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Abstract We give an overview of multilevel methods, such as V-cycle multigrid
and BPX preconditioner, for solving various partial differential equations (including
H(grad), H(curl) and H(div) systems) on quasi-uniform meshes and extend them
to graded meshes and completely unstructured grids. We first discuss the classical
multigrid theory on the basis of the method of subspace correction of Xu and a key
identity of Xu and Zikatanov. We next extend the classical multilevel methods in
H(grad) to graded bisection grids upon employing the decomposition of bisection
grids of Chen, Nochetto, and Xu. We finally discuss a class of multilevel precon-
ditioners developed by Hiptmair and Xu for problems discretized on unstructured
grids and extend them to H(curl) and H(div) systems over graded bisection grids.

1 Introduction

How to effectively solve the large scale algebraic systems arising from the dis-
cretization of partial differential equations is a fundamental problem in scientific
and engineering computing. In this paper, we give an overview of a special class of
methods for solving such systems: multilevel iterative methods based on the method
of subspace corrections [18, 91] and the method of auxiliary spaces [92, 52].
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The method of subspace corrections proves to be a very useful general framework
for the design and analysis of various iterative methods. We give a rather detailed
description of this method in Section §2 and apply it to additive and multiplicative
multilevel methods. Of special interest is the sharp convergence identity of Xu and
Zikatanov [94], which we also prove.

Most of the multilevel methods are dictated by the underlying mesh structure. In
this paper, roughly speaking, we consider the following three types of grids:

• Quasi-uniform (and structured) grids with a hierarchy of nested sub-grids.
• Graded grids obtained by bisection with a hierarchy of nested sub-grids.
• Unstructured grids without a hierarchy of sub-grids.

Multilevel Methods on Quasi-Uniform Grids

The theoretical and algorithmic development of most traditional multilevel meth-
ods are devoted to quasi-uniform structured grids; see Brandt [21], Hackbusch [44],
Xu [91, 16], and Yserentant [96]. In Section §3, using the method of subspace cor-
rection framework [18, 91], we discuss the classical V-cycle multigrid method and
the BPX preconditioner. We also include a recent result by Xu and Zhu [93] that
demonstrates that the conjugate gradient method with classical V-cycle multigrid
or BPX-preconditioner as preconditioners provides a robust method with respect to
jump discontinuities of coefficients.

Multilevel Methods on Graded Bisection Grids

Multilevel algorithms for graded grids generated by adaptive finite element methods
(AFEM) is one main topic to be discussed in this paper. AFEM are now widely used
in scientific and engineering computation to optimize the relation between accuracy
and computational labor (degrees of freedom). We refer to the survey to [63] for an
introduction to the theory of AFEM.

Of all possible refinement strategies, we are interested in bisection, the most
popular and effective procedure for refinement in any dimension; see [63] and the
references therein. Our goal is to design optimal multilevel solvers and analyze them
within the framework of highly graded meshes created by bisection, from now on
called bisection meshes.

In Section §4, we present multilevel methods and analysis for H(grad) based on
the novel decomposition of bisection grids of Chen, Nochetto, and Xu [27], which
is conceptually simple and dimension and polynomial degree independent. Roughly
speaking, for any triangulation TN constructed from T0 by bisection, we can write

TN = T0 +B, B = (b1,b2, · · · ,bN),

where B denotes a sequence of N elementary bisections bi. Each such bi is restricted
to a local region and the corresponding local grid is quasi-uniform. This decom-
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position serves as a general bridge to transfer results from quasi-uniform grids to
graded bisection grids. We exploit this flexibility to design and analyze local multi-
grid methods for the H(curl) and H(div) systems in three dimensions in Section §5;
we explicitly follow Chen, Nochetto, and Xu [28], which in turn build on Hiptmair
and Xu [52].

Multilevel Methods on Unstructured Grids

In practical applications, finite element grids are often unstructured, namely, they
have no natural geometric hierarchy that can be extracted from the mesh data struc-
ture and used for designing optimal multilevel algorithms. For such problems we
turn to algebraic multigrid methods (AMG). What makes AMG attractive in practice
is that they generate coarse-level equations without using any (or much) geometric
information or re-discretization on the coarse levels. Despite the lack of rigorous
theoretical justification, AMG methods are very successful in practice for various
Poisson-like equations; see [73, 81] and reference therein.

Even though we do not describe AMG in any detail, in Section §6 we present a
technique developed by Hiptmair and Xu [52] for quasi-uniform meshes that con-
verts the solution of both H(curl) and H(div) systems into that of a number of
Poisson-like equations, which can be efficiently solved by AMG.

2 The Method of Subspace Corrections

Most partial differential equations, after discretization, are reduced to solve some
linear algebraic equations in the form

Au = f , (1)

where A ∈ RN×N is a sparse matrix and f ∈ RN . How to solve (1) efficiently re-
mains a basic question in numerical PDEs (and in all scientific computing). The
Gaussian elimination still remains the most commonly used method in practice. It is
a black-box as it can be applied to any problem in principle. But it is expensive: for
a general N×N matrix, it required O(N3) operations. For a sparse matrix, it may
require less operations but still too expensive for large scale problems. Multigrid
methods, on the other hand, are examples of problem-oriented algorithms, which,
for some problems, only require O(N| logN|σ ),σ > 0, operations. In this section,
we will give some general and basic results that will be used in later sections to con-
struct efficient iterative methods (such as multigrid methods) for discretized partial
differential equations.

Following [91], we shall use notation x . y to stand for x≤Cy. We also use x h y
to mean x . y and y . x.
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2.1 Iterative Methods

2.1.1 Basic Iterative Method

In general, a basic linear iterative method for Au = f can be written in the following
form:

uk+1 = uk +B( f −Auk),

starting from an initial guess u0 ∈V . It can be interpreted as a result of the following
three steps:

1. form the residual r = f −Auk;
2. solve the residual equation Ae = r approximately by ê = Br with B≈ A−1;
3. correct the solution uk+1 = uk + ê.

Here B is called iterator. As simple examples, if A = (ai j)∈RN×N and A = D+L+
U , we may take B = D−1 to obtain the Jacobi method and B = (D+L)−1 to obtain
the Gauss-Seidel method.

The art of constructing efficient iterative methods lies on the design of B which
captures the essential information of A−1 and its action is easily computable. In this
context the notion of “efficient” implies two essential requirements:

1. One iteration requires a computational effort proportional to the number of un-
knowns.

2. The rate of convergence is well below 1 and independent with the number of
unknowns.

2.1.2 Preconditioned Krylov Space Methods

The approximate inverse B, when it is SPD, can be used as a preconditioner for
Conjugate Gradient (CG) method. The resulting method, known as preconditioned
conjugate gradient method (PCG), admits the following error estimate:

‖u−uk‖A

‖u−u0‖A
≤ 2

(√
κ(BA)−1√
κ(BA)+1

)k

(k ≥ 1),
(

κ(BA) =
λmax(BA)
λmin(BA)

)
.

Here B is called preconditioner. A good preconditioner should have the properties
that the action of B is easy to compute and that κ(BA) is significantly smaller than
κ(A).

An interesting fact is that the linear iterative method using iterator B may not be
convergent at all whereas B can always be a preconditioner. For example, the Jacobi
method is not convergent for all SPD systems, but B = D−1 can always be used as a
preconditioner which is often known as the diagonal preconditioner.



Multilevel Methods for H(grad), H(curl), and H(div) Systems 5

2.1.3 Convergence Analysis

Let ek = u−uk. The error equation of the basic iterative method is

ek+1 = (I−BA)ek = (I−BA)ke0.

Thus the basic iterative method converges if and only if the spectral radius of the
error operator I−BA is less than one, i.e., ρ(I−BA) < 1.

Given an iterator B, we define the iteration operator ΦBu = u+B( f −Au) and in-
troduce a symmetric scheme ΦB = ΦBt ΦB. The convergence of the iteration scheme
ΦB and its symmetrization ΦB is connected by the following inequality:

ρ(I−BA)≤
√

ρ(I−BA),

and the equality holds if B = Bt . Hence we shall focus on the analysis of the sym-
metric scheme.

By definition, we have the following formula for the error operator I−BA

I−BA = (I−BtA)(I−BA), and thus B = Bt(B−t +B−1−A)B. (2)

Since B is symmetric, I − BA is symmetric with respect to the inner product
(u,v)A := (Au,v). Indeed, let (·)∗ be the adjoint operator with respect to (·, ·)A, it
is easy to show

I−BA = (I−BA)∗(I−BA). (3)

Consequently, I−BA is SPD with respect to (·, ·)A and λmax(BA) < 1. Therefore

ρ(I−BA) = max{|1−λmin(BA)|, |1−λmax(BA)|}= 1−λmin(BA). (4)

A more quantitative information on λmin(BA) is given in the following lemma.

Lemma 1 (Least Eigenvalue). When B is symmetric and nonsingular,

λmin(BA) = inf
u∈V \{0}

(ABAu,u)
(Au,u)

= inf
u∈V \{0}

(Au,u)
(B−1u,u)

=

(
sup

u∈V \{0}

(B−1u,u)
(Au,u)

)−1

.

Proof. The first two identities comes from the fact BA is symmetric with respect to
(·, ·)A and (·, ·)B−1 . The third identity comes from

λ
−1
min(BA) = λmax((BA)−1) = sup

u∈V \{0}

((BA)−1u,u)A

(u,u)A
= sup

u∈V \{0}

(B−1u,u)
(Au,u)

.

This completes the proof. �
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2.2 Space Decomposition and Method of Subspace Correction

In the spirit of dividing and conquering, we shall decompose the space V as the sum-
mation of subspaces. Then the original problem (1) can be split into sub-problems
with smaller sizes which are relatively easier to solve.

Let Vi ⊂ V , i = 0, . . . ,J, be subspaces of V . If V = ∑
J
i=0 Vi, then {Vi}J

i=0 is
called a space decomposition of V , and we can write u = ∑

J
i=0 ui. Since ∑

J
i=0 Vi is

not necessarily a direct sum, decompositions of u are in general not unique.
Throughout this paper, we use the following operators, for i = 0,1, . . . ,J:

• Qi : V 7→ Vi the projection with the inner product (·, ·);
• Ii : Vi 7→ V the natural inclusion which is often called prolongation;
• Pi : V 7→ Vi the projection with the inner product (·, ·)A;
• Ai : Vi 7→ Vi the restriction of A to the subspace Vi;
• Ri : Vi 7→ Vi an approximation of A−1

i (often known as smoother).

It is easy to verify the relation QiA = AiPi and Qi = It
i . The operator It

i is often called
restriction. If Ri = A−1

I , then we have an exact local solver and RiQiA = Pi.
For a given residual r ∈ V , we let ri = It

i r denote the restriction of the residual to
the subspace and solve the residual equation in the subspaces

Aiei = ri by êi = Riri.

Subspace corrections êi are assembled to give a correction in the space V and there-
fore is called the method of subspace correction. There are two basic ways to as-
semble subspace corrections.

Parallel Subspace Correction (PSC)

This method performs the correction on each subspace in parallel. In operator form,
it reads

uk+1 = uk +B( f −Auk), (5)

where

B =
J

∑
i=0

IiRiIt
i . (6)

The subspace correction is êi = IiRiIt
i ( f − Auk), and the correction in V is ê =

∑
J
i=0 êi.

Successive Subspace Correction (SSC)

This method performs the correction in a successive way. In operator form, it reads



Multilevel Methods for H(grad), H(curl), and H(div) Systems 7

v0 = uk, vi+1 = vi + IiRiIt
i ( f −Avi), i = 0, . . . ,J, uk+1 = vJ+1. (7)

We have the following error formulae for PSC and SSC:

• Parallel Subspace Correction (PSC):

u−uk+1 =

[
I−
( J

∑
i=0

IiRiIt
i

)
A

]
(u−uk);

• Successive Subspace Correction (SSC):

u−uk+1 =

[
J

∏
i=0

(I− IiRiIt
i A)

]
(u−uk).

Thus PSC is also called additive method while SSC is called multiplicative method.
In the notation ∏

J
i=0 ai, we assume there is a build-in ordering from i = 0 to J, i.e.,

∏
J
i=0 ai = a0a1 . . .aJ .
As a trivial example, we consider the space decomposition RJ = ∑

J
i=1 span{ei}.

In this case, if we use exact (one dimensional) subspace solvers, the resulting SSC
is just the Gauss-Seidel method and the PSC is just the Jacobi method. More com-
plicated examples, including multigrid methods and multilevel preconditioners, will
be discussed later on.

PSC or SSC can be also understood as Jacobi or Gauss-Seidel methods for a
bigger equation in the product space [43, 94], respectively. The analysis of classical
iterative methods can then be applied to more advanced PSC or SSC methods.

Given a decomposition V = ∑
J
i=0 Vi, we can construct a product space Ṽ =

V0×V1× ...×VJ , with an inner product (ũ, ṽ)Ṽ = ∑
J
i=0(ui,vi). We will reformulate

the linear operator equation Au = f to an equation posed on Ṽ : Ãũ = f̃ .
Let us introduce the operator R : Ṽ → V by Rũ = ∑

J
i=0 ui. Because of the de-

composition V = ∑
J
i=0 Vi, R is surjective. In generalR is not injective but it will

be in the quotient space V = Ṽ /ker(R). We define R∗ : V 7→ Ṽ , the adjoint of R
with respect to (·, ·)A, to be

(R∗u, ṽ)Ṽ := (u,Rṽ)A =
J

∑
i=0

(u,vi)A =
J

∑
i=0

(QiAu,vi), for all ṽ = (vi)J
i=0 ∈ Ṽ .

Therefore
R∗ = (Q0A,Q1A, · · · ,QJA)t .

Similarly, the transpose Rt : V 7→ Ṽ of R with respect to (·, ·) is

Rt = (Q0,Q1, · · · ,QJ)t .

Since R is surjective, we conclude that Rt is injective. Let Ã = R∗R and f̃ = Rt f .
If ũ is a solution of Ãũ = f̃ , it is straightforward to verify that then u = Rũ is the
solution of Au = f .
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SSC as Gauss-Seidel Method

The new formulation of the problem is used to characterize SSC for solving Au = f
as a Gauss-Seidel method for Ãũ = f̃ . In the sequel, we consider the SSC applied to
the space decomposition V = ∑

J
k=0 V j with Ri = A−1

i , namely we solve the problem
posed on the subspaces exactly.

Let Ã = D̃ + L̃ + Ũ and B̃ = (D̃ + L̃)−1. Then SSC for Au = f with exact local
solvers Ri = A−1

i is equivalent to the Gauss-Seidel method for solving Ãũ = f̃ :

ũk+1 = ũk + B̃( f̃ − Ãũk). (8)

The verification of the equivalence is as follows. We first compute the entries for
Ã = (ãi j)(J+1)×(J+1). By definition,

ãi j = QiAI j = AiPiI j : V j 7→ Vi.

In particular ãii = Ai : Vi 7→ Vi is SPD on Vi.
We can write the standard Gauss-Seidel method using iterator B̃ = (D̃+ L̃)−1 as

ũk+1 = ũk + D̃−1( f̃ − L̃ũk+1− (D̃+Ũ)ũk).

The component-wise formula is

uk+1
i = uk

i +A−1
i ( fi−

i−1

∑
j=0

ãi juk+1
j −

J

∑
j=i

ãi juk
j)

= uk
i +A−1

i Qi( f −A
i−1

∑
j=0

uk+1
j −A

J

∑
j=i

uk
j).

Let

vi =
i−1

∑
j=0

uk+1
j +

J

∑
j=i

uk
j.

Noting that vi− vi−1 = uk+1
i −uk

i , we then get

vi = vi−1 +A−1
i Qi( f −Avi−1),

which is the correction on Vi.
Similarly one can easily verify that PSC using exact local solvers Ri = A−1

i is
equivalent to the Jacobi method for solving the large system Ãũ = f̃ .
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2.3 Sharp Convergence Identities

The analysis of additive multilevel operator relies on the following identity which is
well known in the literature [87, 91, 42, 94]. For completeness, we include a concise
proof taken from [94].

