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2. Lecture 2. Adaptivity I: Design and Convergence of AFEM

Starting with a conforming mesh TH , the adaptive procedure AFEM consists of loops of the form

SOLVE → ESTIMATE → MARK → REFINE

to produce the next conforming nested triangulation Th. The procedure SOLVE solves (1.15) for
the discrete solution uH . The procedure ESTIMATE determines the element indicators ηH(T ) and
oscillation oscH(T ) for all elements T ∈ TH . Depending on their relative size, these quantities are later

used by the procedure MARK to mark elements T , and thereby create a subset T̂H of TH of elements

to be refined. Finally, procedure REFINE partitions those elements in T̂H and a few more to maintain
mesh conformity. These procedures are discussed in detail below. The theory started with Dörfler
[21], but we follow the more recent developments [32, 34, 35].

2.1. Procedure ESTIMATE: A Posteriori Error Bounds. In addition to TH , let SH denote the
set of interior faces (edges or sides) of the mesh TH . According to (1.17), we consider the residual

R = R(uH) ∈ V
∗ defined by

R(uH) := f + div (A∇uH) − b · ∇uH − c uH ,

and its relation to the error L(u − uH) = R(uH). In view of Lemma 1.5 it suffices to estimate
‖R(uH)‖

V∗ . To this end, we set eH := u− uH and integrate by parts B[eH , v] elementwise to obtain
the error representation formula

B[eH , v] = 〈R(uh), v〉 =
∑

T∈TH

∫

T

RT (uH)v +
∑

S∈SH

∫

S

JS(uH)v ∀ v ∈ V,(2.1)

where the element residual RT (uH) and the jump residual JS(uH) are defined as

RT (uH) := f + div (A∇uH) − b · ∇uH − c uH in T ∈ TH ,(2.2)

JS(uH) := −A∇u+
H · ν+ −A∇u−H · ν− := [[A∇uH ]]S · νS on S ∈ SH ,(2.3)

where S is the common side of elements T+ and T− with unit outward normals ν+ and ν−, respectively,
and νS = ν−. Whenever convenient, we will use the abbreviations RT = RT (uH) and JS = JS(uH).

2.1.1. Upper Bound. For T ∈ TH we define the local error indicator ηH(T ) by

ηH(T )2 := H2
T ‖RT (uH)‖2

L2(T ) +
∑

S⊂∂T

HS ‖JS(uH)‖2
L2(S) .(2.4)

Given a subset ω ⊂ Ω, we define the error estimator ηH(ω) by

ηH(ω)2 :=
∑

T∈TH , T⊂ω

ηH(T )2.

Hence, ηH(Ω) is the residual-type error estimator of Ω with respect to the mesh TH . This estimator
is the simplest in the literature but not the most precise. We now find a first relation between ηH(Ω)
and the energy error.

Lemma 2.1 (A Posteriori Upper Bound). There exists a constant C1 > 0 depending only on the shape

regularity constant γ∗, and the coercivity and continuity constants cB and CB of B, such that

|||u− uH |||
2
≤ C1ηH(Ω)2.(2.5)
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Proof. With φ := eH − IHeH we can write

|||eH |||
2

= B[eH , eH ] = 〈R(uH), eH〉 (definition (1.17) of R(uH))

= 〈R(uH), φ〉 (Galerkin orthogonality (1.13))

=
∑

T∈TH

∫

T

RTφ+
∑

S∈SH

∫

S

JSφ (expression (2.1) of R)

≤
∑

T∈TH

‖RT ‖L2(T )‖φ‖L2(T ) +
∑

S∈SH

‖JS‖L2(S)‖φ‖L2(S) (Cauchy-Schwarz)

In view of the interpolation estimate (1.22), we have ‖φ‖L2(T ) ≤ CHT ‖∇eH‖L2(N(T )) as well as
∑

T∈TH

‖RT ‖L2(T )‖φ‖L2(T ) ≤ C
∑

T∈TH

‖HRT‖L2(T )‖∇eH‖L2(N(T ))

≤ C
( ∑

T∈TH

‖HRT ‖
2
L2(T )

)1/2

|||eH ||| ,

where we have used the finite overlapping property of the neighborhoods N(T ) of elements T ∈ TH .
On the other hand, we recall the scaled trace inequality for S ∈ SH and element TS ∈ TH with side S

‖φ‖L2(S) ≤ CH
1/2
S ‖∇φ‖L2(TS) + CH

−1/2
S ‖φ‖L2(TS).

This, in conjunction with (1.22), yields
∑

S∈SH

‖JS‖L2(S)‖φ‖L2(S) ≤ C
∑

S∈SH

‖H1/2JS‖L2(S)‖∇eH‖L2(N(S))

≤ C
( ∑

S∈SH

‖H1/2JS‖L2(S)

)1/2

|||eH ||| .

