
ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PDE

RICARDO H. NOCHETTO

Abstract. In the 80’s and 90’s a great deal of effort was devoted to the design of a posteriori
error estimators for a variety of PDE. These are computable quantities, depending on the discrete
solution(s) and data, that can be used to assess the quality of the approximation and improve it
adaptively. Despite their practical success, adaptive processes have been shown to converge, and to
exhibit optimal complexity, only recently and just for linear elliptic PDE. This course presents this
new theory and discusses extensions and open questions.
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1. Lecture 1. The Finite Element Method: Properties and Error Analysis

This lecture introduces the concepts of weak solutions of elliptic partial differential equations (PDE)
and Galerkin approximation, and presents the finite element method along with its basic properties
and error analysis.

1.1. Adaptive Approximation. We start with a simple motivation in 1D for the use of adaptive
procedures. Given Ω = (0, 1), a partition TN = {xi}N

n=0 of Ω

0 = x0 < x1 < · · · < xn < · · · < xN = 1

and a continuous function u : Ω → R, we consider the problem of approximating u by a piecewise
constant function uN over TN . To quantify the difference between u and uN we resort to the maximum
norm and study two cases depending on the regularity of u.

Case 1: Smooth u. Suppose that u is Lipschitz in [0, 1]. We consider the approximation

uN(x) := u(xn−1) ∀xn−1 ≤ x < xn.

Since

|u(x) − uN(x)| = |u(x) − u(xn−1)| =
∣

∣

∣

∫ x

xn−1

u′(t)dt
∣

∣

∣
≤ hn‖u

′‖L∞(xn−1,xn)

we conclude that

(1.1) ‖u − uN‖L∞(Ω) ≤
1

N
‖u′‖L∞(Ω),

provided the local meshsize hn is about constant (quasi-uniform mesh), and so proportional to N−1

(the reciprocal of the number of degrees of freedom). A natural querstion arises: Is it possible to
approximate rough (or singular) functions u with a decay estimate similar to (1.1)?

Case 2: Rough u. To answer this question, we suppose ‖u′‖L1(Ω) = 1 and consider the non-
decreasing function

φ(x) :=

∫ x

0

|u′(t)|dt

which satisfies φ(0) = 0 and φ(1) = 1. Let TN = {xi}N
n=0 be the partition given by

∫ xn

xn−1

|u′(t)|dt = φ(xn) − φ(xn−1) =
1

N
.

Then, for x ∈ [xn−1, xn],

|u(x) − u(xn−1)| =
∣

∣

∣

∫ x

xn−1

u′(t)dt
∣

∣

∣
≤

∫ x

xn−1

|u′(t)|dt ≤

∫ xn

xn−1

|u′(t)|dt =
1

N
,

whence

‖u− uN‖L∞(Ω) ≤
1

N
‖u′‖L1(Ω).

A relevant example, which mimics corner singularities in higher dimensions, is the function u(x) :=
xr with 0 < γ < 1. It is easy to see that

xn =
( n

N

)
1
γ

, ∀ 0 ≤ n ≤ N,

is the resulting nonuniform mesh. We thus conclude that we could achieve the same rate of convergence
N−1 for rough functions with just ‖u′‖L1(Ω) < ∞ provided the partition is designed to equidistribute
the error. However, such a partition may not be adequate for another function with the same basic
regularity as u. We point out that such a regularity is Hölder γ, namely γ derivatives in L∞(Ω), while
it increases to one full derivative if measure in L1(Ω). This trade-off between differentiability and
integrability is at the heart of the matter and is known as nonlinear approximation theory [20]
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The function uN may be the result of a minimization process. If we wish to minimize the norm
‖u − v‖L2(Ω) within the space VN of piecewise constant functions over TN , then it is easy to see that
the solution uN satisfies the orthogonality relation

(1.2) uN ∈ VN : 〈u − uN , v〉 = 0 ∀ v ∈ VN

and is given by the explicit local expression

uN (x) =
1

hn

∫ xn

xn−1

u ∀ xn−1 < x < xn.

The previous comments apply to this uN as well even though uN coincides with u at an unknown
point in each interval [xn−1, xn].