Theorem 1 (Identity for PSC). If Ri is SPD on Vi for i = 0, . . . ,J, then B defined
by (6) is also SPD on V . Furthermore

(B−1v,v) = inf
∑

J
i=0 vi=v

J

∑
i=0

(R−1
i vi,vi), (9)

and
λmin(BA)−1 = sup

‖v‖A=1
inf

∑
J
i=0 vi=v

(R−1
i vi,vi). (10)

Proof. Note that B is symmetric, and

(Bv,v) = (
J

∑
i=0

IiRiIt
i v,v) =

J

∑
i=0

(RiQiv,Qiv),

whence B is invertible and thus SPD. We now prove (9) by constructing a decom-
position achieving the infimum. Let v∗i = RiQiB−1v, i = 0, . . . ,J. By definition of B,
we get a special decomposition ∑i v∗i = v, and

inf
∑vi=v

J

∑
i=0

(R−1
i vi,vi) = inf

∑wi=0

J

∑
i=0

(R−1
i (v∗i +wi),v∗i +wi)

=
J

∑
i=0

(R−1
i v∗i ,v

∗
i )+ inf

∑wi=0

[ J

∑
i=0

2(R−1
i v∗i ,wi)+

J

∑
i=0

(R−1
i wi,wi)

]
Since

J

∑
i=0

(R−1
i v∗i ,ui) =

J

∑
i=0

(B−1v,ui) = (B−1v,
J

∑
i=0

ui)

for all (ui)J
i=0 ∈ V , we deduce

inf
∑vi=v

J

∑
i=0

(R−1
i vi,vi) = (B−1v,

J

∑
i=0

v∗i )

+ inf
∑wi=0

[
2(B−1v,

J

∑
i=0

wi)+
J

∑
i=0

(R−1
i wi,wi)

]
= (B−1v,v).

The proof of the equality (10) is a simple consequence of Lemma 1. �

As for additive methods, we now present an identity developed by Xu and
Zikatanov [94] for multiplicative methods. For simplicity, we focus on the case Ri =
A−1

i , i = 0, . . . ,J, i.e., the subspace solvers are exact. In this case I− IiRiIt
i A = I−Pi.
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Theorem 2 (X-Z Identity for SSC). The following identity is valid∥∥∥ J

∏
i=0

(I−Pi)
∥∥∥2

A
= 1− 1

1+ c0
, (11)

with

c0 = sup
‖v‖A=1

inf
∑

J
i=0 vi=v

J

∑
i=0

∥∥∥Pi

J

∑
j=i+1

v j

∥∥∥2

A
. (12)

Proof. Recall that SSC for solving Au = f with exact local solvers Ri = A−1
i is

equivalent to the Gauss-Seidel method for solving Ãũ = f̃ using iterator B̃ = (D̃ +
L̃)−1. Let B be the symmetrization of B̃ from (2). Direct computation yields

B−1 = Ã+ L̃D̃−1Ũ . (13)

On the quotient space V = Ṽ/ker(R), Ã is SPD and thus defines an inner pro-
duce (·, ·)Ã. Using Lemma 1 and (13), we have

‖Ĩ− B̃Ã‖2
Ã = ‖Ĩ−BÃ‖Ã = 1−

[
sup

ṽ∈V \{0}

(B−1ṽ, ṽ)Ṽ
(Ãṽ, ṽ)Ṽ

]−1

= 1−

[
1+ sup

ṽ∈V \{0}

(D̃−1Ũ ṽ,Ũ ṽ)
(Ãṽ, ṽ)

]−1

.

To finish the proof, we verify that

sup
ṽ∈V ,ṽ6=0

(D̃−1Ũ ṽ,Ũ ṽ)
(Ãṽ, ṽ)

= sup
v∈V ,‖v‖A=1

inf
∑vi=v

J

∑
i=0
‖Pi

J

∑
j=i+1

v j‖2
A.

For any ṽ ∈ V , and corresponding v = Rṽ, we have

(Ãṽ, ṽ)Ṽ = (R∗Rṽ, ṽ)Ṽ = (Rṽ,Rṽ)A = (v,v)A,

and

(D̃−1Ũ ṽ,Ũ ṽ)Ṽ =
J

∑
i=0

(A−1
i

J

∑
j=i+1

AiPiv j,
J

∑
j=i+1

AiPiv j)

because QiA = AiPi and ∑
J
j=i+1 Q jAv j = AiPi ∑

J
j=i+1 v j. Consequently,

(D̃−1Ũ ṽ,Ũ ṽ)Ṽ =
J

∑
i=0

(
J

∑
j=i+1

Piv j,Ai

J

∑
j=i+1

Piv j) =
J

∑
i=0
‖

J

∑
j=i+1

Piv j‖2
A.

Since ṽ ∈ V , we should use the quotient norm (which gives the inf) to finish the
proof. �
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For SSC method with general smoothers, we present the following sharp estimate
of Xu and Zikatanov [94] (see also [30]). We refer to [94, 30] for a proof.

Theorem 3 (X-Z General Identity for SSC). The SSC is convergent if each sub-
space solver Ti = RiQiA is convergent. Furthermore∥∥∥∥∥ J

∏
i=1

(I−Ti)

∥∥∥∥∥
2

A

= 1− 1
K

, K = 1+ sup
‖v‖=1

inf
∑i vi=v

J

∑
i=1
‖T ∗i wi‖2

T−1
i

(14)

where wi = ∑
J
j=i vi−T−1

i vi and T i := T ∗i +Ti−T ∗i Ti.

3 Multilevel Methods on Quasi-Uniform Grids

In this section, we apply PSC and SSC to the finite element discretization of second
order elliptic equations. We use theory developed in the previous section to give a
convergence analysis of multilevel iteration methods.

3.1 Finite Element Methods

For simplicity we illustrate the technique by considering the linear finite element
method for the Poisson equation.

−∆u = f in Ω , and u = 0 on ∂Ω , (15)

where Ω ⊂ Rd is a polyhedral domain.

3.1.1 Weak formulation

The weak formulation of (15) reads: given an f ∈ H−1(Ω) find u ∈ H1
0 (Ω) so that

a(u,v) = 〈 f ,v〉 for allv ∈ H1
0 (Ω), (16)

where
a(u,v) = (∇u,∇v) =

∫
Ω

∇u ·∇vdx,

and 〈·, ·〉 is the duality pair between H−1(Ω) and H1
0 (Ω).

By the Poincaré inequality, a(·, ·) defines an inner product on H1
0 (Ω). Thus by the

Riesz representation theorem, for any f ∈H−1(Ω), there exists a unique u∈H1
0 (Ω)

such that (16) holds. Furthermore, we have the following regularity result. There
exists α ∈ (0,1] which depends on the smoothness of ∂Ω such that
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‖u‖1+α . ‖ f‖α−1. (17)

This inequality is valid if Ω is convex or ∂Ω is C1,1.

3.1.2 Triangulation and Properties

Let Ω be a polyhedral domain in Rd . A triangulation T (also called mesh or grid)
of Ω is a partition of Ω into a set of d-simplexes.

We impose two conditions on a triangulation T which are important in finite
element construction. First, a triangulation T is called conforming or compatible if
the intersection of any two simplexes τ and τ ′ in T is either empty or a common
lower dimensional simplex.

The second important condition is shape regularity. A set of triangulations T is
called shape regular if there exists a constant σ1 such that

max
τ∈T

diam(τ)d

|τ|
≤ σ1, for all T ∈ T, (18)

where diam(τ) is the diameter of τ and |τ| is the measure of τ in Rd . For shape
regular triangulations, diam(τ) h hτ := |τ|1/d which will be used to represent the
size of τ .

Furthermore, a shape regular class of triangulations T is called quasi-uniform if
there exists a constant σ2 such that

maxτ∈T hτ

minτ∈T hτ

≤ σ2, for all T ∈ T.

For a quasi-uniform triangulation T , we simply call h = maxτ∈T hτ the mesh size
and denote T by Th.

3.1.3 Finite Element Approximation

The standard finite element method is to solve problem (16) in a piecewise poly-
nomial finite dimensional subspace. For simplicity we consider the piecewise linear
finite element space Vh ⊂ H1

0 (Ω) on quasi-uniform triangulations Th of Ω :

Vh := {v ∈ H1
0 (Ω) : v|τ ∈P1(τ) for all τ ∈T }.

We now solve (16) in the finite element space Vh: find uh ∈ Vh such that

a(uh,vh) = 〈 f ,vh〉, for all vh ∈ Vh. (19)

The existence and uniqueness of the solution to (19) follows again from the Riesz
representation theorem since Vh ⊂H1

0 (Ω). By approximation and regularity theory,
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we can easily get an error estimate on quasi-uniform grids

‖u−uh‖1 . hα‖u‖1+α . hα‖ f‖α−1,

where α > 0 is determined by the regularity result (17). Thus uh converges to u
when h→ 0. When the solution u is rough, e.g., α� 1, the convergence rate can be
improved using adaptive grids [12, 79, 23, 63]. We will assume Vh is given, and the
main objective of this paper is to discuss how to compute uh efficiently. We focus
on quasi-uniform grids in this section and on graded grids in the next section.

In this application, the SPD operator A is (Au,v) = (∇u,∇v) and ‖·‖A is | · |1. For
quasi-uniform mesh Th, let Ah be the restriction of A on the finite element space Vh
over Th. We then end up with a linear operator equation Ah : Vh 7→ Vh that is

Ahuh = fh. (20)

It is easy to see Ah is a self-adjoint operator in the Hilbert space Vh using L2 inner
product. To simplify notation in the sequel, we remove the subscript h when it is
clear from the context and leads to no confusion.

It can be easily shown that κ(Ah) h h−2 and the convergence rate of classical iter-
ation methods, including Richardson, Jacobi, and Gauss-Seidel methods, for solving
(19) is like

ρ ≤ 1−Ch2.

Thus when h→ 0, we observe slow convergence of those classical iterative methods.
We will construct efficient iterative methods using multilevel space decompositions.

3.2 Multilevel Space Decomposition and Multigrid Method

We first present a multilevel space decomposition. Let us assume that we have an ini-
tial quasi-uniform triangulation T0 and a nested sequence of triangulations {Tk}J

k=0
where Tk is obtained by the uniform refinement of Tk−1 for k > 0. We then get a
nested sequence (in the sense of trees [63]) of quasi-uniform triangulations

T0 ≤T1 ≤ ·· · ≤TJ = Th.

Note that hk, the mesh size of Tk, satisfies hk h γ2k for some γ ∈ (0,1), and thus
J h | logh|. Let Vk denote the corresponding linear finite element space of H1

0 (Ω)
based on Tk. We thus get a sequence of multilevel nested spaces

V0 ⊂ V1...⊂ VJ = V ,

and a macro space decomposition

V =
J

∑
k=0

Vk. (21)
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There is redundant overlapping in this multilevel decomposition, so the sum is
not direct. The subspace solvers need only to take care of the “non-overlapping”
components of the error (high frequencies in Vk). For each subspace problem Akek =
rk posed on Vk, we use a simple Richardson method

Rk = h2
kIk,

where Ik : Vk→ Vk is the identity and hk ≈ λmax(Ak).
Let Nk be the dimension of Vk, i.e., the number of interior vertices of Tk. The

standard nodal basis in Vk will be denoted by φ(k,i), i = 1, · · · ,Nk. By our charac-
terization of Richardson method, it is PSC method on the micro decomposition
Vk = ∑

Nk
i=1 V(k,i) with V(k,i) = span{φ(k,i)}. In summary we choose the space de-

composition:

V =
J

∑
k=0

Vk =
J

∑
k=0

Nk

∑
i=1

V(k,i). (22)

If we apply PSC to the decomposition (22) with R(k,i) = h2
kI(K,i), we obtain

I(k,i)R(k,i)It
(k,i)u = h2−d(u,φ(k,i))φ(k,i). The resulting operator B, according to (6), is

the so-called BPX preconditioner [19]

Bu =
J

∑
k=0

Nk

∑
i=1

h2−d
k (u,φ(k,i))φ(k,i). (23)

If we apply SSC to the decomposition (22) with exact subspace solvers Ri = A−1
i ,

we obtain a V-cycle multigrid method with Gauss-Seidel smoothers.

3.3 Stable Decomposition and Optimality of BPX Preconditioner

For the optimality of the BPX preconditioner, we are to prove that the condition
number κ(BA) is uniformly bounded and thus PCG using BPX preconditioner con-
verges in a fixed number of steps for a given tolerance regardless of the mesh size.

The estimate λmin(BA) & 1 follows from the stability of the subspace decompo-
sition. The first result is on the macro decomposition V = ∑

J
k=0 Vk.

Lemma 2 (Stability of Macro Decomposition). For any v ∈ V , there exists a de-
composition v = ∑

J
k=0 vk with vk ∈ Vk,k = 0, . . . ,J such that

J

∑
k=0

h−2
k ‖vk‖2 . |v|21. (24)

Proof. Following the chronological development, we present two proofs. The first
one uses full regularity and the second one minimal regularity.
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1 Full regularity H2: We assume α = 1 in (17), which holds for convex polygons or
polyhedrons. Recall that Pk : V →Vk is the projection onto Vk with the inner product
(u,v)A = (∇u,∇v), and let P−1 = 0. We prove that the following decomposition

v =
J

∑
k=0

(Pk−Pk−1)v (25)

satisfies (24). The full regularity assumption leads to the L2 error estimate of Pk via
a standard duality argument:

‖(I−Pk)v‖. hk|(I−Pk)v|1, for all v ∈ H1
0 (Ω). (26)

Since Vk−1 ⊂ Vk, we have Pk−1Pk = Pk−1 and

Pk−Pk−1 = (I−Pk−1)(Pk−Pk−1). (27)

In view of (26) and (27), we have

J

∑
k=0

h−2
k ‖(Pk−Pk−1)v‖2 =

J

∑
k=0

h−2
k ‖(I−Pk−1)(Pk−Pk−1)v‖2

.
J

∑
k=0
|(Pk−Pk−1)v|21,Ω = |v|21,Ω .

In the last step, we have used the fact (Pk−Pk−1)v is the orthogonal decomposition
in the A-inner product.

2 Minimal regularity H1: We relax the H2-regularity upon using the decomposition

v =
J

∑
k=0

(Qk−Qk−1)v, (28)

where Qk : V → Vk is the L2-projection onto Vk. A simple proof of nearly optimal
stability of (28) proceeds as follows. Invoking approximability and H1-stability of
the L2-projection Qk on quasi-uniform grids, we infer that

‖(Qk−Qk−1)u‖= ‖(I−Qk−1)Qku‖. hk|Qku|1 . hk|u|1.

Therefore
J

∑
k=0

h2
k‖(Qk−Qk−1)u‖2 . J|u|21 . | logh||u|21.

The factor | logh| in the estimate can be removed by a more careful analysis based
on the theory of Besov spaces and interpolation spaces. The following crucial in-
equality can be found, for example, in [91, 31, 64, 15, 65]:
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J

∑
k=0

h2
k‖(Qk−Qk−1)u‖2 . |u|21. (29)

This completes the proof. �

We next state the stability of the micro decomposition. For a finite element space
V with nodal basis {φi}N

i=1, let Qφi be the L2-projection to the one dimensional
subspace spanned by φi. We have the following norm equivalence which says the
nodal decomposition is stable in L2. The proof is classical in the finite element
analysis and thus omitted here.

Lemma 3 (Stability of Micro Decomposition). For any u ∈ V over a quasi-
uniform mesh T , we have the norm equivalence

‖u‖2 h
N

∑
i=1
‖Qφiu‖

2.

Theorem 4 (Stable Space Decomposition). For any v ∈ V , there exists a decom-
position of v of the form

v =
J

∑
k=0

Nk

∑
i=1

v(k,i), v(k,i) ∈ V(k,i), i = 1, . . . ,Nk,k = 0, . . . ,J,

such that
J

∑
k=0

Nk

∑
i=1

h−2
k ‖v(k,i)‖2 . |v|21.

Consequently λmin(BA) & 1 for the BPX preconditioner B defined in (23).

Proof. In light of Lemma 1, it suffices to combine Lemmas 2 and 3, and use (23).
�

To estimate λmax(BA), we first present a strengthened Cauchy-Schwarz (SCS)
inequality for the macro decomposition.

Lemma 4 (Strengthened Cauchy-Schwarz Inequality (SCS)). For any ui ∈Vi,v j ∈
V j, j ≥ i, we have

(ui,v j)A . γ
j−i|ui|1h−1

j ‖v j‖0,

where γ < 1 is a constant such that hi h γ2i.