Since we can always associate the side contributions by elements, we arrive at the asserted estimate. �

2.1.2. Lower Bound. Let RT ∈ Pk−1(T ) be the L2-projection of RT , where k ≥ 1 is the polynomial
degree. We define the oscillation on the elements T ∈ TH by

oscH(T )
2

:= H2
T

∥∥RT −RT

∥∥2

L2(T )
,(2.6)

and for a subset ω ⊂ Ω, we define

oscH(ω)
2

:=
∑

T∈TH , T⊂ω

oscH(T )
2
.

We point out that oscH is a convenient means to quantify information missed by the averaging process
associated with the FEM. Using the explicit construction of Verfürth [1, 46] via bubble functions and
positivity, and continuity of A, we can get a local lower bound of the error in terms of local indicators
and oscillation. We point out that our construction deals with discrete bubble functions in a space Vh

containing VH and defined over a refinement of Th of TH ; this idea is due to Dörfler [21] and will be
crucial later.

Lemma 2.2 (A Posteriori Lower Bound). There exists a constant C2 > 0, depending only on the shape

regularity constant γ∗, CB , and cB, such that

C2ηH(T )2 ≤ ‖u− uH‖
2
H1(ωT ) + oscH(ωT )

2
,(2.7)

where the domain ωT consists of all elements sharing at least a side with T .

Proof. We assume that ωT for T ∈ TH is refined in such a way that there is an interior node in
each element in ωT and each side of T . We also assume that the test function v in (2.1) is piecewise
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Figure 2.1. Example of a refined two-element patch T1 ∪ T2 in two dimensions.

polynomial of degree ≤ k over the refinement of ωT , namely v ∈ Vh, and supp (v) ⊂ ωT . Note that
(2.1) reads

B[eH , v] =
∑

T∈TH

∫

T

RT v +

∫

T

(RT −RT )v +
∑

S∈SH

∫

S

JS v.(2.8)

Figure 2.2. Discrete bubble functions ψ1, ψS associated with the interior nodes
x1, xS of Fig. 2.1 for polynomial degree k = 1.

We proceed in three steps.
1. Interior Residual. Let T ∈ TH , and let xT ∈ Th be an interior node of T . Let ψT ∈ Vh be a

bubble function which satisfies ψT (xT ) = 1, vanishes on ∂T , and 0 ≤ ψT ≤ 1; hence supp (ψT ) ⊂ T .
Since RT ∈ Pk−1(T ) and ψT > 0 in a polyhedron of measure comparable with that of T , we have

C
∥∥RT

∥∥2

L2(T )
≤

∫

T

ψT RT
2

=

∫

T

RT (ψT RT ).

Since v = ψTRT is a piecewise polynomial of degree ≤ k over Th, it is thus an admissible test function
in (2.8) which vanishes outside T (and in particular on all S ∈ SH ). Therefore

C
∥∥RT

∥∥2

L2(T )
≤ B[eH , ψTRT ] +

∫

T

(RT −RT )ψTRT

≤ C
(
H−1

T ‖eH‖H1(T ) +
∥∥RT −RT

∥∥
L2(T )

)∥∥RT

∥∥
L2(T )

,

because of the inverse inequality ‖∇v‖L2(T ) ≤ CH−1
T ‖v‖L2(T ). This, together with the triangle in-

equality, yields the desired estimate for H2
T ‖RT ‖

2
L2(T ) :

H2
T ‖RT ‖

2
L2(T ) ≤ C

(
‖eH‖

2
H1(T ) +H2

T

∥∥RT −RT

∥∥2

L2(T )

)
.(2.9)

2. Jump Residual. Let S ∈ SH be an interior side of T1 = T ∈ TH , and let T2 ∈ TH be the other
element sharing S. Let xS ∈ Th be an interior node of S. Let ψS ∈ Vh be a bubble function in
ωS := T1 ∪ T2 such that ψS(xS) = 1, ψS vanishes on ∂ωS , and 0 ≤ ψS ≤ 1; hence supp (ψS) ⊂ ωS .
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Since uH is continuous, then [[∇uH ]]S is parallel to νS , i.e. [[∇uH ]]S = jS νS . Moreover, the
coefficient matrix A(x) being continuous implies

JS = A(x) [[∇uH ]]S · νS = jS A(x)νS · νS = a(x) jS ,

where a(x) := A(x)νS ·νS satisfies 0 < aS ≤ a(x) ≤ aS with aS , aS the smallest and largest eigenvalues
of A(x) on S. Consequently,

‖JS‖
2
L2(S) ≤ a2

S

∫

S

j2S ≤ Ca2
S

∫

S

j2SψS ≤ C
a2

S

aS

∫

S

(jS ψS)JS ,(2.10)

where the second inequality follows from jS being a polynomial and ψS > 0 in a polygon of measure
comparable with that of S.

We now extend jS to ωS by first mapping to the reference element, next extending constantly along
the normal to Ŝ and finally mapping back to ωS . The resulting extension Eh(jS) is a piecewise polyno-

mial of degree ≤ n−1 in ωS so that ψSEh(jS) ∈ Vh, and satisfies ‖ψSEh(jS)‖L2(ωS) ≤ CH
1/2
S ‖jS‖L2(S).

