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Abstract The Yang–Mills flow on a Kähler surface with holomorphic initial data
converges smoothly away from a singular set determined by the Harder–Narasimhan–
Seshadri filtration of the initial holomorphic bundle.
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1 Introduction

Let (X,ω) be a compact Kähler surface. Given a holomorphic bundle (E, D′′
0) on X,

let {Eij} denote the Harder–Narasimhan–Seshadri (double) filtration of E, and let
Gr(E) = ⊕ijQij, where Qij = Eij/Ei,j−1 are the stable successive quotients of the
filtration (see [6] for more details). Then Gr(E) is a torsion-free sheaf on X whose
double dual Gr(E)∗∗ is locally free. Denote by Zalg. the singularity set of Gr(E), i.e.
the support of the torsion sheaf Gr(E)∗∗/Gr(E). Associated to each point p ∈ Zalg. is
an integral multiplicity µalg.

p (see (2)).
Given a hermitian metric on E, let

∂D
∂t

= −D∗FD , D(0) = D0 , (1)
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denote the Yang–Mills flow with initial condition given by the hermitian connection
associated to D′′

0 and H. Let D∞ denote the Yang–Mills connection associated to the
holomorphic vector bundle Gr(E)∗∗, i.e. the hermitian connection for the direct sum
of Hermitian–Einstein metrics on the stable factors of Gr(E)∗∗.

For a sequence tj → ∞, it follows from the work of Uhlenbeck and Sedlacek (see
[10,16,18]) that there exists a subsequence tjk , and a finite set of points Zan., depending
a priori on the subsequence, such that Dtjk

converges (modulo real gauge transforma-

tions) weakly in Lp
1,loc.(X − Zan.) to a limiting Yang–Mills connection. Furthermore,

by [19] this connection extends to a Yang–Mills connection on a bundle E∞ on X. Call
this connection an Uhlenbeck limit. The weak Lp

1,loc. convergence can be improved
to strong C∞

loc. convergence using parabolic estimates (cf. [4,11,17]), and by the main
theorem of [6] any Uhlenbeck limit can be identified with the Yang–Mills connection
D∞ on Gr(E)∗∗.

Associated to each point p in the blow-up set Zan. is an integral multiplicity µan.
p

measuring the concentration of the curvature of the sequence of connections Dtjk
(see

Lemma 5). The first goal of this note is to show that the analytic and algebraic singular
sets coincide, along with their multiplicities.

Theorem 1 Let (E, D′′
0) → X be a holomorphic hermitian vector bundle over a com-

pact Kähler surface, and let Zalg. denote the algebraic singular set as above. Modulo
real gauge transformations, the Yang–Mills flow Dt with initial condition D0 converges
smoothly as t → ∞ to the Yang–Mills connection D∞ on the vector bundle Gr(E, D′′

0)
∗∗

away from Zalg.. Moreover, for any sequence tj → ∞ defining an Uhlenbeck limit with

blow-up set Zan., Zan. = Zalg. as sets with µan.
p = µ

alg.
p for all p.

To state the second result of this paper, consider E → X as a fixed smooth hermi-
tian complex vector bundle, and let As (resp. Ass) denote the space of stable (resp.
semistable) holomorphic structures on E with the smooth topology. Here, stability is
in the sense of Mumford–Takemoto with respect to the Kähler class ω. Let M denote
the Uhlenbeck compactification of the space of equivalence classes of ω anti-self-dual
connections on E. We have

Theorem 2 The Yang–Mills flow defines a continuous map from the closure of As in
Ass to M.

In the case of Riemann surfaces it was conjectured in [1], and proved in [5,15],
that the map from Ass to the minimum of the Yang–Mills functional is a deformation
retract. It follows that the equivariant cohomology of Ass (by the action of the gauge
group) is equal to the equivariant cohomology of the moduli space of projectively
flat connections. In the case of a Kähler surface, the corresponding map fails to be a
retraction due to the bubbling described above. Theorem 2 serves as a substitute. It
would be interesting to use this result to obtain more information about the topology
of M. This space, for arbitrary rank, has recently been extensively studied in [13].

2 Preliminaries

Let (X,ω) be a Kähler surface, normalized so that vol(X) = 2π . The ω-slope µ(E) of
a torsion-free sheaf E → X is defined by
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µ(E) = deg(E)
rk(E)

= 1
rk(E)

∫

X

c1(E) ∧ ω .