Proof. Let us first prove the inequality on one element τ ∈Ti. Using integration by
parts, Cauchy-Schwarz inequality, trace theorem, and inverse inequality, we have∫

τ

∇ui ·∇v j dx =
∫

∂τ

∂ui

∂n
v j ds . ‖∇ui‖0,∂τ‖v j‖0,∂τ . h−1/2

i ‖∇ui‖0,τ h−1/2
j ‖v j‖0,τ

. (
h j

hi
)1/2|ui|1,τ h−1

j ‖v j‖0,τ ≈ γ
j−i|ui|1,τ h−1

j ‖v j‖0,τ .
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Adding over τ ∈Ti, and using Cauchy-Schwarz again, yields

(∇ui,∇v j) = ∑
τ∈Ti

(∇ui,∇v j)τ . γ
j−ih−1

j ∑
τ∈Ti

|ui|1,τ‖v j‖0,τ

. γ
j−ih−1

j
(

∑
τ∈Ti

|ui|21,τ

)1/2(
∑

τ∈Ti

‖v j‖2
0,τ

)1/2 = γ
j−i|ui|1h−1

j ‖v j‖0,

which is the asserted estimate. �

Before we prove the main consequence of SCS, we need an elementary estimate.

Lemma 5 (Auxiliary Estimate). Given γ < 1, we have

n

∑
i, j=1

γ
| j−i|xiy j ≤

2
1− γ

( n

∑
i=1

x2
i

)1/2( n

∑
i=1

y2
i

)1/2
∀(xi)n

i=1,(yi)n
i=1 ∈ Rn.

Proof. Let Γ ∈Rn×n be the matrix Γ = (γ | j−i|)n
i, j=1. The spectral radius ρ(Γ ) of Γ

satisfies

ρ(Γ )≤ ‖Γ ‖1 = max
1≤ j≤n

n

∑
i=1

γ
| j−i| ≤ 2

1− γ
.

Consequently, utilizing the Cauchy-Schwarz inequality yields

n

∑
i, j=1

γ
| j−i|xiy j = (Γ x,y)≤ ρ(Γ )‖x‖2‖y‖2 ∀x = (xi)n

i=1,y = (yi)n
i=1 ∈ Rn,

which is the desired estimate. �

Theorem 5 (Largest Eigenvalue of BA). For any v ∈ V , we have

(Av,v) . inf
∑

J
k=0 vk=v

J

∑
k=0

h−2
k ‖vk‖2.

Consequently λmax(BA) . 1 for the BPX preconditioner B defined in (23).

Proof. For v ∈ V , let v = ∑
J
k=0 vk,vk ∈ Vk, k = 0, . . . ,J, be an arbitrary decomposi-

tion. By the SCS inequality of Lemma 4, we have

(∇v,∇v) = 2
J

∑
k=0

J

∑
j=k+1

(∇vk,∇v j)+
J

∑
k=0

(∇vk,∇vk) .
J

∑
k=0

J

∑
j=k

γ
j−k|vk|1h−1

j ‖v j‖.

Combining Lemma 5 with the inverse estimate |vk|1 . h−1
k ‖vk‖, we obtain

(∇v,∇v) . (
J

∑
k=0
|vk|21)1/2(

J

∑
k=0

h−2
k ‖vk‖2)1/2 .

J

∑
k=0

h−2
k ‖vk‖2.

which is the assertion. �
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We finally prove the optimality of the BPX preconditioner.

Corollary 1 (Optimality of BPX Preconditioner). For the preconditioner B de-
fined in (23), we have

κ(BA) . 1

Proof. Simply combine Theorems 4 and 5. �

3.4 Uniform Convergence of V-cycle Multigrid

In this section, we prove the uniform convergence of V-cycle multigrid, namely SSC
applied to the decomposition (22) with exact subspace solvers.

Lemma 6 (Nodal Decomposition). Let T be a quasi-uniform triangulation with N
nodal basis φi. For the nodal decomposition

v =
N

∑
i=1

vi, vi = v(xi)φi,

we have
N

∑
i=1

∣∣Pi

N

∑
j>i

v j
∣∣2
1 . h−2‖v‖2.

Proof. For every 1 ≤ i ≤ N, we define the index set Li := { j ∈ N : i < j ≤
N,suppφ j∩suppφi 6= /0} and Ωi =∪ j∈Li suppφ j. Since T is shape-regular, the num-
bers of integers in each Li is uniformly bounded. So we have

N

∑
i=1

∣∣Pi

N

∑
j>i

v j
∣∣2
1,Ω

=
N

∑
i=1

∣∣Pi ∑
j∈Li

v j
∣∣2
1,Ω

.
N

∑
i=1

∑
j∈Li

|v j|21,Ωi
.

N

∑
i=1
|vi|21,Ωi

.
N

∑
i=1

h−2
i ‖vi‖2

0,Ωi
,

where we have used an inverse inequality in the last step. Since T is quasi-uniform,
and the nodal basis decomposition is stable in the L2 inner product (Lemma 3), i.e.
∑

N
i=1 ‖vi‖2

0,Ωi
≈ ‖v‖2

0,Ω , we deduce

N

∑
i=1

∣∣Pi

N

∑
j>i

v j
∣∣2
1,Ω

. h−2‖v‖2
0,Ω ,

which is the desired estimate. �.

Lemma 7 (H1 vs L2 Stability). The following inequality holds for all v ∈ V

J

∑
k=0
|(Pk−Qk)v|21,Ω .

J

∑
k=0

h−2
k ‖(Qk−Qk−1)v‖2. (30)
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Proof. We first use the definition of Pk, together with (I −Qk)v = ∑
J
j=k+1(Q j −

Q j−1)v, to write

J

∑
k=0
|(Pk−Qk)v|21 =

J

∑
k=0

((Pk−Qk)v,(I−Qk)v)A

=
J

∑
k=0

J

∑
j=k+1

((Pk−Qk)v,(Q j−Q j−1)v)A.

Applying now Lemma 4 yields

J

∑
k=0
|(Pk−Qk)v|21 .

(
J

∑
k=1
|(Pk−Qk)v|21

)1/2( J

∑
k=0

h−2
k ‖(Qk−Qk−1)v‖2

)1/2

.

The desired result then follows. �

Theorem 6 (Optimality of V-cycle Multigrid). The V -cycle multigrid method, us-
ing SSC applied to the decomposition (22) with exact subspace solvers Ri = A−1

i ,
converges uniformly.

Proof. We use the telescopic multilevel decomposition

v =
J

∑
k=0

vk, vk = (Qk−Qk−1)v,

along with the nodal decomposition

vk =
Nk

∑
i=1

v(k,i), v(k,i) = vk(xi)φ(k,i),

for each level k. By the X-Z identity of Theorem 2, it suffices to prove the inequality

J

∑
k=0

Nk

∑
i=1
|P(k,i) ∑

(l, j)>(k,i)
v(l, j)|21 . |v|21, (31)

where the inner sum is understood in lexicographical order. We first simplify the left
hand side of (31) upon writing

∑
(l, j)>(k,i)

v(l, j) =
Nk

∑
j>i

v(k, j) + ∑
l>k

vl =
Nk

∑
j>i

v(k, j) +(v−Qkv).

We apply Lemma 6 and the stable decomposition (29) to get

J

∑
k=0

Nk

∑
i=1
|P(k,i) ∑

j>i
v(k, j)|21 .

J

∑
k=0

h−2
k ‖vk‖2 . |v|21.
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We now estimate the remaining terms |P0(v−Q0)v|2 and ∑
J
k=1 |P(k,i)(v−Qkv)|21,Ω .

For any function u ∈ V ,

Nk

∑
i=1
|P(k,i)u|21 =

Nk

∑
i=1
|P(k,i)Pku|21,Ω(k,i)

≤
Nk

∑
i=1
|Pku|21,Ω(k,i)

. |Pku|21.

Thus, by (30) and (29), we get

|P0(v−Q0)v|2 +
J

∑
k=1
|Pk(v−Qkv)|21

.
J

∑
k=0
|(Pk−Qk)v|21 .

J

∑
k=0

h−2
k ‖Qk−Qk−1)v‖2 . |v|21.

This completes the proof. �

The proof of Theorem 6 hinges on Theorem 2 (X-Z identity), which in turn re-
quires exact solvers Ri = A−1

i and makes Pi = A−1
i QiA the key operator to appear

in (11). If the smoothers Ri are not exact, namely Ri 6= A−1
i , then the key operator

becomes Ti = RiQiA and Theorem 2 must be replaced by Theorem 3. We refer to
[30] for details.

3.5 Systems with Strongly Discontinuous Coefficients

Elliptic problems with strongly discontinuous coefficients arise often in practical ap-
plications and are notoriously difficult to solve for iterative methods such as multi-
grid and domain decomposition. We are interested in the performance of these meth-
ods with respect to jumps. Consider the following model problem

−∇ · (ω∇u) = f in Ω ,
u = gD on ΓD,

−ω
∂u
∂n = gN on ΓN

(32)

where Ω ∈ Rd(d = 1, 2 or 3) is a polygonal or polyhedral domain with Dirich-
let boundary ΓD and Neumann boundary ΓN . We assume that the coefficient func-
tion ω = ω(x) is positive and piecewise constant with respect to given subdomains
Ωm (m = 1, · · · ,M) with Ω = ∪M

m=1Ω m, i.e., ω|Ωm = ωm and

J (ω)≡ ωmax

ωmin
� 1.

These subdomains Ωm are matched by the initial grid T0.
The question is how to make multigrid and domain decomposition methods con-

verge (nearly) uniformly, not only with respect to the mesh size, but also with respect
to the jump J (ω). There has been a lot of interest in the development of iterative
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methods with robust convergence rates with respect to the size of both jumps and
mesh; see [17, 25, 77, 85, 86, 95] and the references cited therein. Domain decom-
position (DD) methods have been developed for this purpose with special coarse
spaces [95]. We refer to the monograph [82] and the survey [24] for a summary on
DD methods. However, in general, the convergence rates of multigrid and domain
decomposition methods are known to deteriorate with respect to J (ω), especially
in three dimensions.

The BPX and overlapping domain decomposition preconditioners are proven to
be robust for some special cases: interface has no cross points [20, 66]; every sub-
domain touches part of the Dirichlet boundary [93]; and quasi-monotone coeffi-
cients [33, 34]. If the number of levels is fixed, multigrid converges uniformly with
the convergence rate ρk ≤ 1−δ k where δ ∈ (0,1) is a constant and k is the number
of levels. In general, the worst convergence rate is 1−Ch and, for BPX precondi-
tioned system, supω κ(BA)≥Ch−1 (see [66, 90]).

An interesting open problem is how to make multigrid method work uniformly
with respect to jumps without introducing “expensive” coarse spaces. Recently, Xu
and Zhu [93] proved that BPX and multigrid V -cycle lead to a nearly uniform con-
vergent preconditioned conjugate gradient method (see [97] for a similar result on
DD preconditioners). We now report this result.

Theorem 7 (Nearly Optimal PCG). For BPX and multigrid V-cycle precondition-
ers (without using any special coarse spaces), PCG converges uniformly with re-
spect to jumps in the sense that there exist c0,c1 and m0 so that

‖u−uk‖A ≤ 2(c0/h−1)m0(1− c1/| logh|)k−m0‖u−u0‖A (k ≥ m0), (33)

where m0 is a fixed number depending only on the distribution of the coefficients.

This result is motivated by [41, 84] where PCG with diagonal scaling or over-
lapping DD is considered, and the following convergence result is proved by using
pure algebraic methods:

‖u−uk‖A ≤C(h,J (ω))(1− ch)k−m0‖u−u0‖A.

Unfortunately, this estimate deteriorates severely with respect to mesh size. The
improved estimate (33) implies that after m0 steps, the convergent rate of the PCG is
nearly uniform with respect to the mesh size and uniform with respect to jumps. The
first m0 steps are necessary for PCG to deal with small eigenvalues created by the
jumps. To account for the effect of a finite cluster of eigenvalues in the convergence
rate of PCG, the following estimate from [45] will be instrumental. Suppose that
we can split the spectrum σ(BA) of BA into two sets σ0(BA) and σ1(BA), where σ0
consists of all “bad” eigenvalues and the remaining eigenvalues in σ1 are bounded
above and below.

Theorem 8 (CG for Clusters of Eigenvalues). If σ(BA) = σ0(BA)∪σ1(BA) is such
that σ0(BA) contains m eigenvalues and λ ∈ [a,b] for each λ ∈ σ1(BA), then
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‖u−uk‖A ≤ 2(κ(BA)−1)m

(√
b/a−1√
b/a+1

)k−m

‖u−u0‖A.

Proof of Theorem 7. We introduce the weighted L2 and H1 inner products and
corresponding norms

(u,v)0,ω =
∫

Ω

uvω dx =
M

∑
m=1

ωm(u,v)Ωm , ‖u‖0,ω = (u,u)1/2
ω ,

(u,v)1,ω =
∫

Ω

∇u ·∇vω dx =
M

∑
m=1

ωm(u,v)1,Ωm , ‖u‖1,ω = (u,u)1/2
1,ω .

The SPD operator A and corresponding inner product of finite element discretization
of (32) is (Au,v) = (u,v)1,ω . Let Vh be the linear finite element space based on a
shape regular triangulation Th. The weighted L2-projection to Vh with respect to
(·, ·)0,ω will be denoted by Qω

h .
We now introduce the following auxiliary subspace:

Ṽh =
{

v ∈ Vh :
∫

Ωm

vdx = 0, |∂Ωm ∩ΓD|= 0
}

.

Note that this subspace satisfies dim(Ṽh) = n−m0 where m0 < M is a fixed number,
and more importantly,

‖v‖0,ω . |v|1,ω for all v ∈ Ṽh.

As a consequence, we obtain the approximation and stability of the weighted L2-
projection Qω

h (see [20, 93, 97]),

‖(I−Qω
h )v‖0,ω . h |logh|

1
2 |v|1,ω , |Qω

h v|1,ω . |logh|
1
2 |v|1,ω , for all v ∈ Ṽh.

Using the arguments in Lemma 2-step 2, we can prove that the decomposition using
weighted L2 projection is almost stable, i.e.,

J

∑
k=0

h−2
k ‖(Q

ω
k −Qω

k−1)u‖2 . | logh|2|u|21,ω . (34)

Repeating the argument of Theorem 4, we obtain the estimate λmin(BA) & | logh|−2.
On the other hand, the strengthened Cauchy Schwarz inequality (SCS) of Lemma

4 is valid for weighted inner products because its proof can be carried out element-
wise when ω is piecewise constant. Consequently Theorem 5 holds for weighted
L2-norm and implies λmax(BA) . 1. We thus infer that the condition number of BA
restricted to Ṽh is nearly uniformly bounded, namely κ(BA) . | logh|2.

To estimate the convergent rate of PCG in the space Vh, we introduce the mth
effective condition number by κm+1(A) = λmax(A)/λm+1(A), where λm+1(A) is
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the (m + 1)th minimal eigenvalue of A. By the Courant “minmax” principle (see
e.g., [40])

λm+1(A) = max
S,dim(S)=m

min
06=v∈S⊥

(Av,v)0,ω

(v,v)0,ω
.

In particular, the fact dim(Ṽh) = n−m0, together with the nearly stable decomposi-
tion (34), implies that λm0+1(BA)≥ | logh|−2.

The asserted estimate finally follows from Theorem 8 �.
Results such as Theorem 8 provide convincing evidence of a general rule of

thumb: an iterative method, whenever possible, should be used together with certain
preconditioned Krylov space (such as conjugate gradient) method.

4 Multilevel Methods on Graded Grids

Adaptive methods are now widely used in scientific and engineering computation
to optimize the relation between accuracy and computational labor (degrees of free-
dom). Let V0 ⊆ V1 ⊆ ·· · ⊆ VJ = V be nested finite element spaces obtained by
local mesh refinement. A standard multilevel method contains a smoothing step on
the spaces V j, j = 0, . . . ,J. For graded grids obtained by adaptive procedure, it is
possible that V j results from V j−1 by just adding few, say one, basis function. Thus
smoothing on both V j and V j−1 leads to a lot of redundancy. If we let N be the num-
ber of unknowns in the finest space V , then the complexity of smoothing can be
as bad as O(N2) [62]. To achieve optimal complexity O(N), the smoothing in each
space V j must be restricted to the new unknowns and their neighbors. Such methods
are referred to as adaptive multilevel methods or local multilevel methods.