Since v = ψSEh(jS) ∈ Vh is an admissible test function in (2.8) which vanishes on all sides of SH but
S, we arrive at

(2.11)

∫

S

JS(jSψS) = B[eH , v] −

∫

T1

RT1
v −

∫

T2

RT2
v

≤ C

(
H

−1/2
S ‖eH‖H1(ωS) +H

1/2
S

2∑

i=1

‖RTi
‖L2(Ti)

)
‖jS‖L2(S) .

Therefore

HS ‖JS‖
2
L2(S) ≤ C

(
‖eH‖

2
H1(ωS) +

2∑

i=1

H2
Ti
‖RTi

‖
2
L2(Ti)

)
.(2.12)

3. Final Estimate. To remove the interior residual from the right hand side of (2.12) we observe
that both T1 and T2 contain an interior node of Th. Hence, (2.9) implies

HS ‖JS‖
2
L2(S) ≤ C

(
‖εH‖

2
H1(ωS) +

2∑

i=1

H2
Ti

∥∥RTi
−RTi

∥∥2

L2(Ti)

)
.(2.13)

The asserted estimate for ηH(T )2 is thus obtained by adding this bound to (2.9). The constant C
depends on the shape regularity constant γ∗ and the ratio a2

S/aS of largest and smallest eigenvalues
of A(x) for x ∈ S. �

Remark 2.3 (Equidistribution). We see from (2.7) that if the oscillation oscH(ωT ) is small compared
to the indicator ηH(T ), then the size of the indicator ηH (T ) will give reliable information about the
size of the error ‖u− uH‖H1(ωT ). This explains why refining elements with large indicators usually

tends to equi-distribute the errors which, according to Example 1.9, is an ultimate goal of adaptivity.
This idea is employed by the procedure MARK of §2.2.

Remark 2.4 (Positivity). The use of A(x) being positive definite in (2.10) avoids having oscillation
terms on S. This comes at the expense of a constant depending on a2

S/aS . If we were to proceed in
the usual manner, as in [1, 37, 46], we would end up with an oscillation of the form

H
1/2
S ‖(A(x) −A(xS)) [[∇uH ]]S · νS‖L2(S) = H

1/2
S ‖(a(x) − a(xS))jS‖L2(S)

≤ CH
3/2
S ‖A‖W 1

∞
(S) ‖jS‖L2(S)

≤ CHS

∥∥∥H1/2
S JS

∥∥∥
L2(S)

,

where C > 0 also depends on the ratio aS/aS dictated by the variation of a(x) on S. This oscillation

can be absorbed into the term H
1/2
S ‖JS‖L2(S) provided that the meshsize HS is sufficiently small; see

[37]. We do not need this assumption in our present discussion.
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Remark 2.5 (Continuity of A). The continuity of A is instrumental in avoiding jump oscillations
which in turn makes computations simpler. However, jump oscillations cannot be avoided when A

exhibits discontinuities across inter-element boundaries of the initial mesh. We get instead of (2.13)

CHS ‖JS‖
2
L2(S) ≤ ‖εH‖2

H1(ωS)+
2∑

i=1

H2
Ti

∥∥RTi
−RTi

∥∥2

L2(Ti)
+HS

∥∥JS−JS

∥∥2

L2(S)
,(2.14)

where JS is the L2-projection of JS onto Pk−1(S). To obtain estimate (2.14) we proceed as follows.
Starting from a polynomial JS , we get an estimate similar to that of (2.10)

C
∥∥JS

∥∥2

L2(S)
≤

∫

S

ψSJS
2

=

∫

S

JS(ψSJS) +

∫

S

(JS − JS)(ψSJS).(2.15)

In contrast to (2.10), we see that the oscillation term (JS − JS) cannot be avoided when A has a
discontinuity across S. We estimate the first term on the right hand side of (2.15) exactly as we have
argued with (2.11) and thereby arrive at

∫

S

JS(JSψS) ≤ C

(
H

−1/2
S ‖εH‖H1

S
(ωS) +H

1/2
S

2∑

i=1

‖RTi
‖L2(Ti)

)
∥∥JS

∥∥
L2(S)

.

This and a further estimate of the second term on the right hand side of (2.15), yield

HS

∥∥JS

∥∥2

L2(S)
≤ C

(
‖εH‖2

H1(ωS) +
2∑

i=1

H2
Ti
‖RTi

‖2
L2(Ti)

+HS

∥∥JS − JS

∥∥2

L2(S)

)
,

whence the assertion (2.14) follows using triangle inequality for ‖JS‖L2(S). Combining with (2.9), we

deduce an estimate for ηH (T ) similar to (2.7), namely,

ηH (T )2 ≤ C
(
‖εH‖

2
H1(ωT ) + oscH(ωT )

2
)
,

with the new oscillation term involving jumps on interior sides

oscH(T )
2

:= H2
T

∥∥RT −RT

∥∥2

L2(T )
+
∑

S⊂∂T

HS

∥∥JS − JS

∥∥2

L2(S)
.(2.16)

For a given mesh TH and discrete solution uH , along with input data A,b, c and f , the procedure
ESTIMATE computes element indicators ηH(T ) and oscillations oscH(T ) for all T ∈ TH according to
(2.4) and (2.6):

{ηH(T ), oscH(T )}T∈TH
= ESTIMATE(TH , uH ,A,b, c, f)

2.2. Procedure MARK. Our goal is to devise a marking procedure, namely to identify a subset T̂H

of the mesh TH such that after refining, both error and oscillation will be reduced. This is achieved
with two marking strategies as follows.