The sheaf is called stable (resp. semistable) if µ(F) < µ(E) (resp. ≤) for all subsheaves
F ⊂ E with 0 < rk(F) < rk(E). Following [6], if E → X is a holomorphic vector
bundle there is an associated double filtration {Eij} of holomorphic vector bundles
Eij, called the Harder–Narasimhan–Seshadri filtration, which is defined as follows.
Let

0 = E0 ⊂ E1 ⊂ · · · ⊂ E� = E

be the Harder–Narasimhan filtration of E, where Qi = Ei/Ei−1 is torsion-free, semi-
stable, and µ(Qi) > µ(Qi+1) for i = 1, . . . , �− 1. Then for each i, let

Ei−1 = Ei,0 ⊂ Ei,1 ⊂ · · · ⊂ Ei,�i = Ei

be the Jordan–Hölder filtration, where the successive quotients Qij = Eij/Ei,j−1 are
torsion-free, stable, and µ(Qij) = µ(Qi), j = 1, . . . , �i. Furthermore, the associated
graded object

Gr(E) =
�⊕

i=1

�i⊕
j=1

Qij ,

is uniquely determined by the isomorphism class of E (see [6, Sect. 2.1] for details).
Let ξ → X be a torsion-free sheaf. Since X is a surface ξ∗∗ is locally free. The

singular set Zalg.(ξ), defined to be the support of the torsion sheaf ξ∗∗/ξ , is a finite
collection of points (cf. [12, Corollaries V.5.15 and V.5.20]). For p ∈ X, define the
algebraic multiplicity µalg.

p (ξ) of ξ at p to be the dimension of (ξ∗∗/ξ)p as a C-vector
space. Since the support is at isolated points, this may be reformulated as

µ
alg.
p (ξ) = h0(U, ξ∗∗/ξ) , (2)

where U is an open set chosen so that U ∩Zalg. = {p} if p ∈ Zalg. and empty otherwise.
It follows that µalg.

p (ξ) is a non-negative integer that is strictly positive if and only if
p ∈ Zalg..

Definition 3 Let (E, D′′) be a holomorphic vector bundle. Define the algebraic singular
set Zalg., to be the singular set of Gr(E, D′′) with multiplicities as in (2).

Next, we briefly review the Yang–Mills flow and the main result of [6]. Let E → X
be a smooth complex vector bundle of rank r with Chern classes c1(E) and c2(E). For
later reference, recall that:

− ch2(E)[X] =
{

c2(E)− 1
2

c2
1(E)

}
[X] = 1

8π2

∫

X

Tr FD ∧ FD , (3)

where D is any connection on E with curvature FD.
Fix a hermitian metric H on E and denote by A1,1 the space of integrable hermitian

connections on E, i.e. those for which the curvature is of type (1, 1). Let G (resp.
GC) denote the space of real (resp. complex) gauge transformations. The Yang–Mills
functional is given by
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YM(D) =
∫

X

|FD|2d volω ,

and is invariant under the action of G. Its L2-gradient flow on A1,1/G with initial
condition D0 is given by (1). By the results of [8], solutions of (1) for D0 ∈ A1,1 exist
for all t > 0. Furthermore, using the main theorem of [6] we have

Theorem 4 Given D0 ∈ A1,1 and any sequence tj → ∞, let Dj = Dtj . Then there is

1. a subsequence (also denoted j);
2. a finite subset Zan. ⊂ X and a nonnegative integer valued multiplicity µan.

p which is
positive if and only if p ∈ Zan.;

3. a smooth hermitian vector bundle (E∞, H∞) on X, smoothly isomorphic to
Gr(E, D′′

0)
∗∗;

4. a smooth Yang–Mills connection D∞ on (E∞, H∞) such that D′′∞ induces a holo-
morphic structure isomorphic to Gr(E, D′′

0)
∗∗;

5. a smooth isometry

τ : (E∞, H∞)
∣∣
X−Zan. −→ (E, H)

∣∣
X−Zan. ,

such that τ(Dj) → D∞ smoothly on compact subsets of X − Zan.;
6. the Yang–Mills energy densities (with respect to H∞):

|Fτ(Dj)|2 d volω −→ |FD∞|2 d volω +
∑

p∈Zan.