Of all possible refinement strategies, we are interested in bisection, the most
popular and effective procedure for refinement in any dimension [6, 9, 56, 59, 68, 69,
70, 71, 72, 74, 80, 83]. We refer to [31] for the optimality of BPX preconditioner for
regular refinement (one triangle is divided into four similar triangles) in 2-D and [1]
for similar results in 3-D (one tetrahedron is divided into eight tetrahedrons).

We still consider the finite element approximation of Poisson equation (15); see
Section §3.1 for the problem setting. The additional difficulty is that the mesh is no
longer quasi-uniform. We present a decomposition of bisection grids and transfer
results from quasi-uniform grids to bisection grids. As an example, we present a
stable decomposition of finite element spaces and SCS inequality. The optimality of
BPX preconditioner and uniform convergence of multigrid can then be established
upon applying the general theory of Section §3; we refer to [27].
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4.1 Bisection Methods

In this section, we introduce bisection methods for simplicial grids and present a
novel decomposition of conforming triangulations obtained by bisection methods.

Given a simplex τ , we assign one of its edges as the refinement edge of τ . Starting
from an initial triangulation T0, a bisection method consists of the following rules:

R1. assign refinement edges for each element τ ∈T0;
R2. divide a simplex with a refinement edge into two simplexes;
R3. assign refinement edges to the two children of a bisected simplex.

We now give a mathematical description. Let τ be a simplex that bisects into
simplexes τ1 and τ2. R2 can be described by a mapping bτ : {τ} → {τ1,τ2}. If we
denote a simplex τ with a refinement edge e by a pair (τ,e), then R2 and R3 can
be described by a mapping {(τ,e)} → {(τ1,e1),(τ2,e2)}. The pair (τ,e) is called
a labeled simplex and the set (T ,L) := {(τ,e) : τ ∈ T } is called a labeled trian-
gulation. Then R1 can be described by a mapping T0 → (T0,L) and called initial
labeling. The first rule is an essential ingredient of bisection methods. Once the ini-
tial labeling is done, the subsequent grids inherit labels according to R2-R3 such
that the bisection process can proceed. We refer to [63, Section 4] for details.

For a labeled triangulation (T ,L), and a bisection bτ : {(τ,e)}→{(τ1,e1),(τ2,e2)}
for τ ∈T , we define a formal addition

T +bτ := (T ,L)\{(τ,e)}∪{(τ1,e1),(τ2,e2)}.

For a sequence of bisections B = (bτ1 ,bτ2 , · · · ,bτN ), we define

T +B := ((T +bτ1)+bτ2)+ · · ·+bτN ,

whenever the addition is well defined (i.e. τi should exists in the previous labeled tri-
angulation). These additions are a convenient mathematical description of bisection
on triangulations.

Given a labeled initial grid T0 of Ω and a bisection method, we define

F(T0) = {T : there exists a bisection sequence B such that T = T0 +B},
T(T0) = {T ∈ F(T0) : T is conforming}.

Therefore F(T0) contains all triangulations obtained from T0 using the bisection
method, and is unique once the rules R1-3 have been set. But a triangulation T ∈
F(T0) could be non-conforming and thus we define T(T0) as a subset of F(T0)
containing only conforming triangulations.

We also define the sequence of uniformly refined meshes {T k}∞
k=0 by:

T 0 = T0, and T k = T k−1 +{bτ : τ ∈T k−1}, for k ≥ 1.

This means that T k is obtained by bisecting all elements in T k−1 only once. Note
that T k ∈ F(T0) but not necessarily in the set T(T0).
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We consider bisection methods which satisfy the following two assumptions:

(B1) Shape Regularity: F(T0) is shape regular.
(B2) Conformity of Uniform Refinement: T k ∈ T(T0), i.e., T k is conforming
for all k ≥ 0.

All existing bisection methods share the same rule R2 described now. Given a
simplex τ with refinement edge e, the two children of τ are defined by bisect-
ing e and connecting the midpoint of e to the other vertices of τ . More precisely,
let {x1,x2, · · · ,xd+1} be vertices of τ and let e = x1x2 be the refinement edge. Let
xm denote the midpoint of e. The children of τ are two simplexes τ1 with vertices
{x1,xm,x3, · · · ,xd+1} and τ2 with {x2,xm,x3, · · · ,xd+1}; we refer to [63, Section 4]
for a through discussion of the notion of vertex type order and type. There is another
class of refinement method, called regular refinement, which divide one simplex into
2d children; see [8, 58].

All existing bisection methods differ in R1 and R3. For the so-called longest edge
bisection [68, 70, 71, 72, 69], the refinement edge of a simplex is always assigned
as the longest edge of this simplex. It is also used in R1 to assign the longest edge
for each element in the initial triangulation. This method is simple, but (B1) is only
proved for two dimensional triangulations [72] and (B2) only holds for special cases.

Regarding R3, the newest vertex bisection method for two dimensional triangula-
tions assigns the edge opposite to the newest vertex of each child as their refinement
edge. Sewell [76] showed that all the descendants of a triangle in T0 fall into four
similarity classes and hence (B1) holds. Note that (B2) may not hold for an arbitrary
rule R1, namely the refinement edge for elements in the initial triangulation cannot
be selected freely. Mitchell [60] came up with a rule R1 for which (B2) holds. He
proved the existence of such initial labeling scheme (so-called compatible initial
labeling), and Biedl, Bose, Demaine, and Lubiw [11] gave an optimal O(N) algo-
rithm to find a compatible initial labeling for a triangulation with N elements. In
summary, in two dimensions, newest vertex bisection with compatible initial label-
ing is a bisection method which satisfies (B1) and (B2).

There are several bisection methods proposed in three and higher dimensions
which generalize the newest vertex bisection in two dimensions [9, 56, 67, 6, 59, 80].
We shall not give detailed description of these bisection methods since the descrip-
tion of rules R1 and R3 is very technical for three and higher dimensions; we refer
to [63, Section 4]. In these methods, (B1) is relatively easy to prove by showing all
descendants of a simplex in T0 fall into similarity classes. As in the two dimensional
case, (B2) requires special initial labeling, i.e., R1. We refer to Kossaczký [56] for
the discussion of such rule in three dimensions and Stevenson [80] for the gener-
alization to d-dimensions. However the algorithms proposed in [56, 80] to enforce
such initial labeling consist of modifying the initial triangulation by further refine-
ment of each element, which deteriorates the shape regularity. Although (B2) im-
poses a severe restriction on the initial labeling, we emphasize that it is also used to
prove the optimal complexity of adaptive finite element methods [23, 63].
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4.2 Compatible Bisections

The set of vertices of the triangulation T will be denoted by N (T ) and the set of
all edges will be denoted by E (T ). For a vertex x ∈N (T ) or an edge e ∈ E (T ),
we define the first ring of x or e to be

Rx = {τ ∈T |x ∈ τ}, Re = {τ ∈T |e⊂ τ},

and the local patch of x or e as ωx = ∪τ∈Rx τ, and ωe = ∪τ∈Reτ. Note that ωx and
ωe are subsets of Ω , while Rx and Re are subsets of T which can be thought of as
triangulations of ωx and ωe, respectively. The cardinality of a set S will be denoted
by #S.

Given a labeled triangulation (T ,L), an edge e ∈ E (T ) is called a compatible
edge if e is the refinement edge of τ for all τ ∈Re. For a compatible edge, the ring
Re is called a compatible ring, and the patch ωe is called a compatible patch. Let x
be the midpoint of e and Rx be the ring of x in T + {bτ : τ ∈Re}. A compatible
bisection is a mapping be : Re→Rx. We then define the addition

T +be := T +{bτ : τ ∈Re}= T \Re∪Rx.

For a compatible bisection sequence B, the addition T +B is defined as before.
Note that if T is conforming, then T + be is conforming for a compatible bi-

section be, whence compatible bisections preserve the conformity of triangulations.
Hence, compatible bisection is a fundamental concept both in theory and practice.

In two dimensions, a compatible bisection be has only two possible configura-
tions; see Fig. 1. One is bisecting an interior compatible edge, in which case the
patch ωe is a quadrilateral. Another case is bisecting a boundary edge, which is
always compatible, and ωe is a triangle. In three dimensions, the configuration of
compatible bisections depends on the initial labeling; see Fig. 2 for a simple case.

e
be

p e
be

p

FIGURE 1. Two compatible bisections. Left: interior edge; right:

boundary edge. The vertex near the dot is the newest vertex, the edge

with boldface is the refinement edge, and the dash-line represents the

bisection.

1

Fig. 1 Two compatible bisections for d = 2. Left: interior edge; right: boundary edge. The edge
with boldface is the compatible refinement edge, and the dash-line represents the bisection.

The bisection of paired triangles was first introduced by Mitchell [60, 61]. The
idea was generalized by Kossaczký [56] to three dimensions, and Maubach [59]
and Stevenson [80] to any dimension. In the aforementioned references, efficient re-
cursive completion procedures of bisection methods are introduced based on com-
patible bisections. We use them to characterize the conforming mesh obtained by
bisection methods.
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(a) A compatible patch ωe (b) After a compatible bisection ωp

Fig. 2 A compatible bisection for d = 3: the edge e (in bold) is the refinement edge all elements in
the patch ωe. Connecting e to the other vertices bisects each element of the compatible ring Re and
keeps the mesh conforming without spreading refinement outside ωe. This is an atomic operation.

4.3 Decomposition of Bisection Grids

We now present a decomposition of meshes in T(T0) using compatible bisections.
This is due to Chen, Nochetto, and Xu [27] and will be instrumental later.

Theorem 9 (Decomposition of Bisection Grids). Let T0 be a conforming triangu-
lation. Suppose the bisection method satisfies assumptions (B2), i.e., for all k ≥ 0
all uniform refinements T k of T0 are conforming. Then for any T ∈ T(T0), there
exists a compatible bisection sequence B = (b1,b2, · · · ,bN) with N = #N (T )−
#N (T0) such that

T = T0 +B. (35)

We use the example in Figure 3 to illustrate the decomposition of a bisection
grid. In Figure 3 (a), we display the initial triangulation T0 which uses the longest
edge as the refinement edge for each triangle. We display the fine grid T ∈T(T0) in
Figure 3 (f). In Figure 3 (b)-(e), we give several intermediate triangulations during
the refinement process: each triangulation is obtained by performing several com-
patible bisections on the previous one. Each compatible patch is indicated by a gray
region and the new vertices introduced by bisections are marked by black dots. In
these figures, we denoted by Ti := T0 +(b1,b2, · · · ,bi) for 1≤ i≤ 19.

To prove Theorem 9, we introduce the generation of elements and vertices. The
generation of each element in the initial grid T0 is defined to be 0, and the generation
of a child is 1 plus that of the father. The generation of an element τ ∈ T ∈ F(T0)
is denoted by gτ and coincides with the number of bisections needed to create τ

from T0. Consequently, the uniformly refined mesh T k can be characterized as the
triangulation in F(T0) with all elements of T k of the same generation k. Vice versa,
an element τ with generation k can only exist in T k.

Let N(T0) =∪{N (T ) : T ∈ F(T0)} denote the set of all possible vertices. For
any vertex p ∈ N(T0), the generation of p is defined as the minimal integer k such
that p ∈N (T k) and is denoted by gp. For convenience of notation, we regard g as
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(a) Initial grid T0 (b) T3 (c) T8

(d) T13 (e) T19 (f) Fine grid T = T19

Fig. 3 Decomposition of a bisection grid for d = 2: Each frame displays a mesh Ti+k = Ti +
{bi+1, · · · ,bi+k} obtained from Ti by a sequence of compatible bisections {b j}i+k

j=i+1 using the
longest edge. The order of bisections is irrelevant within each frame, but matters otherwise.

either a piecewise linear function on T defined as g(p) = gp for p ∈N (T ) or a
piecewise constant defined as g(τ) = gτ for τ ∈T .

The following properties about the generation of elements or vertices for uni-
formly refined mesh T k are a consequence of the definition above:

τ ∈T k if and only if gτ = k; (36)

p ∈N (T k) if and only if gp ≤ k; (37)

for τ ∈T k, max
q∈N (τ)

gq = k = gτ . (38)

Lemma 8. Let T0 be a conforming triangulation. Let the bisection method satisfy
assumption (B2). For any T ∈ T(T0), let p ∈ N (T ) be a vertex with maximal
generation in the sense that gp = maxq∈N (T ) gq. Then

gτ = gp for all τ ∈Rp (39)

and
Rp = Rk,p, (40)

where k = gp and Rk,p is the first ring of p in the uniformly refined mesh T k.
Equivalently, all elements in Rp have the same generation gp.
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Proof. We prove (39) by showing gp ≤ gτ and gτ ≤ gp. Since T is conforming, p
is a vertex of each element τ ∈Rp. This implies that p∈N (T gτ

) and thus gτ ≥ gp
by (37). On the other hand, from (38), we have

gτ = max
q∈N (τ)

gq ≤ max
q∈N (T )

gq = gp, for all τ ∈Rp.

Now we prove (40). By (36), Rk,p is made of all elements with generation k
containing p. By (39), we conclude Rp ⊆Rk,p. On the other hand, p cannot belong
to the domain of Ω\ωp, because of the topology of ωp, whence Rk,p\Rp = ∅. This
proves (40). �

Now we are in the position to prove Theorem 9.

Proof of Theorem 9. We prove the result by the induction on N = #N (T )−
#N (T0). Nothing needs to be proved for N = 0. Assume that (35) holds for N.

Let T ∈ T(T0) with #N (T )−#N (T0) = N +1. Let p ∈N (T ) be a vertex
with maximal generation, i.e., gp = maxq∈N (T ) gq. Then by Lemma 8, we know
that Rp = Rk,p for k = gp. Now by assumption (B2), Rk,p is created by a compatible
bisection, say

be : Re→Rk,p,

with e ∈ E (Tk−1). Since the compatible bisection giving rise to p is unique within
F(T0), it must thus be be. This means that if we undo the bisection operation, then
we still have a conforming mesh T ′, or equivalently T = T ′+ be. We can now
apply the induction assumption to T ′ ∈ T(T0) with #N (T ′)− #N (T0) = N to
finish the proof. �

4.4 Generation of Compatible Bisections

For a compatible bisection bi ∈B, we use the same subscript i to denote related
quantities such as:

• ei: the refinement edge;
• pi: the midpoint of ei;
• ω̃i = ωpi ∪ωpli

∪ωpri
;

• Ti = T0 +{b1, · · · ,bi};

• ωi: the patch of pi i.e. ωpi ;
• pli , pri : two end points of ei;
• hi: the local mesh size of ωi;
• Ri: the first ring of pi in Ti.

We understand h ∈ L∞(Ω) as a piecewise constant mesh-size function, i.e., hτ =
diam(τ) in each simplex τ ∈T .

Lemma 9. If bi ∈ B is a compatible bisection, then all elements of Ri have the
same generation gi.

Proof. Let pi ∈ N (T0) be the vertex associated with bi. Let Tk be the coarsest
uniformly refined mesh containing pi, so k = gpi . In view of assumption (B2), pi
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arises from uniform refinement of T k−1. Since the bisection giving rise to pi is
unique within F(T0), we realize that all elements in Rei are bisected and have gen-
eration k− 1 because they belong to T k−1. This implies that all elements of Rpi

have generation k, as asserted. �

This lemma allows us to introduce the concept of generation of compatible bi-
sections. For a compatible bisection bi : Rei →Rpi , we define gi = g(τ),τ ∈Rpi .
Throughout this paper we always assume h(τ) h 1 for τ ∈T0. We have the follow-
ing important relation between generation and mesh size

hi h γ
gi , with γ =

(1
2

)1/d
∈ (0,1). (41)

Beside this relation, we give now two more important properties on the genera-
tion of compatible bisections. The first property says that different bisections with
the same generation have weakly disjoint local patches.

Lemma 10. Let TN ∈ T(T0) be TN = T0 +B, where B is a compatible bisection
sequence B = (b1, · · · ,bN). For any i 6= j and g j = gi, we have

◦
ωi ∩

◦
ω j= ∅. (42)

Proof. Since gi = g j = g, both bisection patches Ri and R j belong to the uniformly
refined mesh T q. If (42) were not true, then there would exists τ ∈Ri∩R j ⊂ T q
containing distinct refinement edges ei and e j because i 6= j. This contradicts rules
R2 and R3 which assign a unique refinement edge to each element. �

A simple consequence of (42) is that, for all u ∈ L2(Ω) and k ≥ 1,

∑
gi=k
‖u‖2

ωi
≤ ‖u‖2

Ω , (43)

∑
gi=k
‖u‖2

ω̃i
. ‖u‖2

Ω . (44)

The second property is on the ordering of generations. For a given bisection se-
quence B, we define bi < b j if i < j, which means bisection bi is performed before
b j. The generation sequence (g1, · · · ,gN), however, is not necessary monotone in-
creasing; there could exist bi < b j but gi > g j. This happens for bisections driven
by a posteriori error estimators in practice. Adaptive algorithms usually refine ele-
ments around a singularity region first, thereby creating many elements with large
generations, and later they refine coarse elements away from the singularity. This
mixture of generations is the main difficulty for the analysis of multilevel meth-
ods on adaptive grids. We now prove the following quasi-monotonicity property of
generations restricted to a fixed bisection patch.

