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Abstract. This paper studies spaces of generalized theta functions for odd orthogonal
bundles with nontrivial Stiefel-Whitney class and the associated space of twisted spin
bundles. In particular, we prove a Verlinde type formula and a dimension equality that
was conjectured by Oxbury-Wilson. Modifying Hitchin’s argument, we also show that the
bundle of generalized theta functions for twisted spin bundles over the moduli space of
curves admits a flat projective connection. We furthermore address the issue of strange
duality for odd orthogonal bundles, and we demonstrate that the naive conjecture fails in
general. A consequence of this is the reducibility of the projective representations of spin
mapping class groups arising from the Hitchin connection for these moduli spaces. Finally,
we answer a question of Nakanishi-Tsuchiya about rank-level duality for conformal blocks
on the pointed projective line with spin weights.

1. Introduction

Let C be a smooth projective curve of genus g ≥ 2, and choose integers n ≥ 2, ` ≥ 1. Let
MSL(n) denote the coarse moduli space of semistable vector bundles of rank n and trivial
determinant on C, and let L be the ample generator of the Picard group Pic(MSL(n)) ' Z.
Similarly, let MGL(`) denote the moduli space of semistable vector bundles of rank ` and
degree `(g − 1), and consider the locus Θ` ⊂ MGL(`) of points [E] ∈ MGL(`) such that

H0(C,E) 6= 0. It turns out that Θ` is a Cartier divisor in MGL(`), and we use the same
notation for the associated line bundle. Tensor product defines a map:

s : MSL(n) ×MGL(`) −→MGL(n`) ,

and by the “see-saw” principle it is easy to see that s∗Θn` ' L⊗` � Θ⊗n` . The pull-back of
the defining section of Θn` gives a map, well-defined up to a multiplicative constant,

sn` : H0(MSL(n),L
⊗`)∗ −→ H0(MGL(`),Θ

⊗n
` ) ,

known as the strange duality map. It was conjectured to be an isomorphism (cf. Donagi-Tu
[22] and Beauville [9]), and this conjecture was confirmed independently by Belkale [15] and
by Marian-Oprea [47] (cf. Beauville-Narasimhan-Ramanan [14] for ` = 1). The analogous
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strange duality for symplectic bundles was conjectured by Beauville [11] and proven by Abe
[1] (see also result of Belkale [17]). Strange duality for maximal subgroups of E8 has been
considered independently by Boysal-Pauly [19] and by the first author [19, 51]. However,
a conjectural description of strange duality for other dual pairs, e.g. orthogonal bundles,
has as yet not been formulated in the literature.

An approach to strange duality questions, and in fact the original motivation, comes
from the study of the space V∗~λ

(X, g, `) of conformal blocks (cf. Tsuchiya-Ueno-Yamada

[65] and Definition 2.2 below). These are dual spaces to quotients of tensor products of
level ` integrable highest weight modules of the affine Kac-Moody algebra ĝ associated

to a simple Lie algebra g, and with weights ~λ = (λ1, . . . , λn) attached to the curve X =
(C, p1, . . . , pn) with marked points pi. Isomorphisms between spaces of conformal blocks
can sometimes arise from conformal embeddings of affine Lie algebras (cf. Kac–Wakimoto
[38] and Definition 2.1 below), and this phenomenon is known in the conformal field theory
literature as rank-level duality (cf. Naculich–Schnitzer [53] and Nakanishi–Tsuchiya [54]).
By a factorization or sewing procedure (see Sections 2.3 and 9.7), one can often reduce
strange duality questions for curves of positive genus to rank-level duality on P1 with
marked points. Indeed, all known strange dualities can be proved using this approach. In
[50], the first author proved a rank-level duality for g = so(2r + 1) conformal blocks on
P1 with marked points and weights associated to representations of the group SO(2r + 1).
One would naturally like to investigate whether the result can be generalized to curves of
positive genus to give a strange duality for orthogonal bundles. This question forms the
starting point of the present work.

As we shall see below, any generalization of rank-level or strange dualities for orthogonal
groups is complicated by the existence of spin representations (in the former case) and the
fundamental group (in the latter). Spin weights cause difficulty in the branching rules
for highest weight representations under embeddings. This issue was already raised in
the discussion in [54], and for this reason only vector representations were considered in
[50]. On the geometric side, since SO(m) is not simply connected the moduli spaces for
orthogonal groups will be disconnected, and any reasonable approach to strange duality
must take into account all components. It was this observation that led to the conjectural
Verlinde type formula of Oxbury-Wilson [56], which is proved below.

In this paper, we discuss these issues for the conformal embeddings of the odd orthogonal
algebras so(2r + 1). The next subsections summarize the results we have obtained.

1.1. Twisted moduli spaces and uniformization. For a complex reductive group G,
let MG denote the moduli stack of principal G-bundles on C. Consider the natural map
Spin(m) × Spin(n) → Spin(mn) induced by tensor product of vector spaces of dimensions
m and n, each endowed with a symmetric nondegenerate bilinear form. This map induces
one between the corresponding moduli stacks MSpin(m) ×MSpin(n) →MSpin(mn). If we pull

back any section of H0(MSpin(mn),P), we get a map

H0(MSpin(m),P
⊗n
1 )∗ −→ H0(MSpin(n),P

⊗m
2 ) ,
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where P, P1 and P2 are the ample generators of the respective Picard groups of the moduli
stacks, which are given by Pfaffian line bundles. By the Verlinde formula (cf. [10, Cor.
9.8]), it is easy to find m and n for which

(1.1) dimCH
0(MSpin(m),P

⊗n
1 ) 6= dimCH

0(MSpin(n),P
⊗m
2 ) ,

and hence there can be no obvious strange duality for spin bundles. Nevertheless, following
suggestions of Oxbury-Wilson [56], we can attempt to rectify this situation by considering
orthogonal bundles that do not lift to spin.

Fix p ∈ C, and let M−Spin(m), m ≥ 5, denote the moduli stack of special Clifford bundles

whose spinor norm is OC(p) (cf. Section 3 and the discussion around eq. (3.2)). We refer to
these objects as twisted spin bundles: their associated orthogonal bundles have nontrivial
Stiefel-Whitney class. A uniformization theorem for these moduli stacks was proved in
Beauville-Laszlo-Sorger [13], and there is again a Pfaffian line bundle P→M−Spin(m) which

generates the Picard group. Now if G is simply connected and L→MG is the ample gen-
erator of Pic(MG), then H0(MG,L

⊗`) is canonically identified with the space of conformal
blocks V∗ω0

(X, g, `). We prove the analog of this result in the twisted case.

Theorem 1.1. The space H0(M−Spin(m),P
⊗`) is naturally isomorphic to the space of con-

formal blocks V∗`ω1
(X, so(m), `).

In particular, from the Verlinde formula and results in [50], we obtain an expression for
the dimension of H0(M−Spin(m),P

⊗`) that was first conjectured to hold in [56] (see Theorem

4.9 below).
Next, we observe the following. Let

(1.2) M2r+1 = MSpin(2r+1) tM−Spin(2r+1) ,

and denote also by P the bundle which restricts to the Pfaffian on each component. Then
we prove the following equality.

Corollary 1.2. dimCH
0(M2r+1,P

⊗(2s+1)) = dimCH
0(M2s+1,P

⊗(2r+1)).

1.2. Hecke transformations. Let M
par
Spin(m) be the moduli stack of pairs (S,P), where

S → C is a Spin(m) bundle and P is a maximal parabolic subgroup of the fiber Sp preserving
an isotropic line in the associated orthogonal bundle. A theorem of Laszlo-Sorger [45] states
that H0(Mpar

Spin(m),P(`)) is naturally isomorphic to V∗`ω1
(X, so(m), `), for a suitable choice

of line bundle P(`)→M
par
Spin(m). Theorem 1.1 raises the question of whether MSpin(m) and

M−Spin(m) are related by a Hecke type elementary transformation.

Recall that an oriented orthogonal bundle on C is a pair (E, q), where E → C is a vector
bundle with trivial determinant and a nondegenerate quadratic form q : E ⊗ E → OC
with obvious compatibility of trivialization with detE and det q. In [2], T. Abe defines a
transformation yielding a new orthogonal bundle Eι from an orthogonal bundle E equipped
with an isotropic line in the fiber Ep. Below we observe that the bundles Eι and E have
opposite Stiefel-Whitney classes, meaning that the ι-transform switches components of
MSO(m). We then extend the ι-transform to a Hecke type elementary transformation on
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Clifford bundles (see (5.6)). This enables us to give an alternative proof of Theorem 1.1.
The advantage of this identification will be seen in Theorem 1.6 below. The details of this
construction are contained in Section 5.1.

1.3. Hitchin connection. The locally free sheaf of conformal blocks associated to a fam-
ily of smooth projective curves π : C → B and any simple Lie algebra g carries a flat
projective connection known as the TUY connection (or the KZ connection in genus zero).
The identification in Theorem 1.1 motivates a geometric description of this connection for
twisted spin bundles. Indeed, Hitchin [34] introduced a flat projective connection on spaces
of generalized theta functions as the underlying curve C varies over the Teichmüller space
of Riemann surfaces (see also [7, 66, 3]). In [44], Laszlo showed that with this identifica-
tion, and over the pointed Teichmüller space Tg,1, the Hitchin connection coincides with
the TUY connection on the space of conformal blocks. This statement also generalizes to
the case of twisted spin bundles. More precisely, we prove the following.

Theorem 1.3. As the pointed curve (C, p) varies in Tg,1, the vector bundle with fiber

H0(M−Spin(m),P
⊗`) is endowed with a flat projective connection which we also call the

Hitchin connection. Under the identification of H0(M−Spin(m),P
⊗`) with V∗`ω1

(X, g, `), the

Hitchin connection coincides with the TUY connection.

LetM−,regSpin(m) denote the moduli space of regularly stable twisted spin bundles (see Section

3.1). Then the Pfaffian line bundle descends to M−,regSpin(m), and

(1.3) H0(M−,regSpin(m),P
⊗`) ' H0(M−Spin(m),P

⊗`) .

We refer the reader to Proposition 4.4 for more details. Now the essential strategy in the
proof of Theorem 1.3 is the same as in [34], but there are two key differences. These are
as follows:

• The connectivity of the fibers of the Hitchin map from the moduli space M θ
G of

G-Higgs bundles to the Hitchin base is an essential ingredient in Hitchin’s proof. In
the untwisted case, the connectivity follows, for example, from a description of the
fibers in terms of spectral data. It seems not to be known if the fiber of the Hitchin
map for twisted Higgs bundles is connected in general. We circumvent this issue
by reducing to the SO(m) moduli space, and then using results of Donagi-Pantev
[21].

• The condition H1(M−,regSpin(m),P
⊗`) = {0}, is sufficient to show that the symbol map

of the projective heat operator is injective. In the untwisted case, one can again use
Higgs bundles to establish this vanishing [34, 44]. For the same reason as above,
this argument is unavailable in the twisted case. However, Kumar-Narasimhan
proved such vanishing results directly without using Higgs bundles. In the present
paper, we generalize the proof in [42] to the twisted setting.

The proof of the second statement in Theorem 1.3 is analogous to that in [44]. We refer
the reader to Section 6 for more details.
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1.4. Level one sections. Since the strange duality map arises by pulling back a level one
section, we study these sections in detail. Let

(1.4) Th(C) := {κ ∈ Picg−1(C) | κ⊗2 = ωC}

denote the set of theta characteristics of C. Furthermore, denote by Th+(C) ⊂ Th(C)
(resp. Th−(C) ⊂ Th(C)) the set of even (resp. odd) theta characteristics, i.e. those for
which h0(C, κ) is even (resp. odd). We shall prove the following analog of a theorem of
Belkale [17] and Pauly-Ramanan [57].

Theorem 1.4. Let sκ denote the canonical (up to scale) section of the Pfaffian line bundle
for a theta characteristic κ (see Definition 3.6). Then the collection {sκ | κ ∈ Th−(C)}
forms a basis of the space of the level one generalized theta functions H0(M−Spin(2r+1),P).

Remark 1.5. In [5], using TQFT methods, Andersen-Masbaum give a “brick decompo-
sition” of the SL(m)-conformal block bundles under the action of the Heisenberg group.
The invariant Pfaffian sections and the decomposition of H0(M−Spin(2r+1),P) (as well as

H0(MSpin(2r+1),P)) into Pfaffian sections should be considered as an analog of brick de-
compositions for these spaces.

By passing to a local étale cover, we can assume the torsor of theta characteristics is
trivialized on C→ B. We show the following.

Theorem 1.6. For each κ ∈ Th−(C), the Pfaffian section sκ ∈ H0(M−Spin(2r+1)) is projec-

tively flat with respect to the Hitchin/TUY connection of Theorem 1.3.

In the untwisted case this result appears in [17]. The proof of Theorem 1.6 uses the fact
that the projective heat operator is invariant under the action of the group of two torsion
points of the the Jacobian. Once the existence of the Hitchin connection is established, the
rest of the proof is same as that in [17].

1.5. Rank-level duality for genus zero. For r, s ≥ 2, let d = 2rs+ r+ s (this notation
will be used throughout the paper). The embedding

(1.5) so(2r + 1)⊕ so(2s+ 1) −→ so(2d+ 1)

extends to an embedding of affine Lie algebras. For integrable weights ~λ, ~µ, and ~Λ of
ŝo(2r+ 1) at level 2s+ 1, ŝo(2s+ 1) at level 2r+ 1, and ŝo(2d+ 1) at level 1, respectively,

suppose that the pair (~λ, ~µ) appears in the affine branching of ~Λ. This in turn gives rise
to maps on dual conformal blocks

V~λ(X, so(2r + 1), 2s+ 1))→ V∗~µ(X, so(2s+ 1), 2r + 1)⊗ V~Λ(X, so(2d+ 1), 1) .

We note that in case ~Λ = (ωε1 , . . . , ωεn−2 , ωd, ωd), with εi ∈ {0, 1}, then

dimC V~Λ(X, so(2d+ 1), 1) = 1 ,

and we have a rank-level duality map,

(1.6) V~λ(X, so(2r + 1), 2s+ 1) −→ V∗~µ(X, so(2s+ 1), 2r + 1) ,
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which is well-defined up to a nonzero multiplicative constant. Recall that ŝo(2r + 1) has
a diagram automorphism σ which interchanges the nodes of the extended Dynkin diagram
associated to the weights ω0 and ω1 (cf. (8.1)). In Section 9.1, we prove the following.

Theorem 1.7. Let C = P1. Let ~λ = (λ1, . . . , λn−2, λn−1, λn), where λi is the highest weight
of a representation of the group SO(2r+ 1) for i ≤ n− 3, λn−1, λn are spin representations

that are not fixed by the diagram automorphism σ, and ~µ, ~Λ are as above. Then the rank-
level duality map defined in (1.6) is injective.

This answers a question of Nakanishi and Tsuchiya (cf. [54, Sec. 6]). It is important to
note that the dimensions of the left and right hand sides of (1.6) are not equal in general:
some explicit examples are given in Section 9.2 below. This fact is in stark contrast with
the case of sl(m) conformal blocks and demonstrates the subtlety of rank-level duality.

Remark 1.8. If λ ∈ P2s+1(so(2r+ 1)), µ ∈ P2r+1(so(2s+ 1)), are such that σ(λ) 6= λ and
(λ, µ) appears in the branching of ωd, then σ(µ) = µ.

Let Xn = {(z1, . . . , zn) | zi ∈ P1 , zi 6= zj} denote the configuration space of points on
P1, and let Pn = π1(Xn). The conformal blocks form a vector bundle over Xn with a flat
connection ∇KZ , and one can define the rank-level duality map as a map of vector bundles
over Xn. Moreover, the rank-level duality map commutes with ∇KZ .

As a corollary of Theorem 1.7, by factorizing two Spin weights at a time, we also obtain
a result asserted in [54].

Corollary 1.9. Let C = P1 and m be a positive integer. The representations of the
pure braid group Pn associated to the conformal block bundles V~λ(X, so(2r + 1), 2s + 1)

with spin weights are reducible in general. More precisely, this occurs if ~λ is of the
form (λ1, . . . , λn−2m, µ1, . . . , µ2m), where λ1, . . . , λn−2 are SO-weights and µ1, . . . , µ2m are
weights of Spin(2r + 1) that are fixed by the Dynkin automorphism σ.

1.6. Strange duality maps in higher genus. Let M2r+1 be as in (1.2). The equality of
dimensions in Corollary 1.2 suggests the possibility of a strange duality isomorphism. To
make this precise, note that we have the following map:

(1.7) SD : H0(M2r+1,P
⊗(2s+1))∗ −→ H0(M2s+1,P

⊗(2r+1))⊗H0(M2d+1,P)∗ .

Since dimCH
0(M2r+1,P) = 22g, and we know that the Pfaffian sections {sκ | κ ∈ Th(C)}

form a basis (Theorem 1.4, [17], [57]), it is natural to consider s∆ =
∑
κ sκ, and investigate

whether the induced strange duality map is an isomorphism. Denote this map by

(1.8) s∗∆ : H0(M2r+1,P
⊗(2s+1))∗ −→ H0(M2s+1,P

⊗(2r+1)) .

It is easy to arrange that the map (1.7) be equivariant with respect to the action of J2(C)
permuting the theta characteristics. By taking invariants, for every κ ∈ Th(C) we get a
map induced by the Pfaffian section sκ:

(1.9) s∗κ : H0(MSO(2r+1),P
⊗(2s+1)
κ )∗ −→ H0(MSO(2s+1),P

⊗(2r+1)
κ ) .

A simple argument shows that s∗κ is an isomorphism for every κ if and only if the map
s∗∆ is an isomorphism. We refer the reader to Section 10.2 for more details. However,
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the fact, mentioned above, that the rank-level duality map for spin weights fails to be an
isomorphism may be taken as an indication that the strange duality map (1.8) might not
be an isomorphism either. We shall prove that this is indeed the case.

Theorem 1.10. The strange duality map (1.8) (resp. (1.9)) is not an isomorphism (resp.
is not an isomorphism for every κ).

The analysis passes through the sewing construction and detailed calculations involving
the rank-level maps discussed above. Since the Pfaffian sections are projectively flat, there
is a consequence for the holonomy representations of spin mapping class groups.

Corollary 1.11. For some theta characteristic κ and any r, s ≥ 2, the Hitchin connection
in Theorem 1.3 has reducible holonomy representation.

Remark 1.12. The holonomy representations of the Hitchin connection for MSpin(2r+1)

and M−Spin(2r+1) are easily seen to be reducible by noting the difference of dimensions of the

Verlinde spaces for Spin(2r + 1) and Spin(2s + 1) (cf. (1.1)). However, for the SO moduli
spaces and powers of the Pfaffian line bundle there is no known Verlinde type formula.
Hence, simple arguments based on dimension do not work. Questions about irreducibility
of mapping class group representations for SL(n) have been considered in [4].

1.7. Acknowledgments. The authors are grateful to P. Belkale, I. Biswas, P. Brosnan
and T. Pantev for useful discussions and suggestions. Additional thanks to J. Andersen, S.
Bradlow, J. Martens, and L. Schaposnik for their valuable input on aspects of this work.
The referee made useful suggestions for improvements to the exposition and is gratefully
acknowledged.

2. Conformal blocks and basic properties

Here we recall some definitions from [65]. Let g be a simple complex Lie algebra with
Cartan subalgebra h. Let ∆ = ∆+ t∆− be a positive/negative decomposition of the set
of roots, and g = h ⊕∑α∈∆ gα, the decomposition into root spaces gα. Let ( , ) denote
the Cartan-Killing form on g, normalized so that (θ, θ) = 2 for a longest root θ. We often
identify h with h∗ using ( , ).

2.1. Affine Lie algebras. The affine Lie algebra ĝ is defined as a central extension of the
loop algebra g ⊗ C ((ξ)). As a vector space ĝ := g ⊗ C ((ξ)) ⊕ C · c, where c is central, and
the Lie bracket is determined by

[X ⊗ f(ξ), Y ⊗ g(ξ)] = [X,Y ]⊗ f(ξ)g(ξ) + (X,Y ) Resξ=0(gdf) · c ,
where X,Y ∈ g and f(ξ), g(ξ) ∈ C ((ξ)). Set X(n) = X ⊗ ξn and X = X(0) for any X ∈ g
and n ∈ Z.

The theory of highest weight integrable irreducible modules for ĝ runs parallel to that of
finite dimensional irreducible modules for g. Let us briefly recall the details for complete-
ness. The finite dimensional irreducible g-modules are parametrized by the set of dominant
integral weights P+(g) ⊂ h∗. For each λ ∈ P+(g), let Vλ denote the irreducible g-module
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with highest weight λ. Fix a positive integer `, called the level. The set of dominant
integral weights of level ` is defined by:

P`(g) := {λ ∈ P+(g) | (λ, θ) ≤ `} .
For each λ ∈ P`(g), there is a unique irreducible integrable highest weight ĝ-module Hλ(g, `)
which satisfies the following properties:

(1) Hλ(g, `) is generated by Vλ over ĝ (cf. [38]);
(2) Hλ(g, `) are infinite dimensional;
(3) Vλ ⊂ Hλ(g, `);
(4) The central element c of ĝ acts by the scalar `.