µan.
p δp,

in the weak-∗-topology, where δp is the Dirac measure at p.

Note that by [9, Proposition 6.2.14], ‖D∗
t FDt‖L2 → 0 as t → ∞; hence, any Uhlen-

beck limit is Yang–Mills. The contribution of [6] was to identify the limiting connec-
tions with the Yang–Mills connection on Gr(E, D′′

0)
∗∗. The convergence stated in [6]

was weakly in Lp
1,loc.(X − Zan.), however this can be improved to local C∞ conver-

gence using parabolic estimates analogous to the ones developed by Struwe [17] for
the harmonic map flow (cf. [4, Sects. 5 and 6] and also [11]).

Lemma 5 The analytic multiplicity in Theorem 4 is given by

µan.
p = lim

j→∞
1

8π2

∫

Bε(p)

{
Tr FDj ∧ FDj − Tr FD∞ ∧ FD∞

}
. (4)

where Bε(p) is a ball about p chosen so that Bε(p) ∩ Zan. = {p} if p ∈ Zan. and empty
otherwise.

Proof By [12, IV.4.5],

|FDj |2 d volω = |	FDj |2 d volω + Tr FDj ∧ FDj .

By [6, Lemma 2.17], 	FDj converges in any Lp. Hence, the result follows. As in [9,
Sect. 4.4], µan.

p is a non-negative integer that is strictly positive if and only if p ∈ Zan.

(see also the discussion in the next section). �
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3 Proof of Theorem 1

In order to prove Theorem 1 we have to show that for any Uhlenbeck limitµan.
p = µ

alg.
p

for all p ∈ X. The key result is the following

Lemma 6 Let E → X be a complex vector bundle with connection D, and let ξ → X
be a torsion-free sheaf. Fix p ∈ X. We assume there is a modification π : X̂ → X,
supported away from p, and a sheaf ξ̂ → X̂ such that

1. ξ̂ � ξ in a neighborhood of p;
2. ξ̂ restricted to X̂ − {p} is the sheaf of holomorphic sections of a vector bundle that is

smoothly isomorphic to π∗E;
3. ch(π∗E) = ch(ξ̂ ).

For any connection D∞ on ξ∗∗, and for B2ε(p) disjoint from the center of π , it follows
from (1) and (2) that we may write D = D∞ + a on Bε(p)− {p}. Then we have

µ
alg.
p (ξ) = 1

8π2

∫

Bε(p)

{
Tr FD ∧ FD − Tr FD∞ ∧ FD∞

}

+ 1
8π2

∫

∂Bε(p)

Tr
{

a ∧ D∞(a)+ 2
3

a ∧ a ∧ a + 2a ∧ FD∞

}
.

Proof By (1) and (2), ξ is locally free on Bε(p)− {p}, and ξ̂ is locally free on X̂ − {p}.
Hence, if χ denotes the holomorphic Euler characteristic, it follows from the Hirzeb-
ruch–Riemann–Roch Theorem [14] that

µ
alg.
p (ξ) = h0(Bε(p), ξ∗∗/ξ) = h0(Bε(p), ξ̂∗∗/ξ̂ )

= h0(X̂, ξ̂∗∗/ξ̂ ) = χ(ξ̂∗∗/ξ̂ ) = χ(ξ̂∗∗)− χ(ξ̂ )

=
∫

X̂

{
ch2(ξ̂

∗∗)− ch2(ξ̂ )
} =

∫

X̂

{
ch2(ξ̂

∗∗)− ch2(π
∗E)

}
by (3) . (5)

Now D induces a connection D̂ on π∗E. Extend the connection D∞ over Bε(p)
smoothly to a compatible connection D̂0 on ξ̂∗∗. Then from (3) and (5),

µ
alg.
p (ξ) = 1

8π2

∫

X̂

{
Tr FD̂ ∧ FD̂ − Tr FD̂∞ ∧ FD̂∞

}

= 1
8π2

∫

Bε(p)

{
Tr FD ∧ FD − Tr FD∞ ∧ FD∞

}

+ 1
8π2

∫

X̂−Bε(p)

{
Tr FD̂ ∧ FD̂ − Tr FD̂∞ ∧ FD̂∞

}
.

