HOMEWORK 7

- 1) Let $A = \{1, 2, 3\}$ and $B = \{a, b, c, d\}$. Define a relation R from A to B that contains exactly three elements, but is not a function from A to B. Describe why R is not a function (you should have two reasons).
- 2) For each part, using the given set A and relation R, determine if R is a function from A to \mathbb{R} .
 - a) $A = \mathbb{R}$ and $R = \{(x, y) : 2y = 3x + 5\}.$
 - b) $A = \mathbb{R}^+$ and $R = \{(x, y) : (x y)^2 = 3\}.$
 - c) $A = \mathbb{R}_{>0}$ and $R = \{(x, y) : \sqrt{x} = y\}.$
- 3) In each part, determine the domain and range (both subsets of \mathbb{R}) for the given function.
 - a) $f(x) = x^2 + 32$
 - b) $g(x) = \sqrt{2x + 7}$ c) $h(x) = \frac{2x}{x-9}$
- 4) Give an example of two sets C and D and functions $q: C \to D$ and $h: D \to C$ such that q is one-to-one, but not onto, and h is onto, but not one-to-one.
- 5) In each part, determine whether the give function is injective and/or surjective.
 - a) $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x + 1
 - b) $g: \mathbb{Z} \to \mathbb{Z}$ defined by g(x) = x 7
 - c) $h: \mathbb{R} \to \mathbb{R}$ defined by $h(x) = x^2$
- 6) Let $a, b \in \mathbb{R}$ with $b \neq 0$. Prove the function $f : \mathbb{R} [a] \to \mathbb{R} [b]$ defined by $f(x) = \frac{bx}{x-a}$ is bijective.
- 7) Define three different bijective functions from the interval [0, 1] to itself.

For the rest of the problems: Let A, B, C be non-empty sets and $f: A \to B$ and $q: B \to C$ be functions.

- a) Prove: If $g \circ f$ is injective, then f is injective.
 - b) Disprove: If $g \circ f$ is injective, then g is injective.
 - c) Prove or disprove: If $q \circ f$ is surjective, then f is surjective.
 - d) Prove or disprove: If $q \circ f$ is surjective, then q is surjective.
- 9) Prove or disprove:
 - a) If f is injective, then $g \circ f$ is injective.
 - b) If f is surjective, then $g \circ f$ is surjective.
 - c) If q is injective, then $q \circ f$ is injective.
 - d) If g is surjective, then $g \circ f$ is surjective.
- 10) Prove or disprove:
 - a) There exists a function f and g such that f is not injective, but $g \circ f$ is injective.
 - b) There exists a function f and q such that q is not injective, but $q \circ f$ is injective.
 - c) There exists a function f and g such that f is not surjective, but $g \circ f$ is surjective.
 - d) There exists a function f and g such that g is not surjective, but $g \circ f$ is surjective.
- 11) Hwk 9.40
- 12) **More difficult than the others** Let $g \circ f$ be bijective. Prove:
 - a) If f is onto, then g is one-to-one.
 - b) If q is one-to-one, then f is onto.