When there are implicitly understood, we sometimes omit the notation g or ` from Hλ(g, `).
We will also need the following quantity. For any λ ∈ P`(g), define the trace anomaly

(2.1) ∆λ(g, `) :=
(λ, λ+ 2ρ)

2(g∨ + `)
,

where ρ is the half sum of positive roots, and g∨ is the dual Coxeter number of g.

Let “L(g) denote the untwisted affine Kac-Moody Lie algebra of g (see [36, Sec. 7.2]).

Explicitly, it can be defined as “Lg = ĝ ⊕ Cd, where d is a derivation that commutes with

c and acts on g ⊗ C((ξ)) by the formula d = ξ
d

dξ
. Clearly, ĝ is a Lie subalgebra of “Lg.

Let Λ0,Λ1, . . . ,Λm (resp. ω1, . . . , ωm) denote the affine fundamental weights of “Lg (resp.
g), where m = rank g. We observe the following:

• Λi = ωi + a∨i Λ0 for 1 ≤ i ≤ m, where a∨i are the dual Coxeter labels ([36]).

• Any λ ∈ P`(g) corresponds to the weight λ+ `Λ0 of “Lg.

• Any highest weight integrable irreducible representation of “Lg is also irreducible as
ĝ-module.
• Λ0 restricted to the Cartan subalgebra of ĝ is zero.

Since we are working with ĝ in this paper, we will denote by ωi the fundamental weight for

both g and “Lg. For uniformity of notation, we will denote by ω0-the zero-th fundamental

weight Λ0 of “Lg.

2.2. Conformal embeddings. Let φ : s → g an embedding of simple Lie algebras, and
let ( , )s and ( , )g be the Cartan-Killing forms, normalized as above. Then the Dynkin
index of φ is the unique integer dφ satisfying (φ(x), φ(y))g = dφ · (x, y)s, for all x, y ∈ s.
More generally, when s = g1 ⊕ g2, gi simple, we define the Dynkin multi-index of φ =
φ1 ⊕ φ2 : g1 ⊕ g2 → g to be dφ = (dφ1 , dφ2).

Definition 2.1. Let φ = (φ1, φ2) : s = g1 ⊕ g2 → g be an embedding of Lie algebras with
Dynkin multi-index dφ = (dφ1 , dφ2). Then φ is said to be a conformal embedding if

dφ1 dim g1

g∨1 + dφ1
+
dφ2 dim g2

g∨2 + dφ2
=

dim g

g∨ + 1
,

where g∨1 , g∨2 , and g∨ are the dual Coxeter numbers of g1, g2, and g, respectively.
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Many familiar and important embeddings are conformal: (1.5) is one family of such
examples. For a complete list, see [8]. For the purposes of this paper, the key property of
conformal embeddings that we need is the following: an embedding φ : s = g1 ⊕ g2 → g is
conformal if and only if any irreducible ĝ-module HΛ(g, 1), Λ ∈ P1(g), decomposes into a
finite sum of irreducible ŝ-modules of the form Hλ1(g1, `1)⊗Hλ2(g2, `2), where λi ∈ P`i(gi),
i = 1, 2, and (`1, `2) = dφ, the Dynkin multi-index. See [38].

2.3. Conformal blocks. Let C be a smooth projective curve with marked points ~p =
(p1, . . . , pn) such that (C, ~p) satisfies the Deligne-Mumford stability conditions. We fur-
thermore assume a choice coordinates and formal neighborhoods around the pi, which

give isomorphisms ÔC,Pi
∼−−→ C [[ξi]]. We will use the notation X = (C; ~p) to denote this

data. The current algebra is defined to be g(X) := g⊗H0(C,OC(∗(p1, . . . , pn))). By local
expansion of functions using the chosen coordinates ξi, we get an embedding:

g(X) ↪→ ĝn :=
n⊕
i=1

g⊗C C ((ξi))⊕ C · c .

Consider an n-tuple of weights ~λ = (λ1, . . . , λn) ∈ Pn` (g), and set

H~λ
(g, `) = Hλ1(g, `)⊗ · · · ⊗Hλn(g, `) .

The algebra ĝn (and hence also the current algebra g(X)) acts on H~λ
(g, `) componentwise

using the embedding above.

Definition 2.2. The space of conformal blocks is

V∗~λ(X, g, `) := HomC(H~λ
(g, `)/g(X)H~λ

(g, `),C) .

The space of dual conformal blocks is V~λ(X, g, `) = H~λ
(g, `)/g(X)H~λ

(g, `) .

Conformal blocks are finite dimensional vector spaces, and their dimensions are given by
the Verlinde formula [26, 63, 65]. We now discuss some important properties of the spaces
of conformal blocks.

• (Flat projective connection) Consider a family

F = (π : C→ B;σ1, . . . , σn; ξ1, . . . , ξn)

of nodal curves on a base B with sections σi and formal coordinates ξi. In [65], a
locally free sheaf V∗~λ(F, g, `) known as the sheaf of conformal blocks is constructed

over the base B. Moreover, if F is a family of smooth projective curves, then the
sheaf V∗~λ(F, g, `) carries a flat projective connection known as the TUY connection.

We refer the reader to [65] for more details. In genus zero, the TUY connection is
a flat connection and is also known as KZ connection.
• (Propagation of vacua) Let C be any curve with n-marked points satisfying

the Deligne-Mumford stability conditions and C be the same curve with n + 1
marked points. Assume that the weights attached to the n marked points are
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~λ = (λ1, . . . , λn) and we associate the vacuum representation (Hω0) at the (n+ 1)-
st point. Then there is a canonical isomorphism V~λ(X, g, `) ' V~λ∪ω0

(X′, g, `), where

X (resp. X′) denote the data associated to the n (resp. n+ 1) pointed curve C.
• (Gauge symmetry) Let f ∈ H0(C,OC(∗(p1, . . . , pn))) and 〈Ψ |∈ V~λ(X, g, `), then
〈Ψ | (X ⊗ f) = 0. More precisely, for any | φ1 ⊗ · · · ⊗ φn〉 ∈ H~λ

(g, `),

n∑
i=1

〈Ψ | φ1 ⊗ · · · ⊗ (X ⊗ f(ξi))φi ⊗ · · · ⊗ φn〉 = 0 .

Let X → SpecC [[t]] be a family of curves of genus g with n marked points with chosen
coordinates such that the special fiber X0 is a curve X0 over C with exactly one node, and

the generic fiber Xt is a smooth curve. Let ‹X0 be the normalization of X0. For λ ∈ P`(g),
the following isomorphism is constructed in [65]:

⊕ιλ :
⊕

λ∈P`(g)

V∗~λ,λ,λ†(
‹X0, g, `)→ V∗~λ(X0, g, `) ,

where ‹X0 is the data associated to the (n+ 2) points of the smooth pointed curve ‹X0 with
chosen coordinates and λ† is the highest weight of the contragredient representation of Vλ.
This is commonly referred to as factorization of conformal blocks.

In the same paper [65], a sheaf theoretic version of the above isomorphism was also
constructed which is commonly referred to as the sewing construction. This provides for

each λ ∈ P`(g), a map of C [[t]]-modules: sλ(t) : V∗~λ,λ,λ†(
‹X0, g, `)⊗C [[t]]→ V∗~λ

(X, g, `). Then

sλ(t) extends the map ιλ in families such that ⊕λ∈P`(g)sλ(t), is an isomorphism of locally
free sheaves over SpecC[[t]]. We refer the reader to [50, 65] for exact details.

3. Twisted moduli stacks

3.1. Uniformization. In this section we recall the construction of the twisted moduli
stacks for spin bundles as in [13] (see also [55, 56]). First, let us fix some notation.

Definition 3.1. Let G be a connected complex reductive Lie group. Then

(1) MG := the moduli stack of G-bundles on C;
(2) MG := the Ramanathan coarse moduli space of S-equivalence classes of semistable

G-bundles on C;
(3) a G-bundle is regularly stable if it is stable and its automorphism group is equal to

the center Z(G). We denote by M reg
G ⊂ MG the moduli space of regularly stable

bundles.

Recall the exact sequence 1 → Z/2 → Spin(m) → SO(m) → 1. Identify Z/2 with the
subgroup {±1} ⊂ C×, and define the special Clifford group

(3.1) SC(m) := Spin(m)×Z/2 C× .

The spinor norm is the group homomorphism Nm : SC(m) −→ C× , which induces a
morphism of stacks MSC(m) →MC× . We will denote this stack morphism also by Nm.
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Let p be a fixed point of the curve C. Throughout the paper we will denote the punctured
curve by C∗ = C−{p}. Consider bundles OC(dp), where d ∈ Z. Then the preimage by Nm
of the class of [OC(dp)] ∈MC× depends only on the parity of d (cf. [55, Prop. 3.4]). We will
denote by M±SC(m) the inverse images of the Jacobian J(X) and Pic1(C), respectively. Let

M±Spin(m) be the inverse images of the points OC(dp), for d = 0, 1, respectively. Therefore,

while by definition M+
Spin(m) = MSpin(m), the space M−Spin(m) is a “twisted” component that

does not correspond to a stack of G-bundles for any complex reductive G.
The components M±SO(m) of MSO(m) are labeled by δ ∈ π1(SO(m)) ' Z/2 (cf. [13, Prop.

1.3]). The map SC(m) → SO(m), coming from the projection of (3.1) on the first factor,
induces a morphism of stacks

(3.2) p : M±Spin(m) −→M±SO(m) .

Definition 3.2. For G as in Definition 3.1, let

(1) LG := G ((ξ)) be the algebraic loop group of G;
(2) L+G := G [[ξ]] be the group of positive loops;
(3) QG := LG/L+G be the affine Grassmannian;
(4) LCG := G(OC∗) ↪→ LG.

The following result, proved in [13], gives a uniformization for the twisted moduli stacks
and determines their Picard groups. We only state it in the case G = Spin(m).

Proposition 3.3. Let δ ∈ {±1} = π1(SO(m)) and ζ ∈ (LSO(m))δ(C). Then

Mδ
Spin(m) = (ζ−1 · LC(Spin(m)) · ζ)\QSpin(m) ,

where QSpin(m) is the affine Grassmannian of Spin(m). The torsion subgroup of Pic(M±Spin(m))

is trivial, and in fact, Pic(M±Spin(m)) ' Z.

As we have done with stacks, we may also define the coarse moduli spaces M−SC(m) and

M−Spin(m) of semistable twisted bundles on C.

3.2. Pfaffian divisors. The set Th(C) of theta characteristics forms a torsor for the 2-
torsion points J2(C) of the Jacobian of C. Note the cardinalities [52, Sec. 4]: |J2(C)| =
|Th(C)| = 22g, |Th±(C)| = 2g−1(2g ± 1). Recall from the introduction that by an oriented
orthogonal bundle on C we mean a pair (E, q) consisting of a bundle E → C with trivial
determinant, and a nondegenerate quadratic form q : E ⊗ E → OC . Then q induces a
nondegenerate quadratic form q̂ : (E ⊗ κ) ⊗ (E ⊗ κ) → ωC . We recall the following from
[45].

Proposition 3.4. Let B be a locally noetherian scheme, π : C × B → B, pr : C ×
B → C, the projections, and (E, q̂) → C × B a vector bundle equipped with an ωC-valued
nondegenerate quadratic form q̂. Then the choice of a theta characteristic κ → C gives a
canonical square root PE,q̂,κ of the determinant of cohomology DE = [DetRπ∗(E⊗ pr∗ κ)]∗.
Moreover, if f : B′ → B is a morphism of locally noetherian schemes, then the Pfaffian
functor commutes with base change, i.e. f∗PE,q̂ = Pf∗E,f∗q̂.
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Next, we recall the definition of the Pfaffian divisor, following [13, 45]. Let (E, q) →
C ×MSO(m) be the universal quadratic bundle. For κ ∈ Th(C), consider the substack
defined by: Θκ := div(Rπ∗(E ⊗ pr∗κ)). It is shown in [45, eq. (7.10)] that Θκ is a divisor
on M+

SO(m) if and only if either m or κ is even. We postpone the proof of the following

proposition to Section 5.3.

Proposition 3.5. The substack Θκ is a divisor on M−SO(m) if and only if both m and κ

are odd.

Definition 3.6. It follows from the above that there is a nonzero section sκ (canonical up
to scale) of Pκ →MSO(2r+1), supported on M+

SO(2r+1) (resp. M−SO(2r+1)) if κ is even (resp.

odd). We call sκ the Pfaffian section.

Recall the projection (3.2). For κ, κ′ ∈ Th(C), the line bundles p∗Pκ, p∗Pκ′ are isomor-
phic. We therefore set P = p∗Pκ, which is well-defined up to this isomorphism. On each
component M±Spin(m), P is the ample generator of Pic(M±Spin(m)) [13].

Let A be the group of principal Z/2-bundles on C, where Z/2 is identified with the kernel

of the map Spin(m)→ SO(m). Then A ' J2(X). Let “A denote the set of characters of A.

Let Y = M−,regSO(m) (the notion of regularly stable extends directly to the twisted setting),

and ‹Y = p−1(Y ). Here p : M−Spin(m) → M−SO(m) is the projection map. By [13, Prop.

13.5], the Galois covering p is étale over M−,regSO(m). Since M−SO(m) − Y has codimension ≥ 2

(see [25, Thm. II.6], [44, Appendix] and recall m ≥ 5), and p is finite and dominant, we

conclude that M−Spin(m) − ‹Y has codimension ≥ 2 as well. The moduli spaces M−SO(m) and

M−Spin(m) can be constructed as GIT quotients of a smooth scheme by a reductive group ([13,

Lemma 7.3]), hence they are normal. Therefore, by normality of the moduli spaces M−SO(m)

and M−Spin(m), we get H0(Y,OY ) = H0(‹Y ,O
Ỹ

) = C. There is a decomposition of sheaves

p∗OỸ = ⊕
χ∈ÂLχ, where as a presheaf Lχ(U) = {s ∈ O

Ỹ
(p−1(U)) | gs = χ(g)s, ∀g ∈ A}.

Proposition 3.7. We have the following properties:

(1) H0(Y, Lχ) =

{
C χ = 1

0 χ 6= 1
;

(2) for any χ, p∗Lχ = O
Ỹ

;

(3) Lχ ⊗ Lχ′ = Lχχ′;
(4) Lχ ' Lχ′ ⇐⇒ χ = χ′.

It is well-known [13] that Y is smooth, and since the map p : ‹Y → Y is Galois and

étale, this implies that ‹Y is also smooth and is contained in M−,regSpin(m). We will also need

the following fact.

Lemma 3.8. π1(‹Y ) = {1}.
Proof. The proof is essentially the same as in Atiyah-Bott [6, Thm. 9.12]. Let K ⊂ SC(m)
be a maximal compact subgroup. Fix a topologically nontrivial smooth principal SC(m)-
bundle P → C, and let PK be a reduction to K. Let A(PK) be the space of connections
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PK . Then A(PK) can be identified with the space of holomorphic structures on P , i.e.
holomorphic principal SC(m)-bundles. Let G(P ) denote the group of SC(m) gauge trans-
formations, and G(P ) the quotient of G(P ) by the constant central gauge transformations
(recall that Z(SC(m)) = C× for m odd, and Z(SC(m)) = C× × Z/2 for m even). By
a standard argument, π0(G(P )) ' H1(C, π1(SC(m))). Since π1(SC(m)) = Z, we con-
clude that π0(G(P )) ' H1(C,Z). From the fibration Z(SC(m)) → G(P ) → G(P ), we find
π0(G(P )) ' H1(C,Z), as well. From [6, Sec. 10], the complement of the stable points
As(PK) ⊂ A(PK) has complex codimension at least 2. As noted by Faltings (see the com-
ment in the proof of part (ii) of Theorem II.6 in [25]), the same proof applies to show that
the set of regularly stable points Areg(PK) ⊂ A(PK) has complex codimension at least 2.
Since A(PK) is smooth and contractible, this implies in particular that Areg(PK) is simply

connected. Note also that G(P ) acts freely on Areg(PK) with quotient M−,regSC(m). It follows

that

(3.3) π1

Ä
M−,regSC(m)

ä
= π1(Areg(PK)/G(P )) ' π0(G(P )) ' H1(C,Z) .

Now consider the fibration:

M−,regSpin(m)
// M−,regSC(m)

Nm

��
Pic1(C)

(3.4)

By the associated exact sequence of fundamental groups,

1 −→ π1

Ä
M−,regSpin(m)

ä
−→ π1

Ä
M−,regSC(m)

ä
−→ π1(Pic1(C)) −→ 1 ,

and (3.3), we see immediately that π1

Ä
M−,regSpin(m)

ä
= {1}. Now both ‹Y and M−,regSpin(m) are

smooth with complement of codimension ≥ 2. Therefore, π1(‹Y ) ' π1

Ä
M−,regSpin(m)

ä
= {1}. �

Proposition 3.9. Given κ ∈ Th(C) and α ∈ J2(C), then Pκ⊗α ⊗ P
⊗(−1)
κ is isomorphic to

a unique Lχ, where χ ∈ “A.

Proof. By the proof of [13, Prop. 5.2], there is an injective homomorphism λ : “A →
Pic(Mδ

SO(m)), and Pκ⊗α⊗P
⊗(−1)
κ equals λ(W (α)), where W is the Weil pairing on J2(C)⊗

J2(C) → µ2 = {1,−1}. Now if α 6= α′, we get λ(W (α)) 6= λ(W (α′)). This proves the
uniqueness. By Lemma 3.8 we get that π1(Y ) is isomorphic to J2 and all torsion line

bundles on Y are of the form Lχ for some χ ∈ “A. We know that Pκ⊗α ⊗ P
⊗(−1)
κ is torsion

and hence Pκ⊗α ⊗ P
⊗(−1)
κ is isomorphic to some Lχ.

�

Using the above, we have the following decomposition of A-modules:

(3.5) H0(‹Y ,P) =
⊕
χ∈Â

H0(Y,Pκ ⊗ Lχ) .

In the next section we will prove the following.
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Proposition 3.10. Suppose m is odd. Then,

(1) dimCH
0(‹Y ,P) = 2g−1(2g − 1);

(2) each H0(Y,Pκ), κ odd, is 1-dimensional and is spanned by the Pfaffian section sκ;

(3) the set {sκ | κ ∈ Th−(C)}, is a basis for H0(‹Y ,P).

This result should be compared with [17, Props. 2.3 and 2.4] in the even case.

4. Uniformization

4.1. Conformal blocks via uniformization. The main result in this section is the iden-
tification of generalized theta functions on MSpin(m) at any level with the space of conformal
blocks. Let V be a countable dimensional complex vector space. We define the tautological
line bundle LV on P(V ) as the Zariski closed subset: LV := {(x, v) ∈ P(V ) × V | v ∈ x}.
The space P(V )×V has a natural ind-scheme structure. We induce a ind-scheme structure
on LV such that LV → P(V )×V is a closed immersion. Hence by projecting onto the first
factor gives an algebraic line bundle LV on P(V ). We denote its dual by L∗V .

For a simply connected complex Lie group G, we denote by QG the affine Grassmannian
associated to G with Lie algebra g. The affine Grassmannian is a ind-projective scheme
[45, 40, 49]. Let ω0 be the affine fundamental weight of affine Kac-Moody algebra associated
to G and for any positive integer ` consider Hω0(g, `) be the corresponding irreducible,
integrable representation with highest weight ω0 at level `. Let v0(`) be a highest weight
vector of Hω0(g, `). The natural map i : QG → P(Hω0(g, `)); g[L+G] → gv0(`) is an
embedding of ind-schemes (see Appendix C in [41] or [40]). For any ` > 0, we define L(`χ)
to be the pull back L∗Hω0 (g,`) under the map i. We can extend the definition to non-negative

integers by taking the dual bundles. By [61, Sec. 2.7], it is easy to see that L`χ = L⊗`χ . The
line bundle Lχ can also be realized in a line bundle associated to a character as follows (see
[45, Lemma 4.1]): Consider the representation Hω0(g, 1) of the affine Lie algebra ĝ. This
representation can be ([26]) integrated to a projective representation of the loop group LG.
We pullback the exact sequence to LG

0 −→ Gm −→ GL(Hω0(g, 1)) −→ PGL(Hω0(g, 1)) −→ 1,

defines a central extension which splits ([45, Lemma 4.9]) over L+G:

0 −→ Gm −→‘LG p−→ LG −→ 1.

Let ’L+G be the inverse image of L+G via the map p, then ’L+G ' LG × Gm. The

projection onto the second factor defines a character χ0 of ’L+G. Then Lχ can be described

([45, Lemma 4.11]) as the line bundle on the QG = ‘LG/’L+G associated to the character
χ−1

0 . We will henceforth refer to Lχ as the line bundle associate to the character χ of the
affine fundamental weight ω0.

We have the following proposition.

