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Abstract This is a survey on the theory of adaptive finite element methods (AFEM),
which are fundamental in modern computational science and engineering. We
present a self-contained and up-to-date discussion of AFEM for linear second order
elliptic partial differential equations (PDEs) and dimension d > 1, with emphasis
on the differences and advantages of AFEM over standard FEM. The material is
organized in chapters with problems that extend and complement the theory. We
start with the functional framework, inf-sup theory, and Petrov-Galerkin method,
which are the basis of FEM. We next address four topics of essence in the theory
of AFEM that cannot be found in one single article: mesh refinement by bisection,
piecewise polynomial approximation in graded meshes, a posteriori error analysis,
and convergence and optimal decay rates of AFEM. The first topic is of geometric
and combinatorial nature, and describes bisection as a rather simple and efficient
technique to create conforming graded meshes with optimal complexity. The sec-
ond topic explores the potentials of FEM to compensate singular behavior with local
resolution and so reach optimal error decay. This theory, although insightful, is in-
sufficient to deal with PDEs since it relies on knowing the exact solution. The third
topic provides the missing link, namely a posteriori error estimators, which hinge
exclusively on accessible data: we restrict ourselves to the simplest residual-type es-
timators and present a complete discussion of upper and lower bounds, along with
the concept of oscillation and its critical role. The fourth topic refers to the conver-
gence of adaptive loops and its comparison with quasi-uniform refinement. We first
show, under rather modest assumptions on the problem class and AFEM, conver-
gence in the natural norm associated to the variational formulation. We next restrict
the problem class to coercive symmetric bilinear forms, and show that AFEM is
a contraction for a suitable error notion involving the induced energy norm. This
property is then instrumental to prove optimal cardinality of AFEM for a class of
singular functions, for which the standard FEM is suboptimal.
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1 Introduction

Adaptive finite element methods are a fundamental numerical instrument in sci-
ence and engineering to approximate partial differential equations. In the 1980s and
1990s a great deal of effort was devoted to the design of a posteriori error estima-
tors, following the pioneering work of Babuška. These are computable quantities,
depending on the discrete solution(s) and data, that can be used to assess the approx-
imation quality and improve it adaptively. Despite their practical success, adaptive
processes have been shown to converge, and to exhibit optimal complexity, only
recently and for linear elliptic PDE.

This survey presents an up-to-date discussion of adaptive finite element methods
encompassing its design and basic properties, convergence, and optimality.

1.1 Classical vs Adaptive Approximation in 1d

We start with a simple motivation in 1d for the use of adaptive procedures, due to
DeVore [28]. Given Ω = (0,1), a partition TN = {xi}N

n=0 of Ω

0 = x0 < x1 < · · ·< xn < · · ·< xN = 1

and a continuous function u : Ω → R, we consider the problem of interpolating u
by a piecewise constant function UN over TN . To quantify the difference between
u and UN we resort to the maximum norm and study two cases depending on the
regularity of u.

Case 1: W 1
∞-Regularity. Suppose that u is Lipschitz in [0,1]. We consider the ap-

proximation
UN(x) := u(xn−1) for all xn−1 ≤ x < xn.

Since

|u(x)−UN(x)|= |u(x)−u(xn−1)|=
∣∣∣∫ x

xn−1

u′(t)dt
∣∣∣≤ hn‖u′‖L∞(xn−1,xn)

we conclude that
‖u−UN‖L∞(Ω) ≤

1
N
‖u′‖L∞(Ω), (1)

provided the local mesh-size hn is about constant (quasi-uniform mesh), and so pro-
portional to N−1 (the reciprocal of the number of degrees of freedom). Note that
the same integrability is used on both sides of (1). A natural question arises: Is it
possible to achieve the same asymptotic decay rate N−1 with weaker regularity de-
mands?

Case 2: W 1
1 -Regularity. To answer this question, we suppose ‖u′‖L1(Ω) = 1 and

consider the non-decreasing function
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φ(x) :=
∫ x

0
|u′(t)|dt

which satisfies φ(0) = 0 and φ(1) = 1. Let TN = {xi}N
n=0 be the partition given by∫ xn

xn−1

|u′(t)|dt = φ(xn)−φ(xn−1) =
1
N

.

Then, for x ∈ [xn−1,xn],

|u(x)−u(xn−1)|=
∣∣∣∫ x

xn−1

u′(t)dt
∣∣∣≤ ∫ x

xn−1

|u′(t)|dt ≤
∫ xn

xn−1

|u′(t)|dt =
1
N

,

whence
‖u−UN‖L∞(Ω) ≤

1
N
‖u′‖L1(Ω). (2)

We thus conclude that we could achieve the same rate of convergence N−1 for
rougher functions with just ‖u′‖L1(Ω) < ∞. The following comments are in order
for Case 2.

Remark 1 (Equidistribution). The optimal mesh TN equidistributes the max-error.
This mesh is graded instead of uniform but, in contrast to a uniform mesh, such a
partition may not be adequate for another function with the same basic regularity as
u. It is instructive to consider the singular function u(x) = xγ with γ = 0.1 and error
tolerance 10−2 to quantify the above computations: if N1 and N2 are the number of
degrees of freedom with uniform and graded partitions, we obtain N1/N2 = 1018.

Remark 2 (Nonlinear Approximation). The regularity of u in (2) is measured in
W 1

1 (Ω) instead of W 1
∞(Ω) and, consequently, the fractional γ regularity measured in

L∞(Ω) increases to one full derivative when expressed in L1(Ω). This exchange of
integrability between left and right-hand side of (2), and gain of differentiability, is
at the heart of the matter and the very reason why suitably graded meshes achieve
optimal asymptotic error decay for singular functions. By those we mean functions
which are not in the usual linear Sobolev scale, say W 1

∞(Ω) in this example, but
rather in a nonlinear scale [28]. We will get back to this issue in Chap. 5.

1.2 Outline

The function UN may be the result of a minimization process. If we wish to minimize
the norm ‖u−v‖L2(Ω) within the space VN of piecewise constant functions over TN ,
then it is easy to see that the solution UN satisfies the orthogonality relation

UN ∈ VN : 〈u−UN , v〉 = 0 for all v ∈ VN (3)

and is given by the explicit local expression
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UN(x) =
1
hn

∫ xn

xn−1

u for all xn−1 < x < xn.

The previous comments apply to this UN as well even though UN coincides with u
at an unknown point in each interval [xn−1,xn].

The latter example is closer than the former to the type of approximation issues
discussed in this survey. A brief summary along with an outline of this survey fol-
lows:

PDE: The function u is not directly accessible but rather it is the solution of an
elliptic PDE. Its approximation properties are intimately related to its regular-
ity. In Chap. 2 we review briefly Sobolev spaces and the variational formulation
of elliptic PDE, a present a full discussion of the inf-sup theory. We show the
connection between approximability and regularity in Chap. 5, when we assess
constructive approximation and use this later in Chap. 9 to derive rates of con-
vergence.

FEM: To approximate u we need a numerical method which is sufficiently flex-
ible to handle both geometry and accuracy (local mesh refinement); the method
of choice for elliptic PDEs is the finite element method. We present its basic
theory in Chap. 3, with emphasis on piecewise linear elements. We discuss the
refinement of simplicial meshes in any dimension by bisection in Chap. 4, and
address its complexity. This allows us to shed light on the geometric aspects of
FEM that make them so flexible and useful in practice. The complexity analysis
of bisection turns out to be crucial to construct optimal approximations in graded
meshes in Chap. 5 and to derive convergence rates in Chap. 9 for AFEM.

Approximation: We briefly recall polynomial interpolation theory in Chap. 5 as
well as the principle of error equidistribution. The latter is a concept that leads
to optimal graded meshes and suggests that FEM might be able to approximate
singular functions with optimal rate. We conclude Chap. 5 with the construction
of optimal meshes via bisection for functions in a certain regularity class relevant
to elliptic PDE. We emphasize the energy norm.

A Posteriori Error Estimation: To extract the local errors incurred by FEM, and
thus be able to equidistribute them, we present residual-type a posteriori error es-
timators in Chap. 6. These are computable quantities in terms of the discrete
solution and data which encode the correct information about the error distribu-
tion. They are the simplest but not the most accurate ones. Therefore, we also
present alternative estimators, which are equivalent to the residual estimators.
The discussion of Chap. 6 includes the appearence of an oscillation term and a
proof that it cannot be avoided for the estimator to be practical. We show both
upper and lower bounds between the energy error and the residual estimator. The
former is essential for convergence and the latter for optimality.

Adaptivity: This refers to the use and study of loops to the form

SOLVE −→ ESTIMATE −→ MARK −→ REFINE (4)
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to iteratively improve the approximation of the solution of a PDE while keeping
an optimal distribution of computational resources (degrees of freedom). The de-
sign of each module, along with some key properties, is discussed in Chap. 7 and
8. We emphasize the standard AFEM employed in practice which employs the
estimator exclusively to make refinement decisions and never uses coarsening.

Convergence: This issue has been largely open until recently. In Chap. 7 we
present a basic convergence theory for most linear elliptic PDEs, including sad-
dle point problems, under rather modest assumptions and valid for all existing
marking strategies. The final result is rather general but does not, and cannot,
provide a convergence rate.

Optimality: We restrict ourselves to a model problem, which is symmetric and
coercive, to investigate the convergence rate of AFEM. In Chap. 8 we derive a
contraction property of AFEM for the so-called quasi-error, which is a scaled
sum of the energy error and the estimator. In Chap. 9 we prove that AFEM con-
verges with optimal rate as dictated by approximation theory even though the
adaptive loop (4) does not use any regularity information but just the estimator.
This analysis leads to approximation classes adequate for FEM, and so to the
geometric restrictions caused by conforming grids, which are not the usual ones
in nonlinear approximation theory.
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2 Linear Boundary Value Problems

In this section we examine the variational formulation of elliptic partial differential
equations (PDE). We start with a brief review of Sobolev spaces and their properties
and continue with several boundary value problems with main emphasis on a model
problem that plays a relevant role in the subsequent analysis. Then we present the
so-called inf-sup theory that characterizes existence and uniqueness of variational
problems, and conclude by reviewing the applications in light of the inf-sup theory.

2.1 Sobolev Spaces

The variational formulation of elliptic PDEs is based on Sobolev spaces. More-
over, approximability and regularity of functions are intimately related concepts.
Therefore we briefly review definitions, basic concepts and properties of Lp-based
Sobolev spaces for 1 ≤ p ≤ ∞ and dimension d ≥ 1. For convenience we restrict
ourselves to bounded domains Ω ⊂ Rd with Lipschitz boundary.

Definition 1 (Sobolev Space). Given k ∈ N and 1≤ p≤ ∞, we define

W k
p (Ω) := {v : Ω → R | Dα v ∈ Lp(Ω) for all |α| ≤ k}

where Dα v = ∂
α1
x1 · · ·∂

αd
xd v stands for the weak derivative of order α . The corre-

sponding norm and seminorm are for 1≤ p < ∞

‖v‖W k
p (Ω) :=

(
∑
|α|≤k
‖Dα v‖p

Lp(Ω)

)1/p

, |v|W k
p (Ω) :=

(
∑
|α|=k
‖Dα v‖p

Lp(Ω)

)1/p

,

and for p = ∞

‖v‖W ∞
p (Ω) := sup

|α|≤k
‖Dα v‖L∞(Ω), |v|W ∞

p (Ω) := sup
|α|=k
‖Dα v‖L∞(Ω).

For p = 2 the spaces W k
2 (Ω) are Hilbert spaces and we denote them by Hk(Ω) =

W k
2 (Ω). The scalar product inducing the norm ‖ · ‖Hk(Ω) = ‖ · ‖W k

2 (Ω) is given by

〈u, v〉Hk(Ω) = ∑
|α|≤k

∫
Ω

Dα uDα v for all u,v ∈ Hk(Ω).

We let Hk
0(Ω) be the completion of C∞

0 (Ω) within Hk(Ω). The space Hk
0(Ω) is a

strict subspace Hk(Ω) because 1 ∈ Hk(Ω)\Hk
0(Ω).

