the theorem of Mehta and Seshadri (see
[D-W1, Sects. 2 and 3]). Use the universal connection K* * to define horizontal
lifts X7* of X to #F (see Subsect. 2.3). Set X;, 1 <i < 3g—4tobe X; = X for
1<i<3g, -2 and X, = X5, 4, for 3g, —2 <i<3g—4. Let

4.21) PiFS X Fy > MO0) = F)F xF] T,
be the natural quotient map, and let
(4.22) Li=p,X:.

By (4.10) and Lemma4.18(iii), {L;} is a local basis of vector fields of
& (0) = T.#,(0). Let N be a local, purely imaginary vector field of .#, such that
{Li,L;, N} span T.#, ® C, and let Y be a local vector field of # & x #] such that

4.23) PY=N.

In terms of a local basis of vertical vector fields t, and t_ for the fibrations & 4 and

F,, we can take without loss of generality, ¥ = ny/—1(t, —t_). By setting
Q* = Curv(K* *), we obtain

[X#, ijt] =Q*X# XF)ty mod horizontal (K* ).

Let t be the local vector field t=(t,,t_) on FlxF;. Then for
1§i=j§.3g+_2a

~ = 1 _
X, X;]= QY (X!, XY mod K**xK*~@®C-t),
[ J] 27':\/'_—1 ( J) (
and for 3g, —2 <i,j <3g —4,
~ = -1 _
[Xe X;]= Q7(X{,X;)Y mod(K**xK*~ @ C-t),

2n./—1
whereas for all other values of i, j, [ X, X ;1 = 0. Therefore, since p,(t) =0 in
#,(0), we obtain from (4.10), Proposition 4.18(iii), (4.22), and (4.23) that with
respect to the local basis of vector fields L;, Z;, N, the Levi form IL(0) splits as
a block diagonal matrix

(4.24) (ciy) =

1 < Qr(xH X/ 0 )
2ny/—1 0 -Q (X7, X))
Theorem 4.19 then follows from Corollary 2.17.
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4.4 Extension of CR-sections

Let 4* denote the k-th power of the determinant line bundle on .#, and let
HO(#, 4%) denote its space of global holomorphic sections. Strictly speaking, 4* is
only defined on the non-singular part .#° of .#, but it extends uniquely as an
invertible sheaf to the whole of # (cf. [Dr-N]). Fix aeGg = G\{+1} and let
M, = M be the hypersurface defined as in the previous sections. Let H g (#,, 4%)
denote the space of global CR-sections of the restriction of A* to ., (cf. Defini-
tion 4.5). Since .#, has real codimension 1 in .#°, the restriction map

p:HO(M, 4%) > H&(M,, A*)
is injective. The main goal of this section is to prove

(4.25) Theorem. For sufficiently small choice of the degeneration parameter t, the
restriction map p is an isomorphism.

The key to the proof of Theorem 4.25 is the following technical generalization of
Corollary 4.20.

(4.26) Lemma. Given ao€(0, 1/2) there exists an ¢ > O and a positive smooth func-
tion ¥ on r~1(0, 1/2) such that

(4.27)‘ r~10,a0) = {F< 1}, r Y(ap, 1/2) = {F > 1},

and such that for all 0 < |t| < ¢, the complex hessian 0OF has at least two positive

eigenvalues everywhere in r~1(0,a,) and at least two negative eigenvalues in
-1

r~Y(ao,1/2).

Proof of Theorem 4.25, assuming Lemma 4.26. It suffices to show that for suffi-
ciently small |¢|, the map p is surjective. Let ag€(0, 1/2) and fix 0 < |t| <& as in
Lemma 4.26. By the Lewy Extension Theorem (cf. [W]), any CR-section ¢ of A* on
M, extends to a local holomorphic section of 4* defined in a neighborhood # of
M,,. We may without loss of generality assume % = r~! (ap — 1, ao + 7). It follows
by Lemma 4.26 and the Andreotti-Grauert version of Hartog’s Theorem (cf.
[He-Le, Theorem 15.11]) that the section can in fact be extended all the way from
% to r~1(0, 1/2). The idea is as follows: Let

a- = inf{a > 0: ¢ extends holomorphically to r~*(a, 09)}
as =sup{a < 1/2: ¢ extends holomorphically to r~*(xg, ®)} .

Then in particular ¢ extends holomorphically to r~1(x_, ). If a_ + 0 or &, =*
1/2, we again apply the Lewy Extension Theorem to extend ¢ to a larger interval,
contradicting the choice of a . Finally, since »~*{0, 1/2} has real codimension 3 in
#*, the section extends to the whole of .#° by a theorem of Shiffman (cf. [Sh]).
This completes the proof of the surjectivity of the map p, and therefore also of
Theorem 4.25.

Proof of Lemma 4.26. By setting 7 = (1 — cos 2zr)/(1 — cos 2na,) it is easy to verify
that 7 satisfies (4.27). We are going to show that 407 has at least two positive
eigenvalues in { < 1} and at least two negative eigenvalues in {7 > 1}. In view of
(4.8) and Corollary 4.20 we relate 907 to the Levi form of #,, 0 <a < 1/2.
However, in Subsect. 4.1 the Levi form was only defined up to a scalar, so we have
to fix signs. In particular, we must choose the vector N carefully. According to
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Wells [W, p. 150], the complex hessian 907 is equal to the Levi form c;; (up to an
overall positive multiple) provided the choice of N satisfies

J(J—-lN)::% mod TA,,

(up to an overall positive multiple) where J denotes the complex structure on ..
Since 0/0r and 0/0F are also related by a positive scalar, it suffices to take

(4.28) J(/—IN) = % mod T.4,.