Proposition 4.1. Let π : QSpin(m) → M−Spin(m) be the projection from Proposition 3.3,

and χ be the character corresponding to the affine fundamental weight ω0. Then we have:
π∗P = Lχ.
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Proof. Consider the map Spin(m) → SL(m) that comes from the standard embedding.
This induces a map between the affine Grassmannians QSpin(m) → QSL(m). Let L0

χ denote
the pull-back of the determinant of cohomology line bundle on MSL(m) to the affine Grass-

mannian QSL(m). By a result in [43], we know that the pull-back of L0
χ is L2χ, where χ

is the character and 2 is the Dynkin index of the embedding so(m) → sl(m). Now the
pull-back of the determinant of cohomology to QSL(m) is L0

χ. Since the Picard group of

M−Spin(m) is torsion-free, we see that P pulls back to Lχ on QSpin(m). �

Let V be a vector space of dimension 2m (resp. 2m + 1) endowed with a symmetric
nondegenerate bilinear form ( , ). Let e1, . . . , e2m (resp. e2m+1) be a basis of V such that
(ei, e2m+1−j) = δij (resp. (ei, e2m+2−j) = δij . The elements Hi = Ei,i − E2m−i,2m−i (resp.
Hi = Ei,i−E2m+1−i,2m+1−i) span a basis of the Cartan subalgebra of so(2m) (resp. so(2m+
1). The normalized Cartan-Killing form is given by (A,B) = 1

2 Tr(AB). Let Li be the

dual of Hi where Li(Hj) = δij and ωi =
∑i
a=1 La for 1 ≤ i ≤ m − 1 be the first m − 1

fundamental weights of both so(2m) and so(2m+ 1).
For ζ ∈ LSO(m), following [26], we define an automorphism Ad(ζ) of ŝo(m) by the

following formula. Let A(z) be an element of ŝo(m).

(4.1) Ad(ζ)(A(z), s) := (Ad(ζ)A(z), s+ Resz=0
1
2 Tr(ζ−1(dζ/dt)A(z)) .

Let

(4.2) ζ =


z

1
. . .

1
z−1

 ,

regarded as an element of LSO(m).

Lemma 4.2. Let π : ŝo(m)→ End(Hω0(so(m), `)) be an integrable representation of ŝo(m)
and Ad(ζ) : ŝo(m) → ŝo(m) is the automorphism defined by formula 4.1, for ζ as above.
Then the representation π̃ : ŝo(m)→ End(Hω0(so(m), `)) defined by π◦Ad(ζ) is isomorphic
to H`ω1(so(m), `).

Proof. Since Hω0(so(m), `) is irreducible under the representation π, this implies that the
representation π̃ is also irreducible. Let A(z) =

∑
Ai ⊗ zi, then by a direct computation

we can check that

(4.3) Resz=0
1
2 Tr(ζ−1(dζ/dt)A(z)) = ω1(H0) ,

where H0 is the diagonal part of A0. From a direct calculation, we can check that if
Xα is a generator of the root space of α, then Ad(ζ)Xα(n) = Xα(n + ω1(Hα)), where
Hα is the coroot of α. In particular, this shows that positive nilpotent part n̂+ of ŝo(m)
is preserved under the automorphism Ad(ζ). This implies that if v0 ∈ Hω0(so(m), `)
is the highest weight vector for the representation π, then v0 is also the highest weight
vector for the representation π̃. Thus, it remains to determine the weight of the vector v0
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under the representation π̃. By (4.3), we get for H in the Cartan subalgebra of so(m),
π̃(H, s)v0 = `(s+ ω1(H))v0. This completes the proof. �

Theorem 4.3. There is a canonical isomorphism: H0(M−Spin(m),P
⊗`) ' V∗`ω1

(X, so(m), `).

Proof. The essential idea of the proof is the same as in [12, Thm. 9.1]. Let δ be the
generator of π1(SO(m)). It is easy to check that the element ζ defined in (4.2) lies in the
component LSO(m)δ. By Proposition 3.3, we get

M−Spin(m) = (ζ−1LC(Spin(m))ζ)\QSpin(m) .

By Proposition 4.1, the line bundle Lχ has a ζ−1LC(Spin(m))ζ linearization. In particular,

the map A(α)→ ζ−1A(α)ζ extends to the Kac-Moody group ÷LSpin(m). Now it is easy to
check that this map is, on the level of the Lie algebra, given by the following: Ad(ζ−1) ◦ ι,
where ι is the canonical embedding of so(m) into ŝo(m). By [12, Prop. 7.4] and [43], the
space of global sections H0(M−Spin(m),P

⊗`) is canonically isomorphic to the space of linear

forms on Hω0(so(m), `) that vanish on the image ζ−1LC(Spin(m))ζ. By Lemma 4.2, this
is same as the LC(Spin(m))-invariant sections H`ω1(so(m), `). This, by definition, is the
space of conformal blocks V∗`ω1

(X, so(m), `). �

The following proposition compares global section of the line bundles on the moduli
stack to the stack of the corresponding regularly stable moduli space.

Proposition 4.4. Let g ≥ 2, then there is a canonical isomorphism between

H0(M−,regSpin(m),P
⊗`) ' V∗`ω1

(X, so(m), `)

Proof. Applying Theorem 4.3, we are reduced to show that there are canonical identifi-
cations H0(M−,regSpin(m),P

⊗`) ' H0(M−Spin(m),P
⊗`). The codimension of the complement of

the stack M
−,reg
Spin(m) in M−Spin(m) is at least 2 ([25, Theorem II.6]). Hence by Hartog’s theo-

rem H0(M−Spin(m),P
⊗`) ' H0(M−,regSpin(m),P

⊗`). Now we observe that M
−,reg
Spin(m) (respectively

M−,regSpin(m)) has a presentation ([13]) of the form as a quotient stack [R/Γ]( respectively GIT

quotient R/Γ), where R is a smooth scheme and Γ is a reductive group. Applying Propo-

sition 4.1 in [43], we get that H0(M−,regSpin(m),P
⊗`) can be identified with Γ-variant section

of P⊗` on the scheme R. The later is canonically identified with H0(M−,regSpin(m),P
⊗`). This

completes the proof. �

For a genus g curve with marked points X, let us denote: Ng(g, ~λ, `) := dimC V~λ(X, g, `).
We sometimes omit the notation of the Lie algebra when it is clear. In the following,
g = so(2r + 1), and we want to compute Ng(ω1, 1) and Ng(~ωr, 1), where ~ωr is an n-tuple
of ωr’s for n even. Let σ denote the diagram automorphism ω0 ↔ ω1.

Lemma 4.5. Let σ denote the Dynkin diagram automorphism that switches the 0-th node

with the first node of the affine Dynkin diagram. Then Ng(~σ~λ, `) = Ng(~λ, `), where ~σ~λ =
(σ1λ1, . . . , σnλn), σi = either σ or 1, and σ1 · · ·σn = 1.
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Proof. The proof of the above follows from factorization (cf. Section 9.7), the genus 0 [28]
result, and the fact that σ induces a permutation of P`(so(2r + 1)). �

Proposition 4.6. For n > 0, let ~ω
(n)
r denote a 2n-tuple of ωr’s. Then Ng(~ω

(n)
r , 1) =

22g+n−1.

Proof. If g = 0, then the above is a result of N. Fakhruddin [24]. We will prove this using
factorization (cf. Section 9.7) and induction on g. Therefore, suppose that the result holds
for genus g − 1 and all n. Then since the level one weights are precisely, ω0, ω1, and ωr,
and using Lemma 4.5, factorization and induction,

Ng(~ω
(n)
r , 1) = Ng−1(ω0, ω0; ~ω(n)

r , 1) +Ng−1(ω1, ω1; ~ω(n)
r , 1) +Ng−1(ωr, ωr; ~ω

(n)
r , 1)

= 2Ng−1(~ω(n)
r , 1) +Ng−1(~ω(n+1)

r , 1) (By Lemma 4.5)

= 2 · 22(g−1)+n−1 + 22(g−1)+n = 22g+n−1 .

�

Now by factorization and Lemma 4.5 we get, Ng(ω1, 1) = 2Ng−1(ω1, 1)+Ng−1(ωr, ωr, 1).
By induction on g, the expression for Ng−1(ω1, 1), and the above calculation it follows:

Corollary 4.7. Ng(ω1, 1) = 2g−1(2g − 1).

4.1.1. Proof of Proposition 3.10. Combining Theorem 4.3, Proposition 4.4 and Proposition
4.6, along with the decomposition (3.5), we obtain Proposition 3.10. Reformulated in terms
of the stack, we have the following.

Theorem 4.8. For any r ≥ 1, dimCH
0(M−Spin(2r+1),P) = 2g−1(2g − 1) = |Th−(C)|.

Moreover, the Pfaffian sections {sκ | κ ∈ Th−(C)} give a basis.

4.2. Oxbury-Wilson conjecture. Let P be the line bundle which restricts on each com-
ponent of M2r+1 to the ample generator of the Picard group (cf. (1.2)). We now prove a
Verlinde formula for powers of P.

Theorem 4.9. Let

N0
g (so(2r + 1), `) := (4(`+ 2r − 1)r)g−1

∑
µ∈P`(SO(2r+1))

∏
α>0

Ç
2 sinπ

(µ+ ρ, α)

`+ 2r − 1

å2−2g

.

where P`(SO(2r + 1)) denotes the set of level ` weights of so(2r + 1) that exponentiate to
a representation of the group SO(2r + 1). Then

(4.4) dimCH
0(M2r+1,P

⊗`) = 2N0
g (so(2r + 1), `) .

Proof. By Theorem 4.3, H0(M2r+1,P
⊗`) ' V∗ω0

(X, so(2r + 1), `) ⊕ V∗`ω1
(X, so(2r + 1), `).

Now the Verlinde formula tells us the following:

dimC(V∗ω0
(X, so(2r + 1), `)) =

(4(`+ 2r − 1)r)g−1
¶ ∑
µ∈P`(SO(2r+1))

∏
α>0

Ä
2 sinπ

(µ+ ρ, α)

`+ 2r − 1

ä2−2g
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+
∑

µ∈P`(SO(2r+1))c

∏
α>0

Ä
2 sinπ

(µ+ ρ, α)

`+ 2r − 1

ä2−2g©
,

where P`(SO(2r + 1))c := P`(so(2r + 1)) \ P`(SO(2r + 1)) is the set of level ` weights that
do not exponentiate to representations of SO(2r + 1). Similarly

dimC(V∗`ω1
(X, so(2r + 1), `)) = (4(`+ 2r − 1)r)g−1 ×

¶
∑

µ∈P`(SO(2r+1))

TrV`ω1 (exp 2πi
µ+ ρ

`+ 2r − 1
)
∏
α>0

Ä
2 sinπ

(µ+ ρ, α)

`+ 2r − 1

ä2−2g

+
∑

µ∈P`(SO(2r+1))c

TrV`ω1 (exp 2πi
µ+ ρ

`+ 2r − 1
)
∏
α>0

Ä
2 sinπ

(µ+ ρ, α)

`+ 2r − 1

ä2−2g©
.

It follows from [50, Lemmas 10.6 and 10.7] that

TrV`ω1

Å
exp

Å
2π
√
−1

µ+ ρ

`+ 2r − 1

ãã
=

{
1 µ ∈ P`(SO2r+1)

−1 otherwise.

Using this, the proof follows by taking the sum of the expressions above. �

Remark 4.10. The formula (4.4) was conjectured in Oxbury-Wilson [56, Conj. 5.2]. The-
orem 4.9 resolves this conjecture.

For any r, s ≥ 2, the following result is proved in [56].

Lemma 4.11. N0
g (so(2r + 1), 2s+ 1) = N0

g (so(2s+ 1), 2r + 1).

Proof of Corollary 1.2. Combine Lemma 4.11 and Theorem 4.9. �

Remark 4.12. The equality of dimensions in Corollary 1.2 also holds if either r, s = 1. In
this case, SC(3) = GL(2), and so the moduli stack M3 is the disjoint union of the moduli
stacks of rank 2 vector bundles with fixed trivial determinant and determinant = OC(p).
The Verlinde formula for these spaces is due to Thaddeus [64]. Also in this case, the
equality of dimensions in Lemma 4.11 is mentioned in [56, Prop. 4.16].

5. Hecke transformations for orthogonal bundles

5.1. The ι-transform on orthogonal bundles. In this section we review a Hecke type
elementary transformation called the ι-transform introduced by T. Abe [2]. This exchanges
one orthogonal bundle with a choice of isotropic line at a point for another. As we shall
see, this operation flips the Stiefel-Whitney class.

Let B be a scheme, X := C × B, and π : X → B the projection. Let σ : B → X be a
constant section of π. A parabolic structure on an orthogonal bundle (E, q) → X at σ is
a choice of isotropic line subbundle of σ∗E. If we let OG(σ∗E) → B denote the bundle of
Grassmannians of isotropic lines of σ∗E, and τ → OG(σ∗E) the tautological line bundle,
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then the data of an orthogonal bundle with parabolic structure on X may be summarized
in the following diagram:

(E, q) // X

π

��

τ // OG(σ∗E)

��
σ∗E // B

σ

\\

s∗τ ⊂ σ∗E // B

s

dd

Let τ⊥ → OG(σ∗E) be the bundle orthogonal to τ in the quadratic form q, and let τ1 =

σ∗E/s∗τ⊥ be the quotient line bundle on B. Then we may define the locally free sheaf E[

by the elementary transformation (cf. [48]),

(5.1) 0 −→ E[ → E→ σ∗(τ1) −→ 0 .

Next, let E] = (E[)∗. Since the normal bundle to σ(B) is trivial and the orthogonal
structure gives an isomorphism E∗ ' E, dualizing (5.1) gives

(5.2) 0 −→ E→ E] → σ∗(τ
∗
1 ) −→ 0 .

Now q induces maps

(5.3) q : E] ⊗ E] −→ OX(σ(B)) , q : E[ ⊗ E] −→ OX .

Consider the subsheaf E[ ↪→ E] coming from (5.2). Then E]/E[ is a torsion sheaf supported
on σ(B), and along σ(B) it is locally free of rank 2 with trivial determinant and an

orthogonal structure. Since E/E[ is isotropic, E]/E[ ' E/E[ ⊕ σ∗(τ∗1 ). Finally, we define

Eι ⊂ E] to be the kernel of the map E] → E/E[. Equivalently, there is an exact sequence

(5.4) 0 −→ E[ → Eι → σ∗(τ
∗
1 ) −→ 0 .

Then Eι inherits an orthogonal structure qι from (5.3). Moreover, the exact sequence (5.4)
determines an isotropic line sι ⊂ σ∗(Eι). Finally, from (5.1) and (5.4), the trivialization of
detE induces one for detEι.

Definition 5.1. The ι-transform is the map: (E, q, s) 7→ (Eι, qι, sι).

Remark 5.2. It is clear that the ι-transform is functorial with respect to base change.
Moreover T. Abe [2] has shown that the ι-transform is an involution.

5.2. The ι-transform on Clifford bundles. We now show that the ι-transform sends a
bundle in one component of MSO(m) to the other one. Fix a point p ∈ C, and recall that

C∗ = C −{p}. Let M
par
Spin(m) denote the moduli stack of pairs (S,P), where S is a Spin(m)-

bundle on C and P is a maximal parabolic subgroup of the fiber σ∗S preserving an isotropic
line s in the fiber of the associated orthogonal bundle at p. Similarly, let M

par
SO(m) be the

moduli stack of tuples (E, q, s), where (E, q) is a rank m orthogonal bundle, and s is an
isotropic line in the fiber Ep. We then have a map M

par
Spin(m) → M

par
SO(m), (S,P) 7→ (E, q, s).

Forgetting the parabolic structure gives a morphism M
par
Spin(m) →MSpin(m) →M+

SO(m).

We wish to define a morphism M
par
Spin(m) → M−Spin(m) → M−SO(m). Associated to (E, q, s)

we obtain a new orthogonal bundle with isotropic line (Eι, qι, sι) defined in the previous
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section. By Remark 5.2, this gives an involution of stacks: ι : Mpar
SO(m) →M

par
SO(m). This can

be described explicitly in terms of transition functions as follows. First, since the result we
wish to prove is topological it suffices to work locally in the analytic topology, and in fact at
a closed point of B. We therefore let S be a spin bundle and (E, q) the associated orthogonal
bundle; S = Spin(E, q). Let ∆ ⊂ C be a disk centered at p, and σ : ∆→ S a section. This
gives a trivialization of S and a local frame e1, . . . , em for E on ∆ with respect to which
the quadratic structure is, say, of the form qij = δi+j−1,m. Similarly, we may choose a
section of S|C∗ . Set ∆∗ = C∗ ∩∆. Let ϕ̂ : ∆∗ → Spin(E, q) denote the transition function
gluing the bundles S|∆ and S|C∗ , and let ϕ : ∆∗ → SO((E, q)|∆∗) be the quotient transition
function for (E, q). The transformed bundle Eι (cf. Section 5.1) is defined by modifying ϕ
via ζ : ∆∗ → SO((E, q)|∆∗), where ζ is as in (4.2). Write z = exp(2πiξ). Then there is a

well-defined lift ζ̂ : ∆∗ → SC((E, q)|∆∗), given by

(5.5) ζ̂(z) = exp(πiξ) exp ((πiξ/2)(e1em − eme1)) .

One checks that ζ̂ is well-defined under ξ 7→ ξ + 1, and the projection of ζ̂ under the map
SC(E, q)→ SO(E, q) recovers ζ. Gluing the trivial SC-bundles over ∆ and C∗ via ϕ̂(z)ζ̂(z),
we define a new Clifford bundle Sι. The associated orthogonal bundle (with transition
function ϕ(z)ζ(z)) coincides with Eι. With this understood, the main observation is the
following.

Proposition 5.3. The ι-transform switches the Stiefel-Whitney class, i.e. if E ∈ M+
SO(m)

then Eι ∈M−SO(m), and vice-versa.

Proof. It suffices to check the spinor norm of Sι. But from (5.5), Nm(Sι) is a line bundle
with transition function on ∆∗ given by:

Nm(ϕ̂ζ̂) = exp(2πiξ) Nm(ϕ̂(z)) Nm (exp ((πiξ/2)(e1em − eme1))) = z ,

since ϕ̂(z) and exp ((πiξ/2)(e1em − eme1)) ∈ Spin(E, q). Therefore, Nm(Sι) ' OC(p). �

It will be useful to keep in mind the following diagram:

M
par
Spin(m)

pr+

yy

pr−

%%
M+

Spin(m)

��

M−Spin(m)

��
M+

SO(m) M−SO(m)

(5.6)

Here, pr+ is the forgetful map that discards the parabolic structure, and pr− is the ι-
transform described above.



STRANGE DUALITY AND ODD ORTHOGONAL BUNDLES ON CURVES 21

Remark 5.4. As in the case of SO(m) bundles, the ι-transform on SC(m) bundles is
reversible. In particular, the fiber of pr− is a copy of OG, and so it is connected and
projective.

5.3. The ι-transform and the Pfaffian bundle. We first use the ι-transform to prove
the following.

Proof of Proposition 3.5. For an orthogonal bundle, we have (cf. [55, Prop. 4.6]) w2(E) ≡
h0(C,E ⊗ κ) + mh0(C, κ) mod 2. Hence, for E ∈ M−SO(m), if either m or κ are even, then

h0(C,E⊗ κ) is odd. If both m and κ are odd, then by [55, Prop. 4.6], h0(C,E⊗ κ) = 0 for
generic E. On the other hand, choose any theta characteristic κ0 with h0(C, κ0) 6= 0. Write
m = 2r + 1, and let: E0 = (κ0 ⊗ κ−1)⊕r ⊕ OC ⊕ (κ⊗ κ−1

0 )⊕r, with the obvious orthogonal
structure. Then

(5.7) h0(C,E0 ⊗ κ) = (m− 1)h0(C, κ0) + h0(C, κ) ≥ m− 1 ≥ 2 .

Pick an isotropic line of E0 at a point, and perform the elementary transformation in
(5.1). Then by (5.7), h0(C,E[ ⊗ κ) 6= 0, which by (5.4) implies that the ι-transform
E = Eι0 ∈M−SO(m) has h0(C,E⊗ κ) 6= 0. This completes the proof. �

Recall the notation from Section 5.1. Choose κ ∈ Th(C) and denote the pull-back to X

by pr∗ κ. Then we have the next result.

Proposition 5.5. For a family of orthogonal bundles (E, q)→ X, and Eι the ι-transform,

DetRπ∗(E
ι ⊗ pr∗ κ) ' DetRπ∗(E⊗ pr∗1 κ)⊗ (s∗τ)⊗2 .

Proof. First, notice that the quadratic form gives an isomorphism τ1 ' s∗(τ∗). Let κσ =
σ∗ pr∗1 κ. Then using (5.1) and (5.4),

DetRπ∗(E⊗ pr∗1 κ) ' DetRπ∗(E
[ ⊗ pr∗1 κ)⊗ s∗(τ∗)⊗ κσ ,

DetRπ∗(E
ι ⊗ pr∗1 κ) ' DetRπ∗(E

[ ⊗ pr∗1 κ)⊗ s∗τ ⊗ κσ .
The result follows. �

Corollary 5.6. When pulled back to M
par
Spin(m), the Pfaffian bundles on M±Spin(m) for any

theta characteristic κ are related by (pr−)∗Pκ ' (pr+)∗Pκ ⊗ s∗(τ∗).

