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1. Introduction

These notes are based on lectures given at Zhejiang University, July 14–20, 2008. My goal

was to present some analytic techniques that can be used to study the action of the mapping

class group on the representations varieties of surface groups. The subject has been quite

active of late. For more information – and more complete coverage of recent work – I refer

the interested reader to the introductory article to the 2007 AIM conference [AIM] and to

the survey article [G06]. I am very grateful to the organizers of the conference for their

extraordinary hospitality, and especially to Lizhen Ji for his work in preparing this volume.

I would also like to thank Bill Goldman for comments.

Let S be a closed oriented surface of genus g ≥ 2 with fundamental group π = π1(S, p). If

G is a connected Lie group, we will be interested in the space

R(π, G) = Hom(π, G)
//

G

where G acts on the space of representations by conjugation:

g · ρ = gρg−1

The double slash essentially means the quotient by this action. If G is noncompact, some

orbits may not be closed, and so to get a Hausdorff moduli space we must identify a given

orbit with those orbits in its closure. This will be explained with a particular example in

Section 4. Note that Aut(π) acts on Hom(π, G) by precomposition. Since inner automor-

phisms act by overall conjugation, this gives an action of the outer automorphism group

Out(π) on R(π, G).

The spaces R(π, G) arise in a variety of contexts, from geometric structures to applications

in low dimensional topology. Here are some motivating questions about R(π, G):

• How many components does it have, and can they be characterized in terms of

properties of the representations (e.g. discreteness)?

• What are the dimensions, topology of the components?

• Is the space compact, or does it admit a natural compactification (natural in the

sense that the action of Out(π) extends to the compactification)?
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• Do the representations correspond to geometric structures?

• Describe the action of Out(π) (e.g. does it act properly discontinuously? ergodically

with respect to natural invariant measures?)

When G is compact, there are answers to essentially all of these questions.

• Connected components in 1-1 correspondence with π1(G) (here, G is semisimple; see

J. Li [Li]).

• Topology (e.g. Poincaré polynomial computed by Harder-Narasimhan, Atiyah-Bott;

[HN, AB]).

• Components are projective varieties (in particular compact; [GIT, NS]).

• The Narasimhan-Seshadri-Ramanathan theorem establishes a 1-1 correspondence be-

tween representations and semistable GC bundles [NS, Ram].

• Out(π) acts ergodically on R(π, G) (Goldman [G97], Pickrell-Xia [PX]).

When G = PSL(2, R):

• Discrete embeddings ρ : π → PSL(2, R) are called Fuchsian. These form entire

contractible components of the representation variety (Teichmüller space).

• Compactified by certain actions on R-trees.

• The Euler class τ(ρ) of the associated RP 1 bundle satisfies the inequality

|τ(ρ)| ≤ |χ(S)| = 2g − 2

(Milnor-Wood [Mil, Wo]; Kneser [Kn]).

• Components of Hom(π, PSL(2, R)) are in 1-1 correspondence with the possible value

of τ(ρ) above (Goldman [G87] and Hitchin [Hi87]) and they retract onto symmetric

products of S.

• The maximal representations, i.e. |τ(ρ)| = 2g − 2, are precisely the Fuchsian ones

(Goldman [G87]).

• Out(π) acts properly on the maximal component (Fricke).

Many of the results above have been generalized to (1) representations into isometry groups of

hermitian symmetric spaces; and (2) the Hitchin-Teichmüller component of representations

to split real forms [Hi92].

In these notes we will focus on the action of Out(π) in two directions. First, we consider

basic properties of the action itself, and in the second part we study the “linearization” of

the action on cohomology. More precisely,

• In Section 2, we will see how some fundamental facts about the action of the mapping

class group on Teichmüller space, specifically properness and Mumford compactness,

generalize to a particular class of representations to arbitrary isometry groups.

• In Section 3, we give results on the action of the mapping class group on the coho-

mology of representation varieties of unitary groups.
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• In Section 4, we describe how to extend this result to the cohomology of the SL(2, C)

representation variety.

2. Action of Out(π) on representation varieties

2.1. Teichmüller space. We first recall some basic definitions.

Definition 1. The Teichmüller space T (S) is the space of equivalence classes of complex

structures on S. The equivalence is given by biholomorphisms connected to the identity.

There are several equivalent models for T (S). As we have described it

T (S) = J(S)
/
Diff0(S)

where J(S) is the space of smooth complex structures on S (inducing the given orientation)

and Diff0(S) denotes diffeomorphisms that are connected to the identity. It is a result of

Earle and Eells [EE] that Diff0(S) acts properly on J(S), and by the contractibility of T (S)

this realizes J(S) as a trivial Diff0(S) principal bundle.

A second description is given by the Fricke space F(S) which is a connected component

of discrete embeddings π → PSL(2, R); i.e.

F(S) ⊂ Hom(π, PSL(2, R))
/
PSL(2, R)

The uniformization theorem states that every complex structure admits a compatible hyper-

bolic metric, and it follows essentially from this fact that F(S) ' T (S).

Definition 2. The mapping class group of S is Mod(S) = Diff+(S)
/
Diff0(S).

Here the superscript + means orientation preserving. Notice that Mod(S) acts on T (S), and

the quotient M(S) = T (S)/Mod(S), is the Riemann moduli space.

We have the following key classical results:

• (Dehn-Nielsen-Baer) Mod(S) = Out(π).

• (Fricke) Mod(S) acts properly discontinuously on T (S).

• (Mumford-Mahler Compactness [M]) If Mε(S) denotes the subspace of M(S) where

the lengths, with respect to the conformal hyperbolic metric, of all closed geodesics

are at least ε > 0, then the set Mε(S) is compact.

Here are some properties of individual mapping classes:

• (Thurston) Mapping classes are either finite order, reducible, or pseudo-Anosov.