Let us verify that with respect to the natural orientation on %, and the moduli
space #, the choice of N (and Y, see (4.23)) used in the proof of Theorem 4.19
satisfies (4.28). Let .#, be as in Subsect.2.1 and t, as in Subsect. 4.3. Let X =
M x My, and let F, = F;' xF,; have the product orientation. In addition,
we decompose the tangent space to G at a as g = €-9/6r @ b,. Then on the one
hand,

T"”0=T9:a®g

0
= T.?H®C‘E®ba

=TX@®C-(t; +t_)PC-(—t, +t_)®c-§@ba-

On the other hand,
THy=THDg=THDC-(t, +t_)DY,.

This implies that J(—t, + t_) has a component in the d/dr direction, and since
{(—t4 +t_),d/0r} is an oriented pair this multiple must be positive. Thus, in order
to make the signs in the Levi form agree with those in the complex hessian we
should set

v/ —IN = positive multiple of (—t, +¢t_),
and indeed this is in accord with the choice of N in Subsect. 4.3 (see 4.23).

Now consider the case « — 1/2. In a small neighborhood ¥ of a point in
r~1(1/2), we can choose local vector fields N(¢) and a subset of the Li(t), Ly(t)
converging as t — 0 uniformly in ¥"\r~*(1/2) (see Corollary 3.25). The limit N(0)
may be chosen to be the vector N as above, and the L;(0), Z;(0) may be chosen to
span

{TH* 2, -1)OTH (2, -1)}®C

when projected by the maps i of the Hecke correspondence (2.14). By (4.24) and
Corollary 2.17 we see that the positive eigenvalues of the Levi form have been lost
by restricting to these L’s, but the negative eigenvalues remain. By the uniformity
of the convergence and the compactness of the fibers r~!(x), we can find a suffi-
ciently small |¢| such that the Levi form has negative eigenvalues everywhere near
r~(1/2). A similar argument applies for the case a — 0. This completes the proof of
the lemma.
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5 Deformation of CR-sections

In order to identify the space of CR-sections we shall have to degenerate the surface
completely, i.e. let ¢t = 0. To prove that the dimension of the space of CR-sections
does not jump, we associate a complex to the J, operator acting on smooth sections
of the line bundle and study the cohomology groups of this complex. This
Kohn-Rossi cohomology is different from the ordinary Dolbeault cohomology - in
particular, finite dimensionality is not at all evident. Nevertheless, under certain
assumptions of convexity which, by the results of Sect. 4 hold in the case at hand,
many of the usual properties are still valid. In Subsect. 5.1, we define the Kohn-
Rossi cohomology groups and review the results concerning the 8,-operator we
shall need. We also state a semi-continuity theorem analogous to that of ordinary
Dolbeault cohomology. Since its proof is so similar, we relegate it to the Appendix.
Then in Subsect. 5.2 we prove the vanishing of the (0, 1) Kohn-Rossi cohomology
associated to the boundary complex of the limiting CR-structure on .4,
(Theorem 1.8 of the Introduction). This combined with semi-continuity will show
that the dimension of the (0,0) cohomology, ie. the CR-sections, does not jump.

5.1 The 3-Neumann complex

The basic references for this subsection are [F-K] and [K-R]. Let D(M) be
a complex manifold of dimension n with smooth boundary M. We assume that D(M)
is imbedded in a slightly larger open manifold D(M)', that D(M) = D(M) U M is
compact, and that M is defined by the equation r = 0 where r is a real C* function
satisfying r < 0 inside D(M), r > 0 outside D(M), and |dr| = 1 on M.

(5.1) Definition. We say that M (or D(M)) satisfies condition Z(q) if the Levi form
of M has at least n — g positive eigenvalues or at least g + 1 negative eigenvalues at
each point of M. We say that M (or D(M)) satisfies condition Y (q) if it satisfies both
conditions Z(g) and Z(n —q —1).

For example, according to Theorem 4.19, .#,(0) satisfies conditions ¥(0) and Y(1).

Let ¥ be a holomorphic vector bundle on D(M)'. Let /79 = o/ (DM), V)
denote the sheaf of germs of C*(p, g)-forms on D(M) with values in V. Let
€7 = €¢7D(M), V) denote the subsheaf of /™7 consisting of germs of V-
valued forms such that ¢ A dr = 0 (where § denotes the &-operator on DMy - we
shall use the same notation for the operator associated to V). Let #71 = o/ 79/gP4
be the quotient sheaf. Then #7:¢ = #P(M, V) is a locally free sheaf supported on
M. It is easy to see that the J-operator satisfies 3(47?) = €7?*1 and thus by the
commutative diagram

0— @71 —» P1 _, Zra _,

3 %

0 — @Patt s ofPatl_, gratl

it induces a map
(52) By: BP9 Pt
satleylng Bb o 3,, =0.
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_ Leto?4, €74 and 87 denote the space of global sections of the sheaves /74,
¢™4, and #74. Then we obtain complexes & = (s/%",0), € = (¥>,0), and
A = (#"",0), and we will denote by H»? = H>Y(D(M), V), HP? = H24DM), V),
and HP'* = HPY(M, V) the cohomology groups associated to the complexes <7, €,
and 2. These groups form what is known as the absolute, Dirichlet, and boundary
Kohn-Rossi cohomologies of D(M).