There is a natural scaling of the seminorm in W k
p (Ω). Consider for h > 0 the

change of variables x̂ = x/h for all x ∈ Ω , which transforms the domain Ω into Ω̂

and functions v defined over Ω into functions v̂ defined over Ω̂ . Then
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|v̂|W k
p (Ω̂) = hk−d/p |v|W k

p (Ω).

This motivates the following definition, which turns out to be instrumental.

Definition 2 (Sobolev Number). The Sobolev number of W k
p (Ω) is defined by

sob(W k
p ) := k−d/p. (5)

2.1.1 Properties of Sobolev Spaces

We summarize now, but not prove, several important properties of Sobolev spaces
which play a key role later. We refer to [35, 38, 39] for details.

Embedding Theorem. Let m > k≥ 0 and assume sob(W m
p ) > sob(W k

q ). Then the
embedding

W m
p (Ω) ↪→W k

q (Ω)

is compact.
The assumption on the Sobolev number cannot be relaxed. To see this, consider
Ω to be the unit ball of Rd for d ≥ 2 and set v(x) = log log |x|2 for x ∈ Ω \ {0}.
Then there holds v ∈W 1

d (Ω) and v 6∈ L∞(Ω), but

sob(W 1
d ) = 1−d/d = 0 = 0−d/∞ = sob(L∞).

Therefore, equality cannot be expected in the embedding theorem.

Density. The space C∞(Ω) is dense in W k
p (Ω), i. e.,

W k
p (Ω) = C∞(Ω)

‖·‖V
.

Poincaré Inequality. The following inequality holds∥∥∥v−|Ω |−1
∫

Ω

v
∥∥∥

L2(Ω)
≤C(Ω)‖∇v‖L2(Ω) for all v ∈W 1

2 (Ω) (6)

with a constant C(Ω) depending on the shape of Ω . The best constant within the
class of convex domains is

C(Ω) =
1
π

diam(Ω);

see [60, 11].

Poincaré-Friedrichs Inequality. There is a constant Cd > 0 depending only on
the dimension such that [38, p. 158]

‖v‖L2(Ω) ≤Cd |Ω |1/d‖∇v‖L2(Ω) for all v ∈ H1
0 (Ω). (7)
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Trace Theorem. Functions in H1(Ω) have ‘boundary values’ in L2(Ω), called
trace, in that there exists a unique linear operator T : H1(Ω)→ L2(∂Ω) such that

‖T v‖L2(∂Ω) ≤ c(Ω)‖v‖H1(Ω) for all v ∈ H1(Ω),

T v = v for all v ∈C0(Ω)∩H1(Ω).

Since T v = v for continuous functions we write v for T v. For a simplex we give
an explicit construction of the constant c(Ω) in Sect. 6.2. The image of T is a
strict subspace of L2(∂Ω), the so-called H1/2(∂Ω). The definition of H1

0 (Ω) can
be reconciled with that of traces because

H1
0 (Ω) =

{
v ∈ H1(Ω) | v = 0 on ∂Ω}.

The operator T is also well defined on W 1
p (Ω) for 1≤ p≤ ∞.

Green’s Formula. Given functions v,w ∈ H1(Ω), the following fundamental
Green’s formula ∫

Ω

∂iwv =−
∫

Ω

w∂iv+
∫

∂Ω

wvni (8)

holds for any i = 1, . . . ,d, where nnn(x) = [n1(x), . . . ,nd(x)]T is the outer unit nor-
mal of ∂Ω at x. Equivalently, if v ∈ H1(Ω) and www ∈ H1(Ω ;Rd) then there holds∫

Ω

divwwwv =−
∫

Ω

www ·∇v+
∫

∂Ω

vwww ·nnn. (9)

Green’s formula is a direct consequence of Gauß’ Divergence Theorem∫
Ω

divwww =
∫

∂Ω

www ·nnn for all www ∈W 1
1 (Ω ;Rd).

2.2 Variational Formulation

We consider elliptic PDEs that can be formulated as the following variational prob-
lem: Let (V,〈·, ·〉V) be an Hilbert space with induced norm ‖ · ‖V and denote by V∗
its dual space equipped with the norm

‖ f‖V∗ = sup
v∈V

〈 f , v〉
‖v‖V

for all f ∈ V∗.

Consider a continuous bilinear form B : V×V→ R and f ∈ V∗. Then we seek a
solution u ∈ V of

u ∈ V : B[u, v] = 〈 f , v〉 for all v ∈ V. (10)

We first look at several examples that are relevant for the rest of the presentation.
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2.2.1 Model Problem

The model problem of this survey is the following 2nd order elliptic PDE

−div(AAA(x)∇u) = f in Ω , (11a)
u = 0 on ∂Ω , (11b)

where f ∈ L2(Ω) and AAA ∈ L∞(Ω ;Rd×d) is uniformly symmetric positive definite
(SPD) over Ω , i. e., there exists constants 0 < α1 ≤ α2 such that

α1|ξξξ |2 ≤ ξξξ
T AAA(x)ξξξ ≤ α2|ξξξ |2 for all x ∈Ω ,ξξξ ∈ Rd . (12)

For the variational formulation of (11) we let V = H1
0 (Ω) and denote its dual by

V∗ = H−1(Ω). Since H1
0 (Ω) is the subspace of H1(Ω) of functions with vanishing

trace, asking for u ∈ V accounts for the homogeneous Dirichlet boundary values in
(11b).

We next multiply (11a) with a test function v ∈H1
0 (Ω), integrate over Ω and use

Green’s formula (9), provided www = −AAA∇u ∈ H1(Ω ;Rd), to derive the variational
formulation

u ∈ V :
∫

Ω

∇v ·AAA(x)∇u =
∫

Ω

f v for all v ∈ V, (13)

because the boundary term is zero thanks to v = 0 on ∂Ω . However, problem (13)
makes sense with much less regularity of the flux www. Setting

B[w, v] :=
∫

Ω

∇v ·AAA(x)∇w for all v,w ∈ H1
0 (Ω),

〈 f , v〉 :=
∫

Ω

f v for all v ∈ H1
0 (Ω),

(13) formally reads as (10). In Sect. 2.5.1 we analyze further B and 〈 f , ·〉.

2.2.2 Other Boundary Value Problems

We next introduce several elliptic boundary value problems that also fit within the
present theory.

General 2nd Order Elliptic Operator. Let AAA ∈ L∞(Ω ;Rd×d) be uniformly SPD
as above, bbb ∈ L∞(Ω ;Rd), c ∈ L∞(Ω), and f ∈ L2(Ω). We now consider the general
2nd order elliptic equation

−div(AAA(x)∇u)+bbb(x) ·∇u+ c(x)u = f in Ω ,

u = 0 on ∂Ω .
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The variational formulation utilizes V = H1
0 (Ω), as in Sect. 2.2.1. We again multiply

the PDE with a test function v ∈H1
0 (Ω), integrate over Ω , and use Green’s formula

(9) provided AAA(x)∇u ∈ H1(Ω ;Rd). This gives the bilinear form

B[w, v] :=
∫

Ω

∇v ·AAA(x)∇w+ vbbb ·∇w+ cvw for all v,w ∈ H1
0 (Ω)

and 〈 f , v〉 =
∫

Ω
f v in (10). We examine B further in Sect. 2.5.2.

The Biharmonic Equation. The vertical displacement u of the mid-surface Ω ⊂
R2 of a clamped plate under a vertical acting force f ∈ L2(Ω) can be modeled by
the biharmonic equation

∆
2u = f in Ω , (14a)

u = ∂nnn u = 0 on ∂Ω , (14b)

where ∂nnn u = ∇u ·nnn is the normal derivative of u on ∂Ω .
For the variational formulation we let V = H2

0 (Ω), and note that

H2
0 (Ω) =

{
v ∈ H2(Ω) | v = ∂nnn v = 0 on ∂Ω

}
also accounts for the boundary values (14b). Here, we use Green’s formula (9) twice
to deduce for all u ∈ H4(Ω) and v ∈ H2(Ω)∫

Ω

∆
2uv =

∫
Ω

∆u∆v+
∫

∂Ω

∂nnn ∆u v+
∫

∂Ω

∆u ∂nnn v.

Multiplying (14a) with v∈H2
0 (Ω), integrating over Ω , and using the above formula

(without boundary terms), we derive the bilinear form of (10)

B[w, v] :=
∫

Ω

∆v∆w for all v,w ∈ V,

and set 〈 f , v〉 :=
∫

Ω
f v for v ∈ V.

The 3d Eddy Current Equations. Given constant material parameters µ,κ > 0
and fff ∈ L2(Ω ;R3) we next consider the 3d eddy current equations

curl(µ curluuu)+κuuu = fff in Ω , (15a)
u∧nnn = 0 on ∂Ω , (15b)

with the curl operator

curlvvv := ∇∧ vvv =
[

∂v3

∂x2
− ∂v2

∂x3
,

∂v1

∂x3
− ∂v3

∂x1
,

∂v2

∂x1
− ∂v1

∂x2

]
and the vector product ∧ in R3.

The variational formulation is based on the Sobolev space
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H(curl;Ω) :=
{

vvv ∈ L2(Ω ;R3) | curlvvv ∈ L2(Ω ;R3)
}

equipped with the norm ‖vvv‖2
H(curl;Ω) := ‖vvv‖2

L2(Ω ;R3) + ‖curlvvv‖2
L2(Ω ;R3). This is a

Hilbert space and is larger than H1(Ω ;R3). The weak formulation of (15) utilizes
the subspace of functions with vanishing tangential trace on ∂Ω

V := H0(curl;Ω) =
{

vvv ∈ H(curl;Ω) | vvv∧nnn = 0 on ∂Ω
}

= C∞
0 (Ω ;R3)

‖·‖H(curl;Ω)
,

which thereby incorporates the boundary values of (15b). This space is a closed and
proper subspace of H(curl;Ω).

From Green’s formula (8) with proper choices of vvv and www it is easy to derive the
following formula for all vvv,www ∈ H(curl;Ω)∫

Ω

curlwww · vvv =
∫

Ω

www · curlvvv+
∫

∂Ω

www · (vvv∧nnn).

Multiplying (15a) with a test function vvv∈H0(curl;Ω), integrating over Ω and using
the above formula with www = µ curluuu ∈H(curl;Ω), we end up with the bilinear form
and right hand side of (10)

B[www, vvv] :=
∫

Ω

µ curlvvv · curlwww+κ vvv ·www for all vvv,www ∈ V,

〈 fff , vvv〉 :=
∫

Ω

fff · vvv for all vvv ∈ V.

The Stokes System. Given an external force fff ∈ L2(Ω ;Rd), let the velocity-
pressure pair (uuu, p) satisfy the momemtum and incompressibility equations with
no-slip boundary condition:

−∆uuu+∇p = fff in Ω ,

divuuu = 0 in Ω ,

uuu = 0 on ∂Ω .

For the variational formulation we consider two Hilbert spaces V = H1
0 (Ω ;Rd) and

Q = L2
0(Ω), where L2

0(Ω) is the space of L2 functions with zero mean value. The
space H1

0 (Ω ;Rd) takes care of the no-slip boundary values of the velocity. Pro-
ceeding as in Sect. 2.2.1, this time using component-wise integration by parts for∫

Ω
vi ∆wi and assuming www ∈H2(Ω ;Rd), we obtain the bilinear form a : V×V→R

a[www,vvv] :=
∫

Ω

∇vvv : ∇www =
d

∑
i=1

∫
Ω

∇vi ·∇wi for all vvv,www ∈ V.

Likewise, integration by parts of
∫

Ω
vvv∇q yields the bilinear form b : Q×V→ R



12 R. H. Nochetto, K. G. Siebert, and A. Veeser

b[q,vvv] :=−
∫

Ω

q divvvv for all q ∈Q, vvv ∈ V.

The variational formulation then reads: find (uuu, p) ∈ V×Q such that

a[uuu,vvv]+b[p,vvv] = 〈 fff , vvv〉 for all vvv ∈ V,

b[q,uuu] = 0 for all q ∈Q.

We will see in Sect. 2.4.2 how this problem can be formulated in the form (10).

2.3 The Inf-Sup Theory

In this subsection we present a functional analytic theory, the so-called inf-sup the-
ory, that characterizes existence, uniqueness, and continuous dependence on data of
the variational problem (10).