• (Yamada [Y], Daskalopoulos-Wentworth [DW], Wolpert [Wol]) From the point of view

of Weil-Peterson geometry, the Thurston classification above is precisely the classi-

fication in terms of elliptic, parabolic, loxodromic. In particular, infinite irreducible

mapping classes have unique Weil-Petersson axes.

• (Thurston) A pseudo-Anosov has a fixed point in the SL(2, C) representation variety

which is a discrete and faithful representation.
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2.2. Generalizing to representation varieties. We will see how the classical theorems

of Fricke and Mumford-Mahler can be bootstrapped to obtain statements for more general

embeddings. Let X be a complete, simply connected length space with nonpositive curvature

(an NPC space; see [BH]). Recall that nonpositive curvature is defined in terms of trian-

gle comparisons. Examples include simply connected Riemannian manifolds of nonpositive

sectional curvature (i.e. Cartan-Hadamard manifolds). Let G = Iso(X).

Definition 3. A subgroup Γ ⊂ G is called discrete if for each metric ball B in X,

# {γ ∈ Γ : γB ∩B 6= ∅} < ∞

Γ is called convex cocompact if there is a Γ-invariant closed convex subset N ⊂ X such that

N/Γ is compact. A homomorphism ρ : π → G is called if ρ(Γ) is discrete (resp. convex

cocompact). The homomorphism is faithful if it is injective.

Examples of discrete, faithful, convex cocompact representations of surface groups:

• When G = PSL(2, R) this is just Teichmüller space;

• When G = PSL(2, C) these are the quasi-Fuchsian representations.

We note the following

Theorem 4. Mod(S) acts properly on the space of quasi-Fuchsian representations.

Proof. By Bers’ simultaneous uniformization theorem, QF(S) ' T (S)× T (S) in a Mod(S)-

equivariant way. Since Mod(S) acts properly on T (S), the result follows. �

This result does not extend to all discrete faithful representations (cf. [SS]). Let C(π, G)

denote the set of discrete, faithful, convex cocompact representations to G. This space is in

some sense a generalization of Teichmüller space, and our aim is to see how the two properties

of Teichmüller space stated above extend to this situation. The first is the following

Theorem 5. Mod(S) acts properly on C(π, G).

Using different techniques, Labourie has shown the following (see [La06, La07a, La08]).

Theorem 6. The action of Mod(S) is proper on the Hitchin-Teichmüller component of

SL(n, R) representations.

More generally, Mod(S) acts properly on the set of representations satisfying the “well-

displacing” property. This includes representations in the Hitchin component, and maximal

symplectic representations (see [La08]). A particular case of the results in [DGLM] shows

that for surface groups the well-displacing condition is equivalent to the orbit maps being

quasi-isometric embeddings.

To describe the analog of Mumford compactness, let

|g| = inf
x∈X

dX(x, gx)
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denote the translation length. For example, if ρ : π → PSL(2, R) is a Fuchsian representation,

then the translation length of an element ρ(γ) is essentially the hyperbolic length of the

closed geodesic in the free homotopy class defined by γ. Let Rε(π, G) denote the subset of

representations with all translation lengths (other than the identity) bounded from below

by ε > 0. We then have the following

Theorem 7. Let X be a simply connected complete Riemannian manifold with curvature

bounded above by a negative constant. Suppose also that G acts cocompactly on X. Then

Mε(S, G) = Rε(π, G)
/
Mod(S)

is compact.

If G is a rank 1 Lie group of noncompact type and X the associated symmetric space,

then this result is a special case of a theorem of Sela [Se]. Below we give a different proof.

We note the following

Corollary 8. A convex cocompact group discrete group in a Cartan-Hadamard manifold with

strict negative curvature contains at most finitely many conjugacy classes of surface groups

of genus g.

These results are proven using a variant of the energy function for harmonic maps defined

by Sacks-Uhlenbeck [SU] and Schoen-Yau [SY], which we describe next.

2.3. Harmonic maps and the energy functional. Let X be an NPC space with G as

above. Given a representation ρ : π → G, we define a functional

Eρ : T (S) −→ R

as follows. Let S̃ be the universal cover of S. For a fixed complex structure σ on S, we

define the energy of a ρ-equivariant map u : S̃ → X to be

E(u) =

∫
S

e(u) dvol =

∫
S

|du|2 dvol

When X is a Riemannian manifold, the energy density e(u) = |du|2 may be defined using

the Riemannian metric on X and any conformal metric on S (and therefore, S̃). Notice,

however, that the energy itself depends only on the complex structure of S, not the choice

of conformal metric. When X is an arbitrary length space, the definition of the density and

energy is far more subtle (see [GS, KS93, KS97, J] for details). It is still true however, that

the energy depends only on the complex structure σ.

With this understood, we define

Eρ(σ) = inf{E(u) : where u is ρ-equivariant}
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This is well defined on Teichmüller space. A map u realizing the infimum is called a harmonic

map. There are various criteria for the existence of harmonic maps. The details are not

important, and we will always assume harmonic maps exist.

We will need two facts.

• The Hopf differential ϕ = u∗(ds2
X)(2,0) of a harmonic map is a holomorphic quadratic

differential. In a local conformal coordinate z = x + iy (and when X is Riemannian)

(1) ϕ = |ux|2 − |uy|2 − 2i〈ux, uy〉

• The derivative of Eρ is given by

d

dt

∣∣∣∣
t=0

Eρ(σt) = −4 Re

(∫
ϕµ

)
Here, ϕ is the Hopf differential of the harmonic map at σ, and µ is the Beltrami

differential for the family σt.