Lemma 11. Let TN ∈ T(T0) be TN = T0 +B, where B is a compatible bisection

sequence B = (b1, · · · ,bN). For any j > i and
◦
ω̃ j ∩

◦
ω̃ i 6= ∅, we have
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g j ≥ gi−g0, (45)

where g0 > 0 is an integer depending only the shape regularity of T0.

Proof. Since
◦
ω̃ j ∩

◦
ω̃ i 6= ∅, there must be elements τ j ∈Rp j ∪Rpl j

∪Rpr j
and τi ∈

Rpi ∪Rpli
∪Rpri

such that
◦
τ j ∩

◦
τi 6= ∅. Since we consider triangulations in T(T0),

the intersection τ j ∩ τi is still a simplex. When b j is performed, only τ j exists in the
current mesh. Thus τ j = τ j ∩ τi ⊆ τi and gτ j ≥ gτi .

Shape regularity implies the existence of a constant g0 only depending on T0
such that

g j +g0/2≥ gτ j ≥ gτi ≥ gi−g0/2,

and (45) follows. �

4.5 Node-Oriented Coarsening Algorithm

A key practical issue is to find a decomposition of a bisection grid. We present a
node-oriented coarsening algorithm recently developed by Chen and Zhang [29].

A crucial observation is that the inverse of a compatible bisection can be thought
as a coarsening process. It is restricted to a compatible star and thus no conformity
issue arises; See Figure 1. For a triangulation T ∈ T(T0), a vertex p is called a
good-for-coarsening vertex, or a good vertex in short, if there exist a compatible
bisection be such that p is the middle point of e. The set of all good vertices in the
grid T will be denoted by G(T ). By the decomposition of bisection grids (Theorem
9), the existence of good vertices is evident. Moreover, for bisection grids in 2-D, we
have the following characterization of good vertices due to Chen and Zhang [29].

Theorem 10 (Coarsening). Let T0 be a conforming triangulation. Suppose the bi-
section method satisfies assumptions (B2), i.e., for all k ≥ 0 all uniform refinements
T k of T0 are conforming. Then for any T ∈ T(T0) and T 6= T0, the set of good
vertices G(T ) is not empty. Furthermore x ∈ G(T ) if and only if

1. it is not a vertex of the initial grid T0;
2. it is the newest vertex of all elements in the ring of Rp.
3. #Rp = 4 for an interior vertex x or #Rp = 2 for a boundary vertex p.

Remark 1. The assumption that T0 is compatible labeled could be further relaxed
by using the longest edge of each triangle as its refinement edge for the initial trian-
gulation T0; see Kossaczký [56].

The coarsening algorithm is simply read as the following:

ALGORITHM COARSEN (T )
Find all good nodes G(T ) of T .
For each good node p ∈ G(T )
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Replace the star Rp by b−1
e (Rp).

END
Chen and Zhang [29] prove that one can finally obtain the initial grid back

by applying the coarsening algorithm coarsen repeatedly. It is possible that
coarsen(T) applied to the current grid T gives a coarse grid which is not in
the adaptive history. Indeed our coarsening algorithm may remove vertices added in
several different stages of the adaptive procedure.

For details on the implementation of this coarsening algorithm and the applica-
tion to multilevel preconditioners and multigrid methods, we refer to [29] and [26].

4.6 Space Decomposition on Bisection Grids

We give a space decomposition for Lagrange finite element spaces on bisection
grids. Given a conforming triangulation T of the domain Ω ⊂ Rd and an integer
m≥ 1, the mth order finite element space on T is defined as follows:

V (Pm,T ) := {v ∈ H1(Ω) : v|τ ∈Pm(τ) for all τ ∈T }.

We restrict ourselves to bisection grids in T(T0) satisfying (B1) and (B2). There-
fore by Theorem 9, for any TN ∈ T(T0), there exists a compatible bisection se-
quence B = (b1, · · · ,bN) such that

TN = T0 +B.

We give a decomposition of the finite element space V := V (Pm,TN) using
this decomposition of TN . If Ti is the triangulation T0 + (b1, · · · ,bi), let φi,p ∈
V (P1,Ti) denote the linear nodal basis at a vertex p ∈N (Ti). Motivated by the
stable three-point wavelet constructed by Stevenson [78], we define the sub-spaces

V0 = V (P1,T0), and Vi = span{φi,pi ,φi,pli
,φi,pri

}. (46)

Since the basis functions of Vi, i = 0, . . . ,N, are piecewise linear polynomials on
TN , we know Vi ⊆ V . Let {φp, p ∈ Λ} be a basis of V (Pm,TN) such that v =
∑p∈Λ v(p)φp for all v∈V (Pm,TN), where Λ is the index set of basis. For example,
for quadratic element spaces, Λ consists of vertices and middle points of edges. We
define Vp = span{φp} and end up with the following space decomposition:

V = ∑
p∈Λ

Vp +
N

∑
i=0

Vi. (47)

Since dimVi = 3, we have a three-point local smoother and the total computational
cost for subspace correction methods based on (47) is CN. This is optimal and the
constant in front of N is relatively small. In addition, the three-point local smoother
simplifies the implementation of multilevel methods especially in dimensions higher
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than 3. For example, we only need to maintain an ordered vertex array with two
parent vertices and do not need tree structure to maintain a hierarchical structure of
meshes. The following result is due to Chen, Nochetto, and Xu [27].

Theorem 11 (Space Decomposition over Graded Meshes). For any v ∈ V , there
exist vp, p ∈Λ ,vi ∈ Vi, i = 0, · · · ,N such that v = ∑p∈Λ vp +∑

N
i=0 vi and

∑
p∈Λ

h−2
p ‖vp‖2 +

N

∑
i=0

h−2
i ‖vi‖2 . ‖v‖2

A. (48)

The idea of the proof is to use Scott-Zhang quasi-interpolation operator [75]

IT : H1(Ω) 7→ V (P1,T )

for a conforming triangulation T ; see also Oswald [65]. For any p ∈N (T ) and
p is an interior point, we choose a τp ⊂ Rp. Let {λτp,i, i = 1, · · · ,d + 1} be the
barycentric coordinates of τ which span P1(τp). We construct the L2-dual basis
Θ(τp) = {θτp,i : i = 1, · · · ,d + 1} of {λτp,i : i = 1, · · · ,d + 1}. Suppose θp ∈Θ(τp)
is the dual basis such that

∫
τp

θpvdx = v(p), for all v ∈P1(τp). We then define

IT v = ∑
p∈N (T )

(∫
τp

θpv dx
)

φp.

For boundary vertex p, we simply define IT v(p)= 0 to reflect the vanishing bound-
ary condition of v. By definition, IT preserves piecewise linear functions and sat-
isfies the following estimate and stability [75, 65]

|IT v|1 +‖h−1(v−IT v)‖. |v|1, (49)

hd−2
i |IT v(pi)|2 . h−2

i ‖v‖τpi
, (50)

where hi is the size of τpi .
Given v ∈ V (Pm,T ), we define u = IT v and a decomposition v = u+(v−u),

where IT : V (Pm,T )→ V (P1,T ). We first give a multilevel decomposition
of u using quasi-interpolation. For a vertex p, we denote by τp the simplex used
to define the nodal value at p. The following construction of a sequence of quasi-
interpolations will update τp carefully.

Let I0 be a quasi-interpolation operator defined V (P1,T ) → V0. Suppose
Ii−1 is defined on V (P1,Ti−1). After the compatible bisection bi, we define the
nodal values at the new added vertex pi using a simplex introduced by the bisec-
tion, i.e. τpi ⊂ ωi. For other vertices p, let τp ∈ Ti−1 be the simplex used to define
(Ii−1u)(p), we define (Iiu)(p) according to the following two cases:

1. if τp ⊂ ωp(Ti) we keep the nodal value, i.e., (Iiu)(p) = (Ii−1u)(p);
2. otherwise we choose a new τp ⊂ ωp(Ti)∩ωp(Ti−1) to define (Iiu)(p).

In either case, we ensure that the simplex τp ⊂ ωp(Ti).
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An important property of the bisection is that bi only changes the local patches
of two end points of the refinement edge ei going from Ti−1 to Ti. The construction
in the second case is thus well defined. By construction (Ii−Ii−1)u(p) = 0 for
p∈N (Ti), p 6= pi, pli or pri , which implies (Ii−Ii−1)u∈Vi. Furthermore a close
look reveals that if (Ii−Ii−1)u(p) 6= 0, then the elements τp used to define Ii(p)
or Ii−1(p) are inside the patch ωi; see Figure 4.

ei pi

τpi

FIGURE 1. Patches are similar

1

(a) Simplex to define (Iiu)(pi)

eipli

τpli τpli

pli

FIGURE 1. Patches are similar

1

(b) Simplex to define (Iiu)(pli )

ei pri

τpri

pri

τpri

FIGURE 1. Patches are similar

1

(c) Simplex to define (Iiu)(pri )

ei

p

τp τp

p

FIGURE 1. Patches are similar

1

(d) Simplex to define (Iiu)(p)

Fig. 4 Update of nodal values Iiu to yield Ii−1u: the element τ chosen to perform the averaging
that gives (Iiu)(p) must belong to ωp(Ti). This implies (Ii−Ii−1)u(p) 6= 0 possibly for p =
pi, pli , pri and = 0 otherwise.

In this way, we obtain a sequence of quasi-interpolation operators

Ii : V (P1,TN)→ V (P1,Ti), i = 0 : N.

We define vi = (Ii−Ii−1)u∈Vi for i = 1 : N. In general INu 6= u since the simplex
used to define nodal values of INu may not be in the finest mesh TN but in TN−1.
Nevertheless, the difference v−INu is of high frequency in the finest mesh.

Let v−INu = ∑p∈Λ vp be the basis decomposition. We then obtain a decompo-
sition

v = ∑
p∈Λ

vp +
N

∑
i=0

vi, vi ∈ Vi, (51)

where for convenience we define I−1 := 0.
To prove that the decomposition (51) is stable we first study ∑p∈Λ vp. Let τp be

the simplex used to define INu(p) for p ∈N (TN). By construction, although τp
may not be a simplex in the triangulation TN , it is still in the patch ωp(TN). Then
by (49)

∑
p∈Λ

h−2
p ‖vp‖2 . ‖h−1(v−QNv)‖2 . |v|21. (52)
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We next prove that the decomposition INu = ∑
N
i=0(Ii−Ii−1)u is stable. For

this purpose, we need the auxiliary decomposition on the uniform refinement. We
choose minimal L such that V ⊆ V L. By Lemma 2, we have a stable decomposition
u = ∑

L
k=0 v̄k, with v̄k = (Qk−Qk−1)u,k = 0, · · · ,L.

We apply the slicing operator Ii−Ii−1 to this decomposition. When k≤ gi−1,
v̄k is piecewise linear in ωei , (Ii−Ii−1)v̄k = 0 since Ii preserves piecewise linear
functions. So the slicing operator detects frequencies higher than or equal to the
generation of bisection, namely

vi = (Ii−Ii−1)
L

∑
l=gi

v̄l . (53)

By construction of vi and the stability of quasi-interpolation, we conclude

‖vi‖2
ω̃i

. h2+d
i

[
vi(pi)2 + vi(pli)

2 + vi(pri)
2
]

.
∥∥∥ L

∑
l=gi

v̄l

∥∥∥2

ωi
.

In the last step, the domain is changed to ωi since the simplexes used to define
nonzero values of vi(pi),vi(plir) or vi(plir) are inside ωi.

Note that for different bisections with the same generation, their local patches
are weakly disjoint (Lemma 10): for any i 6= j and g j = gi, we have

◦
ωi ∩

◦
ω j= ∅. (54)

Consequently

∑
gi=k
‖vi‖2 = ∑

gi=k
‖vi‖2

ω̃i
. ∑

gi=k

∥∥∥ L

∑
l=gi

v̄l

∥∥∥2

ωi
.
∥∥∥ L

∑
l=gi

v̄l

∥∥∥2

Ω

=
L

∑
l=k
‖v̄l‖2.

In the last step, we use the fact v̄k are L2-orthogonal decomposition.
The following elementary result will be useful and can be found in [32].

Lemma 12 (Discrete Hardy Inequality). If the sequences {ak}L
k=0,{bk}L

k=0 satisfy

bk ≤
L

∑
l=k

al , for all k ≥ 0

and are non-negative, then for any s ∈ (0,1), we have

L

∑
k=0

s−kbk ≤
1

1− s

L

∑
k=0

s−kak.

Proof. Since
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L

∑
k=0

s−kbk ≤
L

∑
k=0

L

∑
l=k

s−kal =
L

∑
l=0

l

∑
k=0

s−kal =
L

∑
l=0

s−lal

l

∑
k=0

sl−k,

and s < 1, the geometric series is bounded by 1/(1− s) and concludes the proof. �

Applying Lemma 12 to ak = ‖v̄k‖2 and bk = ∑gi=k ‖vi‖2, we obtain

L

∑
k=0

h̄−2
k ∑

gi=k
‖vi‖2 .

L

∑
k=0

h̄−2
k ‖v̄k‖2,

and thus from the stable decomposition corresponding to uniform refinement, we
conclude

N

∑
i=0

h−2
i ‖vi‖2 =

L

∑
k=0

h̄−2
k ∑

gi=k
‖vi‖2 .

L

∑
k=0

h̄−2
k ‖v̄k‖2 . |IT v|21 . |v|21. (55)

4.7 Strengthened Cauchy-Schwarz Inequality

In this section we establish the SCS inequality for the space decomposition ∑
N
i=0 Vi.

Theorem 12. For any ui,vi ∈ Vi, i = 0, · · · ,N, we have

∣∣∣ N

∑
i=0

N

∑
j=i+1

(ui,v j)A

∣∣∣.( N

∑
i=0
‖ui‖2

A

)1/2( N

∑
i=0

h−2
i ‖vi‖2

)1/2

. (56)

Proof. The proof consists of several careful summations using the concept of gen-
eration to relate with uniform refinements. The proof is divided into four steps.

1 For a fixed index i ∈ [1,N], we denote by

n(i) = { j > i : ω̃ j ∩ ω̃i 6= ∅} and wi
k = ∑

j∈n(i),g j=k
v j.

Shape regularity implies that wi
k ∈ V k+g0 and k = g j ≥ gi−g0 (Lemma 11). For any

τ ∈ ω̃i, we apply the SCS inequality of Lemma 4 over τ to ui and wi
k and obtain

(ui,wi
k)A,τ . γ

k+g0−gi‖ui‖A,τ h̄−1
k+g0
‖wi

k‖τ . γ
k−gi‖ui‖A,τ h̄−1

k ‖w
i
k‖τ .

Then
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(ui,wi
k)A,ω̃i = ∑

τ⊂ω̃i

(ui,wi
k)A,τ

. γ
k−gi ∑

τ⊂ω̃i

‖ui‖A,τ h̄−1
k ‖w

i
k‖τ

. γ
k−gi‖ui‖A,ω̃i h̄

−1
k

(
∑

τ⊂ω̃i

‖wi
k‖2

τ

)1/2
.

Since v j’s with the same generation g j = k have supports with finite overlap, we
infer that ‖wi

k‖2
τ . ∑ j∈n(i),g j=k ‖v j‖2

τ ≤ ∑g j=k ‖v j‖2
τ and

(ui,wi
k)A,ω̃i . γ

k−gi‖ui‖A,ω̃i h̄
−1
k

(
∑

g j=k
‖v j‖2

0,ω̃i

)1/2
.