The Marking Strategy E, also called bulk-chasing, was introduced by Dörfler [21]:

Marking Strategy E : Given a parameter 0 < θE < 1, construct a minimal subset T̂H of TH

such that ∑

T∈bTH

ηH (T )2 ≥ θ2EηH(Ω)2,(2.17)

and mark all elements in T̂H for refinement.

We will see later that Marking Strategy E guarantees error reduction in the absence of oscillation
terms. Since the latter account for information missed by the averaging process associated with the
finite element method, we need a separate procedure to guarantee oscillation reduction.

This procedure was introduced by Morin et al. [34, 35] as a separate means for reducing oscillation:
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Marking Strategy O : Given a parameter 0 < θ0 < 1 and the subset T̂H ⊂ TH produced by

Marking Strategy E, enlarge T̂H to a minimal set such that
∑

T∈bTH

oscH(T )
2
≥ θ20oscH(Ω)

2
,(2.18)

and mark all elements in T̂H for refinement.

Given a mesh TH and all information about the local error indicators ηH(T ), and oscillation oscH(T ),

together with user parameters θ and θ̂, MARK generates a subset T̂H of TH

T̂H = MARK(θE , θ0 ; TH , {ηH(T ), oscH(T )}T∈TH
)

2.3. Procedure REFINE and AFEM. The following Interior Node Property, due to Morin et al
[34, 35], is known to be necessary for error and oscillation reduction:

Interior Node Property : Refine each marked element T ∈ T̂H to obtain a new mesh Th com-
patible with TH such that

T and the d + 1 adjacent elements T ′ ∈ TH of T , as well as their common sides,
contain a node of the finer mesh Th in their interior.

In addition to the Interior Node Property, we assume that the refinement is done in such a way
that the new mesh Th is conforming, which guarantees that both TH and Th are nested. This can be
achieved by repeated bisection (see Figure 2.3).
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Figure 2.3. Refinement of triangles in two dimensions by newest-vertex bisection.
Dashed lines indicate the refinement edges, which are sides opposite to the most
recently created nodes.

Creating interior nodes is rather easy in two dimensions. First, elements are marked for two bisec-
tions and then refined. This already produces a node at the midpoint of each edge. Second, the two
grandchildren with index 1 are bisected once more. The whole refinement process is shown in Fig-
ure 2.3. The first refinement step may, as usual, involve surrounding elements which are not marked.
This is an inevitable effect in order to preserve mesh conformity. The second refinement step is local

in that it involves only the two grandchildren with index 1 and does not spread outside them.
In three dimensions it is impossible to perform the second step by dealing only with children of

the original tetrahedron. The first step consists of three bisections. In order to obtain the interior
nodes, the second step consists of marking some sub-tetrahedra for two or three additional bisections.
This has the spreading effect of creating additional nodes in the edges of the original tetrahedron. For
the implementation, we do not split the refinement into two steps, but rather mark a tetrahedron for
six bisections which are performed in one step. This creates an interior node in the tetrahedron and
interior nodes in all the element faces.

With this property, we have a reduction factor γ0 < 1 of element size, i.e. if T ∈ Th is obtained

by refining T ′ ∈ T̂H , then hT ≤ γ0HT ′ . In d = 2 with triangular elements, 3 newest bisections yield
γ0 ≤ 1/2.
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Given a mesh TH and a marked set T̂H , REFINE constructs a conforming refinement Th satisfying
the Interior Node Property:

Th = REFINE(TH , T̂H)

Given parameters θE and θ0 according to Marking Strategies E and O, the adaptive algorithm
AFEM consists of the loops of procedures SOLVE,ESTIMATE,MARK, and REFINE as follows:

AFEM

Choose parameters 0 < θE , θ0 < 1.

(1) Pick an initial mesh T0, initial guest u−1 = 0, and set k = 0.
(2) uk = SOLVE(Tk, uk−1,A,b, c, f).
(3) {ηk(T ), osck(T )}T∈Tk

= ESTIMATE(Tk, uk,A,b, c, f)).

(4) T̂k = MARK(θ, θ̂ ; Tk, {ηk(T ), osck(T )}T∈Tk
).

(5) Tk+1 = REFINE(Tk , T̂k).
(6) Set k = k + 1 and go to Step 2.

