
ON PRODUCTS OF ISOMETRIES OF HYPERBOLIC SPACE
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Abstract. We show that for arbitrary fixed conjugacy classes C1, . . . , Cl, l ≥ 3, of loxodromic
isometries of the two-dimensional complex or quaternionic hyperbolic space there exist isometries
g1, . . . , gl, where each gi ∈ Ci, and whose product is the identity. The result follows from the
properness, up to conjugation, of the multiplication map on a pair of conjugacy classes in rank 1
groups.

1. Statement of the Result

There is a deep geometric structure underlying the problem of determining the possible eigenval-
ues of a product of unitary matrices in prescribed conjugacy classes (cf. [1, 2, 4, 5, 9, 7, 8, 13, 17, 20]).
The analogous problem for complex Lie groups was considered by Simpson in [19] and has a differ-
ent character (see [14] for a survey). In this note we consider another example of this question in
the context of isometry groups of symmetric spaces of negative curvature.

Let F = R, C, or Q, the real, complex, or quaternionic fields, and let PU(2, 1, F) denote the
isometry group of the two dimensional hyperbolic space over F. We will prove the following

Theorem 1. Let C1, . . . , Cl, l ≥ 3, be arbitrary conjugacy classes of loxodromic elements of
PU(2, 1, F). Then

(1) there exist g1, . . . , gl ∈ PU(2, 1, F), gi ∈ Ci, such that g1 · · · gl = I; and
(2) the set {(g1, g2, g3) : gi ∈ Ci , g1g2g3 = I} is compact modulo the diagonal action of conju-

gation by PU(2, 1, F).

Notes:

• Compactness (2) does not generalize for products of more than three elements. In fact,
Theorem 1 (1) implies that for four fixed loxodromic conjugacy classes there are elements
gi in these classes with arbitrary loxodromic product g1g2 = (g3g4)−1.

• Theorem 1 also holds for products in PU(1, 1, F), F = C, Q. Notice that PU(1, 1, R) = R+,
and the result clearly does not hold in this case. We do not know if the method presented
here extends to prove part (1) for PU(n, 1, F), n ≥ 3.

• When the classes Ci are not loxodromic one does not expect (1) to hold. Indeed, the
structure seems to resemble the case of products of unitary matrices. To illustrate this
point, below we obtain restrictions of products of three unipotent matrices. Products of
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elliptic elements have been studied in [16]. Products of loxodromic elements have also been
studied in [15, 21].

• For SL(3, C), Simpson in [18] proves that for l (l ≥ 3) regular semisimple (pairwise distinct
eigenvalues) conjugacy classes (1) is true. But, for three non-regular semisimple conjugacy
classes, (1) fails except in the case of conjugacy classes obtained from three reducible matri-
ces (which preserve a common subspace of C3 of dimension 1). Fixing real eigenvalues we
obtain counter examples for the theorem in the case of SL(3, R). On the other hand, observe
that for the real form SU(2, 1) ∈ SL(2, C), every loxodromic element is regular semisimple.
Theorem 1 (2) also fails for SL(3, R) (see [10] and comments in Section 2.2).

The proof of Theorem 1 rests on the following general result. Let X be a Riemannian symmetric
space with strictly negative curvature, Iso(X) its isometry group, and G the connected component
of the identity in Iso(X). Let C(G) denote the space of conjugacy classes of semisimple elements
of G. A topology on C(G) is given as follows. Let G/G denote the quotient of G acting on itself
by conjugation, with the quotient topology. Then C(G) is the maximal Hausdorff quotient of
G/G. Hence, C(G) is a locally compact Hausdorff space whose points are in 1-1 correspondence
with conjugacy classes of semisimple elements of G. Furthermore, there is an induced continuous
surjection π : G → C(G) that is invariant by the action of conjugation on G. Effectively, this
map identifies (non-closed) conjugacy classes of non-semisimple elements with conjugacy classes of
semisimple elements appearing in the closure. With this understood, we have the following

Theorem 2. Let C1, C2 be conjugacy classes of semisimple elements of G, and let G act on C1×C2

diagonally by conjugation. Then multiplication (g1, g2) 7→ g1g2 descends to a map

p : {C1 × C2}
/
G −→ C(G)

that is proper.