Now by the assumption that ξ̂ andπ∗E are smoothly isomorphic on X̂−Bε(p), the sec-
ond term on the right hand side can be transferred to the boundary via the secondary
characteristic class. �

Proposition 7 Let Dj be a sequence along the Yang–Mills flow for an initial integra-
ble connection D0 on E, and let Zalg. denote the algebraic singular set of the associated
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Harder–Narasimhan–Seshadri filtration of (E, D′′
0). Suppose there is an Uhlenbeck limit

Dj → D∞ with bubbling set Zan.. Then Zan. = Zalg., with multiplicities.

Proof Write aj = Dj − D∞ on X − Zan.. For any p ∈ X, choose ε sufficiently
small such that Bε(p) intersects Zan. and Zalg. in at most {p}. Given (E, D′′

0) with
Harder–Narasimhan–Seshadri filtration {Eij} we can perform a sequence of monoidal
transformations π : X̂ → X, supported away from p and with exceptional divisor e,
such that π∗E has a double filtration {Êij}, where Êij are subbundles except possibly
at p. We can also arrange that π(e) = Zalg. − {p}. The proof of this statement follows
from a slight modification of [6, Proposition 3.7] (see also [2]). Note that {Êij} is not
necessarily the Harder–Narasimhan–Seshadri filtration of π∗E for any Kähler metric
on X̂. With this understood, set ξ = Gr(E, D′′

0), and let ξ̂ be the associated graded
object for the filtration {Êij} of π∗(E). Then ξ̂ is smoothly isomorphic to π∗(E) away
from p. Applying Lemma 6 to E with connections Dj and ξ with connection D∞ on
ξ∗∗, we have

µ
alg.
p = 1

8π2

∫

Bε(p)

{
Tr FDj ∧ FDj − Tr FD∞ ∧ FD∞

}

+ 1
8π2

∫

∂Bε(p)

Tr
{

aj ∧ D∞(aj)+ 2
3 aj ∧ aj ∧ aj + 2aj ∧ FD∞

}
.

By (4), the limit of the first term on the right hand side as j → ∞ is µan.
p , and by

Theorem 4(5) the limit of the second term vanishes. Hence, µalg.
p = µan.

p for all p ∈ X.
This completes the proof. �


Proof of Theorem 1 By Proposition 7, the bubbling set for any Uhlenbeck limit
Dtj → D∞ is fixed. In particular, ‖FDt‖L2(Br(x)) is uniformly small on small balls
Br(x) in the complement of Zalg.. Indeed, if this were not the case then for a given
ε > 0 we could find a sequence of radii rj → 0 and times tj → ∞ such that

∫

Brj (x)

|FDtj
|2 d vol ≥ ε .

According to Theorem 4(6), this would force x to be in the singular set of any sub-
sequential Uhlenbeck limit of Dtj , contradicting the assumption that x �∈ Zalg.. By [8,
Proposition 16] the Hermitian–Einstein tensors of Dt are uniformly bounded. On the
other hand, the ε-regularity result in [21, Theorem 5.1] and [20, Theorems 2.2 and 3.5],
which is a generalization of the result in [19], states that there are positive constants
c1, c2 and ε0 such for any connection D satisfying ED(x, r) < ε0 for r sufficiently small,
where

ED(x, r) = c1r4‖	FD‖2
L∞ +

∫

Br(x)

|FD|2 d vol ,

then we have
sup

Br/4(x)
|FD|2 ≤ c2

r4 ED(x, r) . (6)



Blow-up set of the Yang–Mills flow on Kähler surfaces 307

Applying this to the flow, it follows that FDt is locally bounded away from Zalg.

uniformly as t → ∞. Then the local smooth convergence follows as discussed above
(cf. [4]). �


4 Proof of Theorem 2

Let Di be a sequence of integrable unitary connections on E → X inducing stable
holomorphic structures, and assume that Di → D smoothly, where (E, D′′) is semi-
stable. Associated to (E, D′′) is a Seshadri filtration by subsheaves and an algebraic
singular set Zalg.. Since Di are stable, by Donaldson’s theorem [8] the Yang–Mills
flow with initial conditions Di converges to an irreducible Hermitian–Yang–Mills
connection D̃i. By Uhlenbeck compactness, after passing to a subsequence, there is
an Uhlenbeck limit (E, D̃i) → (Ẽ∞, D̃∞) with a bubbling set Z̃an.. On the other hand,
by Theorem 1, the Yang–Mills flow with initial condition D converges smoothly away
from Zalg. to the Hermitian–Yang–Mills connection D∞ on E∞ = Gr(E, D′′)∗∗. The
proof of Theorem 2 is complete if we show that D̃∞ = D∞ and Z̃an. = Zalg. (with
multiplicity). The first statement follows from a modification of the argument in [6]
and the second by an argument similar to the one used above.