2.4. Error and Oscillation Reduction. To shed light on the ingredients for convergence of AFEM,
we discuss three examples. They show the significance of the Interior Node Property in reducing both
error and oscillation. We consider the simplest scenario, thereby following [34, 35], and assume that
A is piecewise constant (but possibly discontinuous) and that both b and c vanish. The resulting
operator L reads

(2.19) Lu = − div(A∇u) = f,

and the corresponding oscillation merely depends on data

(2.20) osc2
H =

∑

T∈TH

H2
T ‖f − f̄T ‖

2
L2(T ).

Example 2.6 (Interior Node 1). This example shows the necessity of creating an interior node inside
each refined triangle. Consider problem (1.3)-(1.4) with A = I, f ≡ 1, and Ω = (0, 1) × (0, 1). Let{
(0, 0), (1, 0), (1, 1), (0, 1), ( 1

2 ,
1
2 )
}

be the set of vertices of T0 (see Figure 2.4-left).

Figure 2.4. Example 2.6: Finite element solutions u0, u1, u2 for 3 consecutive meshes
T0, T1, T2 obtained with 2 bisection steps. The triangles of T1 do not have interior nodes
but those of T2 do, thereby yielding u1 = u2 = 1

12φ1 6= u3.

Let φ1 be the nodal basis function of V0 that corresponds to the node ( 1
2 ,

1
2 ). Then, it is easily seen

that the finite element solution u0 is u0 = 1
12φ1. Let T1 be the grid obtained from T0 by performing

two bisections on each triangle of T0 using the newest-vertex bisection and assuming that ( 1
2 ,

1
2 ) is

the newest vertex on the initial grid (see Figure 2.4-middle). This is the standard refinement 2-step
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bisection [21], and does not lead to an interior node in the refined elements. Then we get a set of 5
nodes, and the finite element solution u1 on T1 solves a simple 5× 5 system which satisfies u1 = u0, as
can be seen in Figure 2.4. Since u−u1 = u−u0, we conclude that without one interior node in at least
one triangle, no error reduction is obtained even when osc0 = 0 and |||u− u0|||Ω > 0. The presence of
interior nodes (with respect to T0) in the refinement T2 of T1 yields a change of solution values (see
Figure 2.4-right).

Example 2.7 (Interior Node 2). At first sight, it may seem that the situation of Example 2.6 may
occur only at the first refinement step. This example shows that such a situation can also happen at
any refinement step n.

Fix n ∈ N0 and consider (1.3) with A = I, Ω = (0, 1)2, and f given by

f(x) =

{
1 if x ∈ (i 2−n, (i+ 1) 2−n) × (j 2−n, (j + 1) 2−n) and i+ j odd

−1 otherwise;

see Figure 2.5. Then, if we start with T0 equal to the grid T0 of Example 2.6, and φ1 also as in
Example 2.6, we have that φ1 is orthogonal to f and consequently u0 ≡ 0. If we now define recursively
Tk+1, k = 0, 1, . . . as the grid that results from Tk by performing two newest-vertex bisections on every
triangle (see Figure 2.5), we will have uk ≡ 0 for k = 0, 1, . . . , n−1, due to the fact that f is orthogonal
to the basis functions of Tk for k = 0, 1, . . . , n− 1.
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Figure 2.5. Example 2.7: Checkerboard function f for n = 3 (left), and grids Tk for
k = 0, 1, 2 (right).

Figure 2.6. Example 2.7: Finite element solutions u2, u3, u4 and meshes T2, T3, T4

with n = 2. Since u2 = u3 6= u4, error reduction may fail to hold at any adaptive loop
not just at the first one.

For k = n the solution un will not be zero anymore, but it will be zero along the lines where f
changes sign due to the symmetry of the problem, and the same will happen with un+1 (see Figure
2.6). Then, if we observe un and un+1 in a fixed square where f is constant, they behave exactly as u0

and u1 do in Example 2.6, and consequently un = un+1, which means that the error does not decrease,
even when the oscillation oscn is zero. Figure 2.6 depicts this situation.
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Example 2.8 (Data Oscillation). This example shows that if the data oscillation oscH is not small,
then, even introducing an interior node on all elements, the error may not decrease. To see this,
consider Example 2.7 for some fixed large n ∈ N0. Observe now that if we obtain Tk+1 by performing
three bisections on all the elements of Tk, then three new nodes are created on the edge opposite to the
newest vertex in addition to an interior node per element (see Figure 2.7). Even though this refinement
is stronger than required by the Interior Node Property in each step, the solutions, uk will all be zero
for k < 2n/3.

PSfrag replacements
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Figure 2.7. Resulting grid T1 (left) and T2 (right) after performing three bisections
on each element of T0 and T1, respectively.

We conclude from Examples 2.6 and 2.7 that the interior node is necessary to obtain an error
decrease, and from Example 2.8 that this may not be sufficient if the mesh does not resolve oscillation
of data. Therefore, in order to obtain an asymptotically convergent sequence of discrete solutions, we
must readjust the mesh to resolve oscH according to a decreasing tolerance.

We next quantify to effect of the Interior Node Property for both error and oscillation reduction.
We start with a simple result relating two consecutive discrete solutions on an element that has been
refined.

Lemma 2.9 (Local Lower Bound for uh − uH). Let C2 > 0 be the constant of Lemma 2.2. Then

C2ηH(T )2 ≤ ‖uh − uH‖
2
H1(ωT ) + oscH(ωT )

2
∀ T ∈ T̂H .(2.21)

Proof. Since B[u− uh, v] = 0 for v ∈ Vh, we have

B[u− uH , v] = B[uh − uH , v] ∀ v ∈ Vh.