Throughout this section we let (V,〈·,·〉V) and (W,〈·,·〉W) be a pair of Hilbert
spaces with induced norms ‖ ·‖V and ‖ ·‖W. We denote by V∗ and W∗ their respec-
tive dual spaces equipped with norms

‖ f‖V∗ = sup
v∈V

〈 f , v〉
‖v‖V

and ‖g‖W∗ = sup
v∈W

〈g, v〉
‖v‖W

.

We write L(V;W) for the space of all linear and continuous operators from V into
W with operator norm

‖B‖L(V;W) = sup
v∈V

‖Bv‖W
‖v‖V

.

The following result relates a continuous bilinear form B : V×W→ R with an
operator B ∈ L(V;W).

Theorem 1 (Banach-Nečas). Let B : V×W→ R be a continuous bilinear form
with norm

‖B‖ := sup
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

. (16)

Then there exists a unique linear operator B ∈ L(V,W) such that

〈Bv, w〉W = B[v, w] for all v ∈ V, w ∈W

with operator norm
‖B‖L(V;W) = ‖B‖.

Moreover, the bilinear form B satisfies
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there exists α > 0 such that α‖v‖V ≤ sup
w∈W

B[v, w]
‖w‖W

for all v ∈ V, (17a)

for every 0 6= w ∈W there exists v ∈ V such that B[v, w] 6= 0, (17b)

if and only if B : V→W is an isomorphism with

‖B−1‖L(W,V) ≤ α
−1. (18)

Proof. 1 Existence of B. For fixed v∈V, the mapping B[v, ·] belongs to W∗ by lin-
earity of B in the second component and continuity of B. Applying the Riesz Rep-
resentation Theorem (see for instance [16, (2.4.2) Theorem], [38, Theorem 5.7]),
we deduce the existence of an element Bv ∈W such that

〈Bv, w〉W = B[v, w] for all w ∈W.

Linearity of B in the first argument and continuity of B imply B ∈ L(V;W). In
view of (16), we get

‖B‖L(V;W) = sup
v∈V

‖Bv‖W
‖v‖V

= sup
v∈V

sup
w∈W

〈Bv, w〉
‖v‖V‖w‖W

= sup
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

= ‖B‖.

2 Closed Range of B. The inf-sup condition (17a) implies

α ‖v‖V ≤ sup
w∈W

〈Bv, w〉
‖w‖W

= ‖Bv‖W for all v ∈ V, (19)

whence B is injective. To prove that the range B(V) of B is closed in W, we let
wk = Bvk be a sequence such that wk → w ∈W as k→ ∞. We need to show that
w ∈ B(V). Invoking (19), we have

α ‖vk− v j‖V ≤ ‖B(vk− v j)‖W = ‖wk−w j‖W→ 0

as k, j→∞. Thus {vk}∞
k=0 is a Cauchy sequence in V and so it converges vk→ v∈V

as k→ ∞. Continuity of B yields

Bv = lim
k→∞

Bvk = w ∈ B(V),

which shows that B(V) is closed.
3 Surjectivity of B. We argue by contradiction, i. e., assume B(V) 6= W. Since B(V)

is closed we can decompose W = B(V)⊕B(V)⊥, where B(V)⊥ is the orthogonal
complement of B(V) in W (see for instance [16, (2.3.5) Proposition], [38, Theorem
5.6]). By assumption B(V)⊥ is non-trivial, i. e., there exists 0 6= w0 ∈ B(V)⊥. This
is equivalent to

w0 6= 0 and 〈w, w0〉 = 0 for all w ∈ B(V),
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or
w0 6= 0 and 0 = 〈Bv, w0〉 = B[v, w0] for all v ∈ V.

This in turn contradicts (17b) and shows that B(V) = W. Therefore, we conclude
that B is an isomorphism from V onto W.

4 Property (18). We rewrite (19) as follows:

α ‖B−1w‖V ≤ ‖w‖W for all w ∈W,

which is (18) in disguise.
5 Property (18) implies (17a) and (17b). Compute

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

= inf
v∈V

sup
w∈W

〈Bv, w〉
‖v‖V‖w‖W

= inf
v∈V

‖Bv‖W
‖v‖V

= inf
w∈W

‖w‖W
‖B−1w‖V

=
1

supw∈W
‖B−1w‖V
‖w‖W

=
1

‖B−1‖
≥ α

which shows (17a). Property (17b) is a consequence of B being an isomorphism:
there exists 0 6= v ∈ V such that Bv = w and

B[v, w] = 〈Bv, w〉 = ‖w‖2
W 6= 0.

This concludes the theorem. ut

We are now in the position to characterize properties of the bilinear form B in
(10) that imply that the variational problem (10) is well-posed. This result from 1962
is due to Nečas [56, Theorem 3.3].

Theorem 2 (Nečas Theorem). Let B : V×W→ R be a continuous bilinear form.
Then the variational problem

u ∈ V : B[u, v] = 〈 f , v〉 for all v ∈W, (20)

admits a unique solution u ∈V for all f ∈W∗, which depends continuously on f , if
and only if the bilinear form B satisfies one of the equivalent inf-sup conditions:

(1) There exists α > 0 such that

sup
w∈W

B[v, w]
‖w‖W

≥ α‖v‖V for some α > 0; (21a)

for every 0 6= w ∈W there exists v ∈ V such that B[v, w] 6= 0. (21b)

(2) There holds

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

> 0, inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

> 0. (22)

(3) There exists α > 0 such that
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inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

= inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

= α. (23)

In addition, the solution u of (20) satisfies the stability estimate

‖u‖V ≤ α
−1‖ f‖W∗ . (24)

Proof. 1 Denote by J : W→W∗ the isometric Riesz isomorphism between W and
W∗; see [16, (2.4.2) Theorem], [38, Theorem 5.7]. Let B ∈ L(V;W) be the linear
operator corresponding to B introduced in Theorem 1. Then (20) is equivalent to

u ∈ V : Bu = J−1 f in W.

Assume that (21) is satisfied. Then, according to Theorem 1, the operator B is
invertible. For any f ∈W∗ the unique solution u ∈ V is given by u = B−1J−1 f and
u depends continuously on f with

‖u‖V ≤ ‖B−1‖L(W;V)‖J−1 f‖W = ‖B−1‖L(W;V)‖ f‖W∗ ≤ α
−1‖ f‖W∗ .

Conversely, if (20) admits a unique solution u for any f ∈W∗, then B has to be
invertible, which implies (21) by Theorem 1.

2 To show the equivalence of the inf-sup conditions (21), (22), and (23) we rewrite
Step 5 of the proof of Theorem 1:

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

= ‖B−1‖−1
L(W;V).

Furthermore,

inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

= inf
w∈W

sup
v∈V

〈Bv, w〉W
‖v‖V‖w‖W

= inf
w∈W

sup
v∈V

〈v, B∗w〉V
‖v‖V‖w‖W

= ‖B−∗‖−1
L(V;W),

where B∗ : W→ V is the adjoint operator of B and B−∗ : V→W is its inverse.
Recalling that ‖B∗‖L(W;V) = ‖B‖L(V;W) and ‖B−∗‖L(V;W) = ‖B−1‖L(W;V) we deduce
the desired expression

inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

= ‖B−1‖−1
L(W;V).

and conclude the proof. ut

The equality in (23) might seem at first surprising but is just a consequence of
‖B−∗‖L(V;W) = ‖B−1‖L(W;V). In general, (21) is simpler to verify than (23) and α of
(23) is the largest possible α in (21a). Moreover, the above proof readily gives the
following result.

Corollary 1 (Well Posedness vs. Inf-Sup). Assume that the variational problem
(20) admits a unique solution u ∈ V for all f ∈W∗ so that
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‖u‖V ≤C‖ f‖W∗ .

Then B satisfies the inf-sup condition (23) with α ≥C−1.

Proof. Since (20) admits a unique solution u for all f , we conclude that the operator
B ∈ L(V;W) of Theorem 1 is invertible and the solution operator B−1 ∈ L(W;V)
is bounded with norm ‖B−1‖L(W;W) ≤C, thanks to ‖u‖V ≤C‖ f‖W∗ . On the other
hand, Step 2 in the proof of Theorem 2 shows that ‖B−1‖−1

L(W;V) is the optimal inf-

sup constant α for B, which yields α ≥C−1. ut

2.4 Two Special Problem Classes

We next study two special cases included in the inf-sup theory. The first class are
problems with coercive bilinear form and the second one comprises problems of
saddle point type.

2.4.1 Coercive Bilinear Forms

An existence and uniqueness result for coercive bilinear forms was established by
Lax and Milgram eight years prior to the result by Nečas [45]. Coercivity of B is a
sufficient condition for existence and uniqueness but it is not necessary.

Corollary 2 (Lax-Milgram Theorem). Let B : V×V→ R be a continuous bilin-
ear form that is coercive, namely there exists α > 0 such that

B[v, v]≥ α‖v‖2
V for all v ∈ V. (25)

Then (10) has a unique solution that satisfies (24).

Proof. Since (25) implies supw∈V B[v, w]≥B[v, v]≥α‖v‖2
V for all 0 6= v∈V, both

(21a) and (21b) follow immediately, whence Theorem 2 implies the assertion. ut

If the bilinear form B is also symmetric, i. e.,

B[v, w] = B[w, v] for all v,w ∈ V,

then B is a scalar product on V. The norm induced by B is the so-called energy
norm

|||v|||
Ω

:= B[v, v]1/2.

Coercivity and continuity of B in turn imply that |||·|||
Ω

is equivalent to the natural
norm ‖ · ‖V in V since

α‖v‖2
V ≤ |||v|||

2
Ω
≤ ‖B‖‖v‖2

V for all v ∈ V. (26)
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Moreover, it is rather easy to show that for symmetric and coercive B the solution
u of (10) is the unique minimizer of the quadratic energy

J[v] :=
1
2
B[v, v]−〈 f , v〉 for all v ∈ V,

i. e., u = argminv∈V J[v]. The energy norm and the quadratic energy play a relevant
role in both Chap. 8 and Chap. 9.

2.4.2 Saddle Point Problems

Given a pair of Hilbert spaces (V,Q), we consider two continuous bilinear forms
a : V×V→ R and b : Q×V→ R. If f ∈ V∗ and g ∈ Q∗, then we seek a pair
(u, p) ∈ V×Q solving the saddle point problem

a[u,v]+b[p,v] = 〈 f , v〉 for all v ∈ V, (27a)
b[q,u] = 〈g, q〉 for all q ∈Q. (27b)

Problem (27) is a variational problem which can of course be stated in the form
(10). In doing so we define the product space W := V×Q, which is a Hilbert space
with scalar product

〈(v,q), (w,r)〉W := 〈v, w〉V + 〈q, r〉Q for all (v,q),(w,r) ∈W

and induced norm ‖(v,q)‖W := (‖v‖2
V +‖q‖2

Q)1/2. From the bilinear forms a and b
we define the bilinear form B : W×W→ R by

B[(v,q), (w,r)] := a[v,w]+b[q,w]+b[r,v] for all (v,q),(w,r) ∈W.

Then, (27) is equivalent to the problem

(u, p) ∈W : B[(u, p), (v,q)] = 〈 f , v〉+ 〈g, q〉 for all (v,q) ∈W. (28)

To see this, test (28) first with (v,0), which gives (27a), and then utilizing (0,q)
yields (27b). Obviously, a solution (u, p) to (27) is a solution to (28) and vice versa.

Therefore, the saddle point problem (27) is well-posed if and only if B satisfies
the inf-sup condition (23). Since B is defined via the bilinear forms a and b and
due to the degenerate structure of (27) it is not that simple to show (23). However
it is a direct consequence of the inf-sup theorem for saddle point problems given by
Brezzi in 1974 [17].

Theorem 3 (Brezzi Theorem). The saddle point problem (27) has a unique solution
(u, p) ∈ V×Q for all data ( f ,g) ∈ V∗×Q∗, that depends continuously on data, if
and only if there exist constants α,β > 0 such that



18 R. H. Nochetto, K. G. Siebert, and A. Veeser

inf
v∈V0

sup
w∈V0

a[v,w]
‖v‖V‖w‖V

= inf
w∈V0

sup
v∈V0

a[v,w]
‖v‖V‖w‖V

= α > 0, (29a)

inf
q∈Q

sup
v∈V

b[q,v]
‖q‖Q‖v‖V

= β > 0, (29b)

where
V0 := {v ∈ V | b[q,v] = 0 for all q ∈Q}.