The following issues arise and will be discussed in this course:

• PDE: The function u is not directly accessible but rather it is the solution of an elliptic PDE. We
thus have to derive regularity and approximation properties of u. This is discussed in Lectures 1
and 4.

• FEM: We need a numerical method to approximate u which is sufficiently flexible to handle both
geometry and accuracy (local mesh refinement) such as the finite element method (FEM). We then
derive approximation properties of FEM via polynomial interpolation theory in the spirit of (1.2).
This is explained in Lecture 1 for the energy norm and in Lecture 5 for the maximum norm.

• A posteriori error estimation: We need a practical procedure to estimate the local error and equidis-
tribute it. This is explained in Lecture 2.

• Adaptivity: This is a concept associated with iterative loops of the form

SOLVE → ESTIMATE → MARK → REFINE.

Their convergence and complexity is the main subject of these lectures, and is addressed in Lectures
2, 3, and 4.

1.2. Variational Formulation and Galerkin Method. Let Ω be a polyhedral bounded domain in
R

d, (d = 2, 3). We consider a homogeneous Dirichlet boundary value problem for a general second
order elliptic partial differential equation (PDE)

Lu = − div(A∇u) + b · ∇u + c u = f in Ω,(1.3)

u = 0 on ∂Ω;(1.4)

the choice of boundary condition is made for easy of presentation, since similar results are valid for
other boundary conditions. We also assume

• A : Ω 7→ R
d×d is Lipschitz and symmetric positive definite with smallest eigenvalue a− and largest

eigenvalue a+, i.e.,

a−(x) |ξ|2 ≤ A(x)ξ · ξ ≤ a+(x) |ξ|2 , ∀ξ ∈ R
d, x ∈ Ω;(1.5)

• b ∈ [L∞(Ω)]
d

is divergence free (div b = 0 in Ω);
• c ∈ L∞(Ω) is nonnegative (c ≥ 0 in Ω);
• f ∈ L2(Ω).

For an open set G ⊂ R
d we denote by H1(G) the usual Sobolev space of functions in L2(G) whose

first derivatives are also in L2(G), endowed with the norm

‖u‖H1(G) :=
(

‖u‖L2(G) + ‖∇u‖L2(G)

)1/2

;

we use the symbols ‖·‖H1 and ‖·‖L2 when G = Ω. Moreover, we denote by H1
0 (G) the space of functions

in H1(G) with vanishing trace on the boundary. We set V := H1
0 (Ω) and denote the norm ‖ · ‖V.

A weak solution of (1.3) and (1.4) is a function u satisfying

(1.6) u ∈ V : B[u, v] = 〈f, v〉 ∀v ∈ V,
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where 〈u, v〉 :=
∫

Ω uv for any u, v ∈ L2(Ω), and the bilinear form is defined on V×V as

B[u, v] := 〈A∇u,∇v〉 + 〈b · ∇u + c u, v〉 .(1.7)

By the Cauchy-Schwarz inequality one can easily show the continuity of the bilinear form

(1.8) |B[u, v]| ≤ CB ‖u‖
V
‖v‖

V
,

where CB depends only on the data. Combining Poincaré inequality with the divergence free condition
div b=0, one has coercivity in V

(1.9) B[v, v] ≥

∫

Ω

a− |∇v|2 + cv2 ≥ cB ‖v‖2
V

,

where cB depends only on the data. The bilinear form B induces the so-called energy norm:

(1.10) |||v||| := B[v, v]1/2 ∀ v ∈ V.

Existence and uniqueness of (1.6) thus follows from Lax-Milgram theorem [25]. The next critical issue
is regularity of u. This is illustrated with the following 2D examples, all leading to point singularities.

Example 1.1 (Reentrant Corner). Let Ω be a polygonal doamin with a reentrant corner ω > π at the
origin, let γ := ω/π < 1, and let u be the exact solution of the Dirichlet problem ∆u = 0 in Ω be (in
polar coordinates)

u(r, θ) = rγ sin(γθ).

If D1+su denotes a (formal) fractional derivative of u with s < 1, we note that D1+su ∈ Lp(Ω) provided

s < 2
p +γ−1, because

∫ 1

0
rp(γ−s−1)+1dr < ∞ in this case. We conclude that u ∈ W 1+s

p (Ω) for 1 ≤ p ≤ 2

and, in particular, that u /∈ H2(Ω). If −∆u = f , then Grisvard shows that ‖u‖W 2
p (Ω) ≤ Cp‖f‖Lp(Ω)

for all 1 < p < 4/3 regardless of the size of corner angles [28]; p=4/3 corresponds to the crack problem
ω = 2π for which γ = 1/2.

