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4. Lecture 4. Complexity of AFEM

Despite the overwelming computational evidence that AFEM lead to optimal meshes, the math-
ematical theory started very recently with Binev et al [4] and Stevenson [44]. Paper [4] discusses
geometric properties of bisection, reported in section 4.1, which turn out to be crucial for optimal
complexity; the AFEM in [4] includes a coarsening step which is not necessary in practice for linear
elliptic PDE. Paper [44], instead, analyzes the AFEM of Lecture 2 and shows optimal complexity
without coarsening. We describe the main ideas of [44] section 4.2 and 4.3. We conclude in sections
4.4 and 4.5 with optimality bounds taken from [10] for general elliptic PDE such as (1.3).

4.1. Procedure REFINE: Properties of Bisection. We now study geometric properties of bisection
[2, 4, 31, 33]. We already described the algorithm in section 2.3 as is the one used by ALBERT for
mesh refinement [43].

Let Tk be the conforming triangulation generated AFEM in the k-th step. We denote Tk,∗ a
refinement of Tk (in general non-conforming) satisfying the Interior Node Property, andM(Tk,∗) the set

of elements of Tk that were refined in Tk,∗. Finally,M(Tk,∗) is the set of elements of Tk with nonempty

intersection withM(Tk,∗); in particular, note thatM(Tk,∗) ⊂M(Tk,∗) and #M(Tk,∗) ≤ C∗#M(Tk,∗)
with C∗ a universal constant solely depending on the shape regularity constant γ∗ and the dimension
d. This is a consequence of #N(T ) ≤ C∗ for all T ∈ Tk.

If an adjacent element to one marked for refinement happens to have a refinement edge other than the
common edge, then the adjacent element must be refined first recursively. This generates a compatible
refinement edge of the original element and its (new) neighbour. This recursion is guaranteed to stop
for every element of a refined triangulation if the recursive refinement does not create cycles on the
(usually very coarse) initial triangulation T0 [33]; this can be easily checked for a triangulation with
a given choice of refinement edges. For three dimensions, this is proved only under some additional
assumptions on the initial triangulation [31]. In Figure 4.1 we show a situation where recursion is
needed. For all triangles, the longest edge is the refinement edge. Let us assume that triangles A and
B are marked for refinement. Triangle A can be refined at once, as its refinement edge is a boundary
edge. For refinement of triangle B, we have to recursively refine triangles C and D. Again, triangle D
can be directly refined, so recursion stops there. This is shown in the second part of the figure. Back
in triangle C, this can now be refined together with its neighbour. After this, also triangle B can be
refined together with its neighbour.
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Figure 4.1. Recursive bisection refinement: Triangles A, B are initially marked for
refinement. Triangle B yields a concatenation of refinements that stops in triangle D.

As shown in Figure 4.1, the concatenation of refinements of Tk to maintain conformity may involve
several refinement levels, perhaps as many as k. This hints at the difficulties in bounding the number
of degree of freedom #Tk+1 in terms of those marked #M(Tk,∗) with a constant independent of k.
The following geometric estimate of Binev et al [4] and Stevenson [45] is crucial in this respect.

Proposition 4.1 (Complexity of REFINE). Let {Tk}k≥0 be a sequence of conforming nested partitions
generated by REFINE starting from T0. LetM(Tk,∗) be the set of elements of Tk marked for refinement
and Tk,∗ be the (nonconforming) partition created by refinement of elements just in M(Tk,∗). Then
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there is a constant C0 solely dependent on T0 such that

(4.1) #Tk+1 −#T0 ≤ C0

k
∑

i=1

#Ti,∗ −#Ti.

In what follows we will repeatedly used the notation a 4 b to indicate a ≤ Cb with a constant
independent of the main parameters involved.

4.2. Localized Upper Bound and Optimal Marking. The next key estimate is due to Stevenson
[44] and gives an upper bound between two consecutive discrete solutions in terms of the error indicators
of the coarser solution, but restricted to the elements in which the partition differ. We refer to Lemma
2.1 for a global upper bound.