The pairing of quadratic differentials with harmonic Beltrami differentials is nondegener-

ate, so critical points of Eρ correspond to conformal harmonic maps, i.e. those for which ϕ

vanishes identically. A critical point for Eρ is guaranteed if the function is proper. However,

there are nontrivial examples where the minima are not unique. Here is one. Let M → S1

be a fibered 3-manifold with fiber S and pseudo-Anosov monodromy ϕ. By Thurston, M

has a hyperbolic structure. Hence, by the presentation of π1(M) as a mapping cylinder, we

get a representation ρ : π1(S) → PSL(2, C) such that ρ ◦ϕ∗ is conjugate to ρ. It follows that

Eρ is not proper in this case (but it is proper on T (S)
/
〈ϕ〉).

Problem. For which ρ is Eρ proper? For which ρ does Eρ have a unique critical point?

2.4. Convex cocompact representations. We now prove

Proposition 9 ([GW]). If ρ is a discrete, faithful, convex cocompact representation, then

Eρ is proper.

Remark. For G = SL(2, R), properness was first shown by Schoen-Yau, and uniqueness

of the critical point easily follows. Properness for the Hitchin-Teichmüller component of

representations to G = SL(n, R) was shown by Labourie. It follows by work of Labourie

[La07b] and Loftin [Ln] that uniqueness of the minimum of the energy functional holds for

n = 3. It is not known whether critical points are unique for n ≥ 4.

The proof of Proposition 9 is essentially the same as that given by Schoen and Yau [SY].

We will give the details of the argument below.

Step 1: Bounded geometry. The first observation is the following general result. Suppose

Γ ⊂ G is discrete, convex cocompact, and torsion-free. Then there is some ε0 > 0 such that

|γ| ≥ ε0 for all γ ∈ Γ, γ 6= 1. Suppose not. Then there is a sequence {γi} ∈ Γ, γi 6= 1, with
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|γi| → 0. Let N be a closed convex Γ-invariant subset such that N/Γ is compact. Since N

is convex, projection to N is distance nonincreasing. Since it is also Γ invariant, it follows

that this projection is equivariant. Hence, we may assume there is some sequence {xi} ⊂ N

such that d(xi, γixi) → 0. Since N/Γ is compact there are λi ∈ Γ and x ∈ N such that (after

passing to a subsequence) λixi → z. Then

d(λixi, (λiγiλ
−1
i )λixi) −→ 0

Discreteness applied to balls centered at the point z implies that λiγiλ
−1
i is some fixed

element γz ∈ Γ for all but finitely many i. Moreover, z is a fixed point of γz. Since Γ was

assumed to be torsion free, discreteness again implies that γz = 1, and hence γi = 1 for all

but finitely many i, which contradicts the assumptions.

Step 2. Use of Mumford compactness. By the collar lemma, if c is a short geodesic on (S, σ)

of length `, there is an embedded annulus

A` =
{
(r, θ) : 1 ≤ r ≤ e` , θ` ≤ θ ≤ π − θ`

}
where θ` ' `. Now suppose u : S̃ → X is ρ-equivariant, and let γ = ρ(c). By Step 1 we have

ε0 ≤ |γ| ≤
∫ e`

1

‖u∗(∂/∂r)‖ dr

r sin θ
≤

∫ e`

1

e(u)1/2 dr

r sin θ

ε2
0 ≤

∫ e`

1

dr

r

∫ e`

1

e(u)
dr

r sin2 θ

ε2
0

`
(π − 2θ`) ≤

∫
A`

e(u)dvol ≤ E(u)

We conclude that Eρ(σ) ≤ B implies a uniform lower bound on the length of geodesics for

the hyperbolic metric defined by σ.

Step 3. Use of convex cocompactness. It follows from Step 2 and Mumford compactness that

if σi ∈ T (S) is an unbounded sequence with Eρ(σi) ≤ B, then there exist ϕi ∈ Mod(S) such

that ϕ∗i σi → σ∞ (after passing to a subsequence). Let ui be a ρ-equivariant harmonic map

(S̃, σi) → X. Then vi = ui ◦ ϕi are harmonic and equivariant with respect to ρi = ρ ◦ (ϕi)∗.

Fix a point x ∈ S̃. By convex cocompactness, there are λi ∈ ρ(π) such that (up to passing to

a subsequence) λivi(x) converges. Now the vi are uniformly Lipschitz, so by Ascoli’s theorem

we may arrange that ṽi = λivi converges uniformly on compact sets. Notice that ṽi(x) is

equivariant with respect to ρ̃i = λiρiλ
−1
i .

Step 4. Completion of the argument. Fix x ∈ S̃ and c ∈ π. Then for i, j sufficiently large we

have

d(ρi(c)vi(x), ρj(c)vj(x)) ≤ d(vi(cx), vj(cx)) = d(ṽi(cx), ṽj(cx)) < ε0/2

and also

d(vi(x), vj(x)) = d(ṽi(x), ṽj(x)) < ε0/2
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Let g = ρj(c)
−1ρi(c). Then

d(gvi(x), vi(x)) ≤ d(gvi(x), vj(x)) + d(vj(x), vi(x)) < ε0

It follows from Step 1 that ρj(c) = ρi(c) for all i, j sufficiently large. Since ρ is injective, we

conclude that (ϕi)∗(c) = (ϕj)∗(c) for i, j sufficiently large. Doing this on a finite generating

set of π, we conclude that ϕi = ϕj for all i, j sufficiently. But this contradicts the divergence

of σi ∈ T (S).

Proof of Theorem 5. Let K(T (S)) denote the set of compact subsets of T (S), with the Haus-

dorff metric. Since the energy functional Eρ is proper for ρ ∈ C(π, G), we have a map

min : C(π, G) −→ K(T (S))

which associates to ρ its set of minima. This is clearly equivariant with respect to Mod(S).