Proof. From Propositions 3.4 and 5.5, we see that [(pr−)∗Pκ]
⊗2 ' [(pr+)∗Pκ ⊗ s∗(τ∗)]⊗2

.
The result follows from the fact that Pic(Mpar

Spin(m)) is torsion-free (cf. [45, Thm. 1.1]). �

5.4. Geometric version of Theorem 4.3. By Corollary 5.6 and Remark 5.4, we have

H0(M−Spin(m),P
⊗`) = H0(Mpar

Spin(m), (pr−)∗P⊗`) = H0(Mpar
Spin(m), (pr+)∗P⊗` ⊗ s∗(τ∗)⊗`) .

By the Borel-Weil theorem, the highest weight representation V`ω1 of Spin(m) is given by
the global sections of (τ∗)⊗` → OG. It then follows as in [45, Thm. 1.2] or [58, Props.
6.5 and 6.6] that the space of sections of P⊗` → M−Spin(m) is isomorphic to the space of

conformal blocks. This gives an alternative proof of Theorem 4.3.
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6. Hitchin connection for twisted spin bundles

6.1. Higgs bundles. Let M θ
SO(m) denote the coarse quasi-projective moduli space of

semistable SO(m)-Higgs bundles on C, and let M θ,reg
SO(m) ⊂ M θ

SO(m) denote the regularly

stable locus, i.e. pairs (E, θ), θ ∈ H0(C,Ad(E) ⊗ ωC), such that Aut(E, θ) = Z(SO(m)),
where Z(SO(m)) denotes the center of SO(m). We assume in this section that C has genus

g ≥ 2. Then M θ,reg
SO(m) is smooth ([20, Proposition 2.14]), with complement of codimension

≥ 2 ([25, Theorem II.6]). Let

(6.1) B(m) =

{⊕r
i=1H

0(C,ω⊗2r
C ) m = 2r + 1⊕r−1

i=1 H
0(C,ω⊗2r

C )⊕H0(C,ωrC) m = 2r .

The Hitchin map H : M θ
SO(m) → B(m) is a dominant, proper morphism. Away from

the discriminant locus ∆ ⊂ BSO(m), H is a smooth fibration by abelian varieties, and

M θ,ns
SO(m) := M θ

SO(m)

∣∣∣
B(m)−∆

⊂M θ,reg
SO(m) (see [33, 35], and also [21, Lemma 4.2]). There is an

action of C× on M θ
SO(m), and H is equivariant with respect to multiplication on H0(C,ω⊗kC )

with weight k. We will need the following.

Proposition 6.1. Let V → M θ,reg
SO(m) be a flat bundle. If V restricted to a general fiber of

h is trivial, then V is trivial.

The proposition is an immediate consequence of the following.

Lemma 6.2. If A is a general fiber of h, then the inclusion A ↪→ M θ,reg
SO(m) induces a

surjection π1(A)→ π1(M θ,reg
SO(m)).

Proof. Since ∆ is codimension 1, inclusion induces a surjection ı∗ : π1(M θ,ns
SO(m))→ π1(M θ,reg

SO(m)).

Hence, we have the diagram:

π1(A)
a∗ //

%%

π1(M θ,ns
SO(m))

h∗ //

ı∗
��

π1(B(m)−∆) // {1}

π1(M θ,reg
SO(m))

��
{1}

Notice that every element of π1(B(m)−∆) is represented by the boundary of a transverse
disk. More precisely, for γ ∈ π1(B(m)−∆) and D ⊂ C the unit disk, there is an embedding
D ↪→ B(m), D ∩∆ = {0}, and such that ∂D represents γ.

Next, consider the fiber in M θ,reg
SO(m) of h over {0}. Since the image in B(m) of fibers

contained in the critical locus of h lies in a set of codimension 2, we may assume without
loss of generality that there is a regular point x ∈ h−1(0). There are therefore local smooth
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coordinates about x with respect to which h is given by projection. By shrinking the disk

if necessary, it follows that there is a local section σ : D →M θ,reg
SO(m) of h. The image σ(∂D)

is therefore a loop in M θ,ns
SO(m), contractible in M θ,reg

SO(m), that projects to ∂D. We conclude

that for any γ ∈ π1(B(m)−∆) there is β ∈ π1(M θ,ns
SO(m)) such that h∗(β) = γ and ı∗(β) = 1.

The lemma now follows easily. For if α ∈ π1(M θ,reg
SO(m)), then by surjectivity of ι∗ there

is α̃ ∈ π1(M θ,ns
SO(m)) such that ı∗(α̃) = α. By the discussion in the previous paragraph, we

can find β ∈ π1(M θ,ns
SO(m)) such that h∗(β) = h∗(α̃) and ı∗(β) = 1. But then β−1α̃ is in the

kernel of h∗, and so is in the image of a∗, while at the same time it projects by ı∗ to α.
Therefore ı∗ ◦ a∗ is surjective. �

The application of the previous result that we need is the following

Corollary 6.3. Let χ : π1(M reg
SO(m))→ {±1} be a nontrivial character with associated line

bundle Lχ. Then the pullback of Lχ to M θ,reg
SO(m) is nontrivial on generic fibers of the Hitchin

map.

Proof. Let M θ,s
SO(m) be the locus of stable SO(m)-Higgs bundles. By [25, Thm. II.6], the set

M θ,hs
SO(m) consisting of stable Higgs bundles (E, θ) where E is not stable as a principal SO(m)

bundle has codimension at least 2 in M θ,s
SO(m). Clearly, M θ,reg

SO(m)\T
∗M reg

SO(m) is contained

in M θ,hs
SO(m). Moreover by [25, Theorem II.6], the complement of M θ,reg

SO(m) in M θ,s
SO(m) has

codimension at least 4. This implies that the complement of T ∗M reg
SO(m) ⊂ M θ,reg

SO(m) has

positive codimension. Hence, there is a surjection π1(M θ,reg
SO(m)) → π1(M reg

SO(m)). The result

then follows from Proposition 6.1. �

6.2. A vanishing theorem. We use the notation Y = M−,regSO(m) and ‹Y = p−1(Y ) ⊂
M−,regSpin(m) from Section 3.2. The following is a key assumption in the construction of the

Hitchin connection.

Proposition 6.4. With the notation above,

(1) H0(‹Y , T‹Y ) = {0};
(2) H1(‹Y ,O

Ỹ
) = {0}.

Proof. (1) Since ‹Y → Y is étale it suffices to prove the vanishing of

H0(‹Y , T‹Y ) =
⊕

χ∈J2(C)

H0(Y, TY ⊗ Lχ) .

Fix a character χ, and suppose σ ∈ H0(Y, TY ⊗ Lχ) is nonzero. Then pulling back and
contracting with the fibers gives a section f of the flat line bundle (also denoted Lχ)
corresponding to χ on T ∗Y . By Corollary 6.3, it immediately follows that σ vanishes if
χ 6= 1, for since Lχ is torsion it could have no sections on the generic fiber unless it is trivial
there. For χ = 1, the argument is exactly as in [34, p. 373]. Namely, by Hartog’s theorem
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f extends to a function on M θ
SO(m). Since the Hitchin map H : M θ

SO(m) → B(m) is proper

with connected fibers, it follows that f is the pull-back of a function g on B(m). On the
other hand, f is homogeneous of degree 1, whereas the minimal degree of homogeneity for
the action on B(m) is 2 (see the discussion following (6.1)). Since H is equivariant we
conclude that f , and hence also σ, must vanish.

For (2), we first note that provided g ≥ 2, the complement of ‹Y ⊂ M−Spin(m) is of

codimension at least 3. This follows from the fact that the complement of Y in M−SO(m) of

codimension at least 3 if g ≥ 2 and the map p : M−Spin(m) →M−SO(m) is finite and dominant

(see [25, Thm. II.6], [44, Appendix] and recall m ≥ 5). The proof of part (2) now follows
from Scheja’s theorem [60]. To prove the result, it then suffices by Scheja’s theorem to
prove that H1(M−Spin(m),O) = {0}. For this we closely follow the proof in [42, Thm. 2.8].

First, observe that by [13, Lemma 7.3] (see also [59]) the moduli space M−Spin(m) is a good

quotient of a projective scheme R by a reductive group Γ. From [18] it then follows that
M−Spin(m) is Cohen-Macaulay, normal and has rational singularities. Let ωM denote the

dualizing sheaf.

Let Ê → C × R be the universal bundle. By construction of the GIT quotient it fol-

lows that the adjoint vector bundle Ad(Ẽ) descends to a vector bundle on C × ‹Y , which

we also denote by Ad(Ẽ). Since ‹Y is an étale cover of M−,regSO(m), deformation theory tells

us that T[E]
‹Y can be identified with H1(C,Ad(E)). Moreover, since E is regularly stable,

H0(C,Ad(E)) = {0}. In particular, it follows from the definition of determinant of coho-

mology that Det(Rπ∗Ad Ê)∗|
Ỹ

= ωM |Ỹ . But Det(Rπ∗Ad Ê) extends to an invertible sheaf

on the entire moduli space M−Spin(m), and hence in particular it is reflexive. Furthermore,

dualizing sheaves on Cohen-Macaulay normal varieties are also reflexive. Since the comple-

ment of ‹Y is codimension ≥ 2, then by [42, Lemma 2.7] we get that ωM is locally free, and

hence by definition M−Spin(m) is Gorenstein. Now Det(Rπ∗Ad Ê) is ample and the Picard

group of M−Spin(m) is isomorphic to Z ([13]). It follows from Serre duality [31, Cor. III.7.7]

and the Grauert-Riemenschneider vanishing theorem [30] that H i(M−Spin(m),O) = {0} for

i > 0. �

6.3. The Hitchin connection. Let C → B be a smooth family of genus g curves, B
smooth. Let π : M−,regSpin(m) → B denote the universal moduli space of regularly stable twisted

Spin(m) bundles on the fibers of C, with universal Pfaffian bundle P. Then the direct image

sheaf π∗P
` is a holomorphic vector bundle over B with fiber H0(M−,regSpin(m),P

⊗`). We wish

to find a connection on the projective bundle P(π∗P
⊗`) → B. Following the method of

Hitchin [34], the connection is constructed as a “heat operator” on the smooth sections of

P⊗` →M−,regSpin(m). As noted in that reference (see also [3]), the procedure can be applied to

the open moduli space of (regularly) stable points.
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Given [E] ∈ ‹Y ⊂M−,regSpin(m), recall that T‹Y |[E] ' H1(C,AdE). By Serre duality,

H0(C,AdE⊗ ωC) ' H1(C,AdE)∗ .

Combine this with the cup product:

H1(C, TC)⊗H0(C,AdE⊗ ωC)→ H1(C,AdE)

and the identification above to obtain a map: τ : H1(C, TC)→ H0(‹Y , S2T‹Y ). Let Di(P⊗`)

denote the sheaf of differential operators of order i on ‹Y . Given a nonzero section s ∈
H0(‹Y ,P⊗`), evaluation on s gives a length 2 complex: Di(P⊗`)→ P⊗`, from which we ob-

tain a hypercohomology group H1
s(
‹Y ,D1(P⊗`)). Let δ : H0(‹Y , S2T‹Y ) → H1

s(
‹Y ,D1(P⊗`))

be given by the coboundary associated to

(6.2) 0 −→ D1(P⊗`) −→ D2(P⊗`) −→ S2T‹Y −→ 0 .

The main result is the following.

Theorem 6.5. With the above notation
(1) Given a deformation [µ] ∈ H1(C, TC), let İ denote the variation of the almost

complex structure on ‹Y . The association of the class A(İ , s) :=
δτ [µ]

2i(`+ g∨)
∈

H1
s(
‹Y ,D1(P⊗`)) to each section s ∈ H0(‹Y ,P⊗`) defines a connection on P(π∗P

⊗`)→
B.

(2) The connection commutes with the action of J2(C).
(3) The connection is projectively flat.
(4) Under the identification (1.3), the connection agrees with the TUY connection.

Proof. The existence (1) of the connection follows if we show that the hypotheses (i) and
(ii) of [34, Thm. 1.20] are satisfied. Condition (i) follows trivially from the vanishing result

Proposition 6.4 above. For (ii), we must show that −iA(İ , s) projects to the Kodaira-

Spencer class under the map σ : H1
s(
‹Y ,D1(P⊗`))→ H1(‹Y , T‹Y ). This follows exactly as in

[34, p. 365], where in [34, Lemma 2.13] one replaces End0E with AdE, and in [34, Prop.
2.16] one uses the cup product defined above.

Item (2) follows by the same argument as in [16, Cor. 4.2].
The flatness (3) proved in [34, Thm. 4.9] is a consequence of two other results of that

paper: the fact that certain trace functions Poisson commute ([34, Prop. 4.2]) follows in
our case from the integrable system structure for orthogonal bundles (cf. [33]); and by (2)
above the version of [34, Prop. 4.4] that we need states that the map

f : H1(C, TC) −→ H0(Y, S2TY ) , f([µ])(α, α) =

∫
C

(α, α)µ

is an isomorphism. This also follows as in [34, bottom of p. 373]. Indeed, for (Gij) ∈
H0(Y, S2T‹Y ), then by the same argument as in the proof of Proposition 6.4 (1), the pull-
back of (Gij) via the Hitchin map extends as a function on M θ

SO(m), and thus descends to

a function on B(m), homogeneous of degree 2. The homogeneous degree 2 functions on
B(m) are identified in (6.1) with H0(C,ωC)∗ ' H1(C, TC).
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Finally, (4) follows from the proof in [44] where the only properties of the Hitchin connec-
tion used are the ones stated above and the uniformization theorem. For the case of (simply
connected) G-bundles, Laszlo first considers the uniformization π : QG = LG/L+G→MG

of the moduli stack of G-bundles over a curve C and restricts to the regularly stable lo-
cus Q0

G of QG. The ample generator P of the Picard group of MG pulls back to give a
line bundle Lχ, where χ is the character of the affine fundamental weight ω0. The Sug-
awara construction then provides a second order differential operator T (see [44, eq. (8.8)])
on L⊗`χ (see Section 4.1 for notation). Following [23], Laszlo takes an étale quasi-section

r : N �M reg
G and q : N → Q0

G of the map π : Q0
G →M reg

G

Q0
G

π

��
N

q
==

// // M reg
G

and defines an action of the differential operator T on the line bundle r∗P⊗`(also isomorphic
to q∗L⊗`χ ). Once this is done, then the symbol of the “heat operator” in the Hitchin
connection is shown to be equal to the operator T coming from the Sugawara construction
(see [44, Sec. 8.14]).

In the present situation for M−Spin(m), uniformization (Proposition 3.3) and the existence

of étale quasi-section follows from [13, 23]. Further the pull back of the Pfaffian line bundle
P on QSpin(m) is also given by the same character χ of the affine fundamental weight ω0

(Section 4.1). Thus the set-up is exactly as in [44].
�

We will call the projective connection constructed in Theorem 6.5 the Hitchin connection.
The main consequence of the existence of a Hitchin connection is the following.

Proposition 6.6. The Pfaffian sections sκ are projectively flat with respect to the Hitchin
connection.

Proof. The action of J2(C) commutes with the projective heat operator. Hence, the Hitchin
connection preserves the spaces H0(M reg

SO(m),Pκ). Now these one dimensional spaces are

spanned by Pfaffian sections, making them projectively flat. �

Remark 6.7. If we consider the isomorphism of SC(3) ' GL(3), then M−Spin(3) is just the

stack of rank two bundles on a curve with determinant OC(p). The corresponding moduli
space in this case is smooth (GIT stability and GIT semistability coincide) and the Hitchin
connection is constructed in [34]. The case M−Spin(4) can be defined and handled similarly

using the isomorphism of Spin(4) with SL(2)× SL(2).

7. Fock space realization of level one modules

In this section, following work of I. Frenkel [27] and Kac-Petersen [37], we first recall the
explicit construction of level one modules of ŝo(2d+ 1) using infinite dimensional Clifford
algebras. We also give explicit expressions for the space of invariants.
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7.1. Clifford algebra. Let W be a vector space (not necessarily finite dimensional) with
a nondegenerate bilinear form { , }. Let T (W ) denote the tensor algebra of W , and define
the Clifford algebra Cl(W ) to be the quotient of T (W ) by the ideal generated by elements
of the form v ⊗ w + w ⊗ v − {v, w}. Let W = W+ ⊕W− ⊕ C · e0 be a quasi-isotropic
decomposition of W such that e0 is either orthonormal with respect to W±, or zero. Then
the Clifford algebra Cl(W ) acts on

∧
W− by setting w+ · 1 = 0 for all w+ ∈ W+ and

letting W− act by wedge product on the left. If e0 6= 0 and v ∈ ∧pW−, then we set√
2e0 · v = (−1)pv.

7.2. Level one modules. Now suppose W = Wd is (2d+ 1)-dimensional. We choose an
ordered basis φ1, . . . φr, φ0 = φ0, φ−r, . . . , φ−1 of Wd such that {φa, φb} = δa+b,0. Define

operators Eij(φ
k) := δj,kφ

i, and set Bi
j := Eij −E

−j
−i . It follows that elements of so(2d+ 1)

are of the form Bi
j (cf. [32, 29]).

For h ∈ {0, 1
2}, let WZ+h

d := Wd ⊗ thC[t, t−1]. We extend the bilinear form on Wd to

WZ+h
d by setting {w1(a1), w2(a2)} := {w1, w2}δa1+a2,0, where w(a) = w ⊗ ta. As above,

choose a quasi-isotropic decomposition:

WZ+h
d =

{
WZ+h,+
d ⊕WZ+h,−

d ⊕ C · e0 , if h = 1/2 ,

WZ+h,+
d ⊕WZ+h,−

d , if h = 0 ,

where e0 = φ0(0). Similarly, WZ+h,±
d is given by the following:

• If h = 0, then WZ+h,±
d := Wd ⊗ t±1C[t±1]⊕W±d ⊗ t0;

• If h = 1
2 , then WZ+h,±

d := Wd ⊗ t±
1
2C[t±1].

We define the normal ordering •
•
•
• for products in Cl(WZ+h

d ) as follows: For any element

w1(a1) and w2(a2) in WZ+h
d , we define

(7.1) •
• w1(a1)w2(a2) •• =


−w2(a2)w1(a1) if a1 > 0 > a2
1
2(w1(a1)w2(a2)− w2(a2)w1(a1)) if a1 = a2 = 0

w1(a1)w2(a2) otherwise.

For X ∈ so(2d+1), we denote X(m) := X⊗tm. Now for any i and j, we can define an ac-

tion of Bi
j(m) on

∧
WZ+h,−
d by the following formula:Bi

j(m)w :=
∑
a+b=m

•
• φi(a)φj(b) •• w ,

where the action on w is given by Clifford multiplication. Then we have the following
important result.

Proposition 7.1 (Frenkel [27], Kac-Petersen [37]). The above action Bi
j(m) gives an iso-

morphism of the following ŝo(2d+ 1)-modules at level one.

• Hω0(so(2d+ 1), 1)⊕Hω1(so(2d+ 1), 1) '
∧
W

Z+ 1
2
,−

d ;

• Hωd(so(2d+ 1), 1) '
∧
WZ,−
d .
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7.3. Clifford multiplication and the invariant form. In this section, we give explicit
expressions for conformal blocks in V∗ω0,ωd,ωd

(P1, so(2d+1), 1) and V∗ω1,ωd,ωd
(P1, so(2d+1), 1)

in terms of Clifford multiplication. In the following, let Wd be as in Section 7.2.

7.3.1. The case ~Λ = (ω0, ωd, ωd). From representation theory it follows that the conformal
block V∗ω0,ωd,ωd

(P1, so(2d+1), 1) is a subspace of Homso(2d+1)(Vωd⊗Vωd ,C). But since both
spaces are 1-dimensional they are isomorphic. Since we know that Vωd is isomorphic as an
so(2d + 1)-module to

∧
W−d , then taking the opposite Borel we can express it as

∧
W+
d .

Hence, the invariant bilinear form (unique up to constants) is given by

B(φi1 ∧ · · · ∧ φip , φj1 ∧ · · · ∧ φjq) :=

{∏p
a=1{φia , φja} if p = q

0 otherwise.

7.3.2. The case ~Λ = (ω1, ωd, ωd). As in the previous case, we know that the conformal
block V∗ω1,ωd,ωd

(P1, so(2d + 1), 1) is a subspace of Homso(2d+1)(Vω1 ⊗ Vωd ⊗ Vωd ,C). The
so(2d + 1)-module Vω1 appears with multiplicity one (see Kempf-Ness [39]) in the tensor
product of module Vωd ⊗ Vωd , thus we have

Homso(2d+1)(Wd ⊗
∧
W−d ⊗

∧
W+
d ,C) ' C .

We will denote a nonzero element of the left hand side above as 〈‹Ψ |. Consider the Clifford
multiplication map from m : Wd ⊗ ∧W−d → ∧W

−
d . Then we define

〈‹Ψ | a⊗ v ⊗ w∗〉 := B(m(a⊗ v), w∗) .