Proposition 4.2 (Localized Upper Estimate). Let uk ∈ Vk and uk,∗ ∈ Vk,∗ be a discrete solutions over
a conforming mesh Tk and its nonconforming refinement Tk,∗ with marked elements M(Tk,∗). Then

(4.2) ‖uk − uk,∗‖V 4
∑

T∈M(Tk,∗)

ηk(T )2.

Proof. Since Vk,∗ ⊂ Vk are nested subspaces of V, we can proceed as in Lemma 2.1 with test function
v = uk − uk,∗ ∈ Vk,∗. Since the definition of Clement interpolation operator Ik of Proposition 1.6 on

an element T involves its neighborhood N(T ), we realize that Ikv = v for all T /∈M(Tk,∗). Therefore,
the same argument as in the proof of Lemma 2.1 applies with φ = v − Ikv and leads to (4.2). �

The following result of Stevenson is a consequence of Proposition 4.2. It allows us to relate an
optimal partition in terms of degrees of freedom with the Marking Strategy E of Dörfler [21], which
has optimal properties in terms of energy. We assume

• The PDE is (2.19) with A = I: −∆u = f
• The forcing function f is piecewise constant over T0, whence osck = 0 for all k ≥ 1
• The polynomial degree is 1.

A by-product of these assumptions is the equivalence of energy error and estimator (see Lemmas 2.1
and 2.2); note that constant C2 is proportional to that in (2.7):

(4.3) C2

∑

T∈Tk

ηk(T )2 ≤ |||u− uk|||
2
≤ C1

∑

T∈Tk

ηk(T )2.

The ratio C1

C2
≥ 1 is a measure of the precision of the indicators {ηk(T )}T : the closer to 1 the better!

Corollary 4.3 (Optimal Marking). Let the previous assumptions be valid. Let uk ∈ Vk and uk,∗ ∈ Vk,∗

be as in Proposition 4.2. Suppose that they satisfy the energy decrease property

(4.4) ‖u− uk,∗‖V ≤ λ‖u− uk‖V,

with 0 < λ < 1. Then the set M(Tk,∗) of marked elements satisfies the Dörfler property

(4.5)
∑

T∈M(Tk,∗)

ηk(T )2 ≥ θ2
∑

T∈Tk

ηk(T )2,

with θ2 = C2

C1
(1− λ2).

Proof. We invoke the orthogonality relation of Lemma 2.11, which is valid for (2.19), to write

C1

∑

T∈M(Tk,∗)

ηk(T )2 ≥ ‖uk,∗ − uk‖
2
V

= ‖u− uk,∗‖
2
V
− ‖u− uk‖

2
V

≥ (1− λ2)‖u− uk‖
2
V
≥ C2(1− λ2)

∑

T∈Tk

ηk(T )2.

This implies (4.5) with the asserted parameter θ. �
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We immediately see from Corollary 4.3 that the range of θ is limited by the precision of the indicators
{ηk(T )}T . Since λ > 0, we need a more conservative marking with θ satisfying

(4.6) 0 < θ <
C2

C1
.

4.3. Optimal Complexity I: The Simplest Case. We now show that (4.6) is the bridge between
the minimality property of Dörfler marking and optimal partitioning for a given accuracy. To this end,
we need to introduce an approximation class

(4.7) As :=
{

v ∈ V : |v|s = sup
ε>0

ε inf
T ⊂T0: inf ‖u−uT ‖V≤ε

(

#T −#T0

)s

<∞
}

.

and equip it with the norm ‖v‖s = ‖v‖V+|v|s. So As is the class of functions that can be approximated
within a given tolerance ε by continuous piecewise linear functions on a partition T with degrees of

freedom #Tk−#T0 4 ε−1/s|v|
1/s
s . Classical estimates show that for s ≤ 1

2 we have H1+2s(Ω)∩V ⊂ As,
in which case uniform refinement is optimal. On the other hand, the class is much larger and related
to Besov regularity [5].