We now observe that the bubble functions in the proof of Lemma 2.2 are in Vh. Therefore, the assertion
follows as in Lemma 2.2. �

We realize that the local energy error between consecutive discrete solutions is bounded below by

the local indicators for elements in the marked set T̂H , provided the oscillation term is sufficiently
small relative to the energy error.

On the other hand, we now prove that the oscillation reduces with a factor ρ < 1. The first lemma
considers the worst scenario situation of f just in L2(Ω), whereas the second lemma addresses the case
of f piecewise smooth.

Lemma 2.10 (Data Oscillation Reduction 1). Let 0 < γ0 < 1 be the reduction factor of element size

associated with one refinement step of REFINE. Given 0 < θ0 < 1, let ρ := (1 − (1 − γ2
0)θ20)

1/2. Let

T̂H be a subset of TH satisfying Marking Strategy O. If Th is generated by REFINE from TH , then the

following data oscillation reduction occurs:

(2.22) osch ≤ ρ oscH .
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Proof. Let T ∈ Th be an element contained in T̂ ∈ T̂H . Since f̄T is the L2-projection of f onto Pk−1(T ),
for instance f̄T = |T |−1

∫
T f for k = 1, we have

‖f − f̄T‖L2(T ) ≤ ‖f − f̄T̂ ‖L2(T ).

Since hT ≤ γ0hT̂ , we discover that

osc2
h =

∑

T∈Th

h2
T ‖f − f̄T ‖

2
L2(T )

≤ γ2
0

∑

T̂∈bTH

h2
T̂
‖f − f̄T̂ ‖

2
L2(T̂ )

+
∑

T∈TH\bTH

h2
T ‖f − f̄T ‖

2
L2(T )

= (γ2
0 − 1)osc2

H + osc2
H ≤ ρ2osc2

H .

�

2.5. Convergence of AFEM. We prove convergence of AFEM under the simplifying assumptions
on the coefficients of section 2.4, following [34, 35]. We will consider the general case in Lecture 3.

It is crucial for convergence to be able to link two consecutive discrete solutions uH ∈ VH and
uh ∈ Vh. This is easy to do for the energy norm due to Lemma 2.11, but not for any other norm.

Lemma 2.11 (Orthogonality). If VH ⊂ Vh, then the following relation holds

(2.23) |||u− uH |||
2

= |||u− uh|||
2

+ |||uh − uH |||
2
.

Proof. The bilinear form B, being symmetric, induces a scalar product in V. By Galerkin orthogonality,
B[eh, v] = 0 for all v ∈ Vh, whence uh − uH ∈ Vh is perpendicular to u − uh. Therefore, since
u− uH = (u− uh) + (uh − uH), the assertion (2.23) follows from the Pythagoras theorem �

This resul reveals the monotonicity property |||u− uh||| ≤ |||u− uH ||| regardless of the strengh of the
refinement leading from TH to Th. To enforce a strick error reduction we need to make sure that
|||uh − uH ||| is at least a fixed proportion of |||u− uH |||. We do this next upon quantifying the effect of
MARK and REFINE on error reduction. In particular, we show the compound effect of the Marking
Strategy E with the Interior Node Property.

Theorem 2.12 (Error Reduction). Given a triangulation TH and discrete solution uH , let T̂H be

generated by MARK and let Th be a conforming refinement of TH generated by REFINE. Then there

exists a constant 0 < α < 1, depending only on the minimum angle, θE, CB, and cB, such that the

solution uh on the mesh Th satisfies

|||u− uh||| ≤ α |||u− uH ||| + osc2
H .

Proof. We first derive a lower bound for |||uh − uH |||. By Lemma 2.9 and Marking Strategy E we have

C2θ
2
Eη

2
H ≤ C2

∑

T∈bTH

ηH(T )2

≤
∑

T∈bTH

|||uh − uH |||
2
H1(ωT ) + oscH(ωT )2

≤ D |||uh − uH |||
2

+Dosc2
H ,

where D := d + 2 accounts for the overlap of sets ωT . Hence, since |||u− uH |||
2
≤ C1η

2
H in light of

Lemma 2.1,

|||uh − uH |||
2
≥
θ2EC2

D
η2

H − osc2
H ≥

θ2EC2

DC1
|||u− uH |||

2
− osc2

H
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Cobining this with Lemma (2.11), we obtain

|||u− uh|||
2

= |||u− uH |||
2
− |||uh − uH |||

2

≤ |||u− uH |||
2

(
1 −

θ2EC2

DC1

)
+ osc2

H

This proves the assertion with α2 = 1 −
θ2

E
C2

DC1
. �

Theorem 2.12 shows that the energy error decreases provided that oscillation decreases separately.
The latter is provided by Lemma 2.10. We point out though that we do not prove a geometric decrease
of the error but that rather that it is dominated by a geometric sequence.