Now Mod(S) acts properly on K(T (S)), since it acts properly on T (S). Since min is equi-

variant, this implies that Mod acts properly on C(π, G) as well. �

Convex cocompactness is a rather restrictive condition. Kleiner and Leeb [KL] have shown

that for symmetric spaces, essentially all convex cocompact representations come from rank

1 subspaces (see also Quint [Q]). Convex cocompactness is not the only condition one

can impose. Labourie has shown, for example, that Anosov representations have the same

property [La06, La08]. In particular, he gives a different proof of Theorem 5 and Proposition

9. He also shows that Mod(S) acts properly on the Hitchin-Teichmüller component of

SL(n, R) representations. In another direction, Wienhard [Wien] has proven properness

on the maximal components of representations into a large number of isometry groups of

hermitian symmetric spaces.

2.5. Compactness. We now discuss the analog of Mumford compactness, Theorem 7. For

simplicity, assume that the representations are convex cocompact, so that by Theorem 5

there exist minima for Eρ, and hence conformal harmonic maps. The key point is to show

that for any ρ ∈ Rε(π, G) the set of minima of Eρ project into a compact subset of

M(S, G) = R(π, G)
/
Mod(S)

independent of ρ. By Mumford-Mahler compactness, this is guaranteed if we can show that

for σ ∈ min(Eρ), the length of the shortest geodesic of (S, σ) is bounded from below.

This follows from the Bochner formula for harmonic maps of Eells-Sampson [ES]. Namely,

for u harmonic we have

1
2
∆|du|2 = |∇du|2 + RicS(du, du)− RiemX(du, du, du, du)

Let us assume a hyperbolic metric on S, and assume that the sectional curvature of X is

≤ −1. Then for a conformal harmonic map

(2) ∆|du|2 ≥ |du|2(|du|2 − 2)
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(see (1)). By the maximum principle |du|2 ≤ 2, pointwise. It follows that for any c ∈ π,

ε ≤ |ρ(c)|X ≤ `σ(c)

Hence, σ projects to Mε(S, G).

Proof of Theorem 7. Suppose we have a sequence {ρj} ⊂ Rε(π, G). Assume again that the

ρj are convex cocompact. By the previous argument we can find σj and ρj-equivariant

harmonic maps uj such that (2) holds. After composing with elements of Mod(S), we may

assume σj → σ. Since the uj are uniformly Lipschitz, there is a constant C such that

(3) d(uj(x), ρj(c)uj(x)) ≤ C`σ(c)

for all j and all c ∈ π. Let Σ ⊂ π be a generating set. Define the displacement function

DΣ(ρ) = inf
x∈X

max
s∈S

d(x, ρ(s)x)

It follows from (3) that DΣ(ρj) is uniformly bounded for all j. Since G acts cocompactly on

X, it follows easily that ρj converges up to conjugation. With a little more work – essentially

using the assumption that G acts cocompactly – one may drop the assumption of convex

cocompactness. �

The argument above uses strongly the assumption that π is a closed surface group, whereas

Sela’s result [Se] holds more generally. It would be interesting to use recent work on harmonic

maps from 2-complexes to prove the result in this larger context. Also, the Bochner technique

requires X to be a manifold.

Problem. Extend the proof above to more general finitely presented groups π and target

NPC spaces X.

3. Action on the cohomology of the space of flat unitary connections

In the next two sections we consider the action of the mapping class group on the co-

homology of representation varieties. First, since representation varieties R(π, G) arise as

quotients, they have essentially two different natural cohomologies associated to them; the

ordinary singular cohomology, and the equivariant cohomology. Recall that if G acts on a

space X, the equivariant cohomology is given by the Borel construction:

H∗
G(X) = H∗(X ×G EG)

where EG is a contractible principal G bundle over the classifying space BG. As is often

noted, the two extreme cases are when G acts freely (then H∗
G(X) = H∗(X/G)) and when

G acts trivially (then H∗
G(X) = H∗(X)⊗H∗(BG)). Applied to the representation varieties,

in addition to the ordinary cohomology H∗(R(π, G)) we have the equivariant cohomology

H∗
G(Hom(π, G)).
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We have the Birman exact sequence

1 −→ π1(S, p) −→ Mod(S, p) −→ Mod(S) −→ 1

where Mod(S, p) is the mapping class group of isotopy classes of orientation preserving

diffeomorphisms fixing a point p (the isotopy also fixes p). Choosing p as the basepoint for

π = π1(S, p), we have an action of Mod(S, p) on Hom(π, G), and hence on the equivariant

cohomology H∗
G(Hom(π, G)). In fact, one can show that this descends to an action of Mod(S)

(inner automorphisms act trivially on the cohomology).

For compact groups, the arguments of Atiyah-Bott [AB] can be used to show that the

action of the mapping class group on equivariant cohomology factors through the action on

the cohomology of S (see below, and also Frohman [F]). In particular, this gives a result on

the action of the Torelli group, and we will describe this result in detail. For simplicity, we

restrict the discussion below to unitary groups.

First, recall the

Definition 10. The Torelli group I(S) is the normal subgroup of Mod(S) that acts trivially

on the homology of S.

Then we have the following

Theorem 11. Let G be U(n) or SU(n). Then I(S) acts trivially on the G-equivariant

cohomology of Hom(π, G).

3.1. Harder-Narasimhan stratification. In order to prove Theorem 11, we first digress

to describe Atiyah-Bott’s formulation of the Harder-Narasimhan stratification of the space

of holomorphic bundles. Let A be the space of unitary connections on a trivial rank n

hermitian vector bundle E over S. To be explicit, given a base connnection D0, we have

(4) A =
{
D0 + a : a ∈ Ω1(ad E)

}
where ad E denotes the bundle of skew-hermitian endomorphisms of E. Let G denote the

group of unitary gauge transformations, and GC its complexification. We may think of A as

the space of holomorphic structures on E by taking (0, 1) parts of the connection. That is to

say, given D ∈ A, a ∂̄-operator on E is obtained by setting ∂̄E = D(0,1). Conversely, given a

∂̄-operator there is a unique unitary Chern connection inducing the given ∂̄-operator. When

we want to emphasize the holomorphic structure, we write (E, ∂̄E). In particular, GC has an

action on A. Notice that since A is contractible:

H∗
G(A) ' H∗(BG)

Recall that the degree deg(F ) of a bundle F is the integral of its first Chern class over S.

