EXTRA HWK

- 1) True or false
 - a) If $\{a_n\} \to a$ and $\{b_n\} \to b$ and a < b then there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $a_n < b_n$
 - b) If $\{a_n\} \to a$ and $\{b_n\} \to b$ and $a \le b$ then there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $a_n \le b_n$
 - c) If S is a bounded set of real numbers that contains its Sup and Inf, then S is a closed interval.
- 2) Let $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n}$. Prove the limit of $\{x_n\}$ exists using monotone convergence.
- 3) Use montone convergence to prove the following converge and then find the limit using that a subsequence must converge to the same limit.

a)
$$s_1 = 1$$
 and $s_n = \frac{1}{4}(s_{n-1} + 5)$ for $n \ge 2$

b)
$$s_1 = 2$$
 and $s_n = \frac{1}{4}(s_{n-1} + 5)$ for $n \ge 2$