Let Di,t and Dt denote the time t solutions to the YM flow with initial conditions
Di and D, respectively. Fix tj → ∞ with ‖D∗

tj FDtj
‖L2 → 0. By Theorem 1 it follows

that any subsequential Uhlenbeck limit of Dtj converges to D∞. For each tj we may
choose ij sufficiently large so that ‖Dij,tj − Dtj‖ → 0 in any norm. In particular, any
subsequential Uhlenbeck limit of Dij,tj also converges to D∞.

With this understood, relabel the sequences Dj = Dij,tj , D̃j = D̃ij . Then the first
claim is a consequence of the following general uniqueness result.

Lemma 8 Let Dj → D∞, D̃j = gj(Dj) → D̃∞ converge weakly in Lp
1,loc. away from

a finite set of points Z ⊂ X. Assume a uniform bound on ‖	FD̃j
‖L∞ , and suppose

that (E∞, D∞) and (Ẽ∞, D̃∞) are Hermitian–Einstein connections. Then (E∞, D∞) �
(Ẽ∞, D̃∞).
Proof Since Hermitian–Einstein metrics are unique, it suffices to prove that (E∞, D′′∞)
and (Ẽ∞, D̃′′∞) are holomorphically isomorphic. Let S be an irreducible factor of
(E∞, D∞) and πS the projection to S. Let U be a finite union of disjoint balls contain-
ing Z, and set X∗ = X − U. Let τj = Tr (g∗

j gjπS), and suppose gj has been rescaled so
that ∫

X∗
τ 2

j d volX = 1 . (7)

Fix a ball BR ⊂ X∗. By the main result of [7], we may find local holomorphic frames
for (E, D′′

j )
∣∣
BR

converging in C1 to a holomorphic frame for (E, D′′∞)
∣∣
BR

. In particular,
there exist complex gauge transformations ϕj on BR such that

(i) ϕj → I uniformly;
(ii) gjϕjπS : S

∣∣
BR

→ (E, D̃′′
j )

∣∣
BR

is holomorphic.

Setting τ̂j = Tr ((gjϕj)
∗gjϕjπS), it follows that (cf. [8, p. 23])

(
sup
Br

τ̂j

)2

≤ Cr

∫

BR

τ̂ 2
j d volX ,
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for any r < R. By (7) and (i), the right hand side above is uniformly bounded. Hence,
again referring to the argument in [8], we can extract a subseqence of gjϕjπS con-
verging to a holomorphic map on BR. By (i), it follows that gjπS itself converges to
this limit. By a diagonalization argument we conclude there is a subsequence, also
denoted by gjπS, converging uniformly on compact subsets of X∗ to a holomorphic
map g∞ : S

∣∣
X∗ → (Ẽ∞, D̃′′∞)

∣∣
X∗ , which then extends to X by Hartogs’ Theorem. By

the argument in [3, Lemma 2.2], g∞ is nonzero. Now since S is stable and (Ẽ∞, D̃′′∞)
is polystable with the same slope as S, it follows that g∞ is an isomorphism onto one
of the irreducible factors of (Ẽ∞, D′′∞).

Assume that we have found in this way an isomorphism of S(k) = S1 ⊕ · · · ⊕ Sk ⊂
(E∞, D′′∞) with S̃(k) = S̃1 ⊕ · · · ⊕ S̃k ⊂ (Ẽ∞, D̃′′∞). Let Q̃ denote the orthogonal
complement of S̃(k), and suppose Sk+1 is an irreducible factor of (E∞, D′′∞) in the
complement of S(k). By the previous construction, (πQ̃)gjπSk+1 is injective for j suffi-
ciently large (again identifying sequences and subsequences). We now proceed as
above. Set τj = Tr (g∗

j (πQ̃)gjπSk+1) with the same normalization (7). On BR we find
complex gauge transformations ϕj,ψj such that

(iii) ϕj → I and ψj → I uniformly;
(iv) (πQ̃)ψjgjϕjπSk+1 : Sk+1

∣∣
BR

→ (Q̃, D̃′′∞
∣∣
Q̃)

∣∣
BR

is holomorphic.