We will show that 〈‹Ψ | is a nonzero element of Vω1,ωd,ωd(P1, so(2d + 1), 1) and hence it is

unique up to constants. First we prove that 〈‹Ψ | is so(2d+ 1)-invariant.
There is an isomorphism ∧2Wd ' so(2d+1). Any X ∈ so(2d+1) may be regarded as an

element of the Clifford algebra as follows: for a, b ∈ Wd, we get an element of the Clifford
algebra a · b− 1

2{a, b}. First we show that the Clifford multiplication map m defined above
is so(2d + 1)-invariant; i.e X · m(a,w) = m(X · a,w) + m(a,X · w), where a ∈ Wd and
w ∈ ∧W−d . Without loss of generality assume that X is of the form a · b − 1

2{a, b}. By a
direct calculation we see that

m((X · a)⊗ w) +m(a⊗ (X · w)) = (((ab− 1
2{a, b})v

ä
· w + v ·

Ä
(ab− 1

2{a, b}) · w
ä

= (a · b− 1
2)v · w = X · (v · w) .

Thus the Clifford multiplication map m is so(2d+ 1)-invariant. By a direct calculation, we
get the following:

〈‹Ψ ·X | a⊗ v ⊗ w∗〉 := 〈‹Ψ | Xa⊗ v ⊗ w∗〉+ 〈‹Ψ | a⊗Xv ⊗ w∗〉+ 〈‹Ψ | a⊗ v ⊗Xw∗〉
= B(Xm(a⊗ v)⊗ w∗) +B(m(a⊗ v)⊗Xw∗)
= B ·X(m(a⊗ v)⊗ w∗)
= 0 (since B is so(2d+ 1) invariant).
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This shows that 〈‹Ψ | is so(2d+ 1)-invariant.

It will actually be more convenient to express 〈‹Ψ | in terms of an so(2d+ 1)-equivariant
map f :

∧
W−d ⊗

∧
W+
d → W ∗d , that will be unique up to constants; the relationship is

〈‹Ψ | a ⊗ v ⊗ w∗〉 = f(v ⊗ w∗)(a). We want to write f explicitly with respect to the given
choice of basis. Let Ip = (1 ≤ i1 < · · · < ip ≤ d) be a set of p tuples of distinct ordered
integers from the set {1, . . . , d} and similarly let Jq = ((1 ≤ j1 < · · · < jq ≤ d) be a set
of q tuples of distinct ordered integers. We are now ready to define the function f . This
will be defined in several steps. First of all f(v, w) = 0 if v ∈ ∧pW−d and w ∈ ∧qW+

d and
|p− q| > 1.

7.3.3. Case I, p=q. This is divided into the following subcases. If Ip 6= Jp, then we declare
f(φi1∧· · ·∧φip , φj1∧· · ·∧φjp) := 0. If Ip = Jp, then we define f(φi1∧· · ·∧φip , φi1∧· · ·∧φip)
is up to a constant equal to {φ0,−}.

7.3.4. Case II, q=p-1. Then f(φi1 ∧ · · · ∧φip , φj1 ∧ · · · ∧φjp−1) is up to a constant equal to{
{φik ,−} if Jp−1 ∪ {ik} = Ip

0, otherwise.

7.3.5. Case III, q=p+1. Then f(φi1 ∧ · · · ∧ φip , φj1 ∧ · · · ∧ φjp+1) is up to a constant equal
to {

{φjk ,−} if Ip ∪ {jk} = Jp+1

0, otherwise.

This shows that f , and hence also 〈‹Ψ |, is nonzero and so(2d+ 1)-invariant.

8. Highest weight vectors for branching of basic modules

We give an explicit description of highest weight vectors in the branching rule in “Kac-
Moody” form i.e. as product of operators from the affine Lie algebra acting on the level
one representations. Our guideline is the paper of Hasegawa [32].

8.1. Tensor products. Let Ws be a (2s + 1)-dimensional C-vector space with a non-
degenerate bilinear form {, }, and let {ep}sp=−s be an orthonormal basis of Ws. Let

φ1, . . . , φs, φ0, φ−s, . . . , φ−1 be an ordered quasi-isotropic basis of Ws. The tensor product of
Wd = Wr⊗Ws carries a nondegenerate symmetric bilinear form {, } given by the product of
the forms on Wr and Ws. Clearly the elements {ej,p := ej⊗ep|−r ≤ j ≤ r and −s ≤ p ≤ s}
form an orthonormal basis of Wd. By (j, p) > 0, we mean j > 0 or j = 0, p > 0. Set

φj,p =
1√
2

(ej,p −
√
−1e−j,−p) , φ−j,−p =

1√
2

(ej,p +
√
−1e−j,−p) ,

for (j, p) > 0. The form {, } on Wd is given by the formula {φj,p, φ−k,−q} = δj,kδp,q, for

−r ≤ j, k ≤ r, −s ≤ p, q ≤ s. Let as before W±d =
⊕

(j,p)>0 C · φ±j,±p and φ0,0 = e0,0. The

quasi-isotropic decomposition of Wd is given by Wd = W+
d ⊕W

−
d ⊕ C · φ0,0.
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Define the operators Ej,pk,q by the formula Ej,pk,q(φ
i,l) = δi,kδl,qφ

j,p. We get a matrix in

so(2d + 1) by the formula Bj,p
k,q = Ej,pk,q − E−k,−q−j,−p . Clearly the Cartan subalgebra h of

so(2d + 1) is generated by the diagonal matrices Bj,p
j,p for (j, p) > 0. The dual basis is

denoted by Lj,p. Hence h∗ = ⊕(j,p)>0C · Lj,p.
The tensor product Wd = Wr ⊗Ws gives the embedding (1.5). If Bi

j be an element of

so(2r + 1), then the action of Bi
j(m) on WZ+h

d is given by

L(Bi
j(m)) =

s∑
q=−s

∑
a+b=m

•
• φ

i,q(a)φj,q(b) •• .

Similarly for Bi
j is an element of so(2s+ 1), then the action of Bi

j(m) is given by

R(Bi
j(m)) =

r∑
p=−r

∑
a+b=m

•
• φ

p,i(a)φp,j(b) •• .

8.2. Notation for weights. The Cartan algebra h of so(2r+ 1) is generated by elements
of the form Bi

i for 1 ≤ i ≤ r. Let Li denote the dual of Bi
i . The fundamental weights of

so(2r + 1) are given by ωi =
∑i
k=1 Li for 1 ≤ i ≤ r − 1 and ωr = 1

2(L1 + · · · + Lr). Let
us denote by Yr the set of Young diagrams with at most r rows. Any integral dominant
weight λ of so(2r + 1) is of the form λ =

∑
i=1 aiωi, ai ≥ 0 for all i.

(1) If ar is even, then the representation λ induces a representation of the group SO(2r+
1). By using the expression of ωi in terms of Li’s, we get λ =

∑
i biLi, and b1 ≥

· · · ≥ br, give a Young diagram in Yr.
(2) If ar is odd, then we can rewrite λ = λ′ + ωr. Then the coefficient of ωr in λ′ is

even and by repeating the same process for λ′, we can write λ = Y + ωr, where Y
is an element of Yr.

The group of affine Dynkin-diagram automorphisms Z/2 acts on the set of level 2s+ 1
weights P2s+1(so(2r + 1)) by interchanging the affine fundamental weight ω0 with ω1. Let
λ =

∑r
i=1 aiωi and σ be the generator of Z/2, then

(8.1) σ(λ) := (2s+ 1− (a1 + 2(a2 + · · ·+ ar−1) + ar))ω1 + a2ω2 + · · ·+ arωr .

Let Yr,s denote the set of Young diagrams with at most r rows and s columns. Then the
orbits of the group action with the cardinality are given below [56]:

• Y ∈ Yr,s and the orbit length is 2.
• Y + ωr, where Y ∈ Yr,s−1 and the orbit length is 2.
• Y + ωr, where Y ∈ Yr,s\Yr,s−1 and the orbit length is 1.

For a Young diagram Y , we denote by Y T ∈ Ys,r, the diagram obtained by interchanging
the rows and columns of Y , by Y c ∈ Yr,s the complement of Y in a box of size r × s, and
by Y ∗ ∈ Ys,r the Young diagram (Y T )c obtained by first taking the transpose and then
taking the complement in a box of size (s× r).
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8.3. Branching rules. For reference, we state here some of the components that appear in
the branching rule for the embedding (1.5) (recall Section 2.2). Let σ be as in the previous
section. Let λ, µ, and Λ be integrable highest weights for so(2r + 1) at level 2s + 1,
so(2s+ 1) at level 2r+ 1, and so(2d+ 1) at level 1, respectively. We say that (λ, µ) ∈ B(Λ)
if Hλ(so(2r+ 1))⊗Hµ(so(2s+ 1)) appears in the branching of HΛ(so(2d+ 1)). Note that
here (and for the rest of the paper) unless specified otherwise the levels 2s+ 1, 2r+ 1, and
1, have been (wiil be) suppressed from the notation of highest weight modules. Then the
branching rules we need are the following:

• (Y, Y T ) ∈ B(ω0) if |Y | is even;
• (σ(Y ), Y T ) and (Y, σ(Y T )) ∈ B(ω0) if |Y | is odd;
• (Y, Y T ) ∈ B(ω1) if |Y | is odd;
• (σ(Y ), Y T ) and (Y, σ(Y T )) ∈ B(ω1) if |Y | is even;
• for Y ∈ Yr,s−1, (Y + ωr, Y

∗ + ωs) and (σ(Y + ωr), Y
∗ + ωs) are in B(ωd);

• for Y ∈ Yr,s \ Yr,s−1, (Y + ωr, Y
∗ + ωs) and (Y + ωr, σ(Y ∗ + ωs)) are in B(ωd).

We refer the reader to [32] for a proof.

8.4. Highest weight vectors of branching. An explicit description of the highest weight
vectors for the components of the branching can be found in [32]. In this section, in those
cases that will be convenient for our applications, we express them as products of operators
in ŝo(2d + 1) acting on the level one representations of ŝo(2d + 1). Recall the following
from [50].

Proposition 8.1. Let λ′ ∈ Yr,s be obtained from λ by removing two boxes with coordinates
(a, b) and (c, d) and ε ∈ {0, 1}. Assume that (a, b) < (c, d) under the lexicographic ordering.
If vλ′ ∈ End(Hωε(so(2d + 1))) is the highest weight vector of the component Hλ′ ⊗Hλ′T ,
then the highest weight vector vλ of the component Hλ(so(2r + 1)) ⊗ HλT (so(2s + 1)) is

given by vλ = Ba,b
−c,−d(−1)vλ′.

From [32] we have:

Proposition 8.2. The element
∧r
j=−r φ

j,1(−1
2) ∈ ∧WZ+ 1

2
,−

d gives the highest weight vector
for the component Hω0(so(2r + 1))⊗H(2r+1)ω1

(so(2s+ 1)).

Next, we describe the highest weight vectors for the branching of the Spin module at
level one. First, we need some notation. Given Y ∈ Yr,s, we view it pictorially as an r × s
box with the white boxes carving out the Young diagram (see below). We associate to Y
another diagram as follows:‹Yj,p =

®
� if Y has an empty box in the (j, p+ s+ 1)-th position,
� otherwise.

Here in the matrix ‹Y , j = 0, 1, . . . , r, p = 1, . . . , s,−s, . . . ,−1. This is illustrated as:
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Y =

� � � �
� � � �
� � � �
� � � �

←→ ‹Yj,p =

j\p 1 .. .. s −s .. .. −1

−1 � .. .. � � .. .. �

0 � .. .. � � .. .. �
1 � .. .. � � � � �
: : : � � � �
: : : � � � �
r � .. .. � � � � �

With this notation, we can state the branching rules. If Y ∈ Yr,s, then HY+ωr(so(2r +
1))⊗HY ∗+ωs(so(2s+ 1)) appears in the decomposition of Hωd(so(2d+ 1)). For a proof of
the following, we refer the reader to [32].

Proposition 8.3. The highest weight vector vY of the component HY+ωr(so(2r + 1)) ⊗
HY ∗+ωs(so(2s+ 1)) is given by

∧
Ỹj,p=�

φj,p.

From Section 8.3, if Y ∈ Yr,s−1, the component Hσ(Y+ωr)(so(2r+1))⊗HY ∗+ωs(so(2s+1))
appears in the decomposition of Hωd(so(2d+ 1)). We describe the highest weight vectors.

We define a new diagram σ(‹Y ), obtained by first considering ‹Y and then interchanging
the black boxes in the 1-st row by the corresponding white boxes in the (−1)-st row, and
keeping the columns invariant.

Y =

� � � �
� � � �
� � � �
� � � �

←→ σ(‹Y )j,p =

j\p 1 .. .. s −s .. .. −1

−1 � .. .. � � .. � �

0 � .. .. � � .. .. �
1 � .. .. � � � � �
: : : � � � �
: : : � � � �
r � .. .. � � � � �

With the above notation, we have the following from [32].

Proposition 8.4. The highest weight vector of the component Hσ(Y+ωr)(so(2r + 1)) ⊗
HY ∗+ωs(so(2s + 1)) is given by

∧
σ(Ỹ )j,p=�

φj,p(ε), where ε = −1 if j = −1, and ε = 0

otherwise.

We can rewrite the result above in the “Kac-Moody” form.

Corollary 8.5. Let Y ′ be the Young diagram obtained from Y by changing the black
boxes in the first row to white. Let vY ′ be the highest weight vector of the component
HY ′+ωr(so(2r+1))⊗H(Y ′)∗+ωs(so(2s+1)). Then a highest weight vector of the component

Hσ(Y+ωr)(so(2r + 1))⊗HY ∗+ωs(so(2s+ 1)) is given by:
∏

σ(Ỹ )−1,p=�

B1,−p
0,0 (−1)vY ′.

Proof. Use Proposition 8.4 and the definition of the action of B1,−p
0,0 (−1). �
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9. Rank-level duality in genus zero

9.1. General context of rank-level duality. Let φ : g1 ⊕ g2 → g be a conformal
embedding with Dynkin multi-index dφ = (`1, `2) (see Section 2.2). Then φ extends to

a homomorphism of affine Lie algebras φ̂ : ĝ1 ⊕ ĝ2 → ĝ. Let ~λ = (λ1, . . . , λn) (resp.

~µ = (µ1, . . . , µn)) and ~Λ = (Λ1, . . . ,Λn) be n-tuples of level `1 (resp. `2) and level one
integrable highest weights such that for each 1 ≤ i ≤ n, (λi, µi) ∈ B(Λi). Taking the n-fold
tensor product, we get a map:

⊗n
i=1 Hλi(g1)⊗Hµi(g2)→⊗n

i=1 HΛi(g). Let X be the data
associated to curve C with n marked points and chosen coordinates. Taking coinvariants,
we get the following map of dual conformal blocks:α : V~λ(X, g1, `1) ⊗ V~µ(X, g2, `2) →
V~Λ(X, g, 1) . We call a triple (~λ, ~µ, ~Λ) ∈ Pn`1(g1) × Pn`2(g2) × Pn1 (g) admissible, if they are
connected by a map as above by the branching of level one modules. If V~Λ(X, g, 1) is one
dimensional we get a map: α∗ : V~λ(X, g1, `1)→ V∗~µ(X, g2, `2), which is determined up to a
nonzero multiplicative constant. Then α∗ is known as the rank-level duality map. We say
that rank-level duality holds if α∗ is an isomorphism.

Let F = (π : C → B;σ1, . . . , σn; ξ1, . . . , ξn) be a family of nodal curves on a base B
with sections σi and local coordinates ξi. The map α∗ can be extended to a map of
sheaves α(F) : V~λ(F, g1, `1) ⊗ V~µ(F, g2, `2) → V~Λ(F, g, 1) . Furthermore, if the embedding
is g1 ⊕ g2 → g is conformal [38], as in the case of the odd orthogonal groups considered
here, it follows that the rank-level duality map is flat with respect to the TUY connection.
We refer the reader to [16] for a proof.

9.2. Failure of rank-level duality over P1 with spin weights. Rank-level duality
isomorphisms for odd orthogonal groups on P1 with SO-weights was proved in [50]. In
this section, we give explicit examples where the rank-level duality map over P1 with four
marked points is well-defined, but fails to be an isomorphism.

9.2.1. Example 1. Consider the embedding so(5) ⊕ so(7) → so(35). From the branch-
ing rules in Section 8.3, we know that H2ω1+ω2(so(5)) ⊗ Hω1+3ω3(so(7)) appears in the
branching of the spin module Hω17(so(35)). By functoriality we get the following map of
conformal blocks: V~λ(P1, so(5), 7) ⊗ V~µ(P1, so(7), 5) → Vω17,ω17,ω1,ω1(P1, so(35), 1), where
~λ = (2ω1 + ω2, 2ω1 + ω2, ω1, ω1) and ~µ = (ω1 + 3ω3, ω1 + 3ω3, ω1, ω1). One checks (e.g. by
[62]) that dimC Vω17,ω17,ω1,ω1(P1, so(35), 1) = 1. Hence, we get a rank-level duality map
between V~λ(P1, so(5), 7)∗ and V~µ(P1, so(7), 5). But this map cannot be an isomorphism

since dimC V~µ(P1, so(7), 5) = 5, whereas dimC V~λ(P1, so(5), 7) = 4.

9.2.2. Example 2. Consider the embedding so(7)⊕ so(9)→ so(63). Then

dimC Vω31,ω31,ω1(P1, so(63), 1) = 1 ,

and following the branching rules in Section 8.3, there is a well-defined rank-level duality

map V~λ(P1, so(7), 9)⊗V~µ(P1, so(9), 7)→ Vω31,ω31,ω1(P1, so(63), 1), where ~λ = (ω2+3ω3, ω2+
3ω3, ω1+ω2), ~µ = (ω1+2ω3+ω4, ω1+2ω3+ω4, ω1+ω2). But this map is not an isomorphism,
since the dimensions of V~λ(P1, so(7), 9) and V~µ(P1, so(9), 7) are 3 and 4, respectively.
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9.2.3. Example 3. Consider the embedding so(9)⊕ so(7)→ so(63). Then

dimC Vω31,ω31,ω1(P1, so(63), 1) = 1 ,

and following the branching rules in Section 8.3, there is a well-defined rank-level duality

map V~λ(P1, so(9), 7)⊗V~µ(P1, so(7), 9)→ Vω31,ω31,ω1(P1, so(63), 1), where ~λ = (ω2+3ω4, ω2+
3ω4, 2ω1 + 2ω4), ~µ = (2ω1 + 2ω2 + ω3, 2ω1 + 2ω2 + ω3, 3ω1 + 2ω3). But this map is not
an isomorphism, since the dimensions of V~λ(P1, so(9), 7) and V~µ(P1, so(7), 9) are 8 and 14,
respectively.

Remark 9.1. The above examples show that even if the rank-level duality map is well-
defined it may not be an isomorphism due to the inequality of dimensions of the source
and the target spaces. However, we can still ask if α∗ is injective? The next section gives
a positive answer to that question. This is distinct from the issue in higher genus, where
we will see that there is an equality of dimensions but still the rank-level duality map is
not an isomorphism (see Section 10).

9.3. Rank-level duality for 3-pointed P1 with spin weights. Consider the embed-

ding (1.5). The only interesting cases for 3-points with spin weights are the tuples ~Λ =

(ω0, ωd, ωd) and ~Λ = (ω1, ωd, ωd). We also observe that the action of the automorphism of
the affine Dynkin diagram fixes ωd and interchanges ω0 with ω1. We first fix some nota-

tion. Let Y1 ∈ Yr,s and Y2, Y3 ∈ Yr,s−1 and we consider ~λ = (Y1, Y2 + ωr, Y3 + ωr). Let

~µ = (Y T
1 , Y

∗
2 + ωs, Y

∗
3 + ωs) and ~Λ = (ωε, ωd, ωd), where ε is zero or one depending on the

even or odd parity of the number of boxes of the Young diagram of Y1. From the branching
rules of Section 8.3, we get the following map of conformal blocks

(9.1) V~λ(X, so(2r + 1), 2s+ 1))→ V∗~µ(X, so(2s+ 1), 2r + 1)⊗ V~Λ(X, so(2d+ 1), 1) ,

Here, X denotes the data associated to P1 with three marked points and chosen coordinates.
The following is the main statement of this section.

Theorem 9.2. The rank-level duality map defined in (9.1) is injective.

The proof of this theorem is broken up into several steps and can be reduced to the
case when both Y2 and Y3 are empty and Y1 is just a Young diagram with one column, in
which case the corresponding conformal blocks are one dimensional for so(2r+1). We now
describe the steps in the reduction.

9.4. Reduction to the one dimensional case. The main tools used here are factor-
ization/sewing of conformal blocks (cf. Sections 2.3 and 9.7), and the fact that certain
Littlewood Richardson coefficients are one.