By the long exact sequence in cohomology associated to the short exact
sequence of complexes

0— @GP of P9, FPa_,()
we obtain
(53) ce —-)Hg’-q...,HaP-'I_,Hg,q_,Hg,qﬂ -

Under condition Z(q) the cohomology groups above have an interpretation via
harmonic theory which we shall now explain. Let 974 denote the elements
¢ € o/ ™% such that on M, 1,, (p) = 0, 1,, denotes interior multiplication by r. The
importance of 2™ lies in the fact that on 97, the formal adjoint b of 3 equals its
Hilbert space adjoint *. We therefore set Dom d* = 974, Let (0 = b + b0 be the
associated Laplacian defined on

Dom O = {9 e 27:9pe PP1*1}
and let
(5.4) HP = H*(D(M), V) = ker [ .

In general, one cannot expect the spaces H”? to be finite dimensional. However,
provided that condition Z(q) hold, H™? is finite dimensional and isomorphic to H?".
This result, due to Kohn, follows from the analogues of the coercive estimates for
elliptic operators which we state precisely in the Appendix (see Theorems A.1
and A.2).

We next turn to a version of the Dolbeault isomorphism due to Andreotti and
Hill (cf. [Hor, Theorem 3.4.8; F-K, Theorem 4.3.1; An-H, Theorem 5]). Let
HY(D(M), Q7(V)) denote the g-th cohomology of the sheaf of germs of holo-
morphic (p, 0)-forms with values in ¥ on the interior of D(M). Then we have

(5.5) Theorem [An-H, Theorem 5]. Ifthe Levi form of M has at least p positive and
q negative eigenvalues, then

H"*(D(M), V) ~ H*(D(M), Q2"(V)) ,
Jors<qgands>n—p—1.

Consider now the Dirichlet cohomology groups H?% As in ordinary de Rham
cohomology, the Dirichlet cohomology groups are related to the absolute co-
homology groups via Lefschetz duality (*-operator). The same holds in our case as
well by the following duality theorem of Kohn and Rossi (cf. [K-R, Proposi-
tion 6.8], and [F-K, Proposition 5.1.7]):

(5.6) Theorem. If M satisfies condition Z(q), then
HP""4(D(M), V)~ [HZ*(D(M), V*)]* .
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Finally, we turn to the groups Hf? which are our primary interest. Let
0, : #7* — BP9 be the formal adjoint of 3, (hence also the Hilbert space adjoint
of 0, since M has no boundary). Let (J, = 3,d, + b,0, be the associated
Laplacian, and let

(5.7) HP = HPY(M, V) = ker O, .

Thus Hy*® = H% (M, V), the space of global CR-sections of V. The operator [, is
not elliptic. However, under the condition Y(q), H2'? is finite dimensional and is
isomorphic to Hp'?. For statements of the precise estimates for [1,, we refer to the
Appendix (see Theorems A.3 and A.4).

The finite dimensional H}'? also satisfy a semi-continuity result. Recall from
Sect. 4 the definitions of a differentiable family of CR-structures and CR-line
bundles.

(5.8) Theorem. Let M(t) be a differentiable family of compact CR-manifolds, L(t)
a differentiable family of CR-hermitian line bundles, and suppose that for all te D,
M(t) satisfies the conditions Y (0) and Y (1). Then

dim Heg (M (t), L(2)), dim Hy' ' (M (¢), L(t))

are upper semi-continuous functions of te D. Moreover, if dim Hy** (M (t), L(t)) is
constant for t in some neighborhood of the origin, then the same is true for
dim Hg (M (t), L(2)).

The proof of Theorem 5.8 is not difficult; it consists of verifying that all the
necessary ingredients for the proof of the ordinary semi-continuity theorem for
Dolbeault cohomology hold in the case of CR-manifolds with positive and negative
eigenvalues for the Levi form. For the details, we refer to the Appendix.

5.2 A vanishing theorem

The goal of this section is to provide a proof of Theorem 1.8 of the Introduction.
We begin by realizing .#, = #,(0) (with the limiting CR-structure) as the bound-
ary of a complex manifold.

(59) Lemma. Let X = .#,; x M, with the complex structure induced by the
theorem of Mehta-Seshadri. Then #, is a principal S'-bundle over X such that
(i) the S* action on #, is CR;
(ii) the projection n: . #,— X is CR;
(iii) the map dr restricted to the complex subbundle & is surjective.

Proof. The first statement follows from the identification of .4, with #,” x #, /T,
where T, acts diagonally (see Corollary 2.6 and Proposition 2.7). The map = is then
just projection onto the first and second factors. The rest of the lemma follows from
the definition (4.10), Proposition 4.18(i), and the fact that K* * define connections
on #FX (see Subsect. 2.3).