Theorem 2.13 (Convergence). Let 0 < θE , θ0 < 1 be the parameters of MARK. Let 0 < α < 1 be

given by Theorem 2.12 and 0 < ρ < 1 by Lemma 2.10. Let α0 := max(α, ρ). Then, for every β such

that α0 < β < 1, the sequence {uk}k∈N0
of finite element solutions produced by AFEM satisfies

(2.24) |||u− uk|||Ω ≤ C0 β
k,

with

C0 := |||e0||| +
1

β − α0
osc0.

Proof. We first apply Lemma 2.10 recursively to get

osck ≤ ρ osck−1 ≤ · · · ≤ ρkosc0.

We then set ek := |||u− uk|||, and utilize Theorem 2.12 to deduce

ek+1 ≤ αek + osck ≤ αek + ρkosc0,

which by recursion implies

(2.25) ek+1 ≤ αk+1e0 + osc0

k∑

j=0

αjρk−j .

Since α ≤ α0 and ρ < β, we obtain the estimate

k∑

j=0

αjρk−j ≤ βk
k∑

j=0

(α0

β

)j

≤ βk 1

1 − α0

β

= βk+1 1

β − α0
,

from which the assertion follows immediately. �

2.6. Numerical Experiments. In this section we present two examples taken from [34, 35]. The
purpose of the simulations is to verify experimentally the optimal performance of AFEM. We monitor
the error decay in terms of degrees of freedom N for polynomial degree k = 1, and observe the optimal
rate N−1/2. The experiments were implemented within the finite element toolbox ALBERTA [43].

2.6.1. Example: Discontinuous coefficients. We consider the Example 1.3 due to Kellogg [29]. In

0 5 10 15 20 25 30 35
iteration

10-1

100

tr
ue

 e
rr

or

true error
estimate

Figure 2.8. Example 2.6.1: Error reduction: estimate and true error.
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Figure 2.9. Example 2.6.1: Quasioptimality of AFEM: estimate and true error. The
optimal decay is indicated by the green line with slope −1/2.

Table 2.1. Example 2.6.2: Total number and number of marked elements per itera-
tion in two dimensions (left) and three dimensions (right): est.: marked elements due
to error estimator, osc.: additionally marked elements to data oscillation.

iter. elements est. osc.

0 4 8 0

1 64 16 16

2 704 56 8

3 2256 80 0

4 4208 96 8

5 6624 112 24

6 8752 344 0

7 17512 432 0

8 28368 608 0

9 42896 768 16

10 60216 2192 0

11 113040 2296 24

12 160592 3816 24

iter. elements est. osc.

0 6 6 0

1 384 48 0

2 7776 48 48

3 15936 576 0

4 112320 5040 0

5 860592 5136 720

6 1693536 30144 0

Figures 2.8-2.9 we see the same behavior of the true error |||ek|||Ω and the estimator ηk scaled by the
factor 0.05. Figure 2.9 demonstrates that the grids and associated numerical complexity are quasi-
optimal: |||ek|||Ω = C DOFs(k)−1/2 is valid asymptotically (the performance of an optimal method is
again indicated by the additional green straight line).

For this problem the grid is highly graded at the origin. It is worth realizing the strength of the
singularity at hand in Figure 2.10. We see a mesh with less than 2000 nodes and three zooms at the
origin, each obtained with a magnifying factor 103, and yet exhibiting a rather strong grading. This is
also reflected in Figure 2.11, which depicts the graph of the discrete solution over the underlying mesh:
the solution is flatter in the quadrants with a ≈ 161 although the grid is finer, which accounts for the
presence of a in the energy norm. This picture was created using the graphics package GRAPE [27].

2.6.2. Example: Variable Source. In Example 2.6.1 the source term is constant. It is our purpose now
to examine the effect of data oscillation (2.20). To this end, we consider the domain Ω = (−1, 1)d with
d = 2, 3, and the exact solution

u(x) = e−10 |x|2

of (2.19) with A = I and non-constant f = −∆u. Such an f exhibits a relatively large variation in Ω,
and within elements, which forces AFEM to refine additional elements due to data oscillation (Marking
Strategy O), not yet marked for refinement by Marking Strategy E. This is reported in Table 2.1 for
two dimensions (left) and three dimensions (right). We see that the number of additional elements
due to large data oscillation is rather small relative to those due to large error indicators, but it is
not zero. On the one hand, this confirms that control of data oscillation cannot be omitted in a
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Figure 2.10. Example 2.6.1: Final grid (full grid with < 2000 nodes) (top
left), zooms to (−10−3, 10−3)2 (top right), (−10−6, 10−6)2 (bottom left), and
(−10−9, 10−9)2 (bottom right).

Figure 2.11. Example 2.6.1: Graph of the discrete solution, which is ≈ r0.1, and
underlying grid.
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Figure 2.12. Example 2.6.2: Quasioptimality of AFEM: estimate and true error in
two dimensions. The optimal decay is indicated by the green line with slope −1/2.
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Figure 2.13. Example 2.6.2: Quasioptimality of AFEM: estimate and true error in
three dimensions. The optimal decay is indicated by the green line with slope −1/3.

convergent algorithm. On the other hand, this explains why data oscillation seems to play a minor
role for (piecewise) smooth data f , and hints at the underlying reasons why most adaptive strategies,
although neglecting data oscillation, converge in practice.