9.4.1. Step I. Clearly, we may assume that the rank of the conformal block in the source of

(9.1) is nonzero. Now consider a new tuple ~λ′ = (~ν2, ωr, Y1, ~ν3, ωr), where ~ν2 (resp. ~ν3) is a
tuple of ω1 of cardinality |Y2| (resp. |Y3|). Similarly let ~µ′ = (~νT2 , (2r + 1)ωs, Y

T
1 , ~ν

T
3 , (2r +

1)ωs) and ~Λ′ = (~ω1, ωd, ωε, ~ω1, ωd), where ωε is ω1 or ω0’s, depending on the number of

boxes of Y1. It is easy to see that the triple (~λ′, ~µ′, ~Λ′) is admissible.
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9.4.2. Step II. Let X denote the data associated to P1 with |Y2| + |Y3| + 3 marked points
with chosen coordinates. The rank of the conformal block V~Λ′(X, so(2d+ 1), 1) is one and
the rank of the conformal block V~λ′(X, so(2r + 1), 2s + 1) is nonzero. The first assertion
can be easily checked via factorization (cf. Section 9.7) since the only nontrivial three
point cases with spin weights up to permutation are (ω0, ωd, ωd) and (ω1, ωd, ωd) both of
which are rank one. For the second assertion, we get by the factorization theorem that
the dimension of the conformal block V~λ′(X, so(2r+ 1), 2s+ 1) is greater than equal to the
dimension of the following product of conformal blocks:

V~ν2,ωr,Y2+ωr(X1, so(2r + 1), 2s+ 1)⊗ VY1,Y2+ωr,Y3+ωr(X2, so(2r + 1), 2s+ 1)

⊗V~ν3,ωr,Y3+ωr(X3, so(2r + 1), 2s+ 1) .

Here, X1 (resp. X3) denote the data associated to a P1 with |Y2|+ 2 (resp. |Y3|+ 2) marked
points and X2 denote the data associated to a P1 with three marked points and chosen
coordinates. The nonvanishing of the dimensions on the first and third factors in the above
expression follows from Proposition 9.4.

9.4.3. Step III. Assume that the injectivity of the rank-level duality map for the admissible

pairs (~λ′, ~µ′, ~Λ′) holds, then Theorem 9.2 holds, where ~λ′, ~µ′ and ~Λ′ be as in Step II. The
basic idea is that we split up the rank-level duality map into a direct sum of several rank-
level duality maps. Now the injectivity of the rank-level duality map for the bigger space
implies the injectivity of the rank-level duality map for the components, and vice-versa.
The key geometric input is Lemma 9.7 in Section 9.7. The conditions in Lemma 9.7 are
guaranteed by the fact that the dimensions of the two conformal blocks on P1 with weights
~ν2, ωr, σ(Y2 +ωr) and ~ν3, ωr, σ(Y3 +ωr) are zero (cf. Proposition 9.4). This is where we use
that Y2, Y3 ∈ Yr,s−1.

9.4.4. Step IV. By the previous discussion, it enough to prove the injectivity of the follow-
ing rank-level duality map:

V~λ′(X, so(2r + 1), 2s+ 1) −→ V∗~µ′(X, so(2s+ 1), 2r + 1)⊗ V~Λ′(X, so(2d+ 1), 1) .

We now consider a degeneration of P1 into nodal curve C = C1 ∪C2, where C1 is a copy of
P1 with two smooth marked points and the weights ωr, ωr are the weights attached to the
markings. The other component C2 is P1 with rest of the marked points. The components

C1 and C2 meet at a point p. The normalization ‹C of C is a disjoint union of C1 and
C2 with one extra marked point on each component. Since the two marked points of C1

have spin weights, it follows that the weight associated to the new marked point on C1,

considered as a component of the normalization of ‹C, is marked by an SO(2r + 1) weight.
Hence, by repeating the process discussed in Section 9.7, we are reduced to the case where
~λ = (ωr, ωr, Y ), Y ∈ P2s+1(SO(2r+ 1)), and the case where ~λ = (Y, Y1, ~ω1). The rank-level
duality in the latter case is a Theorem in [50]. Hence, we are only left with the admissible

triples of the form (~λ, ~µ, ~Λ), when ~λ = (Y, ωr, ωr), ~µ = (Y T , (2r + 1)ωs, (2r + 1)ωs) and
~Λ = (ωε, ωd, ωd). We now determine which Y are possible.



36 SWARNAVA MUKHOPADHYAY AND RICHARD WENTWORTH

9.4.5. Step V. As in Section 2.1, let Vλ denote the finite dimensional irreducible repre-
sentation of Spin(2r + 1) with highest weight λ. By a theorem of Kempf-Ness [39], we
know that Vλ appears in the tensor product decomposition of Vωr ⊗ Vωr if and only if
λ ∈ {ω0, ω1, . . . , ωr−1, 2ωr}. It follows from [10, Prop. 4.3] that the conformal blocks
VY,ωr,ωr(P1, so(2r + 1), 2s + 1) are one dimensional, where Y ∈ {ω0, . . . ωr−1, 2ωr}, and
trivial otherwise. We refer to these as the minimal cases.

9.5. Rank-level duality for the minimal cases. The minimal case can be further
subdivided into the case when |Y | is odd or even. After dividing into these cases, we will
approach the minimal cases by induction. The basic strategy is similar to the strategy of
the minimal cases in [50]. We will refer to the Appendix for some of the details of the
formulas.

To show that the rank-level duality map is injective, it is enough to find vectors

v1 ⊗ v2 ⊗ v3 ∈ HY ⊗HY T ⊗Hωr ⊗H(2r+1)ωs ⊗Hωr ⊗H(2r+1)ωs

such that 〈Ψ | v1 ⊗ v2 ⊗ v3〉 6= 0, where 〈Ψ | is the (up to scalars) unique nonzero element
of V∗ωε,ωd,ωd(P

1, so(2d+ 1), 1), and ε is either 0 or 1, depending on the parity of |Y |.

9.5.1. The case |Y | = 0. In this case we choose v1 = 1, v2 =
∧

1≤i≤r,−1≤j≤−s φi,j , and

v3 =
∧

1≤i≤r,−1≤j≤−s φ
i,j . It is then clear (cf. Section 7.3.1) that 〈Ψ | v1 ⊗ v2 ⊗ v2〉 6= 0.

9.5.2. The case Y = ω1. Choose v1 = φ1,0(−1
2) = R(B0

1)φ1,1(−1
2) (cf. Lemma A.2 of the

Appendix), v2 = L(B0
1)
∧

1≤i≤r,−1≤j≤−s φi,j , and v3 =
∧

1≤i≤r,−1≤j≤−s φ
i,j . Now by a direct

computation (cf. Proposition A.1), we get v2 = φ1,0 ∧
∧

1≤i≤r,−1≤j≤−s φi,j . We are now left
to evaluate 〈Ψ | v1 ⊗ v2 ⊗ v3〉, and from the discussion in Section 7.3.2, it is nonzero.

9.5.3. The case Y = ω2. We need to choose v1, v2 and v3 as before. In this case, take
v1 = R2(B0

1)φ1,1(−1
2)φ2,1(−1

2) and v2 = L(B−1
2 )v, where as before v =

∧
1≤i≤r,−1≤j≤−s φi,j .

By Proposition A.1, we get v2 = φ1,0 ∧ φ2,0 ∧ v and v3 = vopp =
∧

1≤i≤r,−1≤j≤−s φ
i,j . Now

by Proposition A.4, we get

R2(B0
1)φ1,1(−1

2)φ2,2(−1
2) · 1 =

Ç
2B1,0
−2,0(−1) +B2,1

−1,1(−1) +B2,−1
−1,−1(−1)

å
· 1 .

Let the three points be p1 = 0, p2 = 1 and p3 =∞ and let z be the local coordinate at
the point 0. Consider f defined by the equation 1/z. Around P1, the functions f has a pole
of order one and hence a zero of order one around p3. Let ξ = z− 1 be a coordinate at the
point p2 = 1 and around p2, the function f has the following form f1(ξ) = 1−ξ+ξ2−ξ3+· · · .
This follows by formally expanding

f(z) =
1

1 + (z − 1)
= 1− (z − 1) + (z − 2)2 − (z − 3)3 + · · ·

We now use gauge symmetry (cf. Section 2.3) to finish the argument

〈Ψ | R2(B0
1)φ1,1(−1

2)φ2,1(−1
2)⊗ L(B−1

2 )v ⊗ vopp〉

= 〈Ψ | (2B1,0
−2,0(−1) +B2,1

−1,1(−1) +B2,−1
−1,−1(−1)).1⊗ φ1,0 ∧ φ2,0 ∧ v ⊗ vopp〉
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= 2〈Ψ | 1⊗ (−B1,0
−2,0 +B1,0

−2,0(1)− · · · )(φ1,0 ∧ φ2,0 ∧ v)⊗ vopp〉

+ 〈Ψ | 1⊗ (−B2,1
−1,1 +B2,1

−1,1(1)− · · · )(φ1,0 ∧ φ2,0 ∧ v)⊗ vopp〉

+ 〈Ψ | 1⊗ (−B2,−1
−1,−1 +B2,−1

−1,−1(1)− · · · )(φ1,0 ∧ φ2,0 ∧ v)⊗ vopp〉

= −2〈Ψ | 1⊗B1,0
−2,0φ1,0 ∧ φ2,0 ∧ v ⊗ vopp〉 .

In the above calculation, we use the fact B2,−1
−1,−1(φ1,0∧φ2,0∧v) = B2,1

−1,1(φ1,0∧φ2,0∧v) = 0.

This is justified by Lemma A.5. But now B1,0
−2,0(φ1,0 ∧ φ2,0 ∧ v) = −v. Hence 〈Ψ | 1 ⊗

B1,0
−2,0(φ1,0 ∧ φ2,0 ∧ v ⊗ vopp)〉 6= 0 (cf. Section 7.3.1). Thus we are done in this case.

9.5.4. The case Y = ω3. The highest weight vector for the component Hω3 ⊗ H3ω1 is
given by φ1,1(−1

2)φ2,1(−1
2)φ3,1(−1

2). We choose v1 = R3(B0
1)φ1,1(−1

2)φ2,1(−1
2)φ3,1(−1

2),

v2 = L(B0
1)L(B−2

3 )v, and v3 = vopp. Now by Proposition A.1, we get L(B0
1)L(B−2

3 )v =
φ1,0 ∧ φ2,0 ∧ φ3,0 ∧ v, and by Proposition A.6 we get

R3(B0
1)φ1,1(−1

2)φ2,1(−1
2)φ3,1(−1

2) = 3!
î
φ1,0(−1

2)φ2,0(−1
2)φ3,0(−1

2)
ó

−3
î
φ1,−1(−1

2)φ2,0(−1
2)φ3,1(−1

2) + φ1,0(−1
2)φ2,−1(−1

2)φ3,1(−1
2)

+φ1,−1(−1
2)φ2,1(−1

2)φ3,0(−1
2) + φ1,0(−1

2)φ2,1(−1
2)φ3,−1(−1

2)

+φ1,1(−1
2)φ2,−1(−1

2)φ3,0(−1
2) + φ1,1(−1

2)φ2,0(−1
2)φ3,−1(−1

2)
ó
.

We can rewrite the above expression in the following “Kac-Moody” form.

R3(B0
1)φ1,1(−1

2)φ2,1(−1
2)φ3,1(−1

2) = 3!B2,0
−3,0(−1)φ1,0(−1

2)

−3
î
−B1,−1

−3,−1(−1)φ2,0(−1
2) +B2,−1

−3,−1(−1)φ1,0(−1
2) +B1,−1

−2,−1(−1)φ3,0(−1
2)

−B3,−1
−2,−1(−1)φ1,0(−1

2)−B2,−1
−1,−1(−1)φ3,0(−1

2) +B3,−1
−1,−1(−1)φ2,0(−1

2)
ó
.

We now evaluate 〈Ψ | v1 ⊗ v2 ⊗ v3〉 using gauge symmetry (cf. Section 2.3) as before.
Choose P1, P2 and P3 to be (0, 1,∞) with the obvious coordinates. Expanding f(z) = 1/z
around 1 and ∞ and applying gauge symmetry, we get that 〈Ψ | v1 ⊗ v2 ⊗ v3〉 is (up to a

sign) equal to 3!〈Ψ | φ1,0(−1
2) ⊗ B2,0

−3,0(φ1,0 ∧ φ2,0 ∧ φ3,0 ∧ v) ⊗ vopp〉, which is nonzero by
the discussion in Section 7.3.2. Explicitly,

Lemma 9.3. Let a and b be both nonzero integers and i 6= j are both positive integers,

then B2,0
−3,0(φ1,0 ∧ φ2,0 ∧ φ3,0 ∧ v) = −v, and Bi,a

−j,b(φ1,0 ∧ φ2,0 ∧ φ3,0 ∧ v) = 0.

9.5.5. The general case: Y = ωk or 2ωr. The strategy for the general case is the same
as for the previous special case. We choose the points (p1, p2, p3) = (0, 1,∞). We choose
v1 = Rk(B0

1)φ1,1(−1
2) ∧ φ2,1(−1

2) ∧ · · · ∧ φk,1(−1
2), v2 = φ1,0 ∧ · · · ∧ φk,0 ∧ v and v3 = vopp.

Using gauge symmetry (cf. Section 2.3), the expression 〈Ψ | v1 ⊗ v2 ⊗ v3〉 is equal (up to a
sign) to,

k!〈Ψ | φ1,0(−1
2) ∧ · · · ∧ φk,0(−1

2)⊗ v2 ⊗ v3〉 .(9.2)

The above step uses Proposition A.7 and a calculation similar to Lemma 9.3. We can
rewrite the right hand side of (9.2) as follows:
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• If k is odd,

〈Ψ | φ1,0(−1
2) ∧ · · · ∧ φk,0(−1

2)⊗ v2 ⊗ v3〉 = 〈B2,0
−3,0(−1) · · ·Bk−1,0

−k,0 (−1)φ1,0(−1
2)⊗ v2 ⊗ v3〉 ;

• If k is even,

〈Ψ | φ1,0(−1
2) ∧ · · · ∧ φk,0(−1

2)⊗ v2 ⊗ v3〉 = 〈B1,0
−2,0(−1) · · ·Bk−1,0

−k,0 (−1)⊗ v2 ⊗ v3〉 .

By using gauge symmetry (cf. Section 2.3) we get that up to a sign 〈Ψ | v1 ⊗ v2 ⊗ v3〉 is
the following:

• If k is odd,

k!〈Ψ | φ1,0(−1
2)⊗B2,0

−3,0 · · ·B
k−1,0
−k,0 v2 ⊗ v3 = k!〈Ψ | φ1,0(−1

2)⊗ φ1,0 ∧ v ⊗ vopp〉 = k! ;

• If k is even,

k!〈Ψ | 1⊗⊗B1,0
−2,0 · · ·B

k−1,0
−k,0 v2 ⊗ v3 = k!〈Ψ | 1⊗ v ⊗ vopp〉 = k!.

This completes the proof in the general case.

9.6. Key Littlewood-Richardson coefficients. In this section, we prove some basic
facts on dimensions of conformal blocks and apply this to reduce the general case of rank-
level duality to the minimal cases.

Proposition 9.4. Let λ ∈ P`(so(2r + 1)) and let λ = Y + ωr and Y ∈ Yr,s, then
dimC V∗λ,~ω1,ωr

(X, so(2r + 1), `) 6= 0 , where ~ω1 is a |Y |-tuple of ω1’s at level `.

Proof. The proof is by induction on |Y |. If Y is zero or one, then it is easy to see that
Vωr,ωr,ω0(X, so(2r + 1), `) and Vωr,ωr,ω1(X, so(2r + 1), `) are both one dimensional. Now
the inductive step follows by factorization (cf. Section 9.7). By factorization and Lemma
9.6, we know that the dimension of Vλ,ωr,~ω1

(X, so(2r + 1), `) is greater than equal to the
dimensions Vλ,ω1,λ′(X, so(2r + 1), `) ⊗ Vλ′,ωr,~ω′1(X, so(2r + 1), `). Here λ′ = Y ′ + ωr and

|Y ′| = |Y | − 1 and ~ω′1 is an |Y |-tuple of ω1.
�

We now determine which three point so(2r + 1), level 2s + 1, conformal blocks with

weights ~λ are nonzero. First, we compute the Littlewood-Richardson numbers following
Littlemann [46].

Lemma 9.5. Let λ ∈ P+(so(2r + 1)) and assume that λ is of the form Y + ωr, where
Y ∈ Yr,s. Then the dimension of the space Homso(2r+1)(Vω1 ⊗Vλ⊗Vµ,C) is nonzero if µ is
either λ, or is of the form Y ′ + ωr, where Y ′ is obtained by adding or deleting a box of Y .

We use the above proposition to calculate the following dimensions.

Lemma 9.6. Let λ =
∑r
i=1 aiωi + ωr ∈ P`(so(2r + 1)). Then,

dimC V∗λ,µ,ω1
(X, so(2r + 1), `) =

{
1 if µ ∈ P`(so(2r + 1)) , µ as in Lemma 9.5;

0 otherwise.

Proof. The proof follows directly from the explicit description of three pointed description
of conformal blocks on P1 as the space of invariants (cf. [10, Prop. 4.3]). �
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9.7. Sewing and injectivity. In this section, we discuss the key induction steps in the
proof of rank-level duality maps. This strategy has already been used in [19, 51]. We recall
the details here for completeness. We begin with an important lemma.

Let B = SpecC [[t]]. Suppose V and W are two coherent sheaves such that rankV ≤
rankW and L be a line bundle on B. Suppose f : V → W ⊗ L be a morphism of vector
bundles over B. Assume that over B there are isomorphisms: ⊕si : V ∼−−→ ⊕i∈IVi, and
⊕tj : ⊕j∈IWj

∼−−→W, so that if fi,j : Vi →Wj ⊗ L, then

• For each i ∈ I, fi,j = 0 unless i = j.
• The map f =

∑
i t
miti ◦ fi,i ◦ si, where mi are nonnegative integers.

With the above notation and hypotheses, we have the following easy lemma.

Lemma 9.7. The map f is injective on B∗ = B\{t = 0} if and only if the maps fi,i’s are
injective for all i ∈ I.

Remark 9.8. We will sometimes need to use a slightly generalized version of Lemma 9.7.
Suppose in the above situation there is an isomorphism ⊕tj : ⊕j∈JWj

∼−−→ W, and an
injective map δ : I → J such that fi,j = 0 unless j = δ(i). Then f is injective if and only if
for each i ∈ I, the maps fi,δ(i)’s are injective. For our applications, the role of I will often
be played by the set Yr,s or Yr,s−1 and the role of J by Ys,r.

Consider a conformal embedding s → g. Assume that all level one highest weight inte-

grable modules of ĝ decompose with multiplicity one as ŝ-modules. Let ~Λ = (Λ1, . . . ,Λn)

be an n-tuple of level one highest weights of g and ~λ = (λ1, . . . , λn) be an n-tuple of level

` weights that appear in the branching of ~Λ. By functoriality of the embedding of s → g,
we get a C [[t]]-linear map α(t) : V∗~Λ(X, g, 1) → V∗~λ

(X, s, `). For λ appearing the branching

of Λ, we denote by αΛ,λ(t) the rank-level duality map for the smooth curve X0. as follows:

αΛ,λ(t) : V∗~Λ,Λ,Λ†(
‹X0, g, 1)⊗ C [[t]]→ V∗~λ,λ,λ†(

‹X0, s, `)⊗ C [[t]] .

We recall the following proposition from [19].

Proposition 9.9. On B, the map α(t) decomposes under factorization/sewing as follows

α(t) ◦ sΛ(t) =
∑

λ∈B(Λ)

tmλ · sλ(t) ◦ αΛ,λ(t) ,

where mλ are positive integers given by the formula: mλ = ∆λ(s, `)−∆Λ(g, 1) (see (2.1)).

Remark 9.10. For the Lie algebra so(2r+ 1), it is easy to see that Vλ is isomorphic to its
dual as an so(2r + 1)-module. Hence λ† = λ.

9.8. Proof of Theorem 1.7. The proof now follows from factorization as in the previous
section, Lemma 9.7, the rank-level duality for SO-weights in [50], and Theorem 9.2.

10. Strange duality maps in higher genus

10.1. Formulation of the problem. As mentioned in the introduction, the natural map
between the special Clifford groups obtained by the tensor product of vector spaces induces
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one between the moduli stacks p : M2r+1×M2s+1 →M2d+1. By a direct calculation we can
check that p∗(P) ' P⊗2s+1�P⊗2r+1. Hence, we obtain the map SD defined in (1.7). Recall
that dimCH

0(M2d+1,P) = 22g, so by Corollary 1.2 the map SD cannot be an isomorphism.
However, it is natural to ask the following:

Question 10.1. For r, s ≥ 1, is the map SD injective?

We shall show that the answer to this question is actually negative for all r, s, and in all
genus.

10.2. Action of J2(C) and the strange duality map. If Wr and Ws are vector spaces
each with a nondegenerate symmetric bilinear form, then the tensor product Wd = Wr⊗Ws

inherits one as well. This gives an embedding SO(Wr)×SO(Ws) −→ SO(Wd). If dimCWr =
2r + 1, dimCWs = 2s + 1, the map above in turn induces one between the corresponding
moduli stacks,

(10.1) m : MSO(2r+1) ×MSO(2s+1) −→MSO(2d+1) .