2 We fix ui and consider

|(ui,
N

∑
j=i+1

v j)A|= |(ui, ∑
j∈n(i)

v j)A,ω̃i |= |(ui,
L

∑
k=(gi−g0)+

∑
j∈n(i),g j=k

v j)A,ω̃i |,

because w j
k = 0 for k < gi− g0 (Lemma 11). Since k ≥ 0, this is equivalent to k ≥

(gi−g0)+ := max{gi−g0,0}, whence

|(ui,
N

∑
j=i+1

v j)A|.
L

∑
k=(gi−g0)+

|(ui,wi
k)A,ω̃i |

.
L

∑
k=(gi−g0)+

γ
k−gi‖ui‖A,ω̃i h̄−1

k

(
∑

g j=k
‖v j‖2

0,ω̃i

)1/2
.

3 We now sum over i but keeping the generation gi = l ≥ 0 fixed:

∑
gi=l
|(ui,

N

∑
j=i+1

v j)A|.
L

∑
k=(l−g0)+

γ
k−l

{
∑

gi=l

[
‖ui‖A,ω̃i

(
h̄−2

k ∑
g j=k
‖v j‖2

ω̃i

)1/2
]}

.
L

∑
k=(l−g0)+

γ
k−l

(
∑

gi=l
‖ui‖2

A,ω̃i

)1/2 (
h̄−2

k ∑
gi=l

∑
g j=k
‖v j‖2

ω̃i

)1/2

.

In view of the finite overlap of patches ω̃i for generation gi = l (see (44)), we deduce

∑
gi=l
|(ui,

N

∑
j=i+1

v j)A|.
L

∑
k=(l−g0)+

γ
k−l

(
∑

gi=l
‖ui‖2

A,ω̃i

)1/2 (
h̄−2

k ∑
g j=k
‖v j‖2

)1/2

.

4 . We finally sum over all generations 0≤ l ≤ L to get
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L

∑
l=0

∑
gi=l
|(ui,

N

∑
j=i+1

v j)A|.
L

∑
l=0

L

∑
k=(l−g0)+

γ
k−l

(
∑

gi=l
‖ui‖2

A,ω̃i

)1/2 (
h̄−2

k ∑
g j=k
‖v j‖2

)1/2

.

(
L

∑
l=0

∑
gi=l
‖ui‖2

A,ω̃i

)1/2( L

∑
k=0

h̄−2
k ∑

g j=k
‖v j‖2

)1/2

.

where we have applied Lemma 5. Therefore, since ∑
N
i=0 = ∑

L
l=0 ∑gi=l and h̄k = h j

for k = g j, we end up with the desired estimate (56). �

4.8 BPX Preconditioner and Multigrid on Graded Bisection Grids

Proceeding as in Section §3, with quasi-uniform grids created by uniform refine-
ment, we can obtain the optimality of BPX preconditioner and optimal convergent
rate of V-cycle multigrid. We state the results below and refer to [27] for proofs.

Theorem 13 (Optimality of BPX on Graded Bisection Grids). For the BPX pre-
conditioner based on the space decomposition (47)

Bu = ∑
p∈Λ

h2−d
p (u,φp)φp +

N

∑
i=1

h2−d
i [(u,φpi)φpi +(u,φpli

)φpli
+(u,φpri

)φpri
],

we have
κ(BA) . 1.

A V-cycle type multigrid method can be obtained by applying SSC to the space
decomposition (47). A symmetric V-cycle loop is like

1. pre-smoothing (forward Gauss-Seidel) in the finest space V (Pm,TN);
2. multilevel smoothing in linear finite element spaces Vi for i = N to 1;
3. exact solver in the coarsest linear finite element spaces V0;
4. multilevel smoothing in linear finite element spaces Vi for i = 1 to N;
5. post-smoothing (backward Gauss-Seidel) in the finest space V (Pm,TN).

Theorem 14 (Uniform Convergence of V-cycle Multigrid on Graded Bisection
Grids). The above V-cycle multigrid, namely SSC based on the space decomposition
(47), is uniformly convergent.

5 Multilevel Methods for H(curl) and H(div) Systems

In this section, we design and analyze multigrid methods for solving finite element
discretization of H(curl) and H(div) systems
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curl×curl×u+u = f , in Ω , (57)
−graddivu+u = f , in Ω , (58)

with homogeneous Neumann boundary condition. Here Ω ⊂ R3 is a simply con-
nected and bounded polyhedron. We study edge elements for (57) and face elements
for (58) over shape regular tetrahedra triangulations T of Ω .

Standard multigrid methods developed for H1 problem, i.e.,

−∆u+u =−divgradu+u = f

cannot be transferred to the H(curl) and H(div) systems directly. The reason is that
for vector fields, the operators curl×curl and−graddiv are only part of the Laplace
operator because

−∆ := curl×curl−graddiv .

Therefore in the divergence free space, the operator curl×curl+I behaves like
−∆ + I, while in the kernel space of the curl operator, the space of gradients, it
is like I. Similarly, the operator −graddiv+I behaves like −∆ + I on gradients and
I on curls. Efficient solvers should account for the different behavior of curl and
div in their kernel and orthogonal complement. In particular, the smoother in the
kernel space is critical. We note that for the grad operator, the kernel space is a
one dimensional (constant) space, while for the curl and div operators, the kernel
space is infinite dimensional. The decomposition of spaces used in multigrid meth-
ods should satisfy certain properties (see [57] and [98]). One approach is to perform
a smoothing in the kernel space which can be expressed explicitly using properties
of exact sequences between finite element spaces of H1,H(curl) and H(div) sys-
tems. This is used by Hiptmair to obtain the first results for multigrid of H(div) [47]
and H(curl) [49] systems in three dimensions. See also Hiptmair and Toselli [51]
for a unified and simplified treatment. Another important approach taken by Arnold,
Falk and Winther in [3, 4] is to perform the smoothing on patches of vertices which
contain a basis of the kernel space of curl and div operator. In [3, 4], the analysis
hinges on the following two assumptions:

• Ω is a bounded and convex polyhedron in R3;
• T is a shape regular and quasi-uniform mesh of Ω .

The first assumption is used in duality arguments which require full regularity of the
elliptic equations, whereas the second one is used to prove certain approximation
properties. We regard both items as regularity assumptions, first on the solutions of
the elliptic equation and second on the underlying mesh.

In practice, most problems are posed on non-convex domains and thus solutions
exhibit singularities. Finite element approximations based on quasi-uniform grids
cannot deliver optimal rates due to lack of regularity. Mesh refinements restore opti-
mal convergence rates in terms of degree of freedoms, but make the above regularity
assumptions inadequate for studying adaptive finite element methods for H(curl)
and H(div) systems.
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We will design multilevel methods for these systems on graded grids obtained by
bisection. In the analysis, we relax the regularity assumptions used in the previous
work [47, 49, 3, 4] by using two new techniques developed recently in [52] and [27].
More precisely, we employ

• Discrete regular decompositions of finite element spaces [52] to relax the regu-
larity assumption on the solution;

• Decomposition of bisection grids and corresponding space decompositions [27],
already discussed in section §4, to relax the regularity assumption on the grids.

We should mention that a local multigrid method similar to ours for H(curl) system
on adaptive grids has been independently developed by Hiptmair and Zheng [53].
We follow closely our recent work [28] to present a unified treatment for both
H(curl) and H(div) systems.

To focus on the two aforementioned issues, we consider the simplest scenario,
that is we do not include Dirichlet type boundary conditions for (57) or (58) nor vari-
able coefficients. We note that results in [4] hold uniformly for variable coefficients
and results in this paper extend to this case as well.

5.1 Preliminaries

5.1.1 Sobolev Spaces and Finite Element Spaces

Let Ω ⊂ R3 be a bounded domain which is homeomorphic to a ball. We define the
following Sobolev spaces

H(grad;Ω) = {v ∈ L2(Ω) : gradv ∈ L2(Ω)}= H1(Ω),

H(curl;Ω) = {v ∈ (L2(Ω))3 : curlv ∈ (L2(Ω))3},
H(div;Ω) = {v ∈ (L2(Ω))3 : divv ∈ (L2(Ω))3}.

We use a generic notation H(D ,Ω) to refer to H(grad;Ω),H(curl;Ω) or H(div;Ω),
where D = grad,curl or div represents differential operators according to the con-
text. Since curlv and divv are special combinations of components of gradv, in
general H1(Ω)⊂ H(D ,Ω).

Let (·, ·) denote the inner product for L2(Ω) or [L2(Ω)]3. As subspaces of
[L2(Ω)]3, H(grad;Ω), H(curl;Ω), and H(div;Ω) are endowed with (·, ·) as their
default inner product. We assign new inner products using differential operator D
to these spaces:

H(grad;Ω) : (u,v)Ag := (u,v)+(gradu,gradv),
H(curl;Ω) : (u,v)Ac := (u,v)+(curlu,curlv),
H(div;Ω) : (u,v)Ad := (u,v)+(divu,divv).

The corresponding norm are denoted by ‖ · ‖Ag , ‖ · ‖Ac and ‖ · ‖Ad , respectively.
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These inner products introduce corresponding symmetric positive definite oper-
ators (with respect to the default (·, ·) inner product).

Ag : H(grad;Ω)→ H(grad;Ω)∗ (Ag u,v) := (u,v)Ag ,

Ac : H(curl;Ω)→ H(curl;Ω)∗ (Ac u,v) := (u,v)Ac ,

Ad : H(div;Ω)→ H(div;Ω)∗ (Ad u,v) := (u,v)Ad .

We focus on the H(curl) and H(div) systems, namely,

Acu = curl×curlu+u = f , (59)

Adu =−graddivu+u = f , (60)

with homogeneous Neumann boundary condition. We build on the study of the H1

problem, Agu = f , in previous sections.
Given a shape regular triangulation T of Ω and integer k ≥ 1, we define the

following finite element spaces:

V (grad,Pk,T ) := {v ∈ H(grad;Ω) : v|τ ∈Pk(τ), ∀τ ∈T },
V (curl,P−

k ,T ) := {v ∈ H(curl;Ω) : v|τ ∈P3
k−1(τ)+P3

k−1(τ)× x, ∀τ ∈T },
V (curl,Pk,T ) := {v ∈ H(curl;Ω) : v|τ ∈P3

k (τ), ∀τ ∈T },
V (div,P−

k ,T ) := {v ∈ H(div;Ω) : v|τ ∈P3
k−1(τ)+Pk−1(τ)x, ∀τ ∈T }

V (div,Pk,T ) := {v ∈ H(div;Ω) : v|τ ∈P3
k (τ), ∀τ ∈T }

V (L2,Pk−1,T ) := {v ∈ L2(Ω) : v|τ ∈Pk−1(τ), ∀τ ∈T }.

As in [5], the notation P−
k indicates that the polynomial space is a proper subspace

of Pk. When we do not refer to a specific finite element space, we use the generic
notation V (D ,T ). In particular, we simply denote by V = V (grad,P1,T ) the
continuous piecewise linear finite element space.

The degrees of freedom of these finite element spaces, and their unisolvency, are
not easy to sketch here. We refer to [2, 5, 48, 50] for a unified presentation using
differential forms.

Since V (D ,T )⊂H(D ;Ω), the operator equations (59) or (60) can be restricted
to the finite element spaces V (curl,T ) or V (div,T ). Existence and uniqueness of
the ensuing discrete problems follow from the Riesz representation theorem. Our
task is to develop fast solvers for these linear algebraic systems over graded bisec-
tion grids as well as unstructured grids T .

5.1.2 Exact Sequences and Commutative Diagram

The following exact sequence, called de Rham differential complex, plays an im-
portant role in the error analysis of finite element approximations as well as the
iteration methods for solving the algebraic systems:
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R ↪→ H1(Ω)
grad−→ H(curl;Ω) curl−→ H(div;Ω) div−→ L2(Ω). (61)

For a differential operator D , we denote by D− the previous one in the exact se-
quence: if D = curl, then D−= grad, and if D = div, then D−= curl. The following
crucial properties of (61) are valid:

ker(grad) = R, ker(curl) = img(grad), ker(div) = img(curl). (62)

We now state two results, Theorem 15 for D = curl and Theorem 16 for D = div,
which make this precise. We refer to Girault-Raviart [39] for Theorem 15.

Theorem 15 (Irrotational Fields). Let Ω be a bounded, simply connected Lipschitz
domain in R3 and suppose u ∈ [L2(Ω)]3. Then curlu = 0 in Ω if and only if there
exists a scalar potential φ ∈ H1(Ω) such that u = gradφ and

‖φ‖1 . ‖u‖. (63)

To verify that ker(div) = img(curl), we first present a result in R3.

Lemma 13. Let N(div;R3) = {v ∈H(div;R3) : divv = 0} be the kernel of operator
div. Then for any u ∈ N(div;R3) there exists φ ∈ [H1

loc(R3)]3 such that

curlφ = u, divφ = 0, ‖φ‖1,loc,R3 . ‖u‖0,R3 . (64)

Proof. In terms of Fourier transform, the conditions u = curlφ and divφ = 0 become

û = 2πi ξ × φ̂ = 2πi(ξ2φ̂3−ξ3φ̂2,ξ3φ̂1−ξ1φ̂3,ξ1φ̂2−ξ2φ̂1),

ξ · φ̂ =
3

∑
j=1

ξ jφ̂ j = 0,

respectively. We observe that the first relation implies

ξ · û =
3

∑
j=1

ξ jû j = 0,

or equivalently divu = 0. Computing û×ξ and using the first two relations gives φ̂

uniquely as follows:

φ̂ =
1

2πi|ξ |2
û×ξ =

1
2πi|ξ |2

(ξ3û2−ξ2û3,ξ1û3−ξ3û1,ξ2û1−ξ1û2).

The desirable φ is the inverse Fourier transform of φ̂ . In addition, we have

|ξ jφi| ≤
3

∑
i=1
|ûi|.

Parseval’s identity shows that φ ∈ H1
loc(R3). �
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Theorem 16 (Solenoidal Fields). Let Ω be a simply connected bounded domain.
For any function u ∈ H(div;Ω) such that divu = 0, there exists a vector field φ ∈
[H1(Ω)]3 such that u = curlφ and divφ = 0 in Ω and

‖φ‖H1(Ω) . ‖u‖L2(Ω).

Proof. We first construct an extension of u to N(div;R3). Let O be a smooth domain
containing Ω . We let p ∈ H1(O\Ω)/R satisfy

−∆ p = 0 in O\Ω ,

∂ p
∂n

= u ·n on ∂Ω ,
∂ p
∂n

= 0 on ∂O.

This solution exists since 〈u ·n,1〉∂Ω =
∫

Ω
divudx = 0. We define ũ ∈ L2(R3) by

ũ =


u in Ω ,

grad p in O\Ω ,

0 in R3\O.

Since div ũ = 0 in Ω and O\Ω and the normal component of ũ is continuous across
the common boundary ∂Ω , we conclude ũ ∈ H(div;R3) and div ũ = 0.

We then apply Lemma 13 to get a φ satisfying (64). Since ‖ũ‖L2(R3) = ‖ũ‖H(div;R3) .
‖u‖H(div;Ω) = ‖u‖L2(Ω), restricting φ to Ω leads to a desirable φ . �

Exact Sequences (ES). The discrete counterpart of the de Rham differential com-
plex (61) is also valid for the finite element spaces V (D ,T ):

R ↪→ V (grad,T )
grad−→ V (curl,T ) curl−→ V (div,T ) div−→ V (L2,T ). (65)

The starting finite element space V (grad,T ) and the ending space V (L2,T ) are
continuous and discontinuous complete polynomial spaces, respectively. For the two
spaces in the middle, each one has two types. Therefore we have 4 exact sequences
in R3 and these are all possible exact sequences in R3 [5]. For completeness we list
these exact sequences below:

R ↪→ V (grad,Pk,T )
grad−→ V (curl,Pk−1,T ) curl−→ V (div,Pk−2,T ) div−→ V (L2,Pk−3,T )

R ↪→ V (grad,Pk,T )
grad−→ V (curl,Pk−1,T ) curl−→ V (div,P−

k−1,T ) div−→ V (L2,Pk−2,T )

R ↪→ V (grad,Pk,T )
grad−→ V (curl,P−

k ,T ) curl−→ V (div,Pk−1,T ) div−→ V (L2,Pk−2,T )

R ↪→ V (grad,Pk,T )
grad−→ V (curl,P−

k ,T ) curl−→ V (div,P−
k ,T ) div−→ V (L2,Pk−1,T ).