Example 1.2 (Mixed Boundary Condition). Let Ω be a polygonal domain with flat boundary at the
origin and let u be the exact solution ∆u = 0, with mixed boundary condition u = 0 for θ = 0 and
∂ν = 0 for θ = π (in polar coordinates), given by

u(r, θ) = r
1
2 sin(θ/2).

We infer that ∈ W 1+s
p (Ω) provided s < 2

p − 1
2 , but u /∈ H2(Ω). The same asymptotic behavior of u is

to be expected for a domain with a crack, namely ω = 2π, and Dirichlet boundary condition.

Example 1.3 (Discontinuous A). We recall the formulas derived by Kellogg [29] to construct an exact
solution of div(A∇u) = f with piecewise constant coefficients A and vanishing right-hand side f .
We now write these formulas in the particular case Ω = (−1, 1)2, A = a1I in the first and third
quadrants, and A = a2I in the second and fourth quadrants. An exact weak solution u is given (in
polar coordinates) by u(r, θ) = rγφ(θ), where

φ(θ) =



















cos((π/2 − σ)γ) · cos((θ − π/2 + ρ)γ) if 0 ≤ θ ≤ π/2,

cos(ργ) · cos((θ − π + σ)γ) if π/2 ≤ θ ≤ π,

cos(σγ) · cos((θ − π − ρ)γ) if π ≤ θ < 3π/2,

cos((π/2 − ρ)γ) · cos((θ − 3π/2− σ)γ) if 3π/2 ≤ θ ≤ 2π,

and the numbers γ, ρ, σ satisfy the nonlinear relations

(1.11)







































R := a1/a2 = − tan((π/2 − σ)γ) · cot(ργ),

1/R = − tan(ργ) · cot(σγ),

R = − tan(σγ) · cot((π/2 − ρ)γ),

0 < γ < 2,

max{0, πγ − π} < 2γρ < min{πγ, π},

max{0, π − πγ} < −2γσ < min{π, 2π − πγ}.
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If we choose γ = 0.1, which produces a very singular solution u that is barely in H1, and then
solve (1.11) for R, ρ, and σ using Newton’s method, we obtain

R = a1/a2
∼= 161.4476387975881, ρ = π/4, σ ∼= −14.92256510455152,

and finally choose a1 = R and a2 = 1. A smaller γ would lead to a larger ratio R, but in principle γ
may be as close to 0 as desired. We see that again u ∈ W 1+s

p (Ω) for s < 2
p + γ − 1.

Consider now a finite dimensional subspace VN of V of dimension N . We formulate the Galerkin
method upon restricting (1.6) to VN :

(1.12) uN ∈ VN : B[uN , v] = 〈f, v〉 ∀v ∈ VN .

Existence and uniqueness of (1.12) follows also from the Lax-Milgram theorem on VN . In addition,

if {φj}N
j=1 is a basis of VN , then we can write uN(x) =

∑N
j=1 Ujφj(x) and (1.12) is equivalent to the

linear system of equations

N
∑

j=1

UjB[φj , φi] = 〈f, φi〉 ∀1 ≤ i ≤ N.

The ensuing matrix (B[φj , φi])
N
i,j=1 is positive definite and non-symmetric unless b = 0. The error

function u − uN satisfies the following crucial property, usually called Galerkin orthogonality:

(1.13) B[u− uN , v] = 0 ∀ v ∈ VN .

This is a fundamental property for our error analysis and design of adaptive FEM (AFEM), which is
not valid for finite differences.