The embedding of orthogonal groups lifts to one on spin groups. Then we have a
commutative diagram:

Z/2× Z/2

��

// Z/2

��
Spin(2r + 1)× Spin(2s+ 1)

��

// Spin(2d+ 1)

��
SO(2r + 1)× SO(2s+ 1) // SO(2d+ 1)

(10.2)

where the map Z/2×Z/2→ Z/2 is multiplication. By results of [13], we know that M2r+1

forms a J2(C) torsor over MSO(2r+1). Hence, from (10.2) we get the following commutative
diagram of moduli stacks:

M2r+1 ×M2s+1

J2(C)×J2(C)

��

// M2d+1

J2(C)

��
MSO(2r+1) ×MSO(2s+1)

m // MSO(2d+1)

(10.3)

which is equivariant with respect to the action of J2(C)× J2(C) under the multiplication
map J2(C)× J2(C)→ J2(C).

The natural inclusion of SO(2r+1) ⊂ SL(2r+1) gives the following commutative diagram
of moduli stacks:

MSO(2r+1) ×MSO(2s+1)

f1⊗f2
��

m // MSO(2d+1)

f

��
MSL(2r+1) ×MSL(2s+1)

p // MSL(2d+1)

Let D be the determinant of cohomology on MSL(2d+1) (cf. Proposition 3.4). Also, denote

by ‹D the pull-back of D under f . Since we know that p∗D = D⊗(2s+1) � D⊗(2r+1), it
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follows that m∗‹D = ‹D⊗(2s+1)
1 �‹D⊗(2r+1)

2 , where Di and (resp. ‹Di) denote the determinants
of cohomology and their respective pull-backs. From Proposition 3.4, it follows that if we fix

a theta characteristic κ, the pull-back of Pκ under the mapm in (10.1) is P
⊗(2s+1)
κ �P

⊗(2r+1)
κ .

As mentioned before, given κ ∈ Th(C) we get an action of J2(C) on the space of global

sections H0(M2r+1,P
⊗(2s+1)), and the above diagram of moduli stacks commutes and is

equivariant with respect to J2(C)× J2(C). We have the following.

Lemma 10.2. Let X and Y be two spaces with an action of a group G actions and
f : X → Y be a G-equivariant map. Suppose L is a line bundle on Y and suppose both L

and f∗L are G-linearized. Then the map of global sections is G-equivariant

f∗ : H0(Y,L) −→ H0(X, f∗(L)) .

Proof. Let s be a global section of X and we consider gf∗(s). Let x be any element of
X. Then we get gf∗(s)(x) = f∗(s)(g−1x) = s(f(g−1x) = s(g−1(f(x)). On the other hand
f∗(g(s))(x) = (g(s))(f(x) = s(g−1f(x)). Thus we have the equality gf∗(s) = f∗(gs). �

The commutativity of the diagram 10.3 and Lemma 10.2 implies that the following map
of global sections is J2(C)× J2(C) equivariant.

(10.4) H0(M2r+1,P
⊗(2s+1))∗ ⊗H0(M2s+1,P

⊗(2r+1))∗ −→ H0(M2d+1,P)∗ .

Lemma 10.3. Let V1, V2 and W be three vector spaces endowed with an action of a finite
abelian group A. Let f : V1 ⊗ V2 → W be a A × A equivariant map, where the action of
A × A on W is via multiplication map A × A → A. Then f : V χ1

1 ⊗ V χ2
2 → Wχ3 is zero

unless χ1 = χ2 = χ3, where V χ denotes the χ-character spaces of a vector space V with

respect to A and χ ∈ “A.

Proof. The proof follows directly by taking character subspaces of f with respect to A×A.
This implies that χ1(a1)χ2(a2) = χ3(a1.a2) for any a1 and a2 in A. This is only possible
when χ1 = χ2 = χ3. �

Let V be a finite dimensional vector space and A a finite abelian group acting on V .
The invariant subspace V A is a A-submodule of V , and since A is finite, V admits an
orthogonal splitting of the form V = ⊕

χ∈ÂV
χ, i.e. there is a symmetric nondegenerate

bilinear A-invariant bilinear form {, } such that {V χ1 , V χ2} = 0 unless χ1 = χ2. Hence

s : (V χ)∗ ' (V ∗)χ canonically. The map is given as if f ∈ (V χ)∗, then extend f to f̃ by

the obvious rule f̃(v) = 0 unless v ∈ V χ. Clearly f̃ ∈ (V ∗)χ.

Lemma 10.4. Let V1, V2 and W be as in Lemma 10.3 and further assume that f∗ : V1 →
V ∗2 ⊗ W is injective. Then the induced map between the χ-character spaces g : V χ

1 →
(V χ

2 )∗ ⊗Wχ is also injective.

Proof. Since the map f is A×A equivariant under the multiplication map, then it is also
equivariant with respect to the subgroup B = A × id. Taking invariants with respect to
B implies that the map f∗χ : V χ

1 → V ∗2 ⊗Wχ is also injective. Now recall that there is

a canonical isomorphism s : (V χ)∗ ∼−−→ (V ∗)χ. Consider the map V χ
1 → V ∗2 ⊗Wχ given
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by the following: V χ
1

g−→ (V χ
2 )∗ ⊗Wχ s−→ (V ∗2 )χ ⊗Wχ ↪→ V ∗2 ⊗Wχ. It follows from the

definition that the composition of the above map coincides with f∗χ, and since the latter is
injective so must be g. �

By taking invariants in (10.4) with respect to the J2(C) × J2(C) action, Lemma 10.4
and “yes” to Question 10.1 would imply that the following map is injective:î

H0(M2r+1,P
⊗(2s+1))∗

óJ2(C) −→
î
H0(M2s+1,P

⊗(2r+1))
óJ2(C) ⊗ C · s∗κ .

Now since r and s are arbitrary, and
î
H0(M2r+1,P

⊗(2s+1))
óJ2(C)

= H0(MSO(2r+1),P
2s+1
κ ),

we get the following :

Question 10.5. Let κ ∈ Th(C) and consider the Pfaffian section sκ in H0(MSO(2d+1),Pκ).
The pull-back of the Pfaffian divisor induces a strange duality map:

s∗κ : H0(MSO(2r+1),P
⊗(2s+1)
κ )∗ −→ H0(MSO(2s+1),P

⊗(2r+1)
κ ) .

Is s∗κ an isomorphism for all κ?

The discussion above tells us that an affirmative answer to Question 10.1 implies an
affirmative answer to Question 10.5. We now show the converse.

Proposition 10.6. Questions 10.1 and 10.5 are equivalent.

Proof. Since the H0(M2d+1,P)J2(C) is one dimensional and generated by sκ, it follows from

Lemma 10.3 that the map:s∗κ : H0(MSO(2r+1),P
⊗(2s+1)
κ1 )∗ −→ H0(MSO(2s+1),P

⊗(2r+1)
κ2 ) is

zero unless κ = κ1 = κ2. Now if the answer to Question 10.5 is yes, this implies that for
κ = κ1 = κ2, then s∗κ is injective. Since the level is odd, we have L2r+1

χ = Lχ, where Lχ is
the two torsion line bundle corresponding to the character χ, and so

H0(M2r+1,P
⊗(2r+1)) '

⊕
κ∈Th(C)

H0(MSO(2r+1),P
⊗(2r+1)
κ ) .

It follows that the map s∗∆ from (1.8) is also injective. This implies an affirmative answer
to Question 10.1. In the above decomposition, it is crucial that we are working with odd
levels. �

10.3. Comparison of dualities and reduction to genus one. In this section, we re-
formulate Question 10.1 in terms of conformal blocks. We use the factorization/sewing
theorem of conformal blocks to reduce Question 10.1 to a rank-level duality of conformal
blocks on elliptic curves with one marked point (cf. Sections 2.3 and 9.7).

Let C be a stable curve of genus g with one marked point, and let X be the data
associated to the additional choice of a formal neighborhood around the point. Introduce:

Ṽω0(X, so(2r + 1), 2s+ 1) := Vω0(X, so(2r + 1), 2s+ 1)⊕ V(2s+1)ω1
(X, so(2r + 1), 2s+ 1) .
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We have the following diagram:

Ṽω0(X, so(2r + 1), 2s+ 1)⊗ Ṽω0(X, so(2s+ 1), 2r + 1) //

��

Ṽω0(X, so(2d+ 1), 1)

��
H0(M2r+1,P

⊗(2s+1))∗ ⊗H0(M2s+1,P
⊗(2r+1))∗ // H0(M2d+1,P)∗

(10.5)

Here, the vertical arrows are given by Theorem 4.3, and the horizontal arrow on the top
is given by the rank-level duality map induced by the branching rule in Section 8.3. The
other horizontal arrow is the strange duality map. With the above notation, we have the
following.

Proposition 10.7. The rank-level duality and strange duality maps are the same under
uniformization, i.e. the diagram (10.5) commutes.

Proof. The proof follows from the uniformization theorem of the moduli stacks and is
similar to the proof of [16, Prop. 5.2]. We omit the details. �

Recall the notation B(Λ) from Section 8.3.

Question 10.8. Let E be any elliptic curve and X associated to E with a formal neigh-
borhood at one marked point. Let λ ∈ P2s+1(SO(2r+ 1)) (resp. µ ∈ P2r+1(SO(2s+ 1)) and
Λ ∈ P2d+1(SO(2r + 1)) such that Λ is either ω0 or ω1, and (λ, µ) ∈ B(Λ). Is the following
map of conformal blocks injective:

Vλ(X, so(2r + 1), 2s+ 1)→ V∗µ(X, so(2s+ 1), 2r + 1)⊗ VΛ(X, so(2d+ 1), 1)

⊕V∗σ(µ)(X, so(2s+ 1), 2r + 1)⊗ Vσ(Λ)(X, so(2d+ 1), 1) ?

Proposition 10.9. An affirmative answer to Question 10.8 implies one for Question 10.1.

Proof. By Proposition 10.7, it is enough to prove it for conformal blocks. Let C0 be a
nodal curve with g elliptic tails attached to a P1. Consider a one parameter family of
C → Spec(C [[t]]) such that the generic fiber is smooth and the special fiber is C0. The
normalization of C0 is a P1 with g marked points, and g-elliptic curves each with one
marked point. By factorization (cf. Section 9.7), it follows that Vω0(C0, so(2r + 1), 2s+ 1)
splits up as a direct sum where each component looks likeÄ g⊗

i=1

Vλi(E, so(2r + 1), 2s+ 1)
ä
⊗ V~λ(P1, so(2d+ 1), 1) ,

and the direct sum is indexed by g-tuples ~λ = (λ1, . . . , λg), λi ∈ P2s+1(SO(2r + 1). These
weights have the special property that given µ and Λ, there exists at most one λ such that
(λ, µ) ∈ B(Λ) (cf. Section 8.3). This guarantees that the conditions in Lemma 9.7 are
satisfied, and the map in Question 10.1 splits as a direct sum (up to a nonnegative power
of the parameter t) indexed by the set of g-tuple of points in P2s+1(SO(2r + 1)).

Now [50, Prop. 9.11] and the compatibility of factorization/sewing with rank-level duality
(cf. Sections 2.3 and 9.7, and also [65]), imply that Question 10.1 holds in the affirmative
if this is true for Question 10.8 and if there is a rank-level duality isomorphism on P1
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with g marked points and weights coming from P2s+1(SO(2r + 1)). The rank-level duality
isomorphism on P1 with n-marked points and weights coming from P2s+1(SO(2r+ 1)) has
been proved in [50]. Hence, “yes” in Question 10.8 implies “yes” in Question 10.1. �

Remark 10.10. By the same strategy, it is natural to continue by degenerating the elliptic
curves and applying factorization to reduce to the case of P1. However, serious issues
occur due to the appearance of spin weights, which were avoided before. The problems are
twofold. They are:

(1) The property that given Λ and µ, there exists an unique weights λ such that
(λ, µ) ∈ B(Λ) fails. The failure of this property means the factorization of rank-
level duality maps falls into nondiagonal blocks, so we can not do induction.

(2) Rank-level duality isomorphisms on P1 with spin weights fail to hold. This was
explained in Section 9.2.

11. The case of elliptic curves

In this section, we study the following maps and investigate whether they are injective.
An affirmative answer to both would give an affirmative answer to the strange duality ques-
tion for elliptic curves. However, we shall see that this is in fact not the case (Proposition
11.2). Let E be an elliptic curve with one marked point and a choice of formal coordinate.
The maps are:

Vω0(E, so(2r + 1), 2s+ 1) −→
Ä
V∗ω0

(E, so(2s+ 1), 2r + 1)⊗ Vω0(E, so(2d+ 1), 1)

⊕ V∗(2r+1)ω1
(E, so(2s+ 1), 2r + 1)⊗ Vω1(E, so(2d+ 1), 1)

ä
;

(11.1)

V(2s+1)ω1
(E, so(2r + 1), 2s+ 1) −→

Ä
V∗ω0

(E, so(2s+ 1), 2r + 1)⊗ Vω1(E, so(2d+ 1), 1)

⊕ V∗(2r+1)ω1
(E, so(2s+ 1), 2r + 1)⊗ Vω0(E, so(2d+ 1), 1)

ä
.

(11.2)

11.1. Factorization for elliptic curves. We will use factorization to further reduce to
the case of P1 with three marked points. Let us first focus on (11.2). By definition of the
diagram automorphism σ, we know that (2r + 1)ω1 = σ(ω0). Hence, by factorization (cf.
Section 9.7):

dimC V(2r+1)ω1
(E, so(2s+ 1), 2r + 1)

=
∑

λ∈P2s+1(so(2r+1))

dimC V(2r+1)ω1,λ,λ(P1, so(2r + 1), 2s+ 1)

=
∑

λ∈P2s+1(so(2r+1))

dimC Vω0,σ(λ),λ(P1, so(2r + 1), 2s+ 1) (cf. [28])

= |{λ ∈ P2s+1(so(2r + 1)) | σ(λ) = λ}|
= |Yr,s\Yr,s−1| .

By the above calculation, the next result proves injectivity of (11.2):
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Proposition 11.1. The rank-level duality map between the following one dimensional con-
formal blocks is an isomorphism.

V(2s+1)ω1,λ,λ(P1, so(2r + 1), 2s+ 1) −→
V∗ω0,λ∗,λ∗(P

1, so(2s+ 1), 2r + 1)⊗ Vω1,ωd,ωd(P
1, so(2d+ 1), 1) ,

where λ = Y + ωr and Y ∈ Yr,s\Yr,s−1 and λ∗ = Y ∗ + ωs and Y ∗ ∈ Ys,r obtained by taking
the transpose of Y and taking the complement in an r × s box.

Proof. This is a consequence of Theorem 9.2. �

It remains to investigate the injectivity of (11.1). The following appear in the factoriza-
tions of the conformal block Vω0(E, so(2r + 1), 2s+ 1):

(1) Vλ,λ(P1, so(2r + 1), 2s+ 1) for λ ∈ Yr,s.
(2) Vλ,λ(P1, so(2r+ 1), 2s+ 1) and Vσ(λ),σ(λ)(P1, so(2r+ 1), 2s+ 1) for λ ∈ Yr,s−1 +ωr.

(3) Vλ,λ(P1, so(2r + 1), 2s+ 1) for λ ∈ Yr,s\Yr,s−1.

Thus we need for check injectivity for each of the factors. For the factors of the form in
(1), λ is a weight of SO(2r + 1), and we only need that the rank-level duality map is an
isomorphism for λ ∈ Yr,s:

Vλ,λ(P1, so(2r + 1), 2s+ 1)→ VλT ,λT (P1, so(2r + 1), 2s+ 1)∗ ⊗ Vωε,ωε(P1, so(2d+ 1), 1) ,

where ε is zero or one depending on the parity of |λ|. This is done in [50]. The argument
for λ ∈ Yr,s\Yr,s−1 follows from Theorem 1.7. Thus, we are only left with the case when
λ ∈ Yr,s−1 + ωr. For every λ = Y + ωr, Y ∈ Yr,s−1, consider the map:

Vω0,λ,λ(P1, so(2r + 1), 2s+ 1)⊕ Vω0,σ(λ),σ(λ)(P1, so(2r + 1), 2s+ 1)

−→ V∗ω0,λ∗,λ∗(P
1, so(2s+ 1), 2r + 1)⊗ Vω0,ωd,ωd(P

1, so(2d+ 1), 1)

⊕ V∗(2r+1)ω1,λ∗,λ∗
(P1, so(2s+ 1), 2r + 1)⊗ Vω1,ωd,ωd(P

1, so(2d+ 1), 1) .

(11.3)

The following is the main result of this section.

Proposition 11.2. The rank-level duality map in (11.3) is not injective.

Proof of Theorem 1.10. By Propositions 10.9 and 11.2, it follows that the answer to Ques-
tion 10.1 is negative. Then Proposition 10.6 completes the proof. �

Remark 11.3. It is easy to see that the dimensions of both the source and target of (11.3)
is two. Since there are maps between all components that appear in map Question 10.8, it
follows from Theorem 9.2 that all entries of the (2 × 2)-matrix are nonzero. The proof of
Proposition 11.2 is broken up to into several steps. We will fix an explicit basis to compute
the matrix of the map (11.3) and show that the determinant vanishes.
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11.2. Tensor decompositions. We digress to give an explicit expression for highest
weight vectors that is compatible with branching and tensor products associated to the
marked points. As above, let X refer to the data of a curve C with marked points and
a choice of local coordinates. To make the notation more transparent, let us denote the
inclusion of an abstract highest weight ŝo(2r + 1) ⊕ ŝo(2s + 1) module appearing in the
branching of a highest weight ŝo(2d+ 1) module by

βλµΛ : Hλ(so(2r + 1))⊗Hµ(so(2s+ 1)) ↪→ HΛ(so(2d+ 1)) .

For an element v1 ⊗ · · · ⊗ vn ∈ Hλ1(g)⊗ · · · ⊗Hλn(g), let [v1 ⊗ · · · ⊗ vn] denote the vector
in the quotient space of dual conformal blocks, e.g.

[v1 ⊗ · · · ⊗ vn] ∈ V~λ(X, so(2r + 1), 2s+ 1) = H~λ
(so(2s+ 1))/g(X)H~λ

(so(2s+ 1)) ,

where ~λ = (λ1, . . . , λn). Since X is fixed, we will drop the notation for the curve X from
the notation of conformal blocks. It is easy to check (and we have already used!) the fact
that the map

Vλ1,λ2,λ3(so(2r + 1), 2s+ 1)⊗ Vµ1,µ2,µ3(so(2s+ 1), 2r + 1)→ VΛ1,Λ2,Λ3(so(2d+ 1), 1) ,

[v1 ⊗ v2 ⊗ v3]⊗ [w1 ⊗ w2 ⊗ w3] 7→
î
βλ1µ1Λ1

(v1 ⊗ w1)⊗ βλ2µ2Λ2
(v2 ⊗ w2)⊗ βλ3µ3Λ3

(v3 ⊗ w3)
ó
,

is well-defined.
Let vλ ∈ Hωd(so(2d + 1)) be the highest weight vector of the component Hλ(so(2r +

1))⊗Hλ∗(so(2s+1)), and v̄λ ∈ Hωd(so(2d+1)) the highest weight vector of the component
Hσ(λ)(so(2r+1))⊗Hλ∗(so(2s+1)) as expressed explicitly as an element of Hωd(so(2d+1))

as in Section 8.4. We denote vλ and v̄λ to be the corresponding opposite highest weights
again expressed explicitly.

Choose highest weight vectors v1 and v2 of Hλ(so(2r + 1)) and Hλ∗(so(2s + 1)) such
that βλλ

∗
ωd

(v1 ⊗ v2) = vλ. Similarly choose v1 and v2 for the opposite highest weight such

that βλλ
∗

ωd
(v1⊗ v2) = vλ. Let v̄1 be such that β

σ(λ)λ∗
ωd (v̄1⊗ v2) = v̄λ and similarly choose v̄1

for the corresponding v̄λ.
Let ṽ be a vector in Hω1(so(2d+ 1)) which is equal (up to a scalar) to R2r+1(B0

1) acting
on the highest weight vector of the component Hω0(so(2r + 1)) ⊗ H(2r+1)ω1

(so(2s + 1))
expressed explicitly in Clifford algebra terms. Since we get the vector ṽ by acting only
on the right component in the tensor decomposition, it follows that ṽ is a pure tensor in
Hω0(so(2r + 1))⊗H(2r+1)ω1

(so(2s+ 1)). Hence, we can choose x ∈ H(2r+1)ω1
(so(2s+ 1))

such that β
0,(2r+1)ω1
ω1 (1⊗ x) = ṽ.

We are interested in the following classes.
• Vω0,λ,λ(so(2r + 1), 2s+ 1)⊗ Vω0,λ∗,λ∗(so(2s+ 1), 2r + 1)→ Vω0,ωd,ωd(so(2d+ 1), 1)

[1⊗ v1 ⊗ v1]⊗ [1⊗ v2 ⊗ v2] 7→ [β0,0
0 (1⊗ 1)⊗ βλλ∗ωd

(v1 ⊗ v2)⊗ βλλ∗ωd
(v1 ⊗ v2)]

= [1⊗ vλ ⊗ vλ] .

• Vω0,σ(λ),σ(λ)(so(2r + 1), 2s+ 1)⊗ Vω0,λ∗,λ∗(so(2s+ 1), 2r + 1)→ Vω0,ωd,ωd(so(2d+ 1), 1)
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[1⊗ v̄1 ⊗ v̄1]⊗ [1⊗ v2 ⊗ v2] 7→ [β0,0
0 (1⊗ 1)⊗ βσ(λ)λ∗

ωd
(v̄1 ⊗ v2)⊗ βσ(λ)λ∗

ωd
(v̄1 ⊗ v2)]

= [1⊗ v̄λ ⊗ v̄λ] .

