1) (8 pts) Prove or disprove the following: the product of a non-zero rational and an irrational is irrational.
2) (12pts) Show that $L_{n}=f_{n-1}+f_{n+1}$ where $L_{n}=L_{n-1}+L_{n-2}, L_{1}=1$ and $L_{2}=3$.
3) (10pts) Show if $a, b, c \in \mathbb{Z}, c \neq 0$ then $a \mid b$ iff $a c \mid b c$.
4) (10pts) Suppose $a, b, c \in \mathbb{Z}$ with $(a, b)=1$. Show that if $c \mid(a+b)$ then $(c, a)=1$.
5) (8 pts) Use the extended Euclidean Algorithm to find the $\operatorname{gcd}(198,54)$ and write it as a linear combination of 198 and 54.
6) (12pts) Show if $a^{3} \mid b^{2}$ then $a \mid b$.
7) (8pts) Show if $a, b \in \mathbb{Z}, m, n \in \mathbb{Z}^{+}$such that $n \mid m$ and $a \equiv b(\bmod m)$ then $a \equiv b(\bmod n)$.
8) (10pts) Show $x^{2} \equiv 1(\bmod p)$, with p an odd prime, has two incongruent solutions and list them.
9) (12pts) Find all the simultaneous solutions to $x \equiv 0(\bmod 4)$, $x \equiv 2(\bmod 3)$, and $x \equiv 2$ $(\bmod 5)$.
10) Using techniques from section 5.1 do the following.
a) (5pts) What is the highest power of 5 dividing 111,250 ?
b) (5 pts) What digit x makes $1 x 1051$ divisible by 11 ?