1.3. The Finite Element Method. Let Th be a partition of Ω into triangles (for d = 2) and
tetrahedra (for d = 3) T of size hT = diam(T ); hereafter h denotes the piecewise constant function
defined by h|T = hT for T ∈ Th. We assume that Th is conforming, namely the intersection of distinct
elements T is either an edge, face, or vertex. Let {Th} be a shape-regular family of nested conforming
meshes over Ω: that is there exists a constant γ∗ such that

hT

ρT
≤ γ∗ ∀ T ∈

⋃

h

Th,(1.14)

where ρT is the diameter of the biggest ball contained in T . Let Nh = {xj}N
j=1 be the set of internal

nodes (or vertices) of Th. See Figure 1.1.

h

Figure 1.1. Conforming triangulation of a 2D domain Ω with local meshsize h

We consider now a subspace Vh of V of continuous piecewise polynomial functions over the mesh
Th. If the polynomial degree is one, then the so-called hat functions are defined by its nodal values
φi(xj) = δij and are a basis of Vh. The finite element method (FEM) is a Galerkin method with finite
dimensional subspace Vh:

(1.15) uh ∈ Vh : B[uh, v] = 〈f, v〉 ∀v ∈ Vh.
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If {φi}N
i=1 is chosen as a basis of Vh, then the resulting matrix is sparse. We refer to [8, 15] for

details about FEM, especially a discussion of higher order elements, unisolvence, and the solution of
the resulting sparse linear systems of equations. We turn our attention to the error analysis.

1.4. Error Analysis. We now estimate the error u−uh in the energy norm V. There are two distinct,
but related, type of estimates depending on whether the continuous solution u or the discrete solution
uh occurs in the estimate. The first bound is called a priori error estimate whereas the second one is
called a posteriori error estimate.

Lemma 1.4 (A Priori Error Estimate). Let cB ≤ CB be the constants in (1.8) and (1.9). Then

(1.16) inf
v∈Vh

‖u− v‖V ≤ ‖u− uh‖V ≤
CB

cB
inf

v∈Vh

‖u− v‖V.

Proof. It suffices to obtain the rightmost estimate. We then obtain for all v ∈ Vh

cB‖u− uh‖
2
V
≤ B[u− uh, u − uh] (coercivity (1.9))

= B[u− uh, u − v] (orthogonality (1.13))

≤ CB‖u− uh‖V‖u − v‖V, (continuity (1.8))

which implies the assertion. �

This says that the finite element solution is almost the best approximation to u within Vh in the
norm of H1

0 (Ω). It thus motivates the study of piecewise polynomial approximation, which we discuss
in section 1.5, but it does not provide quantitative information about the actual size of ‖u − uh‖H1 .
We point out though that if the error is measured in the energy norm (1.10), and b = 0 and so B is
symmetric, then uh is the best approximation to u within Vh:

|||u − uh||| = inf
v∈Vh

|||u − v||| .

Quantitative error information is crucial to assess whether or not a given discretization yields a
desired accuracy. To this end, we introduce the residual R(uh) ∈ V

∗ = H−1(Ω)

(1.17) 〈R(uh), v〉 := 〈f, v〉 − B[uh, v] ∀ v ∈ Vh,

along with its norm

(1.18) ‖R(uh)‖V∗ := sup
v∈V∗

〈R(uh), v〉

‖v‖V

.

The residual depends solely on data and the discrete solution uh. The notation R(uh) is meant as
a reminder of the explicit dependence on uh. The following simpe result illustrates the connection
between residual and error.

Lemma 1.5 (A Posteriori Error Estimate). Let cB ≤ CB be the constants in (1.8) and (1.9). Then

(1.19) cB‖u− uh‖V ≤ ‖R(uh)‖V∗ ≤ CB‖u− uh‖V.

Proof. We simply observe the crucial relation between error and residual

B[u− uh, v] = 〈f, v〉 − B[uh, v] = 〈R(uh), v〉,

and use (1.9) to derive the lower bound and (1.8) to prove the upper bound. �

In order to be able to estimate ‖R(uh)‖V∗ , instead of ‖u − uh‖V, we need a practical way to deal
with the negative norm in V

∗. This will be accomplished in sections 2.1.1 and 2.1.2. We draw the
analogy between this framework and that in linear algebra: if A ∈ R

N×N , x ∈ R
N , and b ∈ R

N satisfy
Ax = b, then for any y ∈ R

N the residual is defined by r = b−Ay whence the relation between error
e = x − y and residual reads Ae = r. We usually deduce information of e upon manipulating r.
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1.5. Polynomial Interpolation in Sobolev Spaces. We start with the definition of the Sobolev
spaces

W m
p (Ω) := {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) ∀|α| ≤ m}

along with the corresponding Sobolev number

sob(W m
p ) := m −

d

p
.