By crossing .#, with the positive real axis and coupling #? with the complex
structure on S*xR*, it follows exactly as in Rossi [R, Proposition 2.3], that
C*(#,) = #,x R* has the structure of a holomorphic C*-bundle over X. The
embedding

M, CHM,): x> (x,1)
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is furthermore a CR-embedding. If we restrict to the interval (0, 1], then we have
a punctured disk bundle over X which can, by the Riemann Extension Theorem, be
completed to a holomorphic disk bundle. Thus we have

(3.10) Proposition. There exists a holomorphic disk bundle D(.#,) 5 X where M, is
CR-isomorphic to OD(M#,). The restriction of the map = to the boundary is isomorphic
to the S*-bundle in Lemma 5.9.

Associated to .#, — X we have a holomorphic line bundle ¢ - X obtained by
taking the standard representation of the S fiber, and it is apparent from Proposi-
tion 2.16 that in terms of the generators B%,y% of H*(X,Z), c;(c) = y% +px.
Given a holomorphic line bundle L — X and regarding D(#,) as a complex
manifold with boundary .#,, we can form the complexes o, #, and € with values
in n*L as in Subsect. 5.1. Since the Levi form is intrinsic, Theorem 4.19 implies that
D(A,) satisfies conditions Y(0) and Y(1). We are now prepared to prove the main
result of this section.

(5.11) Theorem. Let L be a holomorphic line bundle on X, and assume that for all
integers 2, H'(X, L @ ¢*) = 0. Then HY'(#,, n*L) = 0.

Proof. From the exact sequence (5.3) it suffices to show
HJ'(D(AM,),n*L) = H>*(D(M,),n*L) =0 .

By Definition 5.1, the condition Y(1) implies Z(1) and Z(n —2), where n=
dim¢ D(4,). Hence by duality, Theorem 5.6,

HO*(D(AM,), n*L) = [Hy" " *(D(M,), n*L*)]* .
Applying Theorem 5.5, it suffices to prove that
H'(D(AM,), n*L) = H"~*(D(M,), Kpiu,) ® T*L*) =0 .

We shall apply a degenerate case of the Leray spectral sequence (cf. [Gd, II,
4.17.1]). Since D(.#,) is a holomorphic disk bundle and H 4D, 0) = 0for q > 0, the
higher direct images Rin, n*L, g > 0, vanish. The image 7y Op4,) Of the structure
sheaf of D(#,) has infinite rank, and it is easy to see that it is the direct limit as
m— oo of the finite rank bundles

P .

0SAsm

Since cohomology commutes with direct limits (cf. [H, III, Proposition 2.9]), the
Leray spectral sequence implies that H'(D(4,), n*L) is isomorphic to the direct
limit of
@ H'X,L®d,
0SAsm

and this vanishes by assumption. For Kpwy)® n*L*, note that Ky, = n*
(Kx ® ). Then by the same argument as above H "“2(D(M,), Kpy, ® T*L*) is
isomorphic to the direct limit of

@D H''X,Kx®@L*®¢*Y),

0 Asm



456 G. Daskalopoulos and R. Wentworth

where N =n — 1 = dim¢ X. If we apply Serre duality to each term, we find that
HN—l(X’ Kx®L* ® s).+l) = [Hl(X, L ® 8—-(}.+1))]* ,

and this again vanishes by assumption. This completes the proof of the theorem.

It is interesting to compare the disk bundle constructed in this section with the
Hopf bundles over projective spaces. For computations of the Kohn-Rossi co-
homology in that case, we refer to Folland [F].

6. Factorization of theta functions

In this final section we apply the results of Sects. 4 and 5 to prove the Main
Theorem

6.1. Factorization of line bundles with connections

Here we briefly review the cocycle construction of the determinant line bundles we
are interested in (cf. [R-S-W]). Let E, — X, be the trivial rank two bundle on the
glued surface Z;, and let o/f, % be the C* flat connections and gauge transforma-
tions as in Subsect. 2.1. Let & denote the space of smooth paths §: [0, 1] — % with
g(0) = I. The evaluation map e;: % - % defined by e;(§) = g(1) is smooth and
surjective. We then define a map

c: o xg - U(1)

(6.1) B { i _ i _
c(A, §) = exp {— [ Tr(Adgg™!) — — Tr(dgg—1)?
(4,5 =exp 47:2[' ( 127rs.x[jo,1] dgg

- d
where g = e (§)andd =d + e One can show that ¢(4, §) actually only depends

on ¢e;(g), and therefore descends to a map c¢: ./ x % — U(1) which satisfies the
cocycle condition c(A4, gh) = c(4% h) c(A, g). We define a line bundle L(t) on
A1/% = M° whose smooth sections are complex valued functions s on o/} satisfy-
ing s(A?) = c(4, g)s(4). In [D-W1] it was shown how the very same cocycle (6.1)
can be used to define line bundles L, — #. Since the cocycle is the identity on
constant gauge transformations, the equation

6.2) tess(As) =s5:+(4%)

for s, a section of L. and teT,, defines a smooth action of T, on sections of L.
Hence the line bundles descend to .#F by taking as the sheaf of smooth sections
those smooth sections of L, which are invariant under the action (6.2). Similarly,
by taking the diagonal action of T, we obtain a line bundle

LO)— M, =FF xFT,.