Theorem 2 itself follows easily from the theory of group actions on R-trees. A consequence of
the result, however, is that the image of p is closed. The importance of this lies in the fact that
if the elements {g1, g2} generate a subgroup that acts irreducibly on X, then there is an open
neighborhood of π(g1g2) contained in the image of p. It follows that the image of p consists of
“chambers” bounded by “walls” corresponding to the image of pairs acting reducibly on X. In
certain cases, such as PU(2, 1), this allows one to completely determine the image and leads to the
proof of Theorem 1. We note that for symmetric spaces of higher rank, Theorem 2 is no longer
valid. Below we provide a simple counter-example.

Acknowledgment. The authors thank Olivier Guichard, John Parker, Julien Paupert, and Pierre
Will for discussions. They are also grateful to the referee for several useful comments.
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2. Products in rank 1 groups

2.1. Proof of Theorem 2. We start with the example of R-trees. For an isometry g of an R-tree
(T, dT ), let

|g|T = inf
x∈T

dT (x, gx)

denote the translation length of g. Isometries of trees are always semisimple, i.e.

min(g) = {x ∈ T : dT (x, gx) = |g|T } 6= ∅

If |g|T = 0, then g is elliptic and has at least one fixed point. If |g|T 6= 0, g is hyperbolic and has a
unique axis Ag = min(g) ' R. The following is well-known (cf. [18, pp. 89-90]).

Lemma 1. Suppose g, h ∈ Iso(T ) satisfy min(g)∩min(h) = ∅. Then the isometry gh is hyperbolic.

Now let G ⊂ Iso(X) be as in Section 1.

Proposition 1 (cf. [3, Theorem 3.9]). Let Γ be a finitely presented group and ρj : Γ → G a
sequence of non-elementary representations (i.e. no fixed points at infinity). Then after passing to
a subsequence one of the following holds:

(1) there exist gj ∈ G such that gjρj(γ)g−1
j converges in G for all γ ∈ Γ; or

(2) there exist εj ↓ 0 and a non-trivial action (i.e. no global fixed points) of Γ on an R-tree T

such that εj |ρj(γ)|X → |γ|T for all γ ∈ Γ.

These two results combine to give

Proposition 2. Let {gj}, {hj} be a pair of sequences of semisimple isometries in G. Assume there
is B > 0 such that |gj |X ≤ B and |hj |X ≤ B for all j. Then one of the following must hold:

(1) there is a subsequence {jk} and fk ∈ G such that fkgjk
f−1

k and fkhjk
f−1

k converge in G; or
(2) the sequence of translation lengths {|gjhj |X} is unbounded.

Proof. Suppose first that gj and hj are loxodromic with axes Agj and Ahj
having a common fixed

point on the sphere at infinity of X. Acting by diagonal conjugation on (gj , hj) we may assume
the axis Agj = A0 is fixed. Then conjugate by elements fixing A0 so that Ahj

converges (up to a
subsequence). The same argument applies to elliptic elements.

It therefore suffices to consider the case where the groups generated by (gj , hj) are non-elementary
for all j. According to Proposition 1, if (1) is not satisfied then there exist εj ↓ 0, an R-tree T ,
and a non-trivial action of a free group Γ = 〈g, h〉 such that εj |gj |X → |g|T , εj |hj |X → |h|T . Since
|gj |X and |hj |X are bounded, g and h must be elliptic. If |gjhj |X were bounded, then it would
follow that gh was elliptic. By Lemma 1 there would be a global fixed point of T , contradicting
the non-triviality of the action. �

Theorems 2 and 1 (2) follow immediately from Proposition 2.
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2.2. Higher rank. Here we give some explanation for why the assumption of strict negative cur-
vature is necessary for the result above. Degenerations of representations will no longer necessarily
give actions on trees as in Proposition 1. The following example shows that Proposition 2 also
cannot hold.

Let H = Iso(En), where En is n-dimensional Euclidean space. Hence, H is a semidirect product
of the orthogonal group O(n) and the group of translations Rn. We write an element h ∈ H as
h = (g, t) where g ∈ O(n) and t ∈ Rn. Fix (g0, t0), (h0, s0) ∈ H in conjugacy classes [(g0, t0)] and
[(h0, s0)]. Assume also that I− g0, I− h0, and I− g0h0 are all invertible.

Notice that Aj = (g0, t0 + (g0 − I)tj) ∈ [(g0, t0)] for any translation tj ∈ Rn, and similarly
Bj = (h0, s0 + (h0 − I)sj) ∈ [(h0, s0)]. The product is

AjBj = Cj = (g0h0, t0 + (g0 − I)tj + g0(s0 + (h0 − I)sj)) .

Choose ‖sj‖ → ∞, and let tj be determined by the equation

(1) (g0 − I)tj + g0(h0 − I)sj = 0 .