We define the normalized degree, or slope, by µ(F ) = deg(F )/ rk(F ). Since E is trivial, it

has slope zero. We call a holomorphic bundle (E, ∂̄E) is called semistable if for every proper

holomorphic subbundle F ⊂ E we have µ(F ) ≤ 0. By the correspondence described above,
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we have a notion of a sermistable connection as well. The relationship with representations

is given by the famous Narasimhan-Seshadri theorem.

Theorem 12. A connection is semistable if and only if there is a flat connection in the

closure of its GC orbit.

This is a slightly different formulation of the result which frames it in analogy to the

situation in finite dimensional geometric invariant theory. See [Do83, Do87b] for more details.

The GC orbit may not itself contain a flat connection. For this, the extra condition of

polystability is required. The result extends more generally to compact Kähler manifolds,

where it is known as the Donaldson-Uhlenbeck-Yau Theorem [Do85, UY, Do87b].

Given a holomorphic bundle, there is a filtration by subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ E` = E

called the Harder-Narasimhan filtration of E, such that the quotients Qi = Ei/Ei−1 are

semistable. Moreover, µ(Qi) > µ(Qi+1), and the associated graded object ⊕`
i=1Qi is uniquely

determined by the isomorphism class of E (cf. [Ko]). The collection of slopes µ(Qi) is an

important invariant of the isomorphism class of the bundle. We construct an n-tuple of

numbers ~µ(E) = (µ1, . . . , µn) from the Harder-Narasimhan filtration by repeating the µi’s

according to the ranks of the Qi’s. Note that since E is topologically trivial,
∑n

i=1 µi = 0.

We then get a vector ~µ(E), called the Harder-Narasimhan type of E. There is a natural

partial ordering on vectors of this type that is key to the stratification we desire. For a pair

~µ, ~λ of n-tuple’s satisfying µ1 ≥ · · · ≥ µn, λ1 ≥ · · · ≥ λn, and
∑n

i=1 µi =
∑n

i=1 λi, we define

~λ ≤ ~µ ⇐⇒
∑
j≤k

λj ≤
∑
j≤k

µj for all k = 1, . . . , n .

The importance of this ordering is that it defines a stratificaton of the space of holomorphic

structures on a given complex vector bundle over a Riemann surface which may be described

as follows (see [AB, §7]). Let Y~0 = Ass ⊂ A, denote the subset of semistable bundles. This

is the open stratum. Let Y~µ denote the set of bundles of Harder-Narasimhan type ~µ, and let

X~µ =
⋃
~λ≤~µ

Y~λ

Then the collection {X~µ} gives a smooth G-invariant stratification of A. The fundamental

result of Atiyah-Bott states that the inclusions X~λ ↪→ X~µ for ~λ ≤ ~µ induce surjections on

G-equivariant cohomology. In particular, it follows that the inclusion Ass ↪→ A induces a

surjection in equivariant cohomology

(5) H∗(BG) ' H∗
G(A) −→ H∗

G(Ass)
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3.2. The Yang-Mills flow. Let YM denote the Yang-Mills functional:

YM(D) =

∫
S

‖FD‖2 dvol

where FD is the curvature of the connection D. Then YM is invariant under the action of G.

The minimum of YM consists of flat connections Aflat. If Gp ⊂ G is the subgroup of unitary

gauge transformations that are the identity at p, then there homeomorphisms

Aflat
/
Gp ' Hom(π, U(n)) Aflat

/
G ' R(π, U(n))

Explicitly, these are given by the holonomy representation based at the point p. Notice that

by this identification:

H∗
G(Aflat) ' H∗

U(n)(A
flat

/
Gp) ' H∗

U(n)(Hom(π, U(n)))

We note here that if we want to consider representations into SU(n), then we restrict to

connections which induce the trivial connection on the determinant line bundle det(E).

This amounts to taking traceless skew-hermitian endormorphisms in (4).

The higher critical sets consist of reducible Yang-Mills connections, i.e. splittings of the

bundle E = Q1 ⊕ · · · ⊕Q`, where some Qi has nonzero slope. The Yang-Mills flow

∂A

∂t
= −d∗AFA

gives a stratification of the space A in terms of the stable manifolds of these critical sets.

By a theorem of Daskalopoulos and Rade, the flow converges and identifies this Morse

stratification with the Harder-Narasimhan stratification described above. In particular, we

have the following result of Daskalopoulos [D] (see also R̊ade [R]).

Theorem 13. The inclusion Aflat ↪→ Ass is a G-equivariant deformation retract. As a

consequence,

H∗
G(Ass) ' H∗

U(n)(Hom(π, U(n)))

The result also holds for SU(n).

Combining this result with (5) we have the following important

Corollary 14. Let G be U(n) or SU(n). Then the map

kG : H∗(BG) ' H∗
G(A) −→ H∗

G(Hom(π, G))

is surjective.

The map kG is called the Kirwan map, and the statement above is an example of Kirwan

surjectivity. This is an infinite dimensional version of a general result in finite dimensions.

Recall that if G is a compact connected Lie group acting on a compact symplectic manifold X

with a moment map µ : X → g∗, then the symplectic reduction is by definition µ−1(0)/G. A

fundamental theorem of Kirwan [Ki] is that the inclusion µ−1(0) ↪→ X induces a surjection on
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G-equivariant cohomology. In the infinite dimensional setting above, the curvature FD may

be interpreted as the moment map for G acting on A with its natural symplectic structure.