(6.3) Lemma. Let ¥{: #,(t)— #,(0) denote the diffeomorphism in the proof of
Theorem 4.11, L(t) — M, (t) the restriction of the line bundle defined by (6.1), and
L(0) - #,(0) as above. Then [{P9)~1]*L(t) ~ L(0).

Proof. The proof is clear, since on representatives V; having the form (4.7) in the
pinching region the cocycle (6.1) is the product of cocycles defined on £+ and Z~.
We omit the details.
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We may define connections w,, @* on the line bundles L(t), L. by pushing
down the trivial connection induced by the form

1
=— A .
w4(B) 47“{-“ AB
For L, we need to fix a base connection 4, in the form (4.7). Then

@horalB)= 3 | Trldo + 4) 1 .

These define connections L. — %} which are, however, not invariant under the
action of T,. Indeed, a computation shows that for e Lie T, and £* the induced
vector field on &%,

(64) —iwfaC*)= = Tr(-a),

(see [D-WI1, Sect. 5]). Nevertheless, for the product connection on
L, ®L_—%F) x%F,, the terms (6.4) cancel, and we therefore have connection
wo on L(0). Again using the diffefomorphism ¥? we have the following simple

(6.5) Lemma. Let [(¥/)”']* w, denote the pullback connection on L(0). Then
[(PH™'1* w, = w, smoothly.

The curvature of the connections w, is given by the symplectic form

1
Qv(B1, B2) = ﬂi“ Ty A Bs

with a similar expression for the curvature of w,. The form Q satisfies the condition
in Definition 4.5 to give L(t) and L(0) the structure of CR-line bundles. Indeed, by
Theorem 2 of [R-S-W], the bundle (L(t), w,) is CR-isomorphic to the restriction of
the determinant bundle 4 to the hypersurface .#,(t). We therefore have for all
integers k,

HE (M (t), %) > HEq(ML(t), L(t)) .
Combining Lemmas 6.3 and 6.5 with the remarks above, we have

(6.6) Theorem. The bundles Ute p(L(t), @) give a differentiable family of CR-line
bundles on the family M,.

As mentioned before, the connections w* are not invariant under the action of T,.
Using the universal connections K** on the bundle #F — .#% we may put
a connection on Ly — .#,* as follows: Given sections s, and vector fields Z + on
M, realize 5. as T,-invariant sections § + of Ly —» #,* and lift Z, to horizontal
vector fields Z, on #2. Then define

do:5+(Z4) = dy:5:(Z4) .

We must check that the right-hand-side is invariant under the action of T,. It
suffices to show that it vanishes in the infinitesimal direction &* for EeLie T,.
By (6.4)

E* (031 (Z+)) = (dys, g0 + Tr(E+ 0)) (o254 (Z )
=dpe,2,(E% +54) — QL (¢*, Z 1) 5y .
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The first term vanishes, since ;. is assumed to be T,-invariant, and the second term
vanishes because the symplectic forms Q. are invariant in the T,-directions (cf.
[D-W1, Sect. 5]).

The curvature of the connection is clearly of type (1, 1) on .#F, and so the
product connection gives a holomorphic structure to the product bundle
L X =M#x#,;.In terms of the generators f% and 7% of

H*(X,Z)~ HX(A,Z) ® H (A, , Z)

(see Subsect. 2.3), it follows from Lemma 2.13. and the fact that Q. on 47 repre-
sents f% + kay} (see [D-W1, Sect. 5]) that

(6.7) ci(L) = B + B* .

By Lemma 5.9, .#,(0) > X is a principal S'-bundle. The connection on n*L is

obviously trivial in the fiber direction, but by (6.4) the connection w, on
L(0) —» .#,(0) is not. Nevertheless, we have

(6.8) Proportion. L(0) is CR-isomorphic to n*L.

Proof. The smooth sections of L are by definition the S !-invariant sections of L(0),
so n*L = L(0) as smooth bundles. To prove the proposition, we must show that the
O,-operators associated to the connections L(0) and n*L coincide (see the dis-
cussion following Definition 4.5). But this is clear, since by Lemma 5.9 the
CR-structure on #,(0) is induced by the horizontal lifts of the (0, 1) vector fields on
X, and by construction the connections on L(0) and n*L agree in the horizontal
directions.

6.2. Proof of the Main Theorem

We continue with the notation of the previous section. Recall that in terms of the
generators f% and y¥ of H2(M#E,Z), ¢, (L% ® &) = kB% + Ay%, We set

Lk A)=LE ®e*.

