## MATH 406 SUMMER SESSION II 2005 FINAL

1) ( 8 pts ) Show by induction that $2^{n}>n$ whenever $n$ is an integer greater than 1 .
2) (12 pts) Show that if $a^{3} \mid b^{2}$ then $a \mid b$.
3) a) ( 6 pts ) Let $a, b, m, n \in \mathbb{Z}$ with $m$ and $n$ positive such that $n \mid m$. Show that if $a \equiv b$ $(\bmod m)$ then $a \equiv b(\bmod n)$.
b) ( 6 pts$)$ Let $a, b, c, m \in \mathbb{Z}$ with $m$ and $c$ positive. Show that if $a \equiv b(\bmod m)$ then $a c \equiv b c(\bmod m c)$.
4) a) (6 pts) Show that if $p$ is an odd prime then $(p-1)!\cdot a^{p} \equiv-a(\bmod p)$ for any integer $a$.
b) ( 6 pts ) State Euler's Theorem. (be careful to state all assumptions)
5) a) (8 pts) Show there are no $n$ such that $\phi(n)=14$.
b) (3 pts) Find $\sigma(60)$.
c) (3 pts) Find $\tau(60)$.
6) a) (4 pts) Find the order of 2 modulo 31.
b) (10 pts) Find a complete set of incongruent primitive roots modulo 13. Reduce them into the interval $[0,13)$.
c) ( 6 pts$)$ Find a complete set of incongruent primitive roots modulo $2 \cdot 13$.
d) ( 4 pts ) Given that 2 is a primitive root modulo 5 and that 7 is not a primitive root modulo 25 find a primitive root modulo 25 .
e) (4 pts) Using part (d) find a primitive root modulo $5^{k}$ for all positive integers $k$.
7) (12 pts) Let $-a$ be a quadratic residue modulo $p$. For what $p$ is $+a$ also a quadratic residue?
8) a) (12 pts) Find a congruence describing all odd primes for which 3 is a quadratic residue.
b) ( 6 pts ) How does part (a) change if we instead ask for a congruence describing when $\left(\frac{3}{n}\right)=1$ for $n$ an odd positive integer? (Explain your answer.)
9) ( 16 pts ) Find formulas for the integers of all Primitive Pythagorean triples $x, y, z$ with $z=y+2$ and $y$ odd.
10) a) ( 8 pts ) Show that 5 is not a Gaussian prime.
b) (10 pts) Show that if $\alpha, \beta, \gamma, \nu, \mu \in \mathbb{Z}[i]$ with $\gamma \mid \alpha$ and $\gamma \mid \beta$ then $\gamma \mid(\alpha \nu+\beta \mu)$.