We note that Atiyah-Bott also show that the relative equivariant cohomology groups for

strata associated to successive types are computed in terms of split bundles, and this allows

one to inductively compute the Betti numbers of H∗
G(Ass), and hence, by the above, the

equivariant cohomology of Hom(π, G).

3.3. Topology of the gauge group. Now let G be either SU(n) or U(n). The gauge

group G can be identified with Map0(S, G), where the subscript indicates that the induced

G-bundle from the maps is trivial. Then BG = Map0(S, BG).

Proposition 15. The action of I(S) on H∗(BG) is trivial.

Proof. Let V → BG denote the universal bundle. We have the evaluation map ev : S×BG →
BG. Let cj be the Chern classes of V̂ = ev∗(V ). Since ev is invariant under the action of φ,

it follows that φ∗V̂ = V̂ , so φ∗cj = cj. By the Kunneth formula we may write

cj = αj +

2g∑
k=1

βk
j ⊗ bk + γj

where {bk} is a basis of H1(S). If φ acts trivially on the homology of S, then it preserves αj,

βk
j , and γj. Finally, a key result of Atiyah-Bott is that these classes generate H∗(BG). �

The main result, Theorem 11, follows from Proposion 15 and Corollary 14. One needs to

verify that the Kirwan map is equivariant with respect to the action of the mapping class

group (see [F]).

3.4. Results of Cappell-Lee-Miller. It turns out that the Torelli group does not act

trivially on the ordinary cohomology of R(π, G) [CLM]. We will explain the case of SU(2),

so let’s temporarily set R = R(π, SU(2)). Denote the reducibles and irreducibles by Rred.

and Rirr.. Then the inclusion ı : Rred. ↪→ R gives a long exact sequence in equivariant

cohomology

−→ H∗
eq.(R, Rred.) −→ H∗

eq.(R)
ı∗−→H∗

eq.(R
red.) −→

Here, the subscript indicates that we take the equivariant cohomology, i.e.

H∗
eq.(R) := H∗

SU(2)(Hom(π, SU(2))

and similarly for the others. The exact sequence above comes from the G-equivariant inclu-

sion of reducible flat connections inside all flat connections. We have a similar long exact

sequence in ordinary cohomology

−→ H∗(R, Rred.) −→ H∗(R)
ı∗−→H∗(Rred.) −→
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Now the point is that the gauge group acts freely on the irreducibles Rirr. = R \ Rred., so

equivariant cohomology is the same as ordinary cohomology. This allows us to use the first

sequence to compute the relative group, and plug that into the second long exact sequence.

Also, a simple argument shows that the action of Torelli is nontrival on H∗(R) if and only

if it is nontrivial on H∗(R, Rred.).

Now for each q we have a short exact sequence

0 −→ coker ı∗ −→ Hq(R, Rred.) −→ ker ı∗ −→ 0

The Torelli group acts trivially on ker ı∗ and coker ı∗, but it may act nontrivially on the

middle group. Indeed, given

0 −→ A
f−→B

g−→C −→ 0

with a linear map φ acting trivially on A and C, we define an obstruction Ψ : C → A as

follows: given c ∈ C choose b ∈ B such that g(b) = c. Then g(b − φ(b)) = 0, so there is a

unique a ∈ A with f(a) = b− φ(b). Set a = Ψ(c), and check that this is independent of the

choice of b.

Cappell-Lee-Miller go on to compute this obstruction for particular elements. They first

lift the computation to the cohomology of the gauge groups and then use the Johnson

isomorphism

H1(BI(S, p)) ' Λ3H1(S)

to show that the obstruction is nonvanishing.

4. Action on the cohomology of the SL(2, C) character variety

The case of representations into SL(2, C) is different. The space Hom(π, SL(2, C)) has the

structure of an affine algebraic variety. As previously, set

R(π, SL(2, C)) = Hom(π, SL(2, C))
//

SL(2, C)

where the double slash indicates the invariant theoretic quotient by overall conjugation of

SL(2, C). As mentioned in the introduction, this means that nonclosed orbits are identified

with orbits in their closure. The space R(π, SL(2, C)), which is typically called the SL(2, C)

character variety of the surface S (cf. [CS, LM]), is an irreducible affine variety of com-

plex dimension 6g − 6. There is a surjective algebraic quotient map Hom(π, SL(2, C)) →
R(π, SL(2, C)), and this is a geometric quotient on the open set of irreducible (or simple)

representations. Points of R(π, SL(2, C)) are in 1-1 correspondence with conjugacy classes

of semisimple (or reductive) representations, and every SL(2, C) orbit in Hom(π, SL(2, C))

contains a semisimple representation in its closure.

Since R(π, SL(2, C)) arises as a quotient, we will be interested in the associated equivariant

cohomology. We shall use recent results on the Morse theory of the space of Higgs bundles

to prove the following
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Theorem 16 (see [DW2]). I(S) acts trivially on the equivariant cohomology of

Hom(π, GL(2, C)) and nontrivially on the equivariant cohomology of Hom(π, SL(2, C)).

In fact, we will get an explicit description in terms of Prym representations of the Torelli

group. As with unitary groups, the character varieties may be realized through a gauge

theoretic description. In particular, there is a canonically defined map

H∗(BG) −→ H∗
SL(2,C)(Hom(π, SL(2, C)))

which, by the result above, fails to be surjective (cf. Corollary 14). Hitchin observed that

the space R(π, SL(2, C)) is a hyperkähler quotient. While Kirwan surjectivity holds for fi-

nite dimensional symplectic reductions, it is still unknown for hyperkähler reductions. The

SL(2, C) character variety is an example of the failure for infinite dimensional quotients.