This is possible since g0 − I is invertible. Note that ‖tj‖ → ∞ also, because h0 − I is invertible.
With these choices, Cj are therefore constant. In particular, the class [Cj ] is fixed.

Now, it suffices to show that the pair

[(Aj , Bj)] ∈ [(g0, t0)]× [(h0, s0)]/H

diverges. Let Dj = (kj , rj) ∈ H, and calculate:

D−1
j AjDj = (k−1

j g0kj , k
−1
j (t0 + (g0 − I)tj + (g0 − I)rj))

D−1
j BjDj = (k−1

j h0kj , k
−1
j (s0 + (g−1

0 − I)tj + (h0 − I)rj))

Suppose that the sequence {D−1
j AjDj} is bounded. Then (g0 − I)(tj + rj) are bounded. Since

g0 − I is invertible, we conclude that tj + rj is bounded. Now, if we suppose that D−1
j BjDj is

also bounded, we find that (g−1
0 − h0)tj is bounded, which implies in turn that (I − g0h0)tj is

bounded. Finally, the hypothesis that I− g0h0 is invertible shows that ‖tj‖ is bounded, which is a
contradiction.

By way of explanation, note that the Aj , Bj are elliptic. The distance between their fixed points
is of the order ‖tj − sj‖. By (1) we have

tj − sj = (g0 − I)−1(I− g0h0)sj −→∞ ,

so this distance is unbounded. However, Cj is also elliptic. We conclude that Proposition 2 cannot
be valid in this case.

Observe that the hypothesis that the matrices I − h0, I − g0 and I − g0h0 are invertible can
only be satisfied for even n. In odd dimensions we can obtain a reducible example using the above
construction on a codimension one subset of Rn.
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In the example above H is non-reductive. This is not essential. It follows from Goldman [10,
Section 4], for example, that compactness also fails for products of regular semisimple conjugacy
classes in SL(3, R).

3. The Hyperbolic Spaces Hn(F)

3.1. Definitions. Let F be one of the fields R, C, Q. We denote by I the identity matrix whose
rank is unspecified but will be clear from the context. Consider the vector space V (n,1)(F) (with
scalars acting on the right) with the F-Hermitian form of type (n, 1)

〈z, w〉 = w∗Jz

where w∗ denotes conjugation followed by transposition of the column vector w. We will use the
following particular Hermitian forms:

Jp =

0 0 1
0 I 0
1 0 0

 Je =
[
I 0
0 −1

]
Jl =

I 0 0
0 0 1
0 1 0


The first is useful to describe parabolic elements, the second for semisimple elliptic elements, and
the third for loxodromic elements.

Define the group

U(n, 1, F) = {g ∈ GL(n + 1, F) | 〈gz, gw〉 = 〈z, w〉 }

whose center Z(n, 1, F) consists of ±I if F = R, Q and U(1)I if F = C. The hyperbolic space Hn(F)
is the projectivization (on the right) of the space of negative vectors V− = {z | 〈z, z〉 < 0 }. We
have Hn(F) = U(n, 1, F)/ U(1, F) × U(n, F) and the action of PU(n, 1, F) = U(n, 1, F)/Z(n, 1, F) on
Hn(F) is transitive and effective. In the following it will sometimes be useful to pass to U(n, 1, F).

3.2. Conjugacy classes of semisimple elements. Conjugacy classes in U(n, 1, F) are described
in [6]. Recall first that elliptic elements have a fixed point in Hn(F), loxodromic elements have
precisely two fixed points on the boundary at infinity, and parabolic elements have a single fixed
point on the boundary at infinity. A unipotent element is is an element whose eigenvalues equal to
1. In particular, a unipotent element is parabolic but not all parabolic elements are unipotent.

Proposition 3 (cf. [6], Section 3). The conjugacy classes of semisimple elements of U(n, 1, F) are
precisely

(1) the elliptic elements, described as U(1, F)× C(n, F) where C(n, F) is the space of conjugacy
classes of the F-unitary group U(n, F).