In addition, there exists γ = γ(α,β ,‖a‖) such that the solution (u, p) is bounded by(
‖u‖2

V +‖p‖2
Q
)1/2 ≤ γ

(
‖ f‖2

V∗ +‖g‖2
Q∗
)1/2

. (30)

Proof. 1 Continuity of b implies that the subspace V0 of V is closed. We therefore
can decompose V = V0⊕V⊥ where V⊥ is the orthogonal complement of V0 in V;
see [16, (2.3.5) Proposition], [38, Theorem 5.6]. Both V0 and V⊥ are Hilbert spaces.

2 The inf-sup condition (29b) is (21a) for B = b. On the other hand, by definition of
V0, for every v∈V⊥ there exists a q∈Q with b[q,v] 6= 0, which is (21b). Hence, the
equivalence of (21) and (23) implies that the operators B : Q→V⊥ and B∗ : V⊥→Q
defined by

〈Bq, v〉V = 〈B∗v, q〉Q = b[q,v] for all q ∈Q,v ∈ V⊥,

are isomorphisms.
3 We write the solution u = u0 + u⊥ with u0 ∈ V0 and u⊥ ∈ V⊥ to be determined

as follows. Since B∗ is an isomorphism, the problem

u⊥ ∈ V⊥ : b[q,u⊥] = 〈B∗v, q〉Q = 〈g, q〉 for all q ∈Q (31)

is well-posed for all g ∈Q∗, and selects u⊥ uniquely. We next consider

u0 ∈ V0 : a[u0,v] = 〈 f , v〉 −a[u⊥,v] for all v ∈ V0. (32)

This problem admits a unique solution u0 thanks to (29b), which is (23) with B = a.
4 Upon setting

〈F, v〉 := 〈 f , v〉 −a[u,v] for all v ∈ V

we see that F ∈ V∗⊥ because 〈F, v〉 = 0 for all v ∈ V0 by (32). Since B is an isomor-
phism, there is a unique solution of

p ∈Q : b[p,v] = 〈Bp, v〉V = 〈F, v〉 for all v ∈ V⊥. (33)

This construction yields the desired pair (u, p) and shows that problems (31),
(32), and (33) are well-posed if and only if b satisfies (29b) and a fulfills (29a).

5 We conclude by estimating (u, p). In view of (29b), u⊥ is bounded by

‖u⊥‖V ≤ β
−1‖g‖Q∗
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which, in conjunction with (29a), implies for u0

‖u0‖V ≤ α
−1(‖ f‖V∗ +‖a‖‖u⊥‖V

)
≤ α

−1‖ f‖V∗ +‖a‖(αβ )−1‖g‖Q∗ .

Hence,

‖u‖V ≤ ‖u0‖V +‖u⊥‖V ≤ α
−1‖ f‖V∗ +

(
1+α

−1‖a‖
)
β
−1‖g‖Q∗ .

Finally, using ‖F‖V∗⊥ = ‖F‖V∗ ≤ ‖ f‖V∗ +‖a‖‖u‖V, (29b) gives the bound for p

‖p‖Q ≤ β
−1‖F‖V∗ ≤ β

−1(1+α
−1‖a‖

) (
‖ f‖V∗ +β

−1‖a‖‖g‖Q∗
)
.

Adding the two estimates gives the stability bound (30) with γ = γ(α,β ,‖a‖). ut

Remark 3 (Optimal constant). A better bound of the stability constant γ in terms of
α,β and ‖a‖ is available. Setting

κ :=
‖a‖
β

, κ11 :=
1+κ2

α2 , κ22 := κ
2
κ11 +

1
β 2 , κ12 := κκ11,

Xu and Zikatanov have derived the bound [78]

γ ≤ κ12 +max(κ11,κ22).

For establishing this improved bound one has to make better use of the orthogonal
decomposition V = V0⊕V⊥ when estimating u = u0 + u⊥ and one has to resort to
a result of Kato for non-trivial idempotent operators [42].

Combining the Brezzi theorem with Corollary 1 we infer the inf-sup condition
for the bilinear form B in (28).

Corollary 3 (Inf-Sup of B). Let the bilinear form B : W→W be defined by (28).
Then there holds

inf
(v,q)∈W

sup
(w,r)∈W

B[(v,q), (w,r)]
‖(v,q)‖W‖(w,r)‖W

= inf
(w,r)∈W

sup
(v,q)∈W

B[(v,q), (w,r)]
‖(v,q)‖W‖(w,r)‖W

≥ γ
−1,

where γ is the stability constant from Theorem 3.

Assume that a : V×V→ R is symmetric and let (u, p) be the solution to (27).
Then u is the unique minimizer of the energy J[v] := 1

2 a[v,v]−〈 f , v〉 under the con-
straint b[·,u] = g in Q∗. In view of this, p is the corresponding Lagrange multiplier
and the pair (u, p) is the unique saddle point of the Lagrangian

L[v,q] := J[v]+b[q,v]−〈g, q〉 for all v ∈ V,q ∈Q.

The Brezzi theorem also applies to non-symmetric a, in which case the pair (u, p)
is no longer a saddle point.
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2.5 Applications

We now review the examples introduced in Sect. 2.2 in light of the inf-sup theory.

2.5.1 Model Problem

Since AAA is symmetric, the variational formulation of the model problem in Sect. 2.2.1
leads to the symmetric bilinear form B : H1

0 (Ω)×H1
0 (Ω)→ R defined by

B[w, v] :=
∫

Ω

∇v ·AAA(x)∇w, for all v,w ∈ H1
0 (Ω).

We have to decide which norm to use on H1
0 (Ω). The Poincaré-Friedrichs in-

equality (7) implies the equivalence of ‖ · ‖H1(Ω) and |·|H1(Ω) on H1
0 (Ω) because

|v|H1(Ω) ≤ ‖v‖H1(Ω) ≤
(
1+C2

d |Ω |
2/d )1/2 |v|H1(Ω) for all v ∈ H1

0 (Ω). (34)

On the other hand, assumption (12) on the eigenvalues of AAA directly leads to

α1 |v|2H1(Ω) ≤B[v, v]≤ α2 |v|2H1(Ω) for all v ∈ H1
0 (Ω).

Therefore, |·|H1
0 (Ω) is a convenient norm on V = H1

0 (Ω) for the model problem, for
which B is coercive with constant α = α1 and continuous with norm ‖B‖= α2.

To apply the Lax-Milgram theorem it remains to show that f ∈ L2(Ω) implies
f ∈ V∗ = H−1(Ω), in the sense that v 7→

∫
Ω

f v belongs to H1−1(Ω). Recalling

‖ f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈 f , v〉
|v|H1(Ω)

.

and using the Poincaré-Friedrichs inequality (7) once more we estimate

|〈 f , v〉|=
∣∣∣∫

Ω

f v
∣∣∣≤ ‖ f‖L2(Ω)‖v‖L2(Ω) ≤Cd |Ω |1/d ‖ f‖L2(Ω) |v|H1(Ω) ,

and therefore ‖ f‖H−1(Ω) ≤Cd |Ω |1/d ‖ f‖L2(Ω). In view of Corollary 2, we have the
stability bound

|u|H1(Ω) ≤
Cd |Ω |1/d

α
1/2
1

‖ f‖L2(Ω).

Since B is symmetric and coercive, it defines a scalar product in H1
0 (Ω). Con-

sequently, an even more convenient choice of norm on V is the energy norm
|||·|||

Ω
= B[·, ·]1/2. In this case we have α = ‖B‖= 1 and
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‖ f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈 f , v〉
|||v|||

Ω

≤ Cd |Ω |1/d

α
1/2
1

‖ f‖L2(Ω)

whence we obtain the same stability estimate as above.

2.5.2 Other Boundary Value Problems

We now review the examples from Sect. 2.2.2.

General 2nd Order Elliptic Operator. We take V = H1
0 (Ω) and the bilinear form

B[w, v] :=
∫

Ω

∇v ·AAA(x)∇w+ vbbb ·∇w+ cvw for all v,w ∈ H1
0 (Ω).

A straightforward estimate shows continuity of B with respect to the norm ‖·‖H1(Ω)

|B[w, v]| ≤ ‖B‖ ‖v‖H1(Ω) ‖w‖H1(Ω) for all v,w ∈ H1(Ω)

with operator norm ‖B‖ ≤ α2 +‖bbb‖L∞(Ω ;Rd) +‖c‖L∞(Ω).

Assume now that divbbb is bounded and c− 1
2 divbbb ≥ 0 in Ω . In light of Green’s

formula (9) we get the identity∫
Ω

vbbb ·∇w =−
∫

Ω

∇v ·bbbw−
∫

Ω

divbbbvw for all v,w ∈ H1
0 (Ω),

whence
∫

Ω
vbbb ·∇v =− 1

2
∫

Ω
divbbbv2. If C =Cd |Ω |1/d is the Poincarè-Friedrichs con-

stant for Ω , then we deduce as in Sect. 2.2.1 for any v ∈ H1
0 (Ω)

B[v, v]≥ α1 |v|2H1(Ω) +
∫

Ω

(
c− 1

2 divbbb
)
v2 ≥ α1 |v|2H1(Ω) ≥

α1

1+C2 ‖v‖
2
H1(Ω),

thanks to the norm equivalence (34). Using ‖ · ‖H1(Ω) as norm on V we have

‖ f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈 f , v〉
‖v‖H1(Ω)

≤ ‖ f‖L2(Ω).

Assuming only c≥ 0 the bilinear form B is no longer coercive. Nevertheless, for
any bounded bbb and c≥ 0 it can be shown that B satisfies the inf-sup condition (23)
but the proof is not elementary; see for instance [9].

The Biharmonic Equation. For the variational formulation of the biharmonic
equation we use the Hilbert space V = H2

0 (Ω) and claim that ‖∆ · ‖L2(Ω) is a norm
on H2

0 (Ω) that is equivalent to ‖ · ‖H2(Ω). From Green’s formula we deduce for
v ∈C∞

0 (Ω)
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|v|2H2(Ω) =
d

∑
i, j=1

∫
Ω

(
∂

2
i jv
)2 =−

d

∑
i, j=1

∫
Ω

∂iv∂
3
i j jv =

d

∑
i, j=1

∫
Ω

∂
2
ii v∂

2
j jv = ‖∆v‖2

L2(Ω).

Using density we thus conclude |v|H2(Ω) = ‖∆v‖L2(Ω) for all v ∈ H2
0 (Ω). For those

functions v the Poincaré-Friedrichs inequality (7) implies |v|H1(Ω) ≤ c(Ω) |v|H2(Ω)
which, in conjunction with the norm equivalence (34), yields

‖∆v‖L2(Ω) ≤ ‖v‖2,Ω ≤C(Ω) |v|H2(Ω) = C(Ω)‖∆v‖L2(Ω). (35)

The bilinear form B given by

B[w, v] =
∫

Ω

∆v∆w

is symmetric and the energy norm |||·|||
Ω

coincides with the norm ‖∆ ·‖L2(Ω). There-
fore, B is continuous and coercive on H2

0 (Ω) with constants ‖B‖= α = 1.
We denote by H−2(Ω) the dual space of H2

0 (Ω). The norm equivalence (35)
implies ‖ f‖H−2(Ω) ≤C(Ω)‖ f‖L2(Ω) for f ∈ L2(Ω).

The 3d Eddy Current Equations. We take V = H0(curl;Ω) along with the sym-
metric bilinear form

B[www, vvv] :=
∫

Ω

µ curlvvv · curlwww+κ vvv ·www for all vvv,www ∈ V

and subordinate energy norm

|||vvv|||2
Ω

= ‖µ1/2 curlvvv‖2
L2(Ω ;R3) +‖κ

1/2vvv‖2
L2(Ω ;R3).

Since µ,κ > 0, this norm and the corresponding H(curl;Ω) norm (i.e. µ = κ = 1)
are equivalent. Accordingly, B is continuous and coercive with respect to |||·|||

Ω

with ‖B‖= α = 1.
Furthermore, any fff ∈ L2(Ω ;R3) belongs to the dual space V∗ = (H0(curl;Ω))∗

and ‖ fff‖V∗ ≤ κ−1/2‖ fff‖L2(Ω ;R3).