(6.9) Theorem. For any integer A, H{(M 3, L. (k, A)) vanishes either for ¢ = 0 or for
q = 1. More precisely, we have
(@) If0 S A S k/2, then HY(ME, L+ (K, A)) = 0 for all g > 0.
(i) If A <0 or 1 > k/2, then HO(ME, &+ (k, 1)) = 0.
Proof. We begin by noting that the natural map

Pic(#t) > HY M, L) ~ZDZ
is an isomorphism. Indeed, from the exponential sequence the map is seen to be
injective because .#.* is simply connected (cf. [D-W1, Theorem 4.1]), and from the
Hecke correspondence we conclude that Pic(.#}) must have rank at least two. The
canonical bundle therefore has the form K ,; = mf} + ly%. By the adjunction

formula (cf. [G-H, p. 147]) and using the fact that the normal bundle to a fiber is
trivial, we have i

K aslot)oer = Kp1 = 0(—2)
K.atlotyr: = Kpr = 0(—2).
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In the above formulas, :& and 1f denote the inclusion maps of the fibers of the
Hecke correspondence (2.14) into .#.F . The integers m and | may be determined
from (2.15); this yields K 4; = — 4% — y%. Note that the formulas (2.15) for
(t5)IP* and ("), IP* immediately give part (ii) of the theorem — for if 4 < 0, then
&L+ (k, ) restricted to (:F),IP* is negative, and £, (k, A) restricted to (), P! has
Chern class k — 24 which is negative if A > k/2. Since the Hecke correspondence is
a fiber bundle in both directions over open dense sets, we conclude that Lk, A)
cannot have non-zero global holomorphic sections in either of these two cases. For
part (i) it suffices, by Serre duality and the Kodaira-Nakano Vanishing Theorem
(cf. G-H, pp. 153-4]) to show that the bundle K «: ® L (k, A)* is negative for
k20 and 0<1=<k/2. In terms of the ample generators BS +, B+ of
Pic(.#*(2, 0)) and Pic(.#*(2, — 1)) we have by the results of [D-W2, Sect. 3], and
the computation of the canonical bundle above,

Kui® Lok, A)* = — (k=22 + 2)p§ B+ — (A + pt B+ .

The negativity follows, since both coefficients are strictly negative, and p¥ B3 + and
pt BY + are semi-positive, vanishing only in transverse directions. This completes
the proof of Theorem 6.9.

The rest of this section, including the proof of the Main Theorem, consists of
corollaries of Theorem 6.9. We begin with

(6.10) Corollary. Let ¥"f be as in (1.1). Then for 0 < A < k/2,
dim ¥ = (L1, ),

where y denotes the Euler characteristic.

Proof. According to Theorem C of [D-W1],

6.11) Vi~HOME, Lk, 1)

in the particular case a = exp(2rii/k). But for all a + + I, the 4} are mutually
biholomorphic (see [D-W1, Subsect. 2.3]). Thus (6.11) holds for anya+ =+ I.The
corollary now follows from part (i) of Theorem 6.9.

(6.12). Corollary. Let L* — X be as in Subsect. 6.1. Then
(i) For all integers 4, H*(X, L* ® ¢*) = 0.
() If A<O0or A>k/2, HOX,L*®e) =0

Procof. Since
L*®¢* = pri (L. (k, 1) @ pr*(L-(k, 4)) ,

where pry : X — .#,* denote the projection maps, we have by the Kiinneth formula
(cf. [EGA, p. 29])

H'(X,L*®¢&") ~ {H)(M;}, &L, (k, ANQ@H M, L_(k 2))}
@ {Hl("”a+9 $+(k, 2’)) ®H0(V,{a—’ g—(ks A‘))} ’

and the right-hand side vanishes for all 1 by Theorem 6.9. This proves part (i). The
Kiinneth formula also yields

613)  H(X,L*®e&) > HOMS, L. (kD)@ HOM,, L_(k 2)),

and so part (ii) of the corollary follows from part (ii) of Theorem 6.9.
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(6.14) Corollary. Recall the notation HP® from Subsect. 5.1. Then HY(.#,(0),
a*L*) = 0.

Proof. Immediate from part (i) of Corollary 6.12 and Theorem 5.11.

Proof of the Main Theorem. By the result Theorem 4.25 on the extension of
CR-sections, we have

(6.15) H (A (t), (1)) ~ H&(A (), L(t)) ,

for sufficiently small [¢|. The isomorphism above is given by restriction. The pair
(A 4(t), L*(¢t)) forms a differentiable family of CR-manifolds and CR-bundles. By
Theorem 4.11, the CR-structures converge to the limiting one on .#,, and by
Theorem 6.6 and Proposition 6.8, L*(t) -» n*L* as a CR-bundle. By semi-cont-
inuity Theorem 5.8 and Corollary 6.14, H* (#,(t), L*(t)) = O for |t| sufficiently
small. In particular, the dimension of Hy"! is constant. Again applying Theorem
5.8 we obtain

(6.16) H&(M.(t), LX) ~ H&R(HA,(0), n*LY)

where the isomorphism is given by degeneration. By Lemma 5.9(i), the S-action on
#,(0) is CR, and therefore lifts to an action on HZ&%(,(0), n* L*). Decomposing in
terms of irreducible representations and using Corollary 6.12(ii), we have

6.17) H&(A,0),n*L")~ P H°X,L*®¢).

0SASk2
The Main Theorem now follows from (6.13) and the identification (6.11). The
equality (1.3) follows from the Main Theorem and Corollary 6.10.

Appendix

In this Appendix we state explicitly the estimates alluded to in Subsect. 5.1 and
provide a proof of the semi-continuity for Kohn-Rossi cohomology, Theorem 5.8.