4.1. Higgs bundles. In this lecture we will state a result on the equivariant cohomology of

the space of flat SL(2, C) connections. The gauge theoretic extension to complex groups is

due to Hitchin [Hi87], and here we give a very brief summary for the SL(2, C) case.

By a (rank 2) Higgs bundle on a Riemann surface S we mean a pair (E, Φ), where E → S

is a holomorphic rank 2 vector bundle with fixed trivial determinant, and Φ is a holomorphic

section of the associated bundle End0(E)⊗K of traceless endomorphisms with values in the

canonical bundle. A Higgs bundle (E, Φ) is called semistable if deg(L) ≤ 0 for all holomorphic

line subbundles preserved by Φ. Notice that this allows potentially some unstable bundles

to be semistable Higgs bundles, with the right choice of Φ.

The relationship with representations is given by the following. Fix a hermitian metric on

E, and consider the following equations

(6) FA + [Φ, Φ∗] = 0

These should be regarded as a generalization of the flatness equations.

Then we have the following analog of Theorem 12. This is due to Hitchin [Hi87] and

Simpson [Si].

Theorem 17. A Higgs bundle (A, Φ) is semistable if and only if there is a solution to (6)

in the closure of its GC orbit.

Let Bss denote the space of semistable Higgs bundles of rank 2 with fixed trivial deter-

minant, and MHiggs = Bss
//

GC the moduli space of equivalence classes of semistable rank 2

Higgs bundles with trival determinant.

To see the connection with representations, notice that holomorphicity of Φ is equivalent

to the two equations

dAΨ = 0(7)

dA(∗Ψ) = 0(8)
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where Ψ = Φ + Φ∗. If we define D = dA + Ψ, then the equations (6) and (7) imply that

D is a flat SL(2, C) connection. The following is a result of Corlette [Cor] and Donaldson

[Do87a].

Theorem 18. Every flat SL(2, C) connection has a solution of (8) in the closure of its GC

orbit.

As a consequence, there is a homeomorphism

(9) MHiggs ' R(π, SL(2, C))

We will elaborate on this result in the next section.

4.2. Hyperkähler reduction. We view the cotangent bundle as follows:

T ∗A =
{
(A, Ψ) : A ∈ A , Ψ ∈ Ω1(M,

√
−1 ad0(E))

}
where ad0(E) denotes the bundle of traceless skew-hermitian endomorphisms of E. Then

T ∗A is a hyperkähler manifold, and the action of the gauge group G has associated moment

maps

(10) µ1(A, Ψ) = FA + 1
2
[Ψ, Ψ] , µ2(A, Ψ) = dAΨ , µ3(A, Ψ) = dA(∗Ψ)

Let MHiggs be the moduli space of semistable rank 2 Higgs bundles with trival determinant,

introduced in the previous section, and let m = (µ1, µ2, µ3). Then MHiggs is the hyperkähler

quotient

MHiggs = m−1(0)
/
G = µ−1

1 (0) ∩ µ−1
2 (0) ∩ µ−1

3 (0)
/
G

This is typically regarded as a reduction in steps in two different ways. The first is the point

of view of Hitchin and Simpson described in the last lecture. Let

B = µ−1
2 (0) ∩ µ−1

3 (0) ⊂ T ∗A

denote the space of Higgs bundles. Then

(11) MHiggs = µ−1
1 (0) ∩B

/
G

The second point of view (e.g. Corlette and Donaldson) is as the quotient

(12) R(π, SL(2, C)) = µ−1
3 (0) ∩ (T ∗A)flat

/
G

where

(T ∗A)flat = {(A, Ψ) ∈ T ∗A : D = dA + Ψ is a flat SL(2, C) connection}

By (9), these two points of view give rise to homeomorphic spaces, but their descriptions as

quotients are different. Nevertheless, the following shows that (11) and (12) give rise to the

same equivariant cohomology:

Theorem 19. H∗
SL(2,C)(Hom(π, SL(2, C)) ' H∗

G(Bss).
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We now describe the proof of this result. First, by studying the flow associated to the

Yang-Mills-Higgs functional

YMH(D, Φ) =

∫
S

‖FD + [Φ, Φ∗]‖ dvol

on B, Wilkin has shown the following analog of Theorem 13.

Theorem 20 ([Wil]). The inclusion m−1(0) ↪→ Bss is a G-equivariant deformation retract.

In particular, it induces an isomorphism

H∗
G(Bss) ' H∗

SU(2)(m
−1(0)/Gp)

On the other hand, the holonomy map gives a proper embedding

holp : m−1(0)/Gp ↪→ Hom(π, SL(2, C))

which is SU(2)-equivariant. The second ingredient in the proof is

Theorem 21. The inclusion holp (m−1(0)/Gp) ↪→ Hom(π, SL(2, C)) is an SU(2)-equivariant

deformation retract. In particular,

H∗
SU(2)(m

−1(0)/Gp) ' H∗
SU(2)(Hom(π, SL(2, C))

Hence, Theorem 19 follows Theorems 20 and 21 (note that since SL(2, C)/SU(2) is con-

tractible, the equivariant cohomologies are the same).

The idea of proof of Theorem 21 is to use the harmonic map flow to define a flow on the

space of representations. Fix a lift p̃ ∈ S̃ of p, and a point z ∈ H3 so that PU(2) is identified

with the stabilizer of z in the isometry group PSL(2, C) of H3. Given ρ ∈ Hom(π, SL(2, C)),

choose D ∈ (T ∗A)flat with holp(D) = ρ. The hermitian metric gives a unique ρ-equivariant

lift f : S̃ → H3 with f(p̃) = z. Let ft, t ≥ 0, denote the harmonic map flow with initial

condition f . There is a unique continuous family ht ∈ SL(2, C), h∗t = ht, such that h0 = I,

and htft(p̃) = z. Notice that a different choice of flat connection D̃ with holp(D̃) = ρ will be

related to D by a based gauge transformation g. The flow corresponding to D̃ is f̃t = g · ft,

and since g(p̃) = I, h̃t = ht. Hence, ht is well-defined by ρ. The flow we define is ρt = htρh−1
t .