The Stokes System. We use the Hilbert spaces V = H1
0 (Ω ;Rd) equipped with

the norm |·|H1
0 (Ω ;Rd) and Q = L2

0(Ω) equipped with ‖ · ‖L2(Ω). With this choice,
‖ · ‖V is the energy norm associated with the bilinear form a[www,vvv] =

∫
Ω

∇vvv : ∇www.
Therefore, a is continuous and coercive on V with ‖a‖ = α = 1. This implies the
inf-sup condition (29a).

Using integration by parts one can show ‖divvvv‖L2(Ω) ≤ |vvv|H1
0 (Ω ;Rd) , whence the

bilinear form b[q,vvv] =−
∫

Ω
divvvvq is continuous with norm ‖b‖= 1. In addition, for

any q ∈ L2
0(Ω) there exists a www ∈ H1

0 (Ω ;Rd) such that

−divwww = q in Ω and |www|H1(Ω ;Rd) ≤C(Ω)‖q‖L2(Ω).
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This non-trivial result goes back to Nečas [19] and a proof can for instance be found
in [36, Theorem III.3.1]. This implies

sup
vvv∈H1

0 (Ω ;Rd)

b[q,vvv]
|vvv|H1(Ω ;Rd)

≥ b[q,www]
|www|H1(Ω ;Rd)

=
‖q‖2

L2(Ω)

|www|H1(Ω ;Rd)
≥C(Ω)−1‖q‖L2(Ω).

Therefore, (29b) holds with β ≥ C(Ω)−1 and Theorem 3 applies for all fff ∈
L2(Ω ;Rd) and gives existence, uniqueness and stability of the solution (uuu, p) ∈
V×Q of the Stokes system.

2.6 Problems

Problem 1. Let Ω = (0,1) and u ∈W 1
p (Ω) with 1 < p≤∞. Prove that the function

u is (p−1)/p-Hölder continuous, namely

|u(x)−u(y)| ≤ |x− y|(p−1)/p‖u′‖Lp(Ω) for all x,y ∈Ω .

If p = 1, then u ∈W 1
1 (Ω) is uniformly continuous in Ω because of the absolute

continuity of the integral.

Problem 2. Find the weak gradient of v(x) = log log(|x|/2) in the unit ball Ω , and
show that v ∈W 1

d (Ω) for d ≥ 2. This shows that functions in W 1
d (Ω), and in partic-

ular in H1(Ω), may not be continuous, and even bounded, in dimension d ≥ 2.

Problem 3. Prove the following simplified version of the Poincaré-Friedrichs in-
equality (7): let Ω be contained in the strip {x ∈ Rd | 0 < xd < h}; then

‖v‖L2(Ω) . h‖∇v‖L2(Ω) for all v ∈ H1
0 (Ω).

To this end, take v ∈C∞
0 (Ω), write for 0 < s < h

v2(x,s) = v2(x,0)+2
∫ s

0
∂dv · v, (36)

integrate, and use Cauchy-Schwarz inequality to prove (7). Next use a density argu-
ment, based on the definition of H1

0 (Ω), to extend the inequality to H1
0 (Ω).

Problem 4. Let Ωh = {(x′,xd) | |x|< h,xd > 0} be the upper half ball in Rd of radius
h > 0 centered at the origin. Let Γh be the flat part of ∂Ωh.

(a) Let ζ ≥ 0 be a C∞
0 cut-off function in the unit ball that equals 1 in the ball of

radius 1/2. Use the identity (36) for vζ , followed by a density argument, to
derive the trace inequality

‖v‖2
L2(Γ1/2) . ‖v‖2

L2(Ω1) +‖∇v‖2
L2(Ω1) for all v ∈ H1(Ω1).
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(b) Use a scaling argument to Ωh to deduce the scaled trace inequality

‖v‖2
L2(Γh/2) . h−1‖v‖2

L2(Ωh) +h‖∇v‖2
L2(Ωh) for all v ∈ H1(Ωh).

Problem 5. Show that divqqq∈H−1(Ω) for qqq∈ L2(Ω ;Rd). Compute the correspond-
ing H−1-norm.

Problem 6. (a) Find a variational formulation which amounts to solving

−∆u = f in Ω , ∂ν u+ pu = g on ∂Ω ,

where f ∈ L2(Ω), g ∈ L2(∂Ω), 0 < p1 ≤ p≤ p2 on ∂Ω . Show that the bilinear
form is coercive in H1(Ω).

(b) Suppose that p = ε−1→ ∞ and denote the corresponding solution by uε . Deter-
mine the boundary value problem satisfied by u0 = limε↓0 uε .

(c) Derive an error estimate for ‖u0−uε‖H1(Ω).

Problem 7. Let AAA be uniformly SPD and c ∈ L∞(Ω) satisfy c ≥ 0. Consider the
quadratic functional

I[v] =
1
2

∫
Ω

∇v ·AAA(x)∇v+ c(x)v2−〈 f , v〉 for all v ∈ H1
0 (Ω),

where f ∈ H−1(Ω). Show that u ∈ H1
0 (Ω) is a minimizer of I[v] if and only if u

satisfies the Euler-Lagrange equation

B[u, v] =
∫

Ω

∇v ·AAA∇u+ cuv = 〈 f , v〉 for all v ∈ H1
0 (Ω).

Problem 8. Consider the model problem with Neumann boundary condition

−div(AAA∇u) = f in Ω , nnn ·AAA∇u = g on ∂Ω

(a) Derive the variational formulation in V = H1(Ω) and show that the bilinear form
B is continuous and symmetric but not coercive.

(b) Let V be the subspace of H1(Ω) of functions with vanishing mean value. Show
that B is coercive.

(c) Derive a compatibility condition between f and g for existence of a weak solu-
tion.

Problem 9. Consider the space V = H(div;Ω) = {qqq ∈ L2(Ω ;Rd) | divqqq ∈ L2(Ω)},
and the bilinear form

B[ppp, qqq] =
∫

Ω

div pppdivqqq+ ppp ·qqq for all ppp,qqq ∈ V.

(a) Show that V is a Hilbert space and that B is symmetric, continuous and coercive
in H(div;Ω).
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(b) Determine the strong form of the PDE and implicit boundary condition corre-
sponding to the variational formulation

ppp ∈ V : B[ppp, qqq] = 〈f, qqq〉 for all qqq ∈ V.

Problem 10. Let σσσ :=−AAA∇u be the flux of the model problem, which can be writ-
ten equivalently as

AAA−1
σσσ +∇u = 0, divσσσ =− f .

(a) Let V = H(div;Ω) and Q = L2
0(Ω). Multiply the first equation by τττ ∈ V and

integrate by parts using Green’s formula (9). Multiply the second equation by
v∈Q. Write the resulting variational formulation in the form (27) and show that
(29) is satisfied.

(b) Apply Theorem 3 to deduce existence, uniqueness, and stability.
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3 The Petrov-Galerkin Method and Finite Element Bases

The numerical approximation of boundary value problems is typically an effective
way, and often the only one available, to extract quantitive information about their
solutions. In this chapter we introduce the finite element method (FEM) which,
due to its geometric flexibility, practical implementation, and powerful and elegant
theory, is one of the most successful discretization methods for this task.

Roughly speaking, a finite element method consists in computing the Petrov-
Galerkin solution with respect to a finite-dimensional space and that space is con-
structed from local function spaces (finite elements), which are glued together by
some continuity condition.

We first analyze Petrov-Galerkin approximations and then review Lagrange el-
ements, the most basic and common finite element spaces; for other finite element
spaces, we refer to the standard finite element literature, e.g. [15, 16, 18, 25, 51].

3.1 Petrov-Galerkin Solutions

The solution of a boundary value problem cannot be computed, since the solution is
characterized by an infinite number of (linearly-independent) conditions. To over-
come this principal obstacle, we replace the boundary value problem by its Petrov-
Galerkin discretization.

3.1.1 Definition, Existence and Uniqueness

To obtain a computable approximation to a solution to the variational problem (10)
we simply restrict the continuous spaces V,W in (10) to finite dimensional sub-
spaces of equal dimension N < ∞. As we shall see, this leads to a linear system in
RN×N which can be solved by standard methods.

Definition 3 (Discrete Solution). For N ∈N let VN ⊂V and WN ⊂W be subspaces
of equal dimension N. Then a solution UN to

UN ∈ VN : B[UN , W ] = 〈 f , W 〉 for all W ∈WN (37)

is called Petrov-Galerkin Solution.

Remark 4. For V 6= W the test functions W ∈WN in (37) are different from the
ansatz functions V ∈ VN which results in the naming Petrov-Galerkin discretiza-
tion. If the continuous spaces V = W are equal, then we will choose also the same
discrete space VN = WN . In this case, (37) is called Galerkin discretization and, if
additionally B is symmetric and coercive, it is called Ritz-Galerkin discretization.
In any case, the discrete spaces are subsets of the continuous ones, and thus all dis-
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crete functions belong to the continuous function spaces. For this reason, the method
is called a conforming discretization of (10).

For any conforming discretization, the bilinear form B is well defined and con-
tinuous on the discrete pair VN ×WN . The continuity constant is bounded by ‖B‖.
This can easily be seen, since all discrete functions V ∈VN and W ∈WN are admis-
sible in (16). In the same vain, for a coercive form B : V×V→ R we are allowed
to use any discrete function V ∈ VN in (25) yielding

B[V, V ]≥ cB‖V‖2
V for all V ∈ VN .

Therefore coercivity of B is inherited for conforming discretizations from the con-
tinuous space to the discrete one with the same coercivity constant cB > 0. This in
turn implies the existence and uniqueness of the Galerkin solution UN ∈ VN .

Recalling the theorem of Lax-Milgram, stated as Corollary 2, we know that a
coercive form B satisfies the inf-sup condition (23). Since coercivity is inherited to
subspaces we can conclude in this case the discrete counterpart of (23), namely

inf
V∈VN

sup
W∈WN

B[V, W ]
‖V‖V‖W‖W

= inf
W∈WN

sup
V∈VN

B[V, W ]
‖V‖V‖W‖W

= βN (38)

with a constant βN ≥ cB .
For general B, the continuous inf-sup (23) does not imply the discrete one. In

order to state a simple as possible criterion for the existence and uniqueness or
a discrete solution, we consider the discrete operators BN ∈ L(VN ;W∗

N) and B∗N ∈
L(WN ;V∗N), defined in the same way as B and B∗ in Sect. 2.3 by

〈BNV, W 〉 = 〈B∗NW, V 〉 = B[V, W ] for all V ∈ VN ,W ∈WN .

The discrete problem (37) is well-posed if and only if the operator BN is an isomor-
phism from VN to W∗

N . Since we deal with finite dimensional spaces, a necessary
condition for BN being invertible is dimVN = dimW∗

N = dimWN , which we assume
in the definition of the Petrov-Galerkin solution. Hence a neccessary and sufficient
condition for invertibility of BN is injectivity of BN , which can be characterized by

for every 0 6= V ∈ VN there exists W ∈WN such that B[V, W ] 6= 0. (39)

As a direct consequence we can characterize the existence and uniqueness of the
discrete solution.

Theorem 4 (Existence and Uniqueness of the Petrov-Galerkin Solution). Let
VN ⊂ V and WN ⊂W be subspaces of equal dimension.

Then for any f ∈W∗
N there exists a unique Petrov-Galerkin solution UN ∈ VN ,

i. e.,
UN ∈ VN : B[UN , W ] = 〈 f , W 〉 for all W ∈WN ,

if and only if (39) is satisfied.
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Proof. As for the continuous problem (10) the existence and uniqueness of a dis-
crete solution UN for any f ∈W∗

N is equivalent to the invertibility of the operator
BN : VN →W∗

N . The latter is equivalent to (39). ut

Proposition 1. Let VN ⊂ V and WN ⊂W be subspaces of equal dimension.
Then the following statements are equivalent:

(1) The discrete inf-sup condition (38) holds for some βN > 0;

(2) inf
V∈VN

sup
W∈WN

B[V, W ]
‖V‖V‖W‖W

> 0;

(3) inf
W∈WN

sup
V∈VN

B[V, W ]
‖V‖V‖W‖W

> 0;

(4) condition (39) is satisfied;
(5) for every 0 6= W ∈WN there exists V ∈ VN such that B[V, W ] 6= 0.

