MATH 406 SUMMER SESSION II 2005 FINAL

- 1) (8 pts) Show by induction that $2^n > n$ whenever n is an integer greater than 1.
- 2) (12 pts) Show that if $a^3|b^2$ then a|b.
- 3) a) (6 pts) Let $a, b, m, n \in \mathbb{Z}$ with m and n positive such that n|m. Show that if $a \equiv b \pmod{m}$ then $a \equiv b \pmod{n}$.
 - b) (6 pts) Let $a, b, c, m \in \mathbb{Z}$ with m and c positive. Show that if $a \equiv b \pmod{m}$ then $ac \equiv bc \pmod{mc}$.
- 4) a) (6 pts) Show that if p is an odd prime then (p-1)! · a^p ≡ -a (mod p) for any integer a.
 b) (6 pts) State Euler's Theorem. (be careful to state all assumptions)
- 5) a) (8 pts) Show there are no n such that $\phi(n) = 14$.
 - b) (3 pts) Find $\sigma(60)$.
 - c) (3 pts) Find $\tau(60)$.
- 6) a) (4 pts) Find the order of 2 modulo 31.
 - b) (10 pts) Find a complete set of incongruent primitive roots modulo 13. Reduce them into the interval [0, 13).
 - c) (6 pts) Find a complete set of incongruent primitive roots modulo $2 \cdot 13$.
 - d) (4 pts) Given that 2 is a primitive root modulo 5 and that 7 is not a primitive root modulo 25 find a primitive root modulo 25.
 - e) (4 pts) Using part (d) find a primitive root modulo 5^k for all positive integers k.
- 7) (12 pts) Let -a be a quadratic residue modulo p. For what p is +a also a quadratic residue?
- 8) a) (12 pts) Find a congruence describing all odd primes for which 3 is a quadratic residue.
 - b) (6 pts) How does part (a) change if we instead ask for a congruence describing when $\left(\frac{3}{n}\right) = 1$ for *n* an odd positive integer? (Explain your answer.)
- 9) (16 pts) Find formulas for the integers of all Primitive Pythagorean triples x, y, z with z = y+2and y odd.
- 10) a) (8 pts) Show that 5 is not a Gaussian prime.
 - b) (10 pts) Show that if $\alpha, \beta, \gamma, \nu, \mu \in \mathbb{Z}[i]$ with $\gamma \mid \alpha$ and $\gamma \mid \beta$ then $\gamma \mid (\alpha \nu + \beta \mu)$.