Lemma 4.4 (Upper Bound of DOF). In addition to the previous assumptions, let u ∈ As. Let Tk

be a conforming partition obtained from T0. Let Tk,∗ be a nonconforming mesh created from Tk upon
marking the set M(Tk,∗) according with the Dörfler marking with θE satisfying (4.6). Then

(4.8) #Tk,∗ −#Tk 4 ‖u− uk‖
−1/s
V
|u|1/s

s ,

where the hidden constant depends on the discrepancy between θE and C2

C1
.

Proof. Let λ and ε satisfy 0 < λ2 = 1− C1

C2
θE < 1 and ε = λ‖u− uk‖V . Let Tε be a refinement of T0

with minimal degrees of freedom satisfying ‖u− uTε
‖V ≤ ε and

#Tε −#T0 4 ε−1/s|u|1/s
s ≤ λ−1/s‖u− uk‖

−1/s
V
|u|1/s

s .

Let now T +
k be the smallest (nonconforming) common refinement of Tk and Tε. Since both Tk and

Tε are refinements of T0, the number of triangles in T +
k that are not in Tk is less than the number of

triangles that must be added to go from T0 to Tε, namely,

#T +
k −#Tk ≤ #Tε −#T0.

Since the energy error is monotone and T +
k is a refinement of Tε, we see that

‖u− uT +

k
‖V ≤ ‖u− uTε

‖V ≤ ε = λ‖u− uk‖V ,

whence T +
k satisfies a Dörfler property according to Corollary 4.3. On the other hand, Marking

Strategy E selects a minimal set M(Tk,∗) = T̂k with the Dörfler property, which implies that the
ensuing nonconforming partition Tk,∗ satisfies

#Tk,∗ −#Tk 4 #T +
k −#Tk ≤ #Tε −#T0 4 λ−1/s‖u− uk‖

−1/s
V
|u|1/s

s .

This is the desired (4.8) with an explicit dependence on the discrepance between θE and C2

C1
via λ. �

We are now in the position to show that AFEM possesses optimal complexity. To this end we have
to accumulate via Proposition 4.1 the effect of each adaptive loop quantified in Lemma 4.4.

Theorem 4.5 (Optimal Complexity 1). Let f be piecewise constant in T0 and let u ∈ As for 0 < s ≤ 1/2
be the solution of −∆u = f in a polyhedral domain Ω of R

d with vanishing Dirichlet boundary condition.
Then, the k-th iterate uk ∈ Vk of AFEM satisfies the optimal bound

(4.9) ‖u− uk‖V 4 (#Tk −#T0)
−1/s|u|1/s

s ,

where the hidden constant depends on the discrepancy between θE and C2

C1
.
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Proof. We first note that since osck = 0 Theorem 2.12 implies the error reduction

‖u− uk+1‖V ≤ α‖u− uk‖V,

whence for 0 < k ≤ n

‖u− uk‖
−1/s
V

≤ α(n−k)/s‖u− un‖
−1/s
V

.

We next employ Proposition 4.1 in conjunction with Lemma 4.4 to deduce

#Tn −#T0 4

n−1
∑

k=0

#Tk,∗ −#Tk

4 |u|1/s
s

n−1
∑

k=0

‖u− uk‖
−1/s
V

4 ‖u− un‖
−1/s
V
|u|1/s

s

n
∑

k=1

α
k
s

4 ‖u− un‖
−1/s
V
|u|1/s

s ,

because α < 1 makes the sum bounded independently of n. This is the desired estimate in disguise. �

We note that Theorem 4.5 asserts that the error decay is the optimal one expected for a membership
in the approximation class As. Theorem 4.5 does not account for possible degeneracies of u and
corresponding higher rates.

4.4. Marking Revisited: Towards Optimal Complexity. If osck 6= 0, then the above proof have
to be modified considerably. Instead of the approach proposed by Stevenson in [44], we follow here the
more recent approach of Cascón and Nochetto [10] that simplifies that in [44] and applies to general
operators L as in (1.3).

We start by showing that Marking Strategy O, even though effective in reducing oscillation, may
lead to suboptimal meshes. The following counterexample is a simple modification of Example 1.3
studied computationally in section 2.6.1

u = uK + uS .