Recall that the Laplacian [J acts on Dom [0 < 274 c .o/ (see Subsect. 5.1).
The condition ¢ € 277 and d¢ € D71 are called the J-Neumann conditions and the
0-Neumann problem consists of solving the equation (¢ = a subject to the -
Neumann conditions. The -Neumann problem is non-coercive (cf. [F-K]). How-
ever, provided that condition Z(g) hold, one proves the following estimate which is
the analogue of the coercive estimate for elliptic operators (cf. [F-K, 2.1.7 and
3.1.1]):

(A.1) Theorem (Main Estimate for [J). Suppose condition Z(q) holds. Given
ae L*(of™9), let @ be the unique solution of .

@O+NDe=a.

Let U = D(M) be an open set and f, f; C* real functions with supp f < supp f; c U
and fi =1 on supp f. Let k=1 or 2, according to whether UnM + & or
UnM= F.Ifalye LZ(A ™), then f- pe L2, (4 "%), and there exists a constant
¢, such that

I folldes < c(ll frall2 + lalid) .
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From the Main Estimate A.1 one proves the analogue of the Hodge Theorem the
usual way (cf. [F-K, Proposition 3.1.12 and 3.1.14]). Recall (5.4) that H?? denotes
the kernel of OJ.

(A.2) Theorem. Assume condition Z(q) holds. Then

(1) H”? = H»4(D(M), V) is finite dimensional and H?? ~ HP9. Moreover, the
following decompositions holds:

L* (7% = H”* @ dpDom] @ b6 Dom [J ;

(2) Let H: L*(4™% — HP? denote the harmonic projection. Then there is a compact
operator

N:L*(#”%) - Dom(CJ + 1)

satisfying
(i) For any ae L*(s79),

a = 0dNa + d0Na + Ha ;

(i) NH=HN =0,NO = ON =1 — HonDom(O + I), and if N is also defined
on L*(A4?% (resp. L*(/™9 1)), then Nd = 3N on Dom 3 (resp. Nd = dN on
Dom 0%*).

(iii) N(4”%) < AP9, and for all s there is a constant ¢, such that

"Na ”s+1 é Cs”a”.va
Sor all ae o/ P4,

We have a similar result for the Laplacian [, acting on the boundary complex
#™%. The operator O, is not ellipticc. However, under the condition Y(q),
[, satisfies the analogue of the Main Estimate A.1 (cf. [F-K, Proposition 5.4.10]).

(A.3) Theorem (Main Estimate for [J,). Suppose M satisfies Y(q). If Uc U <
W = M, and f, is a smooth function supported in W, then for each smooth f supported
in U, o e B™4, and each positive integer s there exists a constant ¢, such that

1fo 5+ £ el 41O + Do 2 + 1(3, + Dell3) .

Again as for the 9-Neumann problem, Theorem A.3 implies a Hodge decomposi-
tion for (I, (cf. [F-K, Theorem 5.4.12]). Recall (5.7) that H}? denotes the kernel
of Db-

(A.4) Theorem. Assume condition Y(q) holds. Then

(1) Hp? = HE'Y(M, V) is finite dimensional and H}'? ~ H!'9. Moreover, the follow-
ing decomposition holds:

LZ(gp,q) = Hg'q (&) a_bbb Dom Db (&) bba_,, Dom Db H

(2) Let H,: L*(#"%) — H24 denote the harmonic projection. Then there is a compact
operator

Gy:(HP 9" —» L*(#79)
defined by G, = 00, ! such that
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(i) For any ae L*(#"9),
a= 3_bbbia + bba_bia + H,,a ;

(i) GyHy, = H,G, =0, Gy, = 0,G, = I — H, on Dom (1, and if G, is also
defined on L*(#"*') (resp. L*(B"77")), then G,0, = 3,G, on Dom 3, (resp.
Gyd, = 0, G, on Dom b,).

(ili) Gu(B"9) < B4, and for all s there is a constant c, such that

” Gba ”s+1 é Cs ” a ”s >
Jor all ae o4 1,

With these theorems in hand, we turn now to the proof of the semi-continuity,
Theorem 5.8. We model our arguments on those of Kodaira [Kod, Chap. 7]. Since
nearly the entire proof of the ordinary semi-continuity theorem for Dolbeault
cohomology goes through for this situation as well, mutatis mutandis, we shall be
brief.

In what follows, we denote by [J,(t) the 3, Laplacian associated to the line
bundles L(t). According to Theorem A .4, the conditions ¥(0) and Y (1) guarantee
the existence of Green’s operators, discrete spectrum, finite dimensionality of the
(0, 0) and (0, 1) cohomology groups, and the usual harmonic decomposition. The
following lemma is essential (cf. [Kod, p. 338]). Its proof makes use of the optimal
regularity results for 0, which hold when Y(q) is satisfied.