It is well known that if m > k and sob(W m
p ) > sob(W k

q ) then the embbeding W m
p (Ω) ⊂ W k

q (Ω) is

compact [25]. In addition, if 0 = sob(L∞(Ω)) < γ = sob(W m
p ) < 1, then W m

p (Ω) ⊂ C0,γ(Ω̄) and so
functions from W m

p (Ω) are continuous. On the other hand, if sob(W m
p ) ≤ 0 then pointvalues are not

always well defined; this is the case of H1(Ω) = W 1
2 (Ω) for d ≥ 2.

The Sobolev number plays not only a crucial role in functional analysis but also in polynomial
interpolation theory. This is due to the fact that it helps quantify the effect of scaling. Suppose that
we change variables x = hx̂, and the domain change from ω to ω̂. Then a simple calculation reveals

(1.20) ‖Dαv̂‖Lp(ω̂) = hsob(W m
p )‖Dαv‖Lp(ω) ∀ |α| = m.

In particular, invoking the Poincaré inequality in ω̂ we easily deduce

(1.21) ‖v‖L2(ω) ≤ Ch‖∇v‖L2(ω) ∀ v ∈ H1
0 (ω).

We now turn our attention to piecewise polynomial interpolation over a mesh Th of Ω. If v ∈ W m
p (Ω)

is continuous, namely sob(W m
p ) > 0, then we can define the Lagrange interpolation operator on the

nodal values of v. However, if sob(W m
p ) ≤ 0 the construction of an interpolation operator with good

stability and approximability properties is much less obvious. Hereafter, we resort to the so-called
Clement interpolation operator Ih, which is defined by local averaging at the element level [15]. What
is relevant for us of Ih is the following result.

Proposition 1.6 (Clement interpolation operator). Let k ≥ 1 be the polynomial degree. Then for all
v ∈ W m

p (Ω) and T ∈ Th, we have

(1.22) ‖Dt(v − Ihv)‖Lp(T ) ≤ Chs−t
T ‖Dsv‖Lp(N(T )),

where 0 ≤ t ≤ s ≤ min(m, 1 + k) and N(T ) is a discrete neighborhood of T that includes all elements
of Th with nonempty intersection with T . In addition, if m ≥ 1 and the trace of v is zero, then Ih can
also be defined with vanishing trace and (1.22) is valid up to the boundary.

We point out that, upon taking s = t = 0 we readily see that Ih is stable in Lp, namely,

‖Ihv‖Lp(T ) ≤ C‖Dsv‖Lp(N(T )).

Another interplation operator, due to Scott and Zhang [8], is able to deal with more general boundary
values but requires more regularity than mere membership in Lp(N(T )) to be defined. In this course
we will use the Clement operator exclusively. A simple global consequence of (1.22) can be written as

(1.23) ‖h−1(v − Ihv)‖Lp(Ω) ≤ C‖Dv‖Lp(Ω).

Suppose now that we have a function f ∈ L2(Ω) that is orthogonal to all continuous piecewise linear
functions over a shape-regular mesh Th that vanish at the boundary. Then, we can estimate its norm
in H−1(Ω) as

(1.24) ‖f‖H−1(Ω) ≤ C‖hf‖L2(Ω),

because, in view of (1.23) for p = 2,

〈f, v〉 = 〈f, v − Ihv〉 ≤ ‖hf‖L2(Ω)‖h
−1(v − Ihv)‖L2(Ω) ≤ C‖hf‖L2(Ω)‖Dv‖L2(Ω).

This will be instrumental for our discussion of sections 2.1.1 and 2.1.2.
We consider now a couple of examples in 2D (d = 2) with polynomial degree k = 1.
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Example 1.7 (Smooth Solution). Suppose u ∈ H2(Ω), that is u has two weak derivatives in L2(Ω).
Suppose Th is a quasi-uniform mesh with meshsize h, namely hT ≈ h for all T ∈ Th. The number of
degrees of freedom N in R

2 is then

N ≈ h−2.