The result states that this flow defines a continuous retraction to holp (m−1(0)/Gp). When

ρ is not semisimple, the flow converges precisely to the semisimplification.

4.3. Singular Morse theory. We can now attempt to compute the equivariant cohomology

of Hom(π, SL(2, C)) using Morse theory in the spirit of Atiyah-Bott. As before, we have a

decomposition in terms of maximal destabilizing line subbundles

Xd =
d⋃

d′=0

Yd′
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The major difference is that the space B is singular, and this leads to jumping in the dimen-

sion of the normal directions to Yd ⊂ Xd. This lack of a well-defined normal bundle prevents

the Atiyah-Bott lemma from working properly, and the corresponding exact sequences

· · · −→ H∗
G(Xd, Xd−1) −→ H∗

G(Xd) −→ H∗
G(Xd−1) −→ · · ·

do not necessarily split, i.e. the inclusion Xd ↪→ Xd+1, unlike the Atiyah-Bott case, does not

necessarily induce a surjection on equivariant cohomology.

Nevertheless, one does have some control (at least for SL(2, C)), and one can still compute

Poincaré polynomials (see also [HT]). As a consequence, though, the map

(13) H∗(BG) −→ H∗
G(Bss)

is no longer surjective. Interestingly, surjectivity holds for GL(2, C) representations.

4.4. Statement of the result. The results above may be used to compute the action of the

Torelli group on the equivariant cohomology of the space of flat SL(2, C) connections. Since

the map in (13) is no longer surjective, we can no longer conlcude that this action is trivial,

and in fact we will see that it is not. To simplify notation, let us set X(π) = R(π, SL(2, C)),

and

H∗
eq.(X(π)) := H∗

SL(2,C)(Hom(π, SL(2, C))

Define

(14) Γ2 = H1(S, Z/2) ' Hom(π, {±1})

Then Γ2 acts on Hom(π, SL(2, C)) by (γρ)(x) = γ(x)ρ(x). This action commutes with

conjugation by SL(2, C), and hence it defines an action on X(π) and on the ordinary and

equivariant cohomologies. We denote the Γ2 invariant parts of the cohomology by H∗(X(π))Γ2

and H∗
eq.(X(π))Γ2 .

Recall that the Torelli group I(S) is the subgroup of Mod(S) that acts trivially on the

homology of S. In particular, the action of Γ2 commutes with the action of I(S). The

kernel of γ ∈ Γ2 ' Hom(π, {±1}), γ 6= 1, defines an unramified double cover Sγ → S with

involution σ. Let W+
γ (resp. W−

γ ) denote the 2g (resp. 2g − 2) dimensional +1 (resp. −1)

eigensubspaces of H1(Sγ) for σ. A lift of a diffeomorphism of S representing an element of

I(S) that commutes with σ may or may not be in the Torelli group of Sγ; although it acts

trivially on W+
γ it may act nontrivially on W−

γ . Since the two lifts differ by σ, there is thus

defined a representation

(15) Πγ : I(S) −→ Sp(W−
γ , Z)

/
{±I}

which is called the (degree 2) Prym representation of I(S) associated to γ. An element in

ker Πγ has a lift which lies in I(Sγ). By a theorem of Looijenga [Lo], the image of Πγ has

finite index for g > 2. Note that the representations for various γ 6= 1 are isomorphic via
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outer automorphisms of I(S). Πγ induces nontrivial representations of I(S) on the exterior

products

V (q, γ) = ΛqW−
γ

when q is even.

Here is the main result.

Theorem 22. (1) I(S) acts trivially on H∗
eq.(X(π))Γ2.

(2) For q ∈ S = {2j}g−2
j=1 the action of I(S) splits as

H6g−6−q
eq. (X(π)) = H6g−6−q

eq. (X(π))Γ2 ⊕
⊕

1 6=γ∈Γ2

V (q, γ)

(3) I(S) acts trivially on H6g−6−q
eq. (X(π)) for q 6∈ S.

In particular, if we define the Prym-Torelli group

PI(S) =
⋂

1 6=γ∈Γ2

ker Πγ

then PI(S) acts trivially and I(S) acts nontrivially on H∗
eq.(X(π)) for g > 2. The splitting

of the sum of V (q, γ)’s is canonically determined by a choice of homology basis of S.

Time does not permit a full description of the proof of Theorem 22. We wish here to give

a hint as to the origin of Prym representations. This was already apparent in the work of

Hitchin. The key is to look at the higher critical sets.

A split Higgs bundle E = L1 ⊕ L2 has a Higgs field which is diagonal with respect to

this splitting. Contained in the “normal” directions to this point in the critical set are off

diagonal endomorphisms, for example, parametrized by nonzero elements

ϕ ∈ H0(L∗1 ⊗ L2 ⊗K)

Since we have fixed the determinant, ϕ is a nonzero section of (L2)
2 ⊗ K. While ϕ is

determined by an element of Symm(S) for some m, the line bundle L2 is only determined

up to two torsion. Hence, the parameter space is the 22g cover S̃ymm(S). The noninvariant

parts of H∗(S̃ymm(S)) give precisely the Prym representations of the Torelli group described

above.

Extra work is needed to show these representations split over the long exact sequences that

build up the equivariant cohomology of Bss. This is where the Γ2-action plays an important

role. Full details of this result will appear in a forthcoming work [DW3].
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