As above we conclude the existence of a subsequence of (πQ̃)gjπSk+1 converging uni-
formly on compact subsets of X∗ to a nonzero holomorphic map Sk+1 → (Q̃, D̃′′∞

∣∣
Q̃).

Since Sk+1 is stable and (Q̃, D̃′′∞
∣∣
Q̃) is polystable with the same slope, Sk+1 is isomor-

phic to an irreducible factor S̃k+1 ⊂ Q̃. Hence, we obtain an isomorphism S(k+1) �
S̃(k+1), completing the inductive step and the proof of the lemma. �


We will also require the following

Lemma 9 Let Dj → D∞ be an Uhlenbeck limit for a sequence of integrable holomor-
phic structures on E with bubbling set Zan., and write aj = Dj − D∞ on X − Zan.. Fur-
thermore, we assume that the Hermitian–Einstein tensors	FDj are uniformly bounded
in j. Then away from Zan.,

1. aj → 0 in Cα
loc. for any 0 < α < 1;

2. D∞aj is locally bounded, uniformly in j.

Proof Since aj → 0 weakly in Lp
1,loc. for any p, the first statement follows from Sobolev

embedding. For the second statement, note that

D∞aj = FDj − FD∞ − aj ∧ aj .

By the assumption on Hermitian–Einstein tensors and the ε-regularity theorem [20],
FDj is locally bounded away from Zan. [cf. (6)]. The result follows. �

Proof of Theorem 2 Choose p ∈ X and ε so small that B2ε(p) intersects Z̃an. ∪ Zalg.

in at most p. On Bε(p) − {p}, we may define: D∞ = DT + aT and D∞
j = DT + aj,T .

We assume T has been chosen sufficiently large so that the following two assumptions
hold. First, ∣∣∣∣∣∣∣

µ
alg.
p − 1

8π2

∫

Bε(p)

{
Tr F2

DT
− Tr F2

D∞

}
∣∣∣∣∣∣∣
<

1
4

. (8)
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This is possible by Proposition 7. Second, by Theorem 1, we may assume for large T
that ∣∣∣∣∣∣∣

1
8π2

∫

∂Bε(p)

Tr
{

aT ∧ DT(aT)+ 2
3 aT ∧ aT ∧ aT + 2aT ∧ FDT

}
∣∣∣∣∣∣∣
<

1
4

(9)

With this understood, we now show µ̃an.
p = µ

alg.
p . The connections D∞

j are Hermi-
tian–Einstein; hence, it follows as in the proof of Lemma 5 that

µ̃an.
p = lim

j→∞
1

8π2

∫

Bε(p)

{
Tr F2

D∞
j

− Tr F2
D̃∞

}

= lim
j→∞

1
8π2

∫

Bε(p)

{
Tr F2

D∞
j

− Tr F2
D∞

}
by Lemma 8 ,

= lim
j→∞

1
8π2

∫

Bε(p)

{
Tr F2

D∞
j

− Tr F2
DT

}
+ 1

8π2

∫

Bε(p)

{
Tr F2

DT
− Tr F2

D∞

}
.

Now D∞
j and DT are connections on the same bundle. Hence,

1
8π2

∫

Bε(p)

{
Tr F2

D∞
j

− Tr F2
DT

}

= 1
8π2

∫

∂Bε(p)

Tr
{

aj,T ∧ DT(aj,T)+ 2
3 aj,T ∧ aj,T ∧ aj,T + 2aj,T ∧ FDT

}
.

By Lemma 9, we may assume that aj,T → aT in Cα
loc. and that DT(aj,T) is locally

bounded, uniformly in j, in B2ε(p)− {p}. Letting j → ∞, we deduce that

µ̃an.
p = 1

8π2

∫

Bε(p)

{
Tr F2

DT
− Tr F2

D∞

}

+ 1
8π2

∫

∂Bε(p)

Tr
{

aT ∧ DT(aT)+ 2
3 aT ∧ aT ∧ aT + 2aT ∧ FDT

}
.

By (8) and (9), |µ̃an.
p − µ

alg.
p | < 1/2. Since the multiplicities are integers, they must

coincide. �
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