Proof. Obviously, (1) implies (2) and (3). The inf-sup condition (2) implies (4) and
(3) yields (5). Statement (4) is equivalent to invertibility of BN ∈ L(VN ,W∗

N) and in
the same way (5) is equivalent to invertibility of B∗N ∈ L(WN ,V∗N), whence (4) and
(5) are equivalent. Recalling Theorem 4, statement (4) is equivalent to existence and
uniqueness of a discrete solution for any f ∈W∗

N . Applying Theorem 2 with V,W
replaced by VN ,WN the latter is equivalent with the inf-sup condition on VN ,WN ,
i. e., (4) is equivalent to (1). ut

This proposition allows for different conditions that imply existence and unique-
ness of a discrete solution. Conditions (2)–(5) of Proposition 1 seem to be more
convenient than (1) since we do not have to specify the discrete inf-sup constant βN .
However, the value of this constant is critical, as we shall see from the following
section.

3.1.2 Stability and Quasi-Best Approximation

In this section we investigate the stability and approximation properties of Petrov-
Galerkin solutions. In doing so, we explore properties that are uniform in the dimen-
sion N of the discrete spaces.

We start with the stability properties.

Corollary 4 (Stability of the Discrete Solution). If (38) holds, then the Petrov-
Galerkin solution UN satisfies

‖UN‖V ≤
1

βN
‖ f‖W∗ . (40)

Proof. Use the same arguments as in the proof of Theorem 2 for the stability esti-
mate of the true solution. ut

We next relate the Petrov-Galerkin solution to the best possible approximation to
the true solution u in VN and show that UN is up to a constant as close to u as the
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best approximation. For coercive forms this is Cea’s Lemma [22]. For general B
this follows from the theories of Babuška [8, 9] and Brezzi [17].

The key for the best approximation property of the Petrov-Galerkin solution is
the following relationship, which holds for all conforming discretizations and is
usually referred to as Galerkin orthogonality:

B[u−UN , W ] = 0 for all W ∈WN . (41)

If V = W, B symmetric and coercive, then this means that the error u−UN is
orthogonal to VN = WN in the energy norm |||·|||

Ω
. To prove (41), simply observe

that we are allowed to use any W ∈WN as a test function in the definition of the
continuous solution (10), which gives

B[u, W ] = 〈 f , W 〉 for all W ∈WN .

Then recalling the definition of the Petrov-Galerkin solution and taking the differ-
ence yields (41).

Theorem 5 (Quasi-Best-Approximation Property). Let B : V×V→ R be con-
tinuous and assume (38) is satisfied. Let u be the solution to (10) and let UN ∈ VN
be the Petrov-Galerkin solution.

Then the error u−UN satisfies the bound

‖u−UN‖V ≤
‖B‖
βN

min
V∈VN

‖u−V‖V.

Proof. We give a simplified proof, which follows Babuška [8, 9] and yields the
constant 1+ ‖B‖

βN
. The asserted constant is due to Xu and Zikatanov [78].

Combining (38), (41), and the continuity of B, we derive for all V ∈ VN

βN‖UN−V‖V ≤ sup
W∈WN

B[UN−V, W ]
‖W‖W

= sup
W∈WN

B[u−V, W ]
‖W‖W

≤ ‖B‖‖u−V‖V,

whence

‖UN−V‖V ≤
‖B‖
βN
‖u−V‖V.

Using the triangle inequality yields

‖u−UN‖V ≤ ‖u−V‖V +‖V −UN‖V ≤
(

1+
‖B‖
βN

)
‖u−V‖V

for all V ∈ VN . It just remains to minimize in VN . ut

The last two results reveal the critical role of the discrete inf-sup constant βN .
If a sequence of spaces {(VN ,WN)}N≥1 approximates the pair (V,W) with deteri-
orating βN → 0 as N → ∞, then the sequence of discrete solutions {UN}N≥1 is not
guaranteed to be uniformly bounded. Furthermore, the discrete solutions in general
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approximate the true solution with a reduce rate as compared to the best approxima-
tion within VN . For these reasons a lower bound for the discrete inf-sup constants
becomes highly desirable.

Definition 4 (Stable Discretization). We call a sequence {(VN ,WN)}N≥1 of dis-
crete spaces with inf-sup constants {βN}N≥1 stable if and only if there exists β > 0
such that

inf
N≥1

βN ≥ β > 0.

In contrast to the continuous inf-sup condition where one has to prove

inf
v∈V

sup
w∈W

B[v, w]
‖v‖V‖w‖W

> 0 and inf
w∈W

sup
v∈V

B[v, w]
‖v‖V‖w‖W

> 0

it suffices in the discrete setting to show one

inf
V∈VN

sup
W∈WN

B[V, W ]
‖V‖V‖W‖W

≥ β or inf
W∈WN

sup
V∈VN

B[V, W ]
‖V‖V‖W‖W

≥ β

in order to furnish a uniform lower bound for the discrete inf-sup constant βN ≥ β .
This simplification stems from the assumption dimVN = dimWN < ∞. Allowing for
infinite dimensional spaces VN and WN gives rise to both inf-sup conditions as in
the continuous case.

3.1.3 Computation

In view of Theorem 5, the quality of the Petrov-Galerkin solution depends in partic-
ular on the approximation properties of the discrete spaces. Before embarking on the
construction of suitable spaces, it is useful to see how a Petrov-Galerkin solution can
be computed. This will reveal that the real task is the construction of a suitable basis
and it will give hints towards what affects the cost of a Petrov-Galerkin solution.

Let φ1, . . . ,φN and ψ1, . . . ,ψN be bases of VN and WN , respectively. Writing

UN =
N

∑
j=1

α jφ j,

K = (ki j)i, j=1,...,N with ki j = B[φ j, ψi],
F = (F1, . . . ,FN) with Fi = 〈 f , ψi〉

the definition of the Petrov-Galerkin solution (37) is equivalent to the linear system

α ∈ RN : Kα = F. (42)

Its solution can be computed by various methods from numerical linear algebra. The
method of choice as well as the cost is affected by the properties of the matrix. Of
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course these properties depend on the bilinear form B[·, ·] and on the chosen bases
φ1, . . . ,φN and ψ1, . . . ,ψN .

For example, in the case of the model problem of Sect. 2.2.1, VN = WN and
φi = ψi for i = 1, . . . ,N, the matrix K is symmetric positive definite, irrespective of
the choice of φ1, . . . ,φN . The linear system (42) gets trivial if we take φ1, . . . ,φN to be
the eigenvectors of K. However, finding the eigenvectors of K is a nonlinear problem
and typically more expensive than solving linear systems. On the other hand, taking
the easily available polynomials for φ1, . . . ,φN will lead to full and ill-conditioned
matrices in general.

Finite element bases provide a compromise between these two extremes. The
basis functions can be relatively easily constructed and are locally supported. The
latter leads to sparse matrices for bilinear forms associated with boundary value
problems.

3.2 Finite Element Spaces

The choice, or better the construction, of suitable finite element spaces in the Petrov-
Galerkin discretization is the subject of this section. We shall discuss here only the
spaces of Lagrange elements, emphasizing the case of polynomial degree n = 1.
These spaces are appropriate for our model problem of Sect. 2.2.1.

3.2.1 Simplices and Triangulations

As already mentioned, a key property of finite element bases is that there are locally
supported. This is achieved with the help of a decomposition of the domain of the
boundary value problem. Here we consider triangulations, which are build from
simplices.

Definition 5 (Simplex and Subsimplices). Let d ∈ N. A subset T of Rd is an n-
simplex in Rd if there exist n+1 points z0, . . . ,zn ∈ Rd such that

T = conv hull{z0, . . . ,zn}=

{
n

∑
i=1

λizi | λi ≥ 0 for i = 0, . . . ,d,
n

∑
i=0

λi = 1

}

and z1− z0, . . . ,zn− z0 are linearly independent vectors in Rd . By convention, we
refer to points as 0-simplices. A subset T ′ of T is a (proper) k-subsimplex of T if T ′

is a k-simplex such that

T ′ = conv hull{z′0, . . . ,z′k} ⊂ ∂T

with k < n and z′0, . . . ,z
′
k ∈ {z0, . . . ,zd}.
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The 0-subsimplices are the vertices of a simplex. Moreover, 1-subsimplices
are edges and 2-subsimplices of 3-simplices are faces. We shall refer to (n− 1)-
subsimplices of n-simplices as sides.

Two d-simplices in Rd are always affine equivalent, meaning that one can be
mapped onto the other by an affine bijection. This fact is useful for implementation
and also for the theory that follows. The following lemma fixes a reference sim-
plex and controls the affine bijection in terms of geometric quantities of the generic
simplex.

Lemma 1 (Reference and Generic Simplex). Let the reference simplex in Rd be
defined as

T̂ = conv hull{0,e1, . . . ,ed} ,

where e1, . . . ,ed denotes the canonical basis in Rd . For any d-simplex T in Rd , there
exists a bijective affine map

FT : T̂ → T, x̂ 7→ AT x̂+bT

where AT ∈ Rd×d and bT ∈ Rd . If we define

hT := sup{|x− y| | x,y ∈ T},
hT := sup{2r | Br ⊂ T is a ball of radius r},

hT := |T |1/d ,

there holds

‖AT‖ ≤ hT , ‖A−1
T ‖ ≤

Cd

hT
, |detAT |=

hd
T

d!
. (43)

Proof. See Problem 14.

All three quantities in (43) measure somehow the size of the given simplex. In
view of

hT ≤ hT ≤ hT

they are equivalent up to the following quantity.

Definition 6 (Shape Coefficient). The shape coefficient of a d-simplex T in Rd is
the ratio of the diameter and the inball diameter of T ,

σT :=
hT

hT
.

Of course this notion becomes useful when it refers to many simplices. This
brings us to the notion of triangulation.

Definition 7 (Triangulation). Let Ω ⊂ Rd be a bounded, polyhedral domain. A
finite set T of d-simplices in Rd with

Ω =
⋃

T∈T
T and |Ω |= ∑

T∈T
|T | (44)
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is a triangulation of Ω . We denote the set of all vertices of T by VT and the set of
all sides by ST . The shape coefficient of a triangulation T is the quantity σT :=
maxT∈T σT . A triangulation T is conforming if it satisfies the following property:
if any two simplices T1,T2 ∈T have a nonempty intersection S = T1∩T2 6= /0, then
S is a k-subsimplex of both T1 and T2 with k ∈ {0, . . . ,d}.

A sequence of triangulations {Tk}k≥0 is shape regular if supT∈Tk
σT ≤ C. It

is called quasi-uniform if there exists a constant C such that, for all k, there holds
maxT∈Tk hT ≤C minT∈Tk hT . In both cases we assume tacitly that the constant C is
of moderate size.

The first condition in (44) ensures that T is a covering of the closure of Ω , while
the second requires that there is no overlapping. Notice that the latter is required not
in a set-theoretic but in a measure-theoretic manner. Conformity will turn out to
be a very useful property when constructing bases that are regular across simplex
boundaries.

3.2.2 Lagrange Elements

The purpose of this section is to show that the following finite-dimensional space is
appropriate for our model problem in Sect. 2.2.1:

V(T ) := {v ∈C(Ω) | v|T ∈ Pn(T ) for all T ∈T and v|∂Ω = 0}

where T is a conforming triangulation of Ω ⊂ Rd and Pn(T ) stands for the
space of polynomials with degree ≤ n over T . More precisely, we will show that
V(T ) ⊂ H1

0 (Ω) possesses a basis which is locally supported and easy to imple-
ment, and conclude with approximation properties of V(T ). In what follows, this
will be called the standard discretization of the model problem.

Lemma 2 (H1
0 -Conformity). If T is a conforming triangulation of a bounded,

polyhedral Lipschitz domain Ω ⊂ Rd , then V(T )⊂ H1
0 (Ω).