Here uK is the function of Kellogg [29] discussed in Example 1.3 with γ = 0.1, and uS is the oscillatory
function

us = 10−6a−1
i sin2(10πx) sin2(10πy)

where ai, being constant in each quadrant, is the diffusion coefficient given in Example 1.3. We
observe that uS is much smaller in magnitude than uK and is also smooth, but it leads to a small
amount of data oscillation. Since Marking Strategy O reduces data oscillation in step k + 1 relative
to the preceeding value in step k, the absolute magnitude of data oscillation relative to the error is
inmaterial. This fact is an early indication that Marking Strategy O may yield suboptimal meshes and
this is confirmed computationally and depicted in Figures 4.2 and 4.3.

4.5. Optimal Complexity II: The general Case. In order to decrease the oscillation relative to
the error size we need to make a few important modifications in AFEM. We start by defining a new
notion of oscillation which majorizes the previous one osck and incorporates the variation of all data
within an element T ∈ Tk :

osc(f, T )2 :=h2
T

∥

∥f − f̄T

∥

∥

2

L2(T )

osc(A,b, c; T )2 :=h2
T osc(DA, T )2 + h2

T osc(b, T )2 + h2
T osc(c, T )2

osc(A,b, c, uk; T )2 := osc(A,b, c; T )2 |||uk|||
2
T ,
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Figure 4.2. Refined mesh after k = 15 iterations for the AFEM MNS of Morin-
Nochetto-Siebert of Lecture 2 (left: 8077 degrees of freedom) and by the new AFEM
(right: 363 degrees of freedom) with θE = θ0 = 0.4. It is quite evident that Marking
Strategy O yields a suboptimal performance in terms of degrees of freedom.
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Figure 4.3. Decay rates of error (left) and estimator (right) for the new AFEM vs the
AFEM MNS of Morin-Nochetto-Siebert of Lecture 2 for several values of parameter
θ0 = 0.4, 0.5, 0.6 and θE = 0.4. As the marking parameter θ0 increases from 0.4 to 0.6
the curve flattens out thereby showing lack of optimality and its sensitivity to θ0. On
the other hand, the new marking exhibits optimal decay.

where

osc(DA, T ) := max
1≤i,j≤d

max
x,y∈T

|∂i {aij(x) − aij(y)} |

osc(b, T ) := max
1≤i≤d

max
x,y∈T

|bi(x)− bi(y)|

osc(c, T ) :=max
x∈T
|c(x)|+ h− 4

p

{

1

|T |

∫

T

(

1

|T |

∫

T

[c(x) − c(y)]2 dx

)

q

2

dy

}
2
q

.
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We now define the new element oscillation osc(uk, T ) and element indicator ζk(T ) to be

osc(uk, T )2 := osc(f, T )2 + osc(A,b, c, uk; T )2

ζk(T )2 := ηk(T )2 + osc(uk, T )2,

where ηk(T ) is the error indicator already. introduced in (2.4). For their global contributions we
employ the following notation:

η2
k =

∑

T∈Tk

ηk(T )2,

osc(uk, Tk)2 =
∑

T∈Tk

osc(uk, T )2,

osc(A,b, c; Tk)2 = max
T∈Tk

osc(A,b, c; T )2,

ζ2
k =

∑

T∈Tk

ζk(T )2.

4.5.1. New Marking Strategy and AFEM. We still utilize the Dörfler marking as follows:

• MARK1: This procedure selects a set M(Tk,1) ⊂ Tk satisfing the following property for the element
indicator ζ2

k ,
∑

T∈M(Tk,1)

ζ(T )2 ≥ θ2
1

∑

T∈Tk

ζ(T )2.

This marking gives rise to a (nonconforming) partition Tk,1 of Tk:

Tk,1 := MARK1(θ1, ζk).

• MARK2: Given parameters θ2, εk ∈ (0, 1), this procedure performs several steps of Dörfler mark-
ing with θ2 on {osc(uk, T )}T , where uk is taken as a constant, and generates a (nonconforming)
refinement Tk,2

Tk,2 := MARK2(θ2, osc(uk, Tk), εk)

satisfying the condition,

osc(uk, Tk,2)
2 ≤ εk.

