1) (8pts) Show that if p is a prime and $a \in \mathbb{Z}$ then $p \mid\left(a^{p}+a(p-1)!\right)$.
2) (8pts) Show that if n is a pseudoprime to the base a then n is a pseudoprime to the base a^{k} for all positive k.
3) (12pts) Show that if $2 \nmid a$ or $8 \mid a$ then $a^{5} \equiv a(\bmod 40)$.
4) a) (6pts) Show that $\phi(p \cdot n)=\left\{\begin{array}{ll}(p-1) \phi(n) & \text { if } p \nmid n \\ p \phi(n) & \text { if } p \mid n\end{array}\right.$ for p a prime.
b) (6 pts) Find all n with $\phi(n)=4$. (Show your work.)
5) a) (8pts) Find all n with $\sigma(n)=12$. (Show your work.)
b) (3pts) Find $\tau(48)$.
6) (8pts) Show that if $m \in \mathbb{Z}^{+}$and there is an integer a relatively prime to m such that $\operatorname{ord}_{m} a=m-1$ then m is prime.
7) a) (7pts) Find a complete set of incongruent primitive roots modulo 11.
b) (4 pts) Find a complete set of incongruent primitive roots modulo $2 \cdot 11$.
c) (3pts) If r is a primitive root modulo 13 then give possible primitive roots modulo 13^{2}.
d) (3pts) If r is a primitive root modulo 13^{2} then give a primitive root modulo 13^{k} for all $k \in \mathbb{Z}^{+}$.
8) a) (4pts) Encrypt OK $(14,10)$ using $C \equiv 3 P+12(\bmod 26)$.
b) (4pts) What is the decryption cipher for part (a)?
9) (8pts) Encrypt DO NOT $(3,14,13,14,19)$ using the Vigenere cipher with the key KEY $(10,4,24)$.
10) (8pts) Suppose you have a message $P, 1<P<n$ and an RSA modulus n. How can you find the decryption exponent if $(n, P)>1$?