Proof. Let v ∈ V(T ). We start by checking that v has a weak derivative. For any
test function η ∈C∞

0 (Ω) and i ∈ {1, . . . ,d} there holds∫
Ω

v∂iη = ∑
T∈T

∫
T

v∂iη = ∑
T∈T

∫
T
(∂iv)η + ∑

T∈T
∑

S⊂∂T

∫
S

vηnT,i,

where nT,i is the i-th coordinate of the exterior normal to ∂T . The second sum on
the right hand side vansishes for the following reasons: if S⊂ ∂Ω , then there holds
η|S = 0; otherwise there exists a unique simplex T ′ ∈ T such that S = T ∩T ′ and
nT ′,i = −nT,i. Consequently, w ∈ L∞(Ω) given by w|T = ∂iv|T for all T ∈ T is the
i-th weak derivate of v. In particular, we have v ∈ H1(Ω). In view of the characteri-
zation

H1
0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}
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and the definition of V(T ), we conclude that v ∈ H1
0 (Ω). ut

Next, we construct a suitable basis of

Sn,0(T ) := {v ∈C(Ω) | ∀T ∈T v|T ∈ Pn(T )},

which yields immediately one for V(T ). We first consider the case n = 1 and, in
view of the piecewise structure, start with the following result on P1(T ).

Lemma 3 (Local P1-Basis). Let T = conv hull {z0, . . . ,zd} be a d-simplex in Rd .
The barycentric coordinates λ0, . . . ,λd : T → R on T defined by

T 3 x =
d

∑
i=0

λi(x)zi, and
d

∑
i=0

λi(x) = 1, (45)

are a basis of P1(T ) such that

λi(z j) = δi j for all i, j ∈ {1, . . . ,d}. (46)

For each p ∈ P1(T ), there holds the representation formula

p =
d

∑
i=0

p(zi)λi. (47)

Proof. We first check that the barycentric coordinates λ0, . . . ,λd are well-defined.
To this end, fix x ∈ T for a moment and observe that (45) for λi = λi(x) can be
rewritten as 

| |
z0 · · · zd
| |
1 · · · 1




λ0
λ1
...

λd

=


x1
x2
...
1

 .

If we choose FT in Lemma 1 such that FT (0) = z0, FT (ei) = F(zi) for i = 1, . . . ,d, we
easily see that the above matrix has the same determinant as AT , which is different
from 0.

Consequently, the functions λ0, . . . ,λd are well-defined and, varying x, we see
that λi ∈ P1(T ) for i = 0, . . . ,d. Property (46) is now readily verified and ensures
that the (d +1) functions λ0, . . . ,λd are linearly independent. From the definition of
P1(T ) it is immediate that dimP1(T ) = d + 1, whence λ0, . . . ,λd has to be a basis.
Writing p = ∑

d
i=0 αiλi for p ∈ P1(T ), and using (46), yields (47) and finishes the

proof. ut

Property (46) means that λ0, . . . ,λd is the basis in P1(T ) that is dual to the basis
N1(T ) = {N1, . . . ,Nd} of P1(T )∗ given by p 7→ p(zi) for i = 0, . . . ,d. By the Riesz
representation theorem in L2(T ), we can associate a function λ ∗i ∈ P1(T ) to each
functional Ni such that
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T

λiλ
∗
j = δi j for all i, j ∈ {1, . . . ,d}. (48)

A simple computation using [25, Exercise 4.1.1] reveals that

λ
∗
i =

(1+d)2

|T |
λi−

1+d
|T | ∑

j 6=i
λ j for all i ∈ {1, . . . ,d}.

Since N1(T ) is a basis of P1(T )∗, the triple

(T,P1(T ),N1(T ))

is a finite element; for the definition of a finite element see, e.g., [16, Ch. 3]. The
elements of N1(T ) are its nodal variables and λ0, . . . ,λd its nodal basis.

Theorem 6 (Courant Basis). A function v ∈ S1,0(T ) is characterized by its values
at the nodes N1(T ) := VT . The functions φz, z ∈N1(T ), defined by

φz ∈ S1,0(T ) and φz(y) = δyz for all y ∈N1(T )

are a basis of S1,0(T ) such that, for every v ∈ S1,0(T ),

v = ∑
z∈N1(T )

v(z)φz.

In particular, {φz}z∈N1(T )∩Ω is a basis of S1,0(Ω)∩H1
0 (Ω).

φ
z

z

Fig. 1 Courant basis function φz for an interior vertex z ∈N1(T ).

Proof. Let T1,T2 ∈ T be two distinct simplices such that T1 ∩ T2 6= /0; then S :=
T1∩T2 is a k-subsimplex with 0≤ k < d because T is conforming. Let wi ∈ P1(Ti),
for i = 1,2, be two affine functions with the same nodal values w1(z) = w2(z) at
all vertices z ∈ S. We assert that w1 = w2 on S. Since this is obvious for k = 0, we
consider k > 0, recall that S is isomorphic to the reference simplex T̂k in Rk and
apply Lemma 3 to deduce w1 = w2 on S. This shows that any continuous piecewise
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affine function v ∈ S1,0(T ) can be built by pasting together local affine functions
with the restriction of having the same nodal values, or equivalently to coincide at all
vertices z∈N1(T ). Moreover, v is characterized by its nodal values {v(z)}z∈N1(T ).

Therefore, the functions φz are well-defined for all z ∈N1(T ). In addition, for
all v ∈ S1,0(T ) the function ∑z∈N1(T ) v(z)φz equals v at the nodes, whence they co-
incide everywhere and S1,0(T ) = span {φz}z∈N1(T ). Since {φz}z∈N1(T ) are linearly
independent, they form a basis of S1,0(T ).

Finally, to prove that {φz}z∈N1(T )∩Ω is a basis of S1,0(Ω)∩H1
0 (Ω) we observe

that if v ∈ S1,0(Ω) vanishes at the vertices of a side S ∈S contained in ∂Ω then v
vanishes in S, again as a consequence of Lemma 3. Therefore, v ∈ S1,0(Ω)∩H1

0 (Ω)
if and only if the nodal values v(z) = 0 for all z ∈N1(T )∩∂Ω . ut
Remark 5 (Representation of Courant Basis). The proof of Theorem 6 shows that
the global basis functions are given in terms of local basis functions. More precisely,
if λ T

z denotes the barycentric coordinate of T ∈T associated with the vertex z ∈ T ,
there holds

φz =

{
λ T

z if z ∈ T,

0 otherwise

for any node z ∈N .

We thus now have a basis of V(T ) = S1,0(T )∩H1
0 (Ω) that can be implemented

relatively easily. Its basis functions are locally supported and the corresponding ma-
trix in (42) is sparse in the case of our model problem in Sect. 2.2.1; see Problem
17.

Remark 6 (Dual of Courant Basis). Let vz ∈ N be the valence of z for each node
z ∈N1(T ), namely the number of elements T ∈ T containing z as a vertex. The
discontinuous piecewise linear functions φ ∗z ∈ S1,−1(T ) defined by

φ
∗
z =

1
vz

∑
T3z

(λ T
z )∗ χT for all z ∈N1(T ), (49)

with χT being the characteristic function of T , are (global) dual functions to the
Courant basis {φz}z∈N in that they satisfy∫

Ω

φzφ
∗
y = δyz for all y,z ∈N1(T ). (50)

We briefly comment on the generalization to arbritray polynomial degree n ∈ N.
Given a d-simplex T = conv hull {z0, . . . ,zd} and identifying nodal variables and
nodes, we set

Nn(T ) :=

{
zα =

d+1

∑
i=0

αi

n
zi | α ∈ Nd+1

0 ,
d+1

∑
i=0

αi = n

}
(51)

The number of elements in Nn(T ) coincides with the number of coefficients of
polynomial in Pn(T ). This is necessary for the existence of the corresponding nodal
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basis. The construction, see e.g. [16, Chapt. 3], reveals that also the location of
the nodes plays some role. The latter implies also that restricting Nn(T ) to a k-
subsimplex and transforming to T̂k yields Nn(T̂k). Consequently, the following the-
orem can be proven in the same way as Theorem 6.

Theorem 7 (Lagrange Basis). A function v∈ Sn,0(T ) is characterized by its values
at the nodes Nn(T ) := ∪T∈T Nn(T ). The functions φz, z ∈Nn(T ), defined by

φz ∈ Sn,0(T ) and φz(y) = δyz for all y ∈Nn(T )

are a basis of Sn,0(T ) such that, for every v ∈ Sn,0(T ),

v = ∑
z∈Nn(T )

v(z)φz.

In particular, (φz)z∈Nn(T )∩Ω is a basis of Sn,0(Ω)∩H1
0 (Ω).

Remark 7 (Dual of Lagrange Basis). The construction of local and global piecewise
linear dual functions extends to any polynomial degree n ≥ 1; see Problem 19 for
k = 2. Consequently, there exist discontinuous functions φ ∗z ∈ Sn,−1(T ) such that
suppφ ∗z = suppφz and∫

Ω

φzφ
∗
y = δyz for all y,z ∈Nn(T ). (52)

Remark 8 (Barycentric Coordinates). For linear finite elements the basis functions
on a single element T are the barycentric coordinates on T . The barycentric co-
ordinates play also an important role for higher degree. First we observe that any
point zα ∈ Nn(T ) is determined from the barycentric coordinates 1

n (α1, . . . ,αd).
Secondly, using the (d +1) barycentric coordinates as a local coordinate system on
T is a rather convenient choice for the explicit construction of a local basis on T ;
compare with Problem 18 as well as [63, Sect. 1.4.1] for a more detailed description.
This is one reason that local basis functions are defined in the finite element toolbox
ALBERTA in terms of the barycentric coordinates [63, Sect. 3.5].

3.2.3 Looking Ahead

We close this section with a few comments about fundamental issues of finite ele-
ments that will be addressed later in this survey.

Mesh Construction. The formalism above relies on a conforming mesh T . Its
practical construction is a rather delicate matter, especially if it will be succes-
sively refined as part of an adaptive loop. We study mesh refinement by bisection
in Chap. 4 in any dimension and assess the complexity of such process. This
study involves basic geometry and graph theory as well as combinatorics.

Piecewise Polynomial Interpolation. As established in Theorem 5, the perfor-
mance of the FEM hinges on the quality of piecewise polynomial approxima-
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tion. We discuss this topic in Chap. 5, where we construct a quasi interpolation
operator to approximate rough functions and introduce the concept of mesh op-
timality; Remark 7 will be crucial in this respect. We present an algorithm that
builds quasi-optimal meshes by thresholding for a rather large class of rough
functions. This hints at the potentials of FEM to approximate singular solutions.

A Posteriori Error Analysis. Thresholding assumes to have full access to the
function in question, which is not realistic when dealing with PDE. The missing
item is the design of a posteriori error estimators that extract the desired infor-
mation from the discrete solution rather than the exact one. We present residual
estimators in Chap. 6 and discuss their basic properties. They are instrumental.

Adaptivity. The fact that we learn about the approximation quality via a poste-
riori error estimators rather than directly from the function being approximated
makes the study of AFEM quite different from classical approximation theory.
This interplay between discrete and continuum will permeate the subsequent dis-
cussion in Chap. 7–Chap. 9.

In this survey, particularly when studying a posteriori error estimators and adap-
tivity, we assume that we have the exact Petrov-Galerkin solution U at hand. In
doing this we ignore two important aspects of a practical finite element method: nu-
merical integration and inexact solution of the resulting linear system. We close this
chapter with two remarks concerning these issues.

Remark 9 (Numerical Integration). In contrast to the a priori error analysis of
quadrature [25, Chapter 4.1], its treatment within an a posteriori context is a del-
icate matter, especially if one is not willing to assume regularity a priori and accept
asymptotic results as the mesh size goes to zero. This seems to be largely open.

Remark 10 (Multilevel Solvers). For a hierarchy of quasi-uniform meshes, V-cycle
multigrid and BPX-preconditioned conjugate gradient methods can approximate the
Ritz-Galerkin solution U of our model problem (13) to a desired accuracy with a
number of operations proportional to #T [15, 16]. This, however, entails some re-
strictions on the coefficient matrix AAA. Much less is known for graded meshes such
as those generated by an adaptive method. For graded bisection meshes, we quote
the results of Wu and Chen [77] for the V-cycle multigrid for d = 2,n = 1, and the
recent results of Chen et al. [23] for multigrid methods and multilevel precondition-
ers for d ≥ 2,n ≥ 1: they both show linear complexity in terms of #T . The latter
exploits the geometric properties of bisection grids explained in Chap. 4.