There exist a sequence of interpolation operators

Π
D : H(D ,Ω)∩dom(ΠD )→ V (D ,T )
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to connect the Sobolev spaces H(D ,Ω) with corresponding finite element spaces
V (D ,T ). These operators enjoy the following commutative diagram:

R −−−−−→ C∞(Ω)
grad−−−−−→ C∞(Ω) curl−−−−−→ C∞(Ω) div−−−−−→ C∞(Ω)y Πgrad

y Π curl

y Πdiv

y ΠL2
y

R −−−−−→ V (grad,T )
grad−−−−−→ V (curl,T ) curl−−−−−→ V (div,T ) div−−−−−→ V (L2,T ),

where for simplicity, we replace H(D ,Ω)∩dom(ΠD ) by its subspace C∞(Ω).
The sequence in the bottom should be one of the 4 exact sequences in (ES). The

operator ΠD , of course, also depends on the specific choice of V (D ,T ). Operator
ΠD is the identity restricted to V (D ,T ), namely

Π
Dv = v, for all v ∈ V (D ,T ). (66)

We refer to [5, 48, 50] for the construction of such canonical interpolation operators.
Here we list properties used later and refer to [50, Section 3.6 and Lemma 4.6] for
proofs.

Lemma 14 (Operator Π curl). The interpolation operator Π curl is bounded on V =
{v ∈H1(Ω) : curlv ∈ V (div,T )} and, with constants only depending on the shape
regularity of T , it satisfies

‖h−1(I−Π
curl)v‖. ‖v‖1, for all v ∈V. (67)

Lemma 15 (Operator Π div). The interpolation operator Π div is bounded on H1(Ω)
and, with constants only depending on the shape regularity of T , it satisfies

‖h−1(I−Π
div)v‖. ‖v‖1, for all v ∈ H1(Ω). (68)

5.1.3 Regular Decomposition

The Helmholtz (or Hodge) decomposition states that a vector field can be written
as the sum of a gradient plus a curl. This decomposition is orthogonal in L2(Ω) but
requires regularity of Ω to be useful to us. Upon sacrificing L2 orthogonality, we
can decompose the space H(D ,Ω) into a regular part H1(Ω) plus the kernel of D .

Theorem 17 (Regular Decomposition of H(curl;Ω)). For any v ∈ H(curl;Ω),
there exists φ ∈ [H1(Ω)]3 and u ∈ H1(Ω) such that

v = φ +gradu.

This decomposition is stable in the sense that

‖φ‖1 +‖u‖1 . ‖v‖Ac .
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Proof. For v ∈ H(curl;Ω), let u = curlv ∈ [L2(Ω)]3. Since divcurlv = 0, we can
apply Theorem 16 to obtain φ ∈ [H1(Ω)]3 such that

curlφ = u = curlv, in Ω ,

and
‖φ‖1 . ‖u‖ ≤ ‖v‖Ac .

Since curl(v−φ) = 0, by Theorem 15, there exists u ∈ H(grad;Ω) such that

gradu = v−φ ,

and
‖u‖1 . ‖v‖+‖φ‖. ‖v‖Ac .

This completes the proof. �

The following lemma concerns the regular inversion of div operator.

Lemma 16 (Regular Inverse of div). For any v ∈ H(div;Ω), there exists φ ∈
[H1(Ω)]3 such that

divφ = divv, ‖φ‖1 . ‖divv‖.

Proof. Given v ∈H(div;Ω), let f be the zero extension of divv to a smooth domain
O ⊂ R3 containing Ω ; obviously f ∈ L2(O). We then solve the Poisson equation

−∆u = f in O, u|∂O = 0.

If φ =−gradu, then divφ =−∆u = divv in L2(O). Since u ∈H2(O) and ‖u‖2,O .
‖ f‖0,O because O is smooth, we deduce that φ ∈ [H1(Ω)]3 and

‖φ‖1,Ω ≤ ‖φ‖1,O ≤ ‖gradu‖2,O . ‖ f‖0,O = ‖divv‖0,Ω ,

which proves the assertion. �

Similar results can even be established for functions with appropriate traces on the
boundary ∂Ω . We refer to [35, 7] for specific constructions.

Theorem 18 (Regular Decomposition of H(div;Ω)). For any v∈H(div;Ω), there
exist φ ,u ∈ [H1(Ω)]3 such that

v = φ + curlu.

This decomposition is stable in the sense that

‖φ‖1 +‖u‖1 . ‖v‖Ad .

Proof. We first apply Lemma 16 to v to find φ ∈ [H1(Ω)]3 such that

divφ = divv, ‖φ‖1 . ‖divv‖.
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Now since div(v−φ) = 0, we apply Theorem 16 to find u ∈ [H1(Ω)]3 such that

curlu = v−φ , ‖u‖1 . ‖v−φ‖ ≤ ‖v‖+‖φ‖. ‖v‖Ad .

This is the asserted estimate. �

5.1.4 Discrete Regular Decomposition

We now present discrete regular decompositions for finite element spaces V (curl,T )
and V (div,T ), Theorem 19 and 20, following Hiptmair and Xu [52].

Theorem 19 (Discrete Regular Decomposition of V (curl,T ) ). Let V (grad,Th)
and V (curl,Th) be a pair in the four exact sequences. For any v ∈ V (curl,Th),
there exist ṽ ∈ V (curl,Th),φ ∈ V 3, and u ∈ V (grad,Th) such that

v = ṽ+Π
curl

φ +gradu, (69)

‖h−1ṽ‖+‖φ‖1 +‖u‖1 . ‖v‖Ac . (70)

Proof. For v ∈ H(curl;Ω), we apply the regular decomposition of Theorem 17 to
obtain v = Ψ +gradU with

Ψ ∈ [H1(Ω)]3,U ∈ H1(Ω), ‖Ψ‖1 +‖U‖1 . ‖v‖Ac .

We then split Ψ as Ψ = (I−IT )Ψ +IT Ψ , where IT : [H1(Ω)]3 → V 3 is the
vector version of the Scott-Zhang quasi-interpolation operator.

Since curlΨ = curlv ∈ V (div,Th), by Lemma 14, Π curlΨ is well defined. We
apply the interpolation operator Π curl to the decomposition

v = (I−IT )Ψ +IT Ψ +gradU,

and use (66) to obtain the discrete decomposition

v = Π
curl(I−IT )Ψ +Π

curlIT Ψ +gradΠ
gradU.

This implies (69) with

ṽ = Π
curl(I−IT )Ψ ∈ V (curl,Th),

φ = IT Ψ ∈ V 3, and

u = Π
gradU− 1

Ω

∫
Ω

Π
gradU dx ∈ V (grad,Th).

We then prove this decomposition satisfies (70). First, by (67) and (49), we get

‖h−1ṽ‖ ≤ ‖h−1(I−Π
curl)(I−IT )Ψ‖+‖h−1(I−IT )Ψ‖

. ‖(I−IT )Ψ‖1 +‖Ψ‖1 . ‖Ψ‖1 . ‖v‖Ac .
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Second, by the stability of IT we obtain

‖φ‖1 = ‖IT Ψ‖1 . ‖Ψ‖1 . ‖v‖Ac ,

and by that of Π grad we have

‖u‖1 . ‖U‖1 . ‖v‖Ac .

This finishes the proof. �

The following regular decomposition is taken from Hiptmair and Xu [52]; see
also Cascón, Nochetto, and Siebert [22].

Theorem 20 (Discrete Regular Decomposition of V (div,T )). Let V (curl,Th)
and V (div,Th) be a pair in the four exact sequences. For any v ∈ V (div,Th), there
exist ṽ ∈ V (div,Th),φ ∈ V 3, and u ∈ V (curl,Th) such that

v = ṽ+Π
div

φ + curlu, (71)

‖h−1ṽ‖+‖φ‖1 +‖u‖Ac . ‖v‖Ad . (72)

Proof. The proof is similar to that of Theorem 19 but a bit trickier. We first obtain

v = Ψ + curlU , ‖Ψ‖1 +‖U‖1 . ‖v‖Ad .

But we cannot apply the interpolation operator Π div directly and use the commuta-
tive diagram relation Π div curlU = curlΠ curlU because U ∈ [H1(Ω)]3 only and the
interpolation Π curl is not well defined on [H1(Ω)]3.

To overcome this difficulty, we further split v as follows:

v = (I−Π
div)Ψ +Π

div(I−IT )Ψ +Π
divIT Ψ + curlU . (73)

Invoking the commutative diagram property divΠ divΨ = Π L2
divΨ , and the fact

divΨ = divv ∈ V (L2,T ), we have div(I−Π div)Ψ = 0. Applying the regular in-
version of curl operator (Lemma 17), there exists Q ∈ H1(Ω) such that curlQ =
(I−Π div)Ψ .

If Ũ = U +Q, then Ũ ∈H1(Ω) and curlŨ ∈ V (div,Th). By Lemma 14, Π curlŨ
is well defined. The decomposition (73) thus becomes

v = Π
div(I−IT )Ψ +Π

divIT Ψ + curlŨ .

We then apply Π div operator to both sides and use property Π div curlŨ = curlΠ curlŨ
to obtain

v = Π
div(I−IT )Ψ +Π

divIT Ψ + curlΠ
curlŨ ,

which implies (71).
The stability (72) of this decomposition is similar to that of Theorem 19. �
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5.2 Space Decomposition and Multigrid Methods

In this section, we first recall the space decomposition of V (grad,T ) discussed in
Section §4, following [27], and then present space decompositions for V (curl,T )
and V (div,T ). On the basis of these space decompositions, we develop multigrid
methods for solving H(curl) and H(div) systems. We consider bisection grids TN
which admits a decomposition TN = T0 +B.

Let {φp : p ∈P}, {φe : e ∈ E }, and {φ f : f ∈F} be “nodal” basis functions.
Namely V (grad,T ) = span{φp : p ∈ P},V (curl,T ) = span{φe : e ∈ E }, and
V (div,T ) = span{φ f : f ∈F}, where P (nodes), E (edges), and F (faces) are
the degrees of freedom of the three spaces under consideration.

If Vp = span{φp}, Ve = span{φe}, and V f = span{φ f } denote one dimensional
subspaces, we then have the standard basis decompositions:

V (grad,T ) = ∑
p∈P

Vp, V (curl,T ) = ∑
e∈E

Ve, V (div,T ) = ∑
f∈F

V f .

Moreover, if v = ∑p∈P vp, v = ∑e∈E ve and v = ∑ f∈F v f , then mesh shape regularity
implies

∑
p∈P
‖h−1vp‖2 . ‖h−1v‖2,

∑
e∈E
‖h−1ve‖2 . ‖h−1v‖2,

∑
f∈F
‖h−1v f ‖2 . ‖h−1v‖2.

(74)

Let Ti = T0 + (b1, · · · ,bi) be the i-th mesh and φi,pi ∈ V (Ti;P1) denote the
linear nodal basis associated with vertex pi ∈N (Ti). We define the sub-spaces

V0 = V (T0;P1), Vi = span{φi,pi ,φi,pli
,φi,pri

}, pi ∈N (Ti), (75)

where recall that pli and pri are two end points of the edge and pi is the middle point
of that edge.
Space Decompositions. We now present space decompositions of V (curl,T ) and
V (div,T ) in the same vein of that for V (grad,T ) of Section §4.6:

V (grad,T ) = ∑
p∈P

Vp +
N

∑
i=1

Vi. (76)

If Ri is the ring of vertex pi, which consists of all simplexes of Ti containing the
vertex pi, we define Vi(D ,Ri) as follows:

Vi(curl,Ri) = Π
curl
i V 3

i +gradVi. (77)

Vi(div,Ri) = Π
div
i V 3

i + curlVi. (78)
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If V 3
i ⊂ V (D ,T ), then the interpolation operator ΠD

i is the identity and we can
ignore it. The macro space decompositions of V (D ,T ) are as follows:

V (curl,T ) = ∑
e∈E

Ve + ∑
p∈P

gradVp +
N

∑
i=0

Vi(curl,Ri), (79)

V (div,T ) = ∑
F∈F

V f + ∑
e∈E

curlVe +
N

∑
i=0

Vi(div,Ri). (80)

Here for the convenience of notation, we include the coarsest space by defining
R0 = T0 and V0(D ,R0) = V (D ,T0).

We will apply the Successive Subspace Correction (SSC) method to the space
decompositions (79) and (80). The common feature is to apply smoothing in the
finest space first and then the multilevel iteration to Vi(D ,Ri). For completeness,
we also list the algorithm for H(grad) problem.

H(grad) Problem
u← u+Bgrad( f −Agu).

The operation of Bgrad consists of two steps:

1. Smoothing in the finest space: u← u+Sgrad( f −Agu)
2. SSC for H(grad) system on ∑i Vi:

u← u+RiQi( f −Agu), i = 0 : N.

H(curl) System
u← u+Bcurl( f −Acu).

The operation of Bcurl consists of three steps:

1. Smoothing in the finest space: u← u+Scurl( f −Acu)
2. Smoothing in the kernel space for the finest space ∑p Vp:

u← u+gradSgrad( f −Acu),

3. SSC for H(curl) system on ∑i Vi(curl,Ri):

u← u+RiQi( f −Acu), i = 0 : N.

H(div) System

u← u+Bdiv( f −Adu).

The operation of Bdiv consists of three steps:

1. Smoothing in the finest space: u← u+Sdiv( f −Adu)
2. Smoothing in the kernel space for the finest space ∑e Ve:

u← u+ curlScurl( f −Adu).
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3. SSC for H(div) system on ∑i Vi(curl,Ri):

u← u+RiQi( f −Adu), i = 0 : N.

5.3 Stable Decomposition

We now prove that the multilevel space decompositions (79) and (80) are stable. Our
approach is based on the stable decomposition for V (grad;T ) discussed in Section
§4 (Theorem 11): for any v ∈ V (grad,T ), there exist vp ∈ Vp,vi ∈ Vi such that

v = ∑
p∈P

vp +
N

∑
i=0

vi, (81)

∑
p∈P
‖h−1vp‖2 +

N

∑
i=0
‖h−1

i vi‖2 . ‖v‖2
Ag . (82)

We first use the stable decomposition (81) and the discrete regular decomposi-
tion to give a space decomposition for V (curl,T ).We next employ the results of
V (curl,T ) to give a stable decomposition of V (div,T ).

Theorem 21 (Stable Decomposition of V (curl;T )). Let TN = T0 + B be a bi-
section grid. For every v ∈ V (curl,TN), there exist ṽe ∈ Ve, ũp ∈ Vp and wi =
Π curl

i φ i +gradui ∈ Vi(curl,Ri) for all e ∈ E , p ∈P, i = 1 : N, such that

v = ∑
e∈E

ṽe + ∑
p∈P

grad ũp +
N

∑
i=0

wi, (83)

∑
e∈E
‖h−1ṽe‖2 + ∑

p∈P
‖h−1ũp‖2 +

N

∑
i=0

(
‖h−1

φ i‖2 +‖h−1ui‖2
)

. ‖v‖2
Ac . (84)

Proof. 1 We first consider the case V 3 ⊂ V (curl,TN) which excludes only the
lowest order space V (curl,P−

1 ,TN).
For any v ∈ V (curl,TN), we can apply Theorem 19 to obtain a discrete regular

decomposition ṽ ∈ V (curl,TN),φ ∈ V 3 and u ∈ V (grad,TN) such that

v = ṽ+φ +gradu

‖h−1ṽ‖2 +‖φ‖2
1 +‖u‖2

1 . ‖v‖2
1.

For TN , we can choose φ so that φ = ∑
N
i=0 φ i using the quasi-interpolation operator

IT adapted to bisection grids; see Section §4.6 for the construction of IT .
We apply the basis and multilevel decompositions of H1 finite element spaces to

obtain the desirable decomposition
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ṽ = ∑
e∈E

ṽe, φ =
N

∑
i=0

φ i, u = ∑
p∈P

ũp +
N

∑
i=0

ui.

The stability (84) of the decomposition results from the following inequalities:

1. ∑
e∈E
‖h−1ṽe‖2 . ‖h−1ṽ‖2 by (74);

2.
N

∑
i=0
‖h−1

φ i‖2 . ‖φ‖2
1 by the stable decomposition (55);

3. ∑
p∈P
‖h−1ũp‖2 +

N

∑
i=0
‖h−1ui‖2 . ‖u‖2

1 by the stable decomposition (82).