Therefore, using Lemma 1.4 and (1.6), we see that

(1.25) ‖u− uh‖V ≤ Ch‖D2u‖L2(Ω) = CN−1/2

is the optimal decay achievable with piecewise linear finite elements for smooth functions.

Example 1.8 (Rough Solution). Suppose now that Ω ⊂ R
2 is a polygonal domain with a reentrant

corner ω > π, and let γ = π/ω < 1. In view of Example 1.1, the solution u behaves like

u(r, θ) = rγφ(θ)

in polar coordinates close to the corner. If D1+su denotes a (formal) fractional derivative of u with
s < 1, we note that D1+su ∈ L2(Ω) provided

s < γ (< 1),

because
∫ 1

0
r2(γ−s−1)+1dr < ∞ in this case. Therefore, Lemma 1.4 and (1.6) imply

(1.26) ‖u − uh‖V ≤ Chs‖Ds+1u‖L2(Ω) = CNs/2.

This estimate is suboptimal because s < 1. However, this is due to lack of regularity of u and not
inability of the FEM to approximate u. We may thus wonder, as we did in section 1.1, whether we
can still achieve (1.25) by properly designing the mesh Th.

We would like to minimize the interpolation error ‖uIhu‖V for a prescribed number of degrees of
freedom N . This can be formulated as the constrained minimization problem

min
R

Ω
h−2dx=N

∫

Ω

h2|D2u|2dx.

The optimality condition is

(1.27) h4|D2u|2 = constant.

Since |T | ≈ h2
T , this means that the contribution to to the error per triangle, namely

h2
T |D

2u|2|T | ≈

∫

T

h2|D2u|2

must be constant, say Λ. If T ∈ Th is a triangle at distance rT to the corner (say the origin), then

Λ =

∫

T

h2|D2u|2 ≈ h4
T r

2(γ−2)
T .

This implies

hT = Λ
1
4 r

1− γ
2

T ,

which corresponds to amesh graded towards the origin. Moreover,

N =

∫

Ω

h−2dx = Λ− 1
2

∫ 1

0

r−1+γdr = CΛ− 1
2 ,

whence

hT = Cr
1− γ

2

T N− 1
2 .

Consequently, we can still recover the optimal bound (1.25)

‖u− uh‖
2
V =

∫

Ω

h2|D2u|2dx = Λ

∫

Ω

h−2dx = ΛN = CN−1

with the same number of degrees of freedom N . This clearly shows that it is possible to compensate
for singularities a priori provided that we know the solution local behavior. We would like, however,
to devise a technique that would be able to perform the above minimization without our knowledge of



10 R.H. NOCHETTO

the regulalrity of u. This way we could extend the technique to more complex situations. This is the
purpose of sections 2.1.1 and 2.1.2.

Example 1.9 (Error Equidistribution). We point out that in Examples 1.1, 1.2, and 1.3 the solution
u ∈ W 2

1 (Ω)\H2(Ω). This is a typical situation for elliptic PDE in 2D. We now assume, as suggested
by Example 1.8, that the error in H1 is equidistributed in Th, namely,

‖u− Ihu‖H1(T ) = Λ ∀ T ∈ Th

where Λ is a constant. To find the value of Λ we resort to the relation between H1(T ) and W 2
1 (T ).

Since these spaces have the same Sobolev number, that is sob(H1) = 1−2/2 = 0 = 2−2/1 = sob(W 2
1 ),

the scaling of norms does not have any power of the meshsize hT ; hence

‖u− Ihu‖H1(T ) ≤ C‖D2(u − Ihu)‖L1(T ) = C‖D2u‖L1(T ).

Therefore
NΛ2 =

∑

T∈Th

‖u− Ihu‖2
H1(T ) ≤ CΛ

∑

T∈Th

‖D2u‖L1(T ) = CΛ‖D2u‖L1(Ω),

which implies Λ ≤ CN−1‖D2u‖L1(Ω) as well as

‖u− Ihu‖H1(Ω) ≤ CN− 1
2 ‖D2u‖L1(Ω).

We see again the trade-off of differentiability and integrability alluded to before in section 1.1; see [20].