(2) the loxodromic elements, described as (1,∞)× U(1, F)× C(n− 1, F)

Note that the set of elliptic elements forms a compact subset of C(U(n, 1, F)), whereas the subset of
loxodromic elements is unbounded. Also, in the statement above the inclusion C(n−1, F) ↪→ C(n, F)
identifies the boundary of the space of loxodromic elements {1}×U(1, F)×C(n−1, F), with classes
of elliptic elements with fixed points “on the boundary” of hyperbolic space.
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The simplest example is PU(1, 1). The space of conjugacy classes C(PU(1, 1)) is a pointed circle
S1 union an interval [1,∞), identified such that S1∩ [1,∞) = 1. The circle corresponds to rotations
(elliptic elements) to which one adds the identity, and the interval corresponds to the hyperbolic
elements, to which one also adds the identity. To illustrate Theorem 2 in this case, consider the
standard action of PU(1, 1) on the unit disk in C. If one fixes two conjugacy classes of elliptic
elements C1 = [g1], C2 = [g2], then without loss of generality we may suppose that g1 is a rotation
fixing the origin and g2 is a rotation with fixed point on the real line. Notice that to show that the
multiplication

{C1 × C2}
/

PU(1, 1) −→ C(PU(1, 1))

is proper, it is equivalent to show that if the fixed point of g2 tends toward the boundary of the
disk and the translation length of g1g2 tends to infinity. This can be easily seen, either by a direct
calculation of the trace, or geometrically by decomposing the two rotations into three reflections.
Conjugacy classes of hyperbolic or mixed elements is treated similarly.

Using the Hermitian form Je, any elliptic element is conjugate to a matrix of the form[
U 0
0 λ

]
,

with U ∈ U(n, F) and λ ∈ U(1, F). Using the Hermitian form Jl, any loxodromic element is
conjugate to a matrix of the form [

λU 0
0 λH

]
,

with U ∈ U(n− 1, F), λ ∈ U(1, F) and

H =
[
r 0
0 1/r

]
,

with r > 1.

3.3. Proof of Theorem 1. We say that the pair (g1, g2) with g1, g2 ∈ U(n, 1, F) is reducible if the
subgroup generated by these two elements has a proper invariant subspace of Fn+1 and we call it
irreducible otherwise. Theorem 1 is a consequence of the following result. Note that it suffices to
prove the case l = 3.

Proposition 4. For U(n, 1, F), n = 1, 2, and F = C, Q, the image in the space of conjugacy classes
of the product of two loxodromic conjugacy classes contains the entire set of loxodromic elements.

Proof. We will prove the case n = 2, since n = 1 is elementary. The image of the product is closed by
Theorem 2. It is also open near the image of irreducible pairs (g1, g2) (see for instance Proposition
4.2 [8] or Proposition 2.5 in [16]). This follows by a simple computation showing that the product
map to the conjugacy classes has maximal rank at irreducible pairs. It therefore suffices to show
that complement of the image of reducible pairs is connected. We follow the same calculation with
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the form Jl as [16]. Consider loxodromic elements [g1] et [g2] of the form

g1 '

A1 0 0
0 λ1r1 0
0 0 λ1r

−1
1

 g2 '

A2 0 0
0 λ2r2 0
0 0 λ2r

−1
2


where A1 and A2 are in fixed conjugacy classes C1 and C2 of U(1, F).

If the group generated by {g1, g2} is reducible (with non-elliptic product), then without loss of
generality we can write

g1 =

A1 0 0
0 λ1r1 0
0 0 λ1r

−1
1

 g2 =

A2 0 0
0 λ2a λ2b
0 λ2c λ2d

 .

The product g1g2 is

g1g2 =
[
A1A2 0

0 λ1λ2H

]
where H ∈ SL(2, R) is a product of two matrices in SL(2, R) with translation lengths r1 and r2.
Clearly, the image of these reducible pairs with loxodromic product coincides with

(1,∞)× {λ1λ2} × {A1A2} ⊂ (1,∞)× U(1, F)× U(1, F) .

Hence, the complement of the image of the set of reducible pairs in the loxodromic conjugacy classes
is connected because the complement of a point in U(1, F) (which is, respectively, a 0-sphere, a
1-sphere and a 2-sphere for R, C and Q) is connected. Since the image of the irreducible pairs
is open and closed, we conclude that the intersection of the image of irreducible pairs with the
loxodromic conjugacy classes coincides with the cylinder with base U(1, F)× U(1, F). �

Remark 1. The cases SO0(1, 1, R) = PU(1, 1, R) and SO0(2, 1, R) = PU(2, 1, R) = PU(1, 1, C) are
very easy. The same proof gives the well-known result that the product of two loxodromic classes
in SO0(3, 1, R) = PSL(2, C) contain the entire loxodromic part of the space of conjugacy classes
(see [12] for a recent account). Similarly, we note that since SO0(4, 1, R) = PU(1, 1, Q), the same
argument allows one to conclude the analogous result for SO0(4, 1, R).