Figure 2.14. Example 2.6.2: Adaptive grids of the 3d simulation on
∂((−1, 1)3\(0, 1)3): full grid of the 2nd iteration (left), zoom into the grid of the
4th iteration (right).



26 R.H. NOCHETTO

As mentioned in § 2.3, we produce in three dimensions the interior node by bisecting a marked
tetrahedron six times. This corresponds in two dimensions to four bisections of a marked triangle,
which is used here instead of the procedure of Figure 2.3. Although this produces more DOFs than
needed, Figures 2.12 and 2.13 demonstrate that the resulting meshes are still quasi-optimal for both
two dimensions and three dimensions. Here, the estimators ηk were scaled by the factor 0.25. For
comparison with an optimal mesh, green lines with slope −1/d are plotted in Figure 2.12 (d = 2) and
Figure 2.13 (d = 3); note that these lines have nearly the same slope due to different scaling of the y
axis.

Finally, in Figure 2.14 we cut (0, 1)3 out of the domain (−1, 1)3 and show the adaptive grid of the
three-dimensional simulation on the boundary of the resulting domain. In the left picture we show the
full grid of the 2nd iteration and in the right one a zoom into the grid of the 4th iteration. For this
picture we also used the graphics package GRAPE.

2.7. Exercises.

2.7.1. Exercise: Superconvergence. Let Th be a shape-regular triangulation of a polygonal domain
Ω ⊂ R

d. Let Vh be a space of (possibly discontinuous) finite elements containing at least Pk(T ) as
interpolating polynomials for all T ∈ Th. Given u ∈ L2(Ω) let uh ∈ Vh be the L2-projection of u onto
Vh, i.e.

uh ∈ Vh :

∫

Ω

(u− uh)v = 0 ∀ v ∈ Vh.

Prove the following error estimates for 0 ≤ m ≤ k + 1 (H−m(Ω) = dual of Hm
0 (Ω)):

‖u− uh‖L2(Ω) ≤ inf
v∈Vh

‖u− v‖L2(Ω) ≤ Chk+1|u|Hk+1(Ω);(2.26)

‖u− uh‖H−m(Ω) ≤ Chk+1+m|u|Hk+1(Ω);(2.27)

‖u− uh‖Hm(Ω) ≤ Chk+1−m|u|Hk+1(Ω),(2.28)

the latter provided Th is quasi-uniform. The inequality (2.27) is referred to as a superconvergence

estimate. Hint: to prove (2.28) add and subtract Ihu and use an inverse inequality.

2.7.2. Exercise: Equivalent Estimator. Consider the a posteriori error estimator based only on jumps

ζh =
( ∑

S∈Sh

hS‖JS‖
2
L2(S)

)1/2

.

The purpose of this problem is to demonstrate that ζh is equivalent to the true error ‖∇eh‖
2
L(Ω) under

the same conditions that ηh is, where ηh is given by

η2
h =

∑

T∈Th

h2
T ‖f‖

2
L2(T ) +

∑

S∈Sh

hS‖JS‖
2
L2(S).

(a) Let fi be the L2-projection of f onto the set of constants P0(ωi) over the star ωi =supp(φi). Use
the error equation to deduce

‖fi‖
2
L2(ωi)

≤ C‖f − fi‖
2
L2(ωi)

+ C
∑

S3xi

h−1
S ‖JS‖

2
L2(S).

(b) Use that each triangle T ∈ Th belongs to at most N sets ωi with N independent of h to conclude
that ∑

T∈Th

h2
T ‖f‖

2
L2(T ) ≤ Ch2

max

∑

1≤i≤I

‖f − fi‖
2
L2(ωi)

+ C
∑

S∈Sh

hS‖JS‖
2
L2(S).

(c) Show that

h2
max

∑

1≤i≤I

‖f − fi‖
2
L2(ωi)

= o(h2
max),

and then prove that ζh is equivalent to ‖∇eh‖
2
L(Ω).
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2.7.3. Exercise: Data Oscillation. Construct a counterexample with oscillatory function f showing
that a global lower bound such as (2.7) cannot be valid without oscH .

2.7.4. Exercise: Data Oscillation Reduction 2. Let f be piecewise H s for 0 < s ≤ 1 over the initial
mesh, where Hs stands for the space of functions with fractional derivative of order s in L2. Let data
oscillation be redefined by

osch :=

(∑

T∈Th

h2+2s
T ‖Dsf‖2

L2(T )

)1/2

.

Let γ0, θ0, and Th be defined as in Lemma 2.10. If ρ := (1 − (1 − γ2+2s
0 )θ20)

1/2, then show

(2.29) osch ≤ ρ oscH .

Since γ0 ≤ 1/2 in two dimensions, the reduction rate squared of is α̂2 ≤ 1− 15θ̂2/16 ≈ 1− θ̂2 provided
f is piecewise H1.