Note that the tolerance for MARK2 depends on uk which is kept fixed in this process. So execution of
MARK2 does not require any call to SOLVE to update uk in the subsequent refinements of Tk until the
final partition Tk,2 is reached.

We are now in a position to write the new AFEM. We assume that the initial partition T0 satisfies
the following two restrictions:

C∗hs
0‖b‖L∞(Ω) < 1(4.10)

8Λ0C1 osc(A,b, c; T0)
2 < δ(4.11)

where δ > 0 is a (rather technical) constant to be determined in Theorem 4.6 and Λ0 = (1 −
C∗hs

0‖b‖L∞(Ω))
−1 > 1 is the constant in (3.1).

AFEM

Choose parameters 0 < θ1, θ2, δ < 1, and initial mesh T0 satisfying (4.10) and (4.10). Set k = 0.

(1) uk := SOLVE(Tk, uk−1).
(2) {η2

k, osc(uk, Tk)2} := ESTIMATE(Tk, uk).
(3) Tk,1 := MARK1(θ1, ζ

2
k).

(4) If
(

osc(uk, Tk)2 > εk := δ
8ζ2

k

)

then Tk,2 := MARK2(θ2, osc(uk, Tk)2, εk).
(5) Tk+1 := REFINE(Tk,1, Tk,2).
(6) Update k ← k + 1, and go to step (1).
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We stress that in step (4) of AFEM we reduce oscillation osc(uk, Tk) only relative to the estimator ζk

as suggested by the counterexample of section 4.4

4.5.2. Convergence and Complexity of AFEM. The next challenge is to prove convergence of AFEM.
The difficulty arises from the fact that

Theorem 4.6 (Convergence of AFEM). Let {uk}k be the sequence of discrete solutions produced by
AFEM There exist constants 0 < α < 1 and β > 0, such that two consecutive iterates satisfy

|||u− uk+1|||
2
Ω + β osc(uk+1, Tk+1)

2 ≤ α2
(

|||u− uk|||
2
Ω + β osc(uk, Tk)2

)

.

Proof. As in Theorems 2.13 and 3.4, we use the notation

e2
k := |||u− uk|||

2
Ω , ε2k := |||uk+1 − uk|||

2
Ω .

In view of the upper bound (2.1), with C1 ≥ 1, the definition of ζk, and procedure MARK1, we get the
following expresion for the error in terms of two consecutive discrete solutions and oscillation

e2
k + osc(uk, Tk)2 ≤ C1η

2
k + osc(uk, Tk)2 ≤ C1ζ

2
k

≤
C1

θ2
1

∑

T∈M(Tk,1)

ζk(T )2

≤
C1

θ2
1C2

ε2k +

(

C1

θ2
1C2

+
C1

θ2
1

)

osc(uk, Tk)2.

We define the constants Λ1 :=
θ2
1C2

C1
, and Λ2 := 1 + C2

(

1−
θ2
1

C1

)

, and thereby obtain,

ε2k ≥ Λ1e
2
k − Λ2 osc(uk, Tk)2.

Using Lemma 3.1 about quasi-orthogonality, we easily see that

(4.12) e2
k+1 ≤ (Λ0 − Λ1)e

2
k + Λ2 osc(uk, Tk)2.

On the other hand, the following expression is valid for all µ > 0 between consecutive oscillations (the
proof is similar to that of Lemma 3.3)

osc(uk+1, Tk+1)
2 ≤ (1 + µ) osc(uk, Tk)2 + (1 + µ−1) osc(A,b, c; Tk)2ε2

k.

We choose µ = 1 and use the upper bound (2.5) to write

osc(uk+1, Tk+1)
2 ≤ 2 osc(uk, Tk)2 + 2C1 osc(A,b, c; Tk)2η2

k.

We next argue according to whether the conditional of step (4) of AFEM is verified or not. If
osc(uk, Tk)2 ≤ εk, then the mesh is no longer modified and

osc(uk+1, Tk+1)
2 ≤

δ

4
ζ2
k +

δ

8
ζ2
k < δζ2

k .