3.4. Unipotent parabolic elements. There is a single conjugacy class of unipotent parabolic
elements in U(n, 1, R) for n ≥ 2 (there are none for n = 1). We therefore assume for the rest of this
section that F = C or Q. In these cases, there is a single conjugacy class of unipotent parabolic
elements in U(1, 1, F), so we also will suppose n ≥ 2.

To describe the parabolic elements we use the Hermitian form Jp. Fix a distinguished point on
the boundary of Hn(F)

q∞ =


1
0
...
0

 .
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Unipotent elements fixing q∞ are (for z = (z1, · · · , zn−1))1 −z (−|z|2 + t)/2
0 I zT

0 0 1


with z ∈ Fn−1 and t ∈ I, and where we denote by I the purely imaginary elements of F. The
coordinates (z, t) may be interpreted as coordinates on a nilpotent group (Fn−1 o I) and the above
matrix corresponds to a translation in the group, i.e.

(z, t) ∗ (z0, t0) = (z + z0, t + t0 + 2=(z∗0z))

where = denotes the imaginary part. Now there exist two conjugacy classes of unipotent parabolic
elements in U(n, 1, F):

Proposition 5 (see [6, Section 3]). Use the notation z = (z1, · · · , zn−1),1 = (1, 0, · · · , 0) ∈ Fn−1.
The conjugacy classes of unipotent parabolic elements in U(n, 1, F), F = C, Q and n ≥ 2 are:

• (R-parabolic) the class represented by1 −1 −1/2
0 I 1T

0 0 1


• (C-parabolic) the class represented by1 0 i/2

0 I 0
0 0 1


Remark 2. In the case F = C, this dichotomy corresponds to unipotent parabolic elements preserv-
ing a totally geodesic subspace of complex hyperbolic space that is either Lagrangian or complex.

Proposition 6. Let gi, i = 1, 2, 3, be three unipotent elements of U(n, 1, F) such that g1g2g3 = I.
Then the number of C-parabolic unipotents among {gi} is 0, 1, or 3.

Proof. To analyze a product of parabolic elements g1, g2, consider the following two cases:

(1) the gi have the same fixed point at infinity, or
(2) the gi have distinct fixed points at infinity.

In the first case, the product g1g2 also fixes a point at infinity. Write

g1g2 =

1 −z1 (−|z1|2 + t1)/2
0 I z1

0 0 1

1 −z2 (−|z2|2 + t2)/2
0 I z2

0 0 1

 .

Note that the product is either the identity or unipotent. One sees that the product of two R-
parabolic elements can either be R-parabolic or C-parabolic, whereas the product of two C-parabolic
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elements is always either C-parabolic or the identity. Indeed, the product of two unipotent C-
parabolic elements is

g1g2 =

1 0 t1/2
0 I 0
0 0 1

1 0 t2/2
0 I 0
0 0 1

 =

1 0 (t1 + t2)/2
0 I 0
0 0 1

 .

In the second case, we may suppose that the fixed point of g1 is ∞, and the fixed point of g2 is
0 = (0, · · · , 1) ∈ Fn−1. Without loss of generality we may write (where g2 is obtained from the
matrix above after conjugating by Je)

g1g2 =

1 −z1 (−|z1|2 + t1)/2
0 I z1

0 0 1

 1 0 0
z2 I 0

(−|z2|2 + ti)/2 −z̄2 1


Lemma 2. If the product of two unipotent C-parabolic elements is unipotent, it must be C-parabolic.

Proof. We have already considered the case of a common fixed point. Suppose the fixed point are
distinct. Then the special case of unipotents gives

g1g2 =

1 −z1 (−|z1|2 + t1)/2
0 I z1

0 0 1

 1 0 0
z2 I 0

(−|z2|2 + t2)/2 −z̄2 1


If the two elements are C-parabolic, z1 = z2 = 0, and one therefore obtains a parabolic as the
product if and only if either t1 or t2 vanish. In other words, one of the two elements is the
identity. �

Proposition 6 follows immediately from Lemma 2. �

Remark 3. In the case F = C, n = 2, one may give a precise expression for the product of
C-parabolic elements. Indeed, in this case z1 = z2 = 0 and so

Tr(g1g2) = 3 + t1t2/4

By [11, Theorem 6.2.4], the isometry g2g1 is hyperbolic if t1t2 < 0 or t1t2 > 16, and elliptic if
0 < t1t2 < 16.
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