2 Now we consider the case V 3 * V (curl,TN), i.e., the space V (curl,P−
1 ,TN).

By Theorem 19, we have the discrete regular decomposition

v = ṽ+Π
curl

φ +gradu. (85)

The key is a multilevel decomposition of the middle term. If φ = ∑
N
i=0 φ i is the stable

decomposition of φ , then

Π
curl

φ =
N

∑
i=0

Π
curl
i φ i +Π

curl
N

∑
i=0

(φ i−Π
curl
i φ i), (86)

because V (curl,Ri)⊂V (curl,TN) and Π curl
i = Π curlΠ curl

i . We now show curl(φ i−
Π curl

i φ i) = 0. For any face f ∈F (Ri), using integration by parts and the definition
of Π curl

i , we conclude∫
f
curl(φ i−Π

curl
i φ i) ·ndS =

∫
∂ f

(φ i−Π
curl
i φ i) · t ds = 0.

Since curl(φ i−Π curl
i φ i) is piecewise constant, we deduce curl(φ i−Π curl

i φ i) = 0.
From the exact sequence

V (grad,P2,Ri)→ V (curl,P1,Ri)→ V (div,P−
1 ,Ri),

there exists qi ∈ V (grad,P2,Ri) such that φ i −Π curl
i φ i = gradqi and ‖qi‖ .

‖gradqi‖. Let q = ∑qi and
∫

Ω
qdx = 0. Using the commutative diagram, we have

Π
curl

N

∑
i=0

(φ i−Π
curl
i φ i) = Π

curl grad
N

∑
i=0

qi = gradΠ
gradq,

where Π grad : V (grad,P2,TN)→ V (grad,P1,TN). Let û = u+Π gradq. Then û ∈
V (grad,P1,TN) and the decomposition (85) becomes

v = ṽ+∑
i

Π
curl
i φ i +grad û. (87)
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We then apply the decomposition (81) to û as in the previous case, i.e.

û = ∑
p∈P

ũp +
N

∑
i=0

ui,

to obtain the desired decomposition (83).
To prove the stability (84) of the decomposition, it suffices to prove

‖gradq‖. ‖v‖Ac , (88)

which can be obtained from the Strengthened Cauchy Schwarz inequality

‖gradq‖2 = (
N

∑
i=0

gradqi,
N

∑
i=0

gradq j)≤
N

∑
i=0
‖gradqi‖2 +2

N

∑
i=0

N

∑
j>i
|(gradqi,gradq j)|

.
N

∑
i=0
‖gradqi‖2 =

N

∑
i=0
‖φ i−Π

curl
i φ i‖2 .

N

∑
i=0
‖h−1

φ i‖2 . ‖φ‖2
1 . ‖v‖2

Ac .

This completes the proof. �

We conclude with a similar result for V (div,T ). Its proof follows along the
same lines as those of Theorem 21. We refer to [28] for details.

Theorem 22 (Stable Decomposition of H(div;Ω)). Let TN = T0 +B be a bisec-
tion grid. For every v∈V (div,TN) with V 3⊂V (curl,TN), there exist ṽ f ∈V f , ũe ∈
Ve and wi ∈ Vi(div,Ri) for all f ∈F ,e ∈ E , i = 0 : N, such that

v = ∑
f∈F

ṽ f + ∑
e∈E

curl ũe +
N

∑
i=0

wi, (89)

and

∑
F∈F
‖h−1v f ‖2 + ∑

e∈E
‖h−1ũe‖2 +

N

∑
i=0

(
‖h−1

φ i‖2 +‖h−1ui‖2
)

. ‖v‖2
Ad . (90)

A remaining important ingredient, the SCS inequality for the space decompo-
sitions (79) and (80), can be established as well. Consequently, we have uniform
convergence of multigrid methods for H(curl) or H(div) systems. We state the re-
sult below and refer to [28] for details.

Theorem 23. The multigrid methods (c.f. algorithms in §5.2) for H(curl) or H(div)
systems based on the space decompositions (79) or (80)), respectively, are uniformly
convergent.
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6 The Auxiliary Space Method and HX Preconditioner for
Unstructured Grids

In previous sections, we study multilevel methods formulated over a hierarchy of
quasi-uniform or graded meshes. The geometric structure of these meshes is essen-
tial for both the design and analysis of such methods. Unfortunately, many grids in
practice are not hierarchical.

We use the term unstructured grids to refer those grids that do not possess much
geometric or topological structure. The design and analysis of efficient multilevel
solvers for unstructured grids is a topic of great theoretical and practical interest.
In this section, we discuss a special class of optimal preconditioners developed by
Hiptmair and Xu [52] that can be effectively applied to unstructured grids. This type
of preconditioners have been developed in the theoretical framework of the auxiliary
space method.

6.1 The Auxiliary Space Method

The method of subspace correction consists of solving a system of equations in a
vector space by solving on appropriately chosen subspaces of the original space.
Such subspaces are, however, not always available. The auxiliary space method (Xu
1996 [92]) is for designing preconditioners using auxiliary spaces which are not
necessarily subspaces of the original subspace.

To solve the equation a(u,v) = ( f ,v) in a Hilbert space V , we consider

V = V ×W1×·· ·×WJ , (91)

where W1, . . . ,WJ , J ∈N are auxiliary (Hilbert) spaces endowed with inner products
a j(·, ·), j = 1, . . . ,J.

A distinctive feature of the auxiliary space method is the presence of V in (91),
but as a component of V . The space V is equipped with an inner product d(·, ·)
different from a(·, ·). The operator D : V 7→ V induced by d(·, ·) on V leads to the
smoother S = D−1. For each W j we need Π j : W j 7→ V which gives

Π := Id×Π1×·· ·×ΠJ : V 7→ V , (92)

with properties

‖Π jw j‖A ≤ c ja(w j,w j)1/2 , for all w j ∈W j, j = 1, · · · ,J , (93)

‖v‖A ≤ csd(v,v)1/2 , for all v ∈ V , (94)

and for every v ∈ V , there exist v0 ∈ V and w j ∈W j such that v = v0 +∑
J
j=1 Π jw j

and
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d(v0,v0)1/2 +
J

∑
j=1

a j(w j,w j)1/2 ≤ c0‖v‖A . (95)

Let Āi, for i = 1, · · · ,J, be operators induced by (·, ·)Ai . Then the auxiliary space
preconditioner is given by

B = S +
J

∑
j=1

Π jĀ−1
j Π

∗
j . (96)

The estimate of the condition number κ(BA) is given below.

Theorem 24. Let Π = Id×Π1× ·· · ×ΠJ : V̄ = V ×W1× ·· · ×WJ 7→ V satisfy
properties (93), (94), and (95). Then the auxiliary space preconditioner B given in
(96) admits the following estimate:

κ(BA)≤ c2
0(c

2
s + c2

1 + · · ·+ c2
J) . (97)

Proof. 1 We first prove (BAu,u)A ≤ (c2
s + c1 + · · ·+ c2

J)(u,u)A and consequently
λmax(BA)≤ (c2

s + c1 + · · ·+ c2
J). By definition of B, we have:

(BAu,u)A = (SAu,u)A +
J

∑
j=1

(Π jĀ−1
j Π

∗
j Au,u)A.

We use Cauchy-Schwarz inequality and (94) to control the first term as

(SAu,u)A ≤ (SAu,SAu)1/2
A (u,u)1/2

A ≤ csd(SAu,SAu)1/2(u,u)1/2
A

= cs(SAu,Au)1/2(u,u)1/2
A = cs(SAu,u)1/2

A (u,u)1/2
A ,

which leads to (SAu,u)A ≤ c2
s (u,u)A.

Similarly we use Cauchy-Schwarz inequality and (93) to control the term as

(Π jĀ−1
j Π

∗
j Au,u)A ≤ (Π jĀ−1

j Π
∗
j Au, Π jĀ−1

j Π
∗
j Au)1/2

A (u,u)1/2
A

≤ c j(Ā−1
j Π

∗
j Au, Ā−1

j Π
∗
j Au)1/2

Ā j
(u,u)1/2

A

= c j(Ā−1
j Π

∗
j Au, Π

∗
j Au)1/2(u,u)1/2

A

= c j(Π jĀ−1
j Π

∗
j Au, u)1/2

A (u,u)1/2
A ,

which leads to (Π jĀ−1
j Π ∗j Au,u)A ≤ c2

j(u,u)A.
2 We then prove there exists u ∈ V such that (u,u)A ≤ c2

0(BAu,u)A and conse-
quently λmin(BA)≥ c−2

0 .
We choose u = v0 +∑

J
j=1 Π jw j satisfying (95). Then
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(Π jw j,u)A = (Π jw j,Au) = (w j,Π
∗
j Au) = (w j, Ā−1

j Π
∗
j Au)Ā j

≤ ‖w j‖Ā j
(Ā−1

j Π
∗
j Au, Ā−1

j Π
∗
j Au)1/2

Ā j
= ‖w j‖Ā j

(BAu,u)1/2
A .

Similarly (v0,u)A ≤ ‖v0‖D(BAu,u)1/2
A . Therefore

(u,u)A = (v0 +
J

∑
j=1

w j,u)A ≤ (‖v0‖D +
J

∑
j=1
‖w j‖Ā j

)(BAu,u)1/2
A

≤ c0(u,u)1/2
A (BAu,u)1/2

A ,

which leads to the desired result. �

6.2 HX Preconditioner

We present an auxiliary space preconditioner for H(curl) and H(div) systems de-
veloped in Hiptmair and Xu [52] (see also R. Beck [10] for a special case). The basic
idea is to apply an auxiliary space preconditioner framework in [92], to the discrete
regular decompositions of V (curl,T ) or V (div,T ). The resulting preconditioner
for the H(curl) systems is

Bcurl = Scurl +Π
curlBgrad(Π curl)t +grad Bgrad(grad)t . (98)

The implementation makes use of the input data: the H(curl) stiffness matrix
A, the coordinates of the grid points, along with the discrete gradient grad (for the
lowest order Nédélec element case, it is simply the “vertex”-to-“edge” mapping with
entries 1 or−1). Based on the coordinates, one can easily construct the interpolation
operator Π curl

h . Then the “Auxiliary space Maxwell solver” consists of the following
three components:

1. The smoother Scurl of A (it could be the standard Jacobi or symmetric Gauss-
Seidel methods).

2. An algebraic multigrid (AMG) solver Bgrad for gradt Agrad
3. An (vector) AMG solver Bgrad for

(
Π curl

)T AΠ curl.

Similarly

Bdiv = Sdiv +Π
divBgrad(Π div

h )t + curl Bcurl(curl)t

= Sdiv +Π
divBgrad(Π div)t + curl Scurl(curl)t + curlΠ

curlBgrad(Π curl)t(curl)t .

This preconditioner consists of 4 Poisson solvers Bgrad for H(curl) (and 6 for
H(div)) as well as 1 simple relaxation method (Scurl) such as point Jacobi for
H(curl) (and 2 relaxation methods for H(div)).

The point here is that we can use well-developed AMG for H1 systems for the
Poisson solver Bgrad to obtain robust AMG methods for H(curl) and H(div) systems.



56 Jinchao Xu, Long Chen, and Ricardo H. Nochetto

These classes of preconditioners are in some way a “grey-box” AMG as it makes
use of information on geometric grids (and associated interpolation operators). But
the overhead is minimal and it requires very little programming effort. It has been
proved in [52] that it is optimal and efficient for problems on unstructured grids.

To interpret Bcurl as an auxiliary space preconditioner, we choose V =V (curl,T )
and W1 = W2 = V (grad,T ). The inner product for the smoother is induced by the
diagonal matrix of Acurl and the inner product Ā1, Ā2 is induced by (Bgrad)−1. The
operator Π1 : W1→ V is the interpolation Π curl and Π2 = grad : W1→ V .

Theorem 25. Suppose Bgrad is an SPD matrix such that ((Bgrad)−1u,u) h (u,u)1.
Then the preconditioner Bcurl defined by (98) admits the estimate

κ(BcurlAcurl) . 1.

Proof. In view of Theorem 97, it suffices to verify properties (93), (94), and (95).
The property (94) is an easy consequence of Cauchy-Schwarz inequality and

shape regularity of the mesh. We use the stability of the operator Π1 = Π curl and
Π2 = grad discussed in Section 5.1 and inequality (u,u)1 . ((Bgrad)−1u,u) to get
(94). To get (95), we can use the discrete regular decomposition in Section 5.1.4 and
the inequality ((Bgrad)−1u,u) . (u,u)1. This completes the proof.

We state a similar result for Bdiv below and leave the proof to readers.

Theorem 26. Suppose Bgrad is an SPD matrix such that ((Bgrad)−1u,u) h (u,u)1.
Then the preconditioner

Bdiv = Sdiv +Π
divBgrad(Π div)t + curl Scurl(curl)t + curlΠ

curlBgrad(Π curl)t(curl)t

admits the estimate
κ(BdivAdiv) . 1.

For H(curl) systems, the preconditioners have been included and tested in
LLNL’s hypre package [36, 37, 38] based on its parallel algebraic multigrid solver
“BoomerAMG” [46]. It is a parallel implementation, almost a ‘black-box” as it re-
quires only discrete gradient matrix plus vertex coordinates, it can handle compli-
cated geometries and coefficient jumps, scales with the problem size and on large
parallel machines, supports simplified magnetostatics mode, and can utilize Poisson
matrices, when available. Extensive numerical experiments demonstrate that this
preconditioner is also efficient and robust for more general equations (see Hiptmair
and Xu [52], and Kolev and Vassilevski [54, 55]) such as

curl(µ(x)curlu)+σ(x)u = f (99)

where µ and σ may be discontinuous, degenerate, and exhibit large variations.
For this type of general equations, we may not expect that the simple Poisson

solvers are sufficient to handle possible variations of µ and σ . Let us argue roughly
what the right equations are to replace the Poisson equations. Let us assume our
problems has sufficient regularity (e.g., Ω is convex). We then have
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‖gradu‖2 h ‖curlu‖2 +‖divu‖2.

If u(= curlw) ∈ N(curl)⊥, then ‖gradu‖= ‖curlu‖. Roughly, we get the following
equivalence:

(µ curlu,curlu)+(σu,u) h (µ gradu,gradu)+(σu,u),

which corresponds to the following operator:

L1u≡−div(µ(x)gradu)+σ(x)u. (100)

On the other hand, if u,v ∈ N(curl), u = grad p and v = gradq,

(µ curlu,curlv)+(σu,v) = (σ grad p,gradq)

which corresponds to the following operator:

L2u≡−div(σ(x)grad p). (101)

We obtain the following preconditioner for the general equation (99):

Bcurl = Scurl +Π
curlBgrad

1 (Π curl)t +grad Bgrad
2 (grad)t

where is Bgrad
1 is a preconditioner for the operator in the equation (100) and Bgrad

2 is
a preconditioner for the operator in the equation (101).

The H(div) systems arise naturally from numerous problems of practical impor-
tance, such as stabilized mixed formulations of the Stokes problem, least squares
methods for H(grad) systems, and mixed methods for H(grad) systems, see [3, 88].
Motivated by [13], we have recently designed a compatible gauge AMG algorithm
for H(div) systems in [14], and the numerical experiments demonstrate the effi-
ciency and robustness of this algorithm.
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73. J. W. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. F. McCormick, editor, Multigrid
Methods, volume 3 of Frontiers in Applied Mathematics, pages 73–130. SIAM, Philadelphia,
PA, 1987.

74. A. Schmidt and K. G. Siebert. Design of Adaptive Finite Element Software, volume 42 of
Lecture Notes in Computational Science and Engineering. Springer-Verlag, Berlin, 2005.
The finite element toolbox ALBERTA, With 1 CD-ROM (Unix/Linux).

75. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying bound-
ary conditions. Math. Comp., 54:483–493, 1990.

76. E. G. Sewell. Automatic generation of triangulations for piecewise polynomial approximation.
In Ph. D. dissertation. Purdue Univ., West Lafayette, Ind., 1972.

77. B. F. Smith. A domain decomposition algorithm for elliptic problems in three dimensions.
Numer. Math., 60:219–234, 1991.

78. R. Stevenson. Stable three-point wavelet bases on general meshes. Numer. Math., V80(1):131–
158, 1998.

79. R. Stevenson. Optimality of a standard adaptive finite element method. Found. Comput. Math.,
7(2):245–269, 2007.



Multilevel Methods for H(grad), H(curl), and H(div) Systems 61

80. R. Stevenson. The completion of locally refined simplicial partitions created by bisection.
Math. Comp., 77:227–241, 2008.
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