If instead osc(uk, Tk)2 > εk, then MARK2 reduces the oscillation so that on exit we have osc(uk, Tk,2)
2 ≤

εk. Consequently, after repeated use of the relation between consecutive oscillations, we obtain

osc(uk+1, Tk+1)
2 ≤2 osc(uk,2, Tk,2)

2 + 2 osc(A,b, c; Tk,2)
2 |||uk+1 − uk,2|||

2
Ω

≤4 osc(uk, Tk,2)
2 + 4 osc(A,b, c; Tk,2)

2
(

|||uk+1 − uk,2|||
2
Ω + |||uk,2 − uk|||

2
Ω

)

,

whence

osc(uk+1, Tk+1)
2 ≤ 4εk + 4Λ0C1 osc(A,b, c; Tk)2η2

k ≤
δ

2
ζ2
k +

δ

2
η2

k ≤ δζ2
k .

Note that we have resorted here to the quasi-orthogonality relation (3.1) and the upper bound (2.5)

|||uk+1 − uk,2|||
2
Ω + |||uk,2 − uk|||

2
Ω ≤ Λ0 |||uk+1 − uk|||

2
Ω ≤ Λ0C1η

2
k.

Since osc(uk+1, Tk+1)
2 ≤ δζ2

k in either case, we have for all β > 0

β osc(uk+1, Tk+1)
2 ≤ βδζ2

k ≤
βδ

C2
e2

k +
βδ

C2
(1 + C2) osc(uk, Tk)2.
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Adding this expression to (4.12), we obtain

e2
k+1 + β osc(uk+1, Tk+1)

2 ≤

(

Λ0 − Λ1 +
βδ

C2

)

e2
k +

(

Λ2 +
βδ(1 + C2)

C2

)

osc(uk, Tk)2.

The asserted contraction property follows at once provided we can choose α ∈ (0, 1) such that,

Λ0 − Λ1 +
βδ

C2
= α2 =

Λ2 + βδ(1+C2)
C2

β
.

To see that this is possible, we first h0 sufficiently small so that

hs
0‖b‖L∞(Ω) ≤

Λ1

C∗(1 + 2Λ1)
⇒ Λ0 − Λ1 ≤ 1−

Λ2
1

1 + Λ1
< 1,

and then α2 ∈ (1−
Λ2

1

1+Λ1
, 1). Having chosen α, a simple calculation shows that β and δ are given by

β =
Λ2 + (1 + C2)(α

2 − Λ0 + Λ1)

α2
, δ =

(α2 − Λ0 + Λ1)C2α
2

Λ2 + (1 + C2)(α2 − Λ0 + Λ1)
.

These explicit expressions for β and δ conclude the proof. �

This Theorem is the first key ingredient to prove optimal complexity of AFEM. The next step is
to identify an approximation class, but turns out to be much more involved than As in section (4.7)
because now we have to approximate not only the solution but also the coefficients and they interact
in a nonlinear fashion. We consider the following quantity

(4.13) |(u, f,A,b, c)|s := sup
ε>0

ε
(

inf
|||u−uT |||

Ω
+osc(u,T)<ε

(#T −#T0)
s
)

.

This defines the concept of optimality of a partition T in terms of number of degrees of freedom #T to
approximate the combined quantity |||u− uT |||Ω + osc(u, T) within tolerance ε. We note that Theorem
4.6 establishes geometric reduction of a related quantity, namely |||u− uT |||Ω + osc(uT , T).

We are now in a position to state, but not prove, the complexity result alluded to earlier. The proof
along with applications in given in [10].

Theorem 4.7 (Optimal Complexity 2). Let {uk, Tk}k>0 be the sequence of finite element solutions and
nested meshes generated by AFEM. Then

|||u− uk|||Ω + osc(uk, Tk) 4 (#Tk −#T0)
−s
|(u, f,A,b, c)|s.

4.6. Exercises.

4.6.1. Exercise: Relation between Oscillations. Show that the new oscillation osc(A,b, c, uk; T )2 bounds
from above the old oscillation of Lecture 2.