(A.5) Lemma. Given &yeC, &, ¢spec(0,(t)), then for small J there exists a constant
C > 0 such that for all |t] < d,|¢ — &o| < 6 and smooth sections ,

18 Y llo2 Clylo,
where y(t, £) = Oy(t) + &
Proof. Suppose not. Then we can find sequences t}, ¢;, and y; satisfying
[t;] < 17,165 — Sol < 1/, 100s(t5, E)¥sll0 < 1/
and ||y;llo = 1. Now

(A.6) :
1835t €)% — B0, €0 ¥ llo = 1Ts() ¥ — Cu(0)¥jll0 + 1¥5l01 &5 — Sol -

Writing out [,(t;)¢; in local coordinates, the coefficients are smooth by assump-
tion, and the derivatives of the second order are in the complex directions only, i.c.
correspond to vector fields in the subbundle &. Following Rothschild and Stein
[R-S], we introduce the spaces S?(L,) which are the usual L? completions of
smooth sections of L(t), but ‘where only the k-th derivatives in the complex
directions are assumed to be in L2 Then by [R-S, Theorem 19], we have the
estimate

I3z < c(ITp(ts €)Y 13 + 11513) < 2¢,

and it is clear that C may be chosen uniformly in t. For the derivatives of order one
or less, we apply the Main Estimate A.3

I¥51% < ex(1Ts( Y5113 + 1518 = 2, -
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Since the coefficients are smooth, we conclude that
100, ¥; — Op0);ll0 » 0
as t — 0, and the fact that [£; — ;| — 0 combined with (A.6) means that
180s(t) ) Y5 — Es(0, So)Yjllo >0 .

The assumption [[O(¢;, &) Y;llo = 0 implies ||0,(0, &) y;llo — 0 by the above.
But since ¢, is assumed to be outside the spectrum of [J,(0), we can find some
bound u > 0 depending on &, such that

1850, o) ¥ llo 2 1l ¥ llo

for all smooth sections . Applied to y;, the result above forces ||y ||o — 0, which is
a contradiction. This proves the lemma.

(A.7) Lemma. Suppose &, ¢ spec(ld,(0)). Then for | & — &q| and |t| sufficiently small,
the Green’s function Gy(t, &) = O,(t, &) is C® in (¢, &).

Proof. The & variable is a zero order term, so it suffices to show differentiability in ¢.

By Lemma A.5 we have

1
Wl S G 1006 ¥ o S 2 1046 O I

Combining the above with the Main Estimate A.3 we have

[ st S Gl Op(t, W NIk -
By Sobolev’s inequality, we have for k + 1 — [ > n/2
IDLY ()| £ Cerr—t,1 W liess 5
hence
(A.8) I DY ()] < ek, 106, O Y i s

for k > 1 — 1 + n/2. Note that ¢ ; is independent of ¢. The proof now proceeds by
induction: assume @(t) = O,(t, &)Y (t) is continuous. We must show that for any
I, DLy (x, t) is continuous in (x, t). Continuity in x for fixed t is clear. We must show
that for any s, I,

Dy (x, t) = Dy (x, s)

uniformly. For a given ! choose k > — 1 + n/2, ¢ = c;,,. By (A.8) we have
| DX (x, t) — D (x, s)| < ]| Oy(t, &)W () — ¥(5) I
= ¢l Oy, Y () — Dols, Y () llx
+ ¢ (O,(, &) — Oals, )Y () Il
=cl @) = @@ I + ¢ | (Ty(t, &) — Tols, W)l -
By hypothesis || ¢(t) — @(s) lx = 0, and O, (¢, &)Y (s) is a C* function of (x, t), so
183s(t, )Y (s) — Oo(s, Y () k0.
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This completes the proof that y(x, t) is continuous. The proof of the continuity of
higher derivatives is in Kodaira, [Kod, p. 332].

Given Lemma A.7, it is clear that for a Jordan curve C = C disjoint from
spec(C15(0)) and ¢ sufficiently close to the origin, the operator

1
F{C)=>— £d6 O, &)1

is C* in t. The image is finite dimensional and consists of the eigenspaces of [J,(t)
corresponding to eigenvalues inside the contour C (cf. [Kod, p. 340]). From this it
is not difficult to show (cf. [Kod, Theorem 7.2])

(A.9) Proposition. Let {12} =, denote the eigenvalues of O 4(t) = O,(t) acting on
(0, q) forms. Then for each n, Ai(t) is continuous in teD.

The semi-continuity of dim Hy 4(M(t), L(t)), ¢ = 0, 1 is immediate from Proposi-
tion A.9. To prove the second statement in Theorem 5.8 we use the harmonic
decomposition, Theorem A.4(1):

L*(#%°) = H*°(M (1), L(t)) @ ,(t)3,(t) Dom O °

L*(%% ') = H ' (M(2), L(t)) @ b5(t)3,(t) Dom 09 * @ 3, (t)b,(t) Dom ot
Choose an orthonormal basis {{,!(¢)} of {3,(t)d,(t) Dom Og" '} with eigenvalues

Op)¥j @) = ua @Y (), i) >0.
If we define
1
n(f) = —===D4(t)¥, (1) ,
T o

then {@,(t)} form a basis for {b,(t),(t) Dom 0 °}, and

Oo(0)onlt) = ﬁ OB = b D00

= 1) —ﬁ%bbmw:m = 1O 0t) .

Hence {¢,(t)} are eigenfunctions with eigenvalues {u!(t)}. But if
dim Hy"'(M(t), L(t)) is constant, then by continuity there must be an ¢ > 0 such
that u, () 2 ¢ for ¢ sufficiently close to the origin. Then again by continuity,
dim H& (M (t), L(t)) must be constant. This completes the proof of Theorem 5.8.
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