• Vω0,λ,λ(so(2r + 1), 2s+ 1)⊗ V(2r+1)ω1,λ∗,λ∗(so(2s+ 1), 2r + 1)→ Vω1,ωd,ωd(so(2d+ 1), 1)

[1⊗ v1 ⊗ v1]⊗ [x⊗ v2 ⊗ v2] 7→ [β0,(2r+1)ω1
ω1

(1⊗ x)⊗ βλλ∗ωd
(v1 ⊗ v2)⊗ βλλ∗ωd

(v1 ⊗ v2)]

= [ṽ ⊗ vλ ⊗ vλ] .

• Vω0,σ(λ),σ(λ)(so(2r+1), 2s+1)⊗V(2r+1)ω1,λ∗,λ∗(so(2s+1), 2r+1)→ Vω1,ωd,ωd(so(2d+1), 1)

[1⊗ v̄1 ⊗ v̄1]⊗ [x⊗ v2 ⊗ v2] 7→ [β0,(2r+1)ω1
ω1

(1⊗ x)⊗ βσ(λ)λ∗
ωd

(v̄1 ⊗ v2)⊗ βσ(λ)λ∗
ωd

(v̄1 ⊗ v2)]

= [ṽ ⊗ v̄λ ⊗ v̄λ] .

11.3. Case by case analysis.

11.3.1. The case (ω0, λ, λ) × (ω0, λ
∗, λ∗) → (ω0, ωd, ωd). Let λ = Y + ωr, Y ∈ Yr,s. Let

vλ =
∧
Ỹi,j=�

φi,j as in Proposition 8.3. Similarly let vλ =
∧
Ỹi,j=�

φi,j . Let 〈Ψ| denote the

unique up to constants nonzero element of V∗ω0,ωd,ωd
(P1, so(2d+ 1), 1). This was discussed

in Section 7.3.1. Let B( , ) be the nondegenerate bilinear form on Wd. The choice of vλ
(resp. vλ) implies that 〈Ψ|1⊗ vλ ⊗ vλ〉 is up to a sign equal to

∏
Ỹi,j=�

B(φi,j , φ
i,j) which

is nonzero.

11.3.2. The case (ω0, λ, λ)×((2r+1)ω1, λ
∗, λ∗)→ (ω1, ωd, ωd). Let λ = Y +ωr and further

assume that λ ∈ Yr,s−1. We choose vλ and vλ as above in the previous case. We need
to choose a vector in Hω0(so(2r + 1)) ⊗ H(2r+1)ω1

(so(2s + 1)) as an explicit element in

Hω1(so(2d + 1)). We choose the vector: ṽ := B2,0
2,0(−1) · · ·Br,0

r,0(−1)B0,0
1,0(−1)φ1,0(−1

2). Let

〈‹Ψ | be the unique nonzero vector of V∗ω1,ωd,ωd
(P1, so(2d+ 1), 1) normalized such that it is

equal to the one induced from Clifford multiplication (cf. Section 7.3.2). We now evaluate
the following using gauge symmetry (cf. Section 2.3) and choosing the points to be (1, 0,∞)
with the obvious local coordinates.

〈‹Ψ | ṽ ⊗ vλ ⊗ vλ〉 = 〈‹Ψ | B2,0
2,0(−1) · · ·Br,0

r,0(−1)B0,0
1,0(−1)φ1,0(−1

2)⊗ vλ ⊗ vλ〉

= (−1)〈‹Ψ | Br,0
r,0(−1)B0,0

1,0(−1)φ1,0(−1
2)⊗B2,0

2,0vλ ⊗ v
λ〉

=
1

2
〈‹Ψ | Br,0

r,0(−1)B0,0
1,0(−1)φ1,0(−1

2)⊗ vλ ⊗ vλ〉

=
1

2r−1
〈‹Ψ | B0,0

1,0(−1)φ1,0(−1
2)⊗ vλ ⊗ vλ〉

=
1

2r−1
〈‹Ψ | φ1,0(−1

2)⊗B0,0
1,0vλ ⊗ v

λ〉

=
1

2r−1

(−1)rs−|λ|+1

√
2

〈‹Ψ | φ1,0(−1
2)⊗ φ1,0 ∧ vλ ⊗ vλ〉 .
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We used the following in the calculation above.

Lemma 11.4. With the same notation,

(1) for i > 0, we get Bi,0
i,0vλ = 1

2vλ ;

(2) B0,0
1,0vλ = (−1)rs−|λ|+1

√
2

φ1,0 ∧ vλ.

Proof. The proof is as usual by a direct calculation. The most important observation is
that

√
2φ0,0v = (−1)pv, where p is the degree of v in

∧
W−d . �

11.3.3. The case (ω0, σ(λ), σ(λ))× (ω0, λ
∗, λ∗)→ (ω0, ωd, ωd). Let λ = Y + ωr and further

assume that the number of boxes in the first row of Y is s−1. Assume that Y = Y +y1,−1,
so that the number of boxes of Y is s. Let λ̄ = Y +ωr and vλ̄ =

∧
Ỹ i,j=�

φi,j (for notation,

see Section 8.4).
We need to choose a highest weight vector of Hσ(λ)(so(2r+ 1))⊗Hλ∗(so(2s+ 1)) as an

explicit element in Hωd(so(2d+ 1)). Applying Corollary 8.5, we choose v̄λ := B1,1
0,0(−1)vλ̄.

Let 〈Ψ | be the unique element of the V∗ω0,ωd,ωd
(P1, so(2d+ 1), 1) We want to evaluate the

following:

〈Ψ | 1⊗ v̄λ ⊗ v̄λ〉 = 〈Ψ | 1⊗B1,1
0,0(−1)vλ̄ ⊗B

0,0
1,1(−1)vλ̄〉

= −〈Ψ | 1⊗B0,0
1,1(1)B1,1

0,0(−1)vλ̄ ⊗ vλ̄〉

= −〈Ψ | 1⊗
Ä
[B0,0

1,1 , B
1,1
0,0 ] + (B0,0

1,1 , B
1,1
0,0)c

ä
vλ̄ ⊗ vλ̄〉

= −〈Ψ | 1⊗ [B0,0
1,1 , B

1,1
0,0 ]vλ̄ ⊗ vλ̄〉 − 〈Ψ | 1⊗ vλ̄ ⊗ vλ̄〉

= 〈Ψ | 1⊗B1,1
1,1vλ̄ ⊗ v

λ̄〉 − 〈Ψ | 1⊗ vλ̄ ⊗ vλ̄〉

=
1

2
〈Ψ | 1⊗ vλ̄ ⊗ vλ̄〉 − 〈Ψ | 1⊗ vλ̄ ⊗ vλ̄〉

= −1

2
〈Ψ | 1⊗ vλ̄ ⊗ vλ̄〉 .

11.3.4. The case (ω0, σ(λ), σ(λ)) × ((2r + 1)ω1, λ
∗, λ∗) → (ω1, ωd, ωd). Let λ be such that

the Young diagram associated to the weight λ has exactly s− 1 boxes in the first row. Let

〈‹Ψ | be the unique nonzero element of V∗ω1,ωd,ωd
(P1, so(2d + 1), 1) normalized such that it

is equal to the Clifford multiplication. We want to evaluate

〈‹Ψ | ṽ ⊗ v̄λ ⊗ v̄λ〉 =
1

2
〈Ψ | ṽ ⊗ vλ̄ ⊗ vλ̄〉 =

1

2r
〈‹Ψ | B0,0

1,0(−1)φ1,0(−1
2)⊗ vλ̄ ⊗ vλ̄〉

=
1

2r
〈‹Ψ | φ1,0(−1

2)⊗B0,0
1,0vλ̄ ⊗ v

λ̄〉

=
1

2r
〈‹Ψ | φ1,0(−1

2)⊗ •
• φ

0,0φ1,0
•
• vλ̄ ⊗ vλ̄〉

=
1

2r
〈‹Ψ | φ1,0(−1

2)⊗ φ0,0(φ1,0 ∧ vλ̄)⊗ vλ̄〉
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=
(−1)(rs−|λ̄|+1)

(
√

2)2r+1
〈‹Ψ | φ1,0(−1

2)⊗ φ1,0 ∧ vλ̄ ⊗ vλ̄〉

=
(−1)(rs−|λ|)

(
√

2)2r+1
〈‹Ψ | φ1,0(−1

2)⊗ φ1,0 ∧ vλ̄ ⊗ vλ̄〉 .

11.4. Proof of Proposition 11.2. Let λ = Y + ωr, Y ∈ Yr,s−1, and we further assume
that the number of boxes in the first row of Y is exactly s− 1. The previous calculations
tell us that the matrix of the map (11.3) is the following: Aλ := 〈Ψ | 1⊗ vλ ⊗ vλ〉 − 1

a2
〈Ψ | 1⊗ vλ̄ ⊗ vλ̄〉

(−1)rs+1−|λ|

a2r−1 〈‹Ψ | φ1,0(−1
2)⊗ φ1,0 ∧ vλ ⊗ vλ〉 (−1)(rs−|λ|)

a2r+1 〈‹Ψ | φ1,0(−1
2)⊗ φ1,0 ∧ vλ̄ ⊗ vλ̄〉

 .
Then the determinant is (up to a constant): detAλ '

〈Ψ | 1⊗vλ⊗vλ〉〈‹Ψ | φ1,0(−1
2)⊗φ1,0∧vλ̄⊗vλ̄〉−〈Ψ | 1⊗vλ̄⊗vλ̄〉〈‹Ψ | φ1,0(−1

2)⊗φ1,0∧vλ⊗vλ〉 .

But now by the construction of 〈‹Ψ | and 〈Ψ | in Sections 7.3.2 and 7.3.1, we get

• 〈‹Ψ | φ1,0(−1
2)⊗ φ1,0 ∧ vλ ⊗ vλ〉 = 〈Ψ | 1⊗ vλ ⊗ vλ〉;

• 〈‹Ψ | φ1,0(−1
2)⊗ φ1,0 ∧ vλ ⊗ v

λ〉 = 〈Ψ | 1⊗ vλ ⊗ v
λ〉.

It follows that detAλ = 0. This completes the proof.

Appendix A. Computations in the Clifford algebra

In this section, we compute some vectors in the highest weight modules as explicit
elements in the infinite dimensional Clifford algebra.

A.1. Action of L(Bi
j). Consider the rectangle r×s as a Young diagram Y where the rows

are indexed by integer in {1, . . . , r} and the columns by {−s, . . . ,−1}. Let (i, j) be the
coordinates of Y and let v :=

∧
Ỹi,j=� φi,j (cf. Section 8.4).

Proposition A.1. Let v as before be the highest weight vector of the component with
highest weight (ωr, (2r + 1)ωs). Let 0 ≤ k ≤ m ≤ r, then

L(B−k(k+1))L(B
−(k+2)
k+3 ) · · ·L(B

−(m−3)
m−2 )L(B−(m−1)

m ) · v = φk,0 ∧ φk+1,0 ∧ · · · ∧ φm,0 ∧ v .

A.2. Action of Rk(B0
1). Let vk = φ1,1(−1

2)φ2,1(−1
2) · · ·φk,1(−1

2) · 1. In this section, we

want to give explicit expressions for Rk(Bi
j)vk. First, consider the case when k = 1.

Lemma A.2. Consider the highest weight vector φ1,1(−1
2) ·1 of the component with highest

weight (ω1, ω1). Then R(B0
1)φ1,1(−1

2) · 1 = φ1,0(−1
2).

Now we want to compute R2(B0
1)v2. We first have the following lemma
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Lemma A.3. For the component (ω2, 2ω1), φ1,1(−1
2)φ2,2(−1

2)·1, is a highest weight vector.
Moreover,

(A.1) R(B0
1)v2 = φ1,0(−1

2)φ2,1(−1
2) + φ1,1(−1

2)φ2,0(−1
2) .

Proof. The proof is by a direct computation. As before, we know that R(B0
1) acts as∑

−r≤q≤r
•
• φq,0φq,1 •• on the infinite dimensional Clifford algebra for ŝo(2d+ 1). Hence,

R(B0
1)φ1,1(−1

2)φ2,1(−1
2) =

∑
−r≤q≤r

î
φq,0(−1

2)φq,1(1
2)− φq,1(−1

2)φq,0(1
2)
ó
φ1,1(−1

2)φ2,1(−1
2)

=
∑

−r≤q≤r

î
φq,0(−1

2)φq,1(1
2)
ó
φ1,1(−1

2)φ2,1(−1
2)

= φ1,0(−1
2)φ2,1(−1

2)− φ2,0(−1
2)φ1,1(−1

2) .

�

Proposition A.4. We have:

R2(B0
1)v2 = 2

î
φ1,0(−1

2)φ2,0(−1
2)
ä
−
Ä
φ1,−1(−1

2)φ2,1(−1
2) + φ1,1(−1

2)φ2,−1(−1
2)
ó
.

Proof. Compute using (A.1),

R(B0
1)φ1,0(−1

2)φ2,1(−1
2) =

∑
−r≤q≤r

î
φq,0(−1

2)φq,1(1
2)− φq,1(−1

2)φq,0(1
2)
ó
φ1,0(−1

2)φ2,1(−1
2)

= −φ2,0(−1
2)φ1,0(−1

2)− φ−1,1(−1
2)φ2,1(−1

2)

= φ1,0(−1
2)φ−2,0(−1

2) + φ2,1(−1
2)φ−1,1(−1

2)

R(B0
1)φ2,0(−1

2)φ1,1(−1
2) =

∑
−r≤q≤r

î
φq,0(−1

2)φq,1(1
2)− φq,1(−1

2)φq,0(1
2)
ó
φ2,0(−1

2)φ1,1(−1
2)

= −φ1,0(−1
2)φ2,0(−1

2)− φ−2,1(−1
2)φ1,1(−1

2)

= −φ1,0(−1
2)φ−2,0(−1

2)− φ2,−1(−1
2)φ−1,−1(−1

2) .

�

We use the following calculation in the proof of strange duality for the pair (ω2, ωr, ωr)
and (2ω1, (2r + 1)ωs, (2r + 1)ωs).

Lemma A.5. Let w = φ1,0 ∧ φ2,0 ∧
∧

1≤i≤r,−s≤j≤−1 φi,j. Then the following hold in
Hωr(so(2r + 1))⊗H(2s+1)ωs(so(2s+ 1)):

B2,1
−1,1w = B2,−1

−1,−1w = 0 ; B1,0
−2,0w =

∧
1≤i≤r,−s≤j≤−1

φi,j .

Next we compute R3(B0
1)v3. Our strategy is same as the previous steps.

Proposition A.6. We have:

R3(B0
1)v3 = 6

î
φ1,0(−1

2)φ2,0(−1
2)φ3,0(−1

2)
ó
− 3
î
φ1,−1(−1

2)φ2,0(−1
2)φ3,1(−1

2)
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+ φ1,0(−1
2)φ2,−1(−1

2)φ3,1(−1
2) + φ1,−1(−1

2)φ2,1(−1
2)φ3,0(−1

2)

+ φ1,0(−1
2)φ2,1(−1

2)φ3,−1(−1
2) + φ1,1(−1

2)φ2,−1(−1
2)φ3,0(−1

2)

+ φ1,1(−1
2)φ2,0(−1

2)φ3,−1(−1
2)
ó
.

Proof. The proof follows by applying the expression for R(B0
1) successively:

R(B0
1)v3 = φ1,0(−1

2)φ2,1(−1
2)φ3,1(−1

2) + φ1,1(−1
2)φ2,0(−1

2)φ3,1(−1
2)

+ φ1,1(−1
2)φ2,1(−1

2)φ3,0(−1
2) .

R2(B0
1)v3 = 2

Ä
φ1,0(−1

2)φ2,0(−1
2)φ3,1(−1

2) + φ1,0(−1
2φ

2,1(−1
2)φ3,0(−1

2)

+ φ1,1(−1
2φ

2,0(−1
2)φ3,0(−1

2)
ä

−
Ä
φ1,1(−1

2φ
2,1(−1

2)φ3,−1(−1
2) + φ1,1(−1

2)φ2,−1(−1
2)φ3,1(−1

2)

+ φ1,−1(−1
2φ

2,1(−1
2)φ3,1(−1

2)
ä
.

and acting once more by R(B0
1). �

We now gather these calculations into the following algorithm:

• If vk = φ1,1(−1
2) · · ·φk,1(−1

2), then the h2-weight of Rk(B0
1)vk is zero, where h2 is

the Cartan subalgebra of so(2s+ 1).
• The expression for R(B0

1), viewed as an operator on the Clifford module for ŝo(2d+
1), implies that

– if v = φ1,a1(−1
2) · · ·φk,ak(−1

2), where 0 ≤ a1 + · · · + ak ≤ k, and each ai ∈
{−1, 0, 1}, then the action of R(B0

1) on v is a sum of expressions of the form
φ1,b1(−1

2) · · ·φk,bk(−1
2), where exactly one of the bi’s is different from ai;

– the operator R(B0
1) can change an ai = 1 to bi = 0, or ai = 0 to bi = −1. In

the latter case, this introduces a minus sign in front of the new expression. In
particular for each expression φ1,b1(−1

2) · · ·φk,bk(−1
2) appearing in R(B0

1)v,
we get b1 + · · ·+bk+1 = a1 + · · ·+ak. For examples, see the previous lemmas.

• Thus, applying the operator R(B0
1) to vk, k-times, we get an expression which is a

sum of terms of the form (−1)mφ1,c1(−1
2) · · ·φk,ck(−1

2), with multiplicities, where
c1 + · · ·+ ck = 0, and each −1 ≤ ci ≤ 1, and m is the number of (−1)’s appearing
among the ci’s.
• The multiplicity of the expression φ1,0(−1

2) · · ·φk,0(−1
2) is k!.

To summarize, we have the following.

Proposition A.7. As an element of Hωk(so(2r + 1)) ⊗ Hkω1(so(2s + 1)), the vector

Rk(B0
1)vk is of the form k!φ1,0(−1

2) · · ·φk,0(−1
2), plus a sum of terms of the form Bi,a

−j,b(−1)w,
where i 6= j are positive integers and a, b are nonzero.

References

1. Takeshi Abe, Strange duality for parabolic symplectic bundles on a pointed projective line, Int. Math.
Res. Not. IMRN (2008), Art. ID rnn121, 47.



52 SWARNAVA MUKHOPADHYAY AND RICHARD WENTWORTH

2. , Moduli of oriented orthogonal sheaves on a nodal curve, Kyoto J. Math. 53 (2013), no. 1,
55–90.

3. Jørgen Ellegaard Andersen, Hitchin’s connection, Toeplitz operators, and symmetry invariant deforma-
tion quantization, Quantum Topol. 3 (2012), no. 3-4, 293–325.

4. Jørgen Ellegaard Andersen and Jens Fjelstad, Reducibility of quantum representations of mapping class
groups, Lett. Math. Phys. 91 (2010), no. 3, 215–239.

5. Jørgen Ellegaard Andersen and Gregor Masbaum, Involutions on moduli spaces and refinements of the
Verlinde formula, Math. Ann. 314 (1999), no. 2, 291–326.

6. Michael Atiyah and Raoul Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc.
Lond. A 308 (1982), 523–615.

7. Scott Axelrod, Steve Della Pietra, and Edward Witten, Geometric quantization of Chern-Simons gauge
theory, J. Differential Geom. 33 (1991), no. 3, 787–902.

8. F. Alexander Bais and Peter G. Bouwknegt, A classification of subgroup truncations of the bosonic
string, Nuclear Phys. B 279 (1987), no. 3-4, 561–570.

9. Arnaud Beauville, Vector bundles on curves and generalized theta functions: recent results and open
problems, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst.
Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 17–33.

10. , Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65
Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., vol. 9, Bar-Ilan
Univ., Ramat Gan, 1996, pp. 75–96.

11. , Orthogonal bundles on curves and theta functions, Ann. Inst. Fourier (Grenoble) 56 (2006),
no. 5, 1405–1418.

12. Arnaud Beauville and Yves Laszlo, Conformal blocks and generalized theta functions, Comm. Math.
Phys. 164 (1994), no. 2, 385–419.

13. Arnaud Beauville, Yves Laszlo, and Christoph Sorger, The Picard group of the moduli of G-bundles on
a curve, Compositio Math. 112 (1998), no. 2, 183–216.

14. Arnaud Beauville, M. S. Narasimhan, and S. Ramanan, Spectral curves and the generalised theta divisor,
J. Reine Angew. Math. 398 (1989), 169–179.

15. Prakash Belkale, The strange duality conjecture for generic curves, J. Amer. Math. Soc. 21 (2008),
no. 1, 235–258 (electronic).

16. , Strange duality and the Hitchin/WZW connection, J. Differential Geom. 82 (2009), no. 2,
445–465.

17. , Orthogonal bundles, theta characteristics and symplectic strange duality, Compact moduli
spaces and vector bundles, Contemp. Math., vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 185–
193.

18. Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88
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