1.6. Numerical Experiments. Here we present numerical experiments on uniform meshes for the
Dirichlet problem −∆u = f with exact solution (in polar coordinates)

u(r, θ) = r
2
3 sin(2θ/3)− r2/4,

on an L-shaped domain Ω (see Example 1.1). In Figure 1.6 we depict the sequence of uniform meshes,
and in Table 1.1 we report the order of convergence for polynomial degree k = 1, 2, 3. The asymptotic
rate is about s = 2/3 regardless of k and is consistent with the estimate (1.26). We will show numerical
experiments for graded meshes along with optimal rates in section 2.6.

Figure 1.2. Sequence of uniform meshes for L-shaped domain Ω

h linear (k = 1) quadratic (k = 2) cubic (k = 3)
1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 0.66 0.67 0.67

Table 1.1. The asymptotic rate of convergence is about s = 2/3 irrespective of the
polynomial degree k as predicted by (1.26).
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1.7. Exercises.

1.7.1. Exercise: Third Boundary Value Problem. Find a variational formulation which amounts to
solving

−∆u = f in Ω, ∂νu + pu = g on ∂Ω,

where f ∈ L2(Ω), g ∈ L2(∂Ω) and 0 < P1 ≤ p ≤ P2 on ∂Ω.
(a) Show that Lax-Milgram theorem applies and conclude that there exists a unique solution u ∈
H1(Ω).
(b) Suppose that p = ε−1 → ∞. What it the boundary value problem satisfied by u0 = limε→0 uε?
Can you derive an error estimate for ‖uε − u0‖H1(Ω)?

1.7.2. Exercise: Minimization and Euler-Lagrange Equations. Suupose that b = 0 in (1.3) and so that
the bilinear form B is symmetric. Show that the weak solution u is also the minimizer of an energy
I(v) defined over H1

0 (Ω). Show that the discrete solution uh ∈ Vh is also a minimizer

1.7.3. Exercise: Scaling. Show (1.20) and (1.21).

1.7.4. Exercise: Clement Interpolant. Let ωz = supp (φz) be the support of a piecewise linear basis
function φz where z ∈ Nh is a node. Let Ih : L1(Ω) → Vh be defined as follows:

vz =
1

|ωz|

∫

ωz

v, ∀z ∈ Nh, Ihv =
∑

z∈Nh

vzφz .

(a) Show that Ih is 1st order accurate in all W 1
p (Ω) for all 1 ≤ p ≤ ∞.

(b) Show that Ih is not second order accurate in any W 2
p (Ω) for any 1 ≤ p ≤ ∞.

1.7.5. Exercise: Optimality Condition. Prove (1.27).

1.7.6. Exercise: Pointwise Values. Let ρ be a smooth function defined for 0 < r ≤ 1 satisfying
∫ 1

0

|ρ′(r)|rn−1dr < ∞.

Define f on Ω = {x ∈ R
n : |x| < 1} via f(x) = ρ(|x|) for n ≥ 2. Show that the weak derivative Dαf

for |α| = 1 is given by

g(x) = ρ′(|x|)
xα

|x|
.

Use this to prove that f(x) = log
∣

∣ log |x/2|
∣

∣ ∈ W 1
p (Ω) for all p ≤ n. This shows that W 1

n(Ω) in NOT
contained in L∞(Ω) for n ≥ 2.

1.7.7. Exercise: Equivalent Norms (Deni-Lions). Consider the Sobolev space W k+1
p (Ω) with k ≥ 0, 1 ≤

p ≤ ∞ and a Lipschitz domain Ω in R
d. Let {fi}N

i=1 be linear continuous functionals in W k+1
p (Ω) such

that for any polynomial v ∈ Pk of degree ≤ k:

fi(v) = 0 ∀1 ≤ i ≤ N ⇐⇒ v = 0.

Show that ‖v‖W k+1
p (Ω) is equivalent to the seminorm

|v|W k+1
p (Ω) +

N
∑

i=1

|fi(v)|.

Hint: Proceed by contradiction assuming that there is a sequence {vn} ⊂ W k+1
p (Ω) such that ‖vn‖W k+1

p (Ω) =

1 but the latter seminorm tends to 0. Use that W k+1
p (Ω) is compactly imbedded in W k

p (Ω) (Rellich

Theorem), namely that each bounded sequence in W k+1
p (Ω) admits a convergence subsequence in

W k
p (Ω).


