HOMEWORK 1

- 1) Write each of the following sets by listing the elements with braces.
 - a) $A = \{x \in \mathbb{R} : x^2 = 9\}$
 - b) $B = \{n \in \mathbb{Z} : n^3 < 36\}$
 - c) $C = \{x \in \mathbb{R} : x^2 + 4 = 0\}$
 - d) $D = \{n \in \mathbb{N} : |n| \le 11\}$
- 2) Write each of the following sets in the form $\{x \in S : p(x)\}$ where p(x) is a property on x and $S = \{-7, -6, -1, 0, 1, 3\}$.
 - a) $A = \{-1, 0, 1\}$
 - b) $B = \{-7, -6, -1\}$
 - c) $C = \{-1, 1\}$
 - d) $D = \{-7, -6, 3\}$
- 3) Give examples of sets A, B, and C such that the following hold. In each example it must be clear to the grader that you understand the properties required.
 - a) $A \in B$, $B \in C$ and $A \subseteq C$
 - b) $A \subset B$, $B \in C$, and $A \notin C$
 - c) $A \in B$, $B \subseteq C$ and $A \not\subseteq C$
 - d) $B \in A$, $B \subset C$, and $A \cap C \neq \phi$
- 4) Let $A = \{\phi, \{\phi\}, \{\{\phi\}\}\}\$. (For d g determine the set indicated.)
 - a) List the elements of A.
 - b) Determine |A|.
 - c) List all possible subsets of A.
 - $d) \phi \cap A$
 - e) $\{\phi\} \cap A$
 - f) $\{\phi\} \cup A$
 - g) $\{\phi, \{\{\phi\}\}\} \cup A$
- 5) Give an example of a universal set U, two sets A and B, and a Venn diagram such that $|A \cap B| = |A B| = |B A| = |\overline{A \cup B}| = 2$.
- 6) Let A and B be sets in some unknown universal set U. Suppose $\bar{A} = \{3, 7, 9\}$, $A B = \{1, 2\}$, $B A = \{7\}$, and $A \cap B = \{5, 8\}$. Determine A, B, and U.
- 7) Which of the following are true? Explain each of your answers.
 - a) $\{1, 2, 3\} = \{2, 3, 1\}$
 - b) $\phi \in \phi$
 - c) $\phi \in \{1, 2, 3\}$
 - d) $\phi \subseteq \phi$
 - e) $3 \subseteq \{3\}$
 - f) $\phi = {\phi}$
 - g) $\phi \subset \{\phi\}$
- 8) Negate each of the following. You should remove 'not' from your sentences.
 - a) π is rational.
 - b) Five is not a positive number.
 - c) 17 is composite.
 - d) Six is prime.

9) Let $P:4$ is odd and Q	: 7 is prime.	Determine	whether	the	following	are	true or
false. Justify each part.							
a) $P \vee Q$	e) $Q \Rightarrow P$						

b)
$$P \wedge Q$$
 f) $({}^{\sim}P) \Rightarrow Q$
c) $({}^{\sim}P) \wedge Q$ g) $P \Leftrightarrow Q$
d) $P \Rightarrow Q$ h) $({}^{\sim}P) \vee ({}^{\sim}Q)$

10) Let $P:\sqrt{8}$ is rational and $Q:\frac{7}{3}$ is rational. Determine whether the following are true or false. Justify each part.

```
a) P \lor Q 

b) P \land Q 

c) P \Rightarrow Q 

d) Q \Rightarrow P 

e) ({}^{\sim}P) \Rightarrow ({}^{\sim}Q) 

f) ({}^{\sim}Q) \Rightarrow ({}^{\sim}P) 

g) P \Leftrightarrow Q 

h) ({}^{\sim}P) \Leftrightarrow ({}^{\sim}Q)
```

11) In each of the following two open sentences P(x) and Q(x) are defined over a given domain S. Determine all $x \in S$ for which $P(x) \Rightarrow Q(x)$ is true.

```
a) P(x): 3x + 1 is prime; Q(x): 2x + 1 is prime; S = \{1, 2, 3, 4\}
b) P(x): x^2 = 4; Q(x): |x| = 2; S = \{-3, -2, 0, 1, 3\}
```

c)
$$P(x): x^2 \ge 9$$
; $Q(x): x \ge 3$; $S = \mathbb{R}$

d) $P(x): x^2 \ge 9; Q(x): x \ge 3; S = \mathbb{N}$

12) In each of the following two open sentences P(x,y) and Q(x,y) are defined over a given domain S. Determine all $x \in S$ for which $P(x,y) \Rightarrow Q(x,y)$ is true.

```
a) P(x,y): x^2 - y^2 = 0; Q(x,y): x = y; S = \{(1,-1), (3,2), (4,4)\}
b) P(x,y): |x| = |y|; Q(x,y): x = y; S = \{(-3,3), (2,2), (-1,2)\}
```

13) Repeat homework problem eleven with $P(x) \Leftrightarrow Q(x)$ instead of $P(x) \Rightarrow Q(x)$.

14) Repeat homework problem twelve with $P(x,y) \Leftrightarrow Q(x,y)$ instead of $P(x,y) \Rightarrow Q(x,y)$.