3.3 Problems

Problem 11. Prove Cea’s Lemma: Let B : V×V be a continuous and coercive
form. Let u be the true solution and UN ∈ VN be the Galerkin solution. Then UN
is a quasi-best approximation to u in VN , i. e.,
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‖u−UN‖V ≤
‖B‖
cB

min
V∈VN

‖u−V‖V.

If, in addition, B is symmetric, then UN is the best approximation to u in VN with
respect to the energy norm |||·|||

Ω
, i. e.,

|||u−UN |||Ω = min
V∈VN

|||u−V |||
Ω

and the error in the V-norm can be estimated by

‖u−UN‖V ≤

√
‖B‖
cB

min
V∈VN

‖u−V‖V.

Problem 12. Let {VN ,WN}N∈N be a sequence of nested subspaces of V,W of equal
dimension N, i. e.,

VM ⊂ VN and WM ⊂WN for all M ≤ N,

such that ⋃
N∈N

VN
‖·‖V

= V and
⋃

N∈N
WN

‖·‖W
= W.

Suppose that, for every f ∈W∗, the sequence of discrete Petrov-Galerkin solutions
{UN}N defined by

UN ∈ VN : B[UN , W ] = 〈 f , W 〉 for all W ∈WN

satisfies
lim

N→∞
‖u−UN‖V = 0.

Show that there holds

inf
N∈N

inf
V∈VN

sup
W∈WN

B[V, W ]
‖V‖V‖W‖W

> 0.

Problem 13. Verify that the matrix K in (42) is symmetric positive definite for the
model problem of Sect. 2.2.1, VN = WN and φi = ψi for i = 1, . . . ,N, irrespective of
the choice of φ1, . . . ,φN .

Problem 14. Prove Lemma 1. Start by expressing AT and bT in terms of the vertices
of T .

Problem 15. Prove Lemma 2 for a not necessarily conforming triangulation.

Problem 16. Given a d-simplex T = conv hull {z0, . . . ,zd} in Rd , construct a basis
λ̄0, . . . , λ̄d of P1(T ) such that

λ̄i(z̄ j) = δi j for all i, j ∈ {1, . . . ,d},
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where z̄ j denotes the barycenter of the face opposite to the vertex z j. Does this local
basis also lead to a global one in S1,0(T )?

Problem 17. Determine the support of a basis function φz, z ∈N , in Theorem 6.
Show that, with this basis, the matrix K in (42) is sparse for the model problem in
Sect. 2.2.1.

Problem 18. Express the nodal basis of (T,P2(T ),N2(T )) in terms of barycentric
coordinates.

Problem 19. Derive expressions for the dual functions of the quadratic local La-
grange basis of P2(T ) for each element T ∈ T . Construct a global discontinuous dual
basis φ ∗z ∈ S2,−1(T ) of the global Lagrange basis φz ∈ S2,0(T ) for all z ∈N2(T ).
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4 Mesh Refinement by Bisection

In this section we discuss refinement of a given initial triangulation consisting of
d simplices using bisection, i. e., any selected simplex is divided into two sub-
elements of same size. Refinement by bisection in 2d can be traced back to Sewell
in the early 1970s [66]. In the mid of the 1980s Rivara introduced the longest edge
bisection [61] and Mitchell formulated a recursive algorithm for the newest vertex
bisection [49, 50]. In the beginning of the 1990s Bänsch was the first to present a
generalization of the newest vertex bisection to 3d [10]. A similar approach was
published by Liu and Joe [46] and later on by Arnold et al. [2]. A recursive vari-
ant of the algorithm by Bänsch was derived by Kossaczký [44]. He formulated the
bisection rule for tetrahedra using a local order of their vertices and their element
type. This concept is very convenient for implementation. In addition, it can be gen-
eralized to any space dimension which was done independently by Maubach [47]
and Traxler [72].

Asking for conformity of locally refined meshes has the unalterable consequence
that refinement propagates, i. e., besides the selected elements additional simplices
have to be refined in order to maintain conformity. Although practical experience
clearly suggests that local refinement stays local, the first theoretical foundation
was given by Binev, Dahmen, and DeVore [13] in 2d in 2004. We summarize in this
chapter the generalization to any space dimension by Stevenson [70].

4.1 Subdivision of a Single Simplex

We first describe how a single d-simplex is bisected, along with the concepts of
vertex order and type. We then turn to recurrent bisection of a given initial element
and the problem of shape regularity.

Bisection Rule based on Vertex Order and Type. We identify a simplex T with
the set of its ordered vertices and its type t by

T = {z0, . . . ,zd}t , t ∈ {0, . . . ,d−1}.

Given such a d-simplex T we use the following bisection rule to split it in a unique
fashion and to impose both vertex order and type to its children. The edge z0zd
connecting the first and last vertex of T is the refinement edge of T and its midpoint
z̄ = z0+zd

2 becomes the new vertex. Connecting the new vertex z̄ with the vertices of
T other than z0,zd determines the common side S = {z̄,z1, . . . ,zd−1} shared by the
two children T1,T2 of T . The bisection rule dictates the following vertex order and
type for T1,T2
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T1 := {z0, z̄,z1, . . . ,zt︸ ︷︷ ︸
→

,zt+1, . . . ,zd−1︸ ︷︷ ︸
→

}(t+1)modd ,

T2 := {zd , z̄,z1, . . . ,zt︸ ︷︷ ︸
→

,zd−1, . . . ,zt+1︸ ︷︷ ︸
←

}(t+1)modd ,
(53)

with the convention that arrows point in the direction of increasing indices and
{z1, . . . ,z0}= /0, {zd , . . . ,zd−1}= /0.

In 2d the bisection rule does not depend on the element type and we get for
T = {z0,z1,z2} the two children

T1 = {z0, z̄,z1} and T2 = {z2, z̄,z1}.

As depicted in Fig. 2, the refinement edge of the two children is opposite to the

Fig. 2 Refinement of a single triangle T = {z0,z1,z2} and its reflected triangle TR = {z2,z1,z0}.

new vertex z̄, whence this procedure coincides with the newest vertex bisection for
d = 2. For d ≥ 3 the bisection of an element does depend on its type, and, as we
shall see below, this is important for preserving shape regularity. For instance, in 3d
the children of T = {z0,z1,z2,z3}t are (see Fig. 3)

t = 0 : T1 = {z0, z̄,z1,z2}1 and T2 = {z3, z̄,z2,z1}1,

t = 1 : T1 = {z0, z̄,z1,z2}2 and T2 = {z3, z̄,z1,z2}2,

t = 2 : T1 = {z0, z̄,z1,z2}0 and T2 = {z3, z̄,z1,z2}0.

Note that the vertex labeling of T1 is type-independent, whereas that of T2 is the

Fig. 3 Refinement of a single tetrahedron T of type t. The child T1 in the middle has the same
node ordering regardless of type. In contrast, for the child T2 on the right a triple is appended to
two nodes. The local vertex index is given for these nodes by the t-th component of the triple.

same for type 1 and 2. To account for this fact the vertices z1 and z2 of T are tagged
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(3,2,2) and (2,3,3) in Fig. 3. The type of T then dictates which component of the
triple is used to label the vertex.

Any different labeling of an element’s vertices does not change its geometric
shape but applying the above bisection rule it does change the shape and vertex
order of its two children. This holds true for any relabeling except one. An element
with this special relabeling of vertices is called reflected element. We state next its
precise definition.

Definition 8 (Reflected Element). Given an element T = {z0, · · · ,zd}t , the reflected
element is given by

TR := {zd ,z1, . . . ,zt︸ ︷︷ ︸
→

,zd−1, . . . ,zt+1︸ ︷︷ ︸
←

,z0}t .

Fig. 2 depicts for 2d T = {z0,z1,z2} and TR = {z2,z1,z0}. It shows that the chil-
dren of T and TR are the same. This property extends to d ≥ 3; compare with Prob-
lem 21. Any other relabeling of vertices leads to different shapes of the children, in
fact as many as 1

2 (d +1)!

Recurrent Bisection and Binary Tree. We next turn towards the recurrent bisection
of a given initial simplex T0 = {z0, . . . ,zd}t0 . We let {T1,T2} = BISECT(T ) be a
function that implements the above bisection rule and outputs the two children of
T . The input of BISECT can be T0 or any element of the output from a previous
application of BISECT.

This procedure of recurrent bisection of T0 is associated with an infinite binary
tree F(T0). The nodes T ∈ F(T0) correspond to simplices generated by repeated
application of BISECT. The two successors of a node T are the two children
{T1,T2} = BISECT(T ). Note that F(T0) strongly depends on the vertex order of
T0 and its type t0. Once this is set for T0 the associated binary tree is completely
determined by the bisection rule. Recalling that the children of an element and its
reflected element are the same this gives in total d(d+1)!

2 different binary trees that
can be associated with T0 by the bisection procedure.

The binary tree F(T0) holds full information about the shape, ordering of ver-
tices, type, etc. of any element T that can be generated by recurrent bisection of
T0. Important in this context is the distance of T to T0 within F(T0), which we call
generation.

Definition 9 (Generation). The generation g(T ) of a node/element T ∈ F(T0) is the
number of its ancestors in the tree, or, equivalently, the number of bisections needed
to create T from T0.

Using the notion of generation, some information about T can uniquely be deduced
from g(T ). For instance, for an element T ∈ F(T0), its type is (g(T ) + t0)modd,
and, in view of the definition hT = |T |1/d , its size is

hT = 2−g(T )/dhT0 . (54)
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Shape Regularity. We next analyse the shape coefficients of descendants of a given
simplex T0. A uniform bound on the shape coefficients σT for all T ∈ F(T0) plays a
crucial role in the interpolation estimates derived in Sect. 5.1. When turning towards
shape regularity the dependence of the bisection rule on the element type for d ≥
3 becomes indispensable. The fact that the type t increases by 1 and the vertex
ordering changes with t implies that after d recurrent bisections of T all its edges
are bisected; compare with Problem 20.

We first consider a so-called Kuhn-simplex, i. e., a simplex with (ordered) vertices

zπ
0 = 0, zπ

i :=
i

∑
j=1

eπ( j) for all i = 1, . . . ,d,

where π is a permutation of {1, . . . ,d}. Note, that zπ
d = (1, . . . ,1)T for any permu-

tation π . Therefore, the refinement edge zπ
0 ,zπ

d of any Kuhn-simplex is always the
longest edge. If T0 is a type 0 Kuhn-simplex, recurrent bisection always cuts the
longest edge. This is the key property for obtaining uniform bound on the shape
coefficients [47, 72].

Theorem 8 (Shape Regularity for a Kuhn-Simplex). All 2g descendants of gen-
eration g of a Kuhn-simplex Tπ = {zπ

0 , . . . ,zπ
d}0 are mutually congruent with at most

d different shapes. Moreover, the descendants of generation d are congruent to T0
up to a scaling with factor 1

2 .

In two dimensions, all descendants of a Kuhn-triangle belong to one similarity class;
see Figure 4. Using an affine transformation we conclude from Theorem 8 shape

Fig. 4 Recurrent bisection of a Kuhn-triangle generates only one similarity class.

regularity for all descendants of an arbitrary simplex.

Corollary 5 (Shape Regularity). Let T0 = {z0, . . . ,zd}t be an arbitrary d-simplex.
Then all descendants of T generated by bisection are shape regular, i. e.,

sup
T∈F(T0)

σT = sup
T∈F(T0)

hT

hT
≤C(T0) < ∞.

Proof. Consider first a simplex T0 of type 0 and let T̂0 := {ẑ0, . . . , ẑd}0 be the a
Kuhn-simplex of type 0. From Lemma 1 we know that there exists a bijective affine
mapping F : T̂0→ T0.
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Recurrent refinement by bisection implies that for any T ∈ F(T0) there exists a
unique T̂ ∈ F(T̂0) such that T = F(T̂ ). Since all descendants of T̂0 belong to at most
d similarity classes, this implies that the minimal angle of all descendants of T0 is
uniformly bounded from below by a constant solely depending on the shape of T0.

The same is valid for a simplex T0 of type t ∈ {1, . . . ,d− 1} because its 2d−t

descendants of generation d− t are all of type 0. ut

Note, that for a general d-simplex, the number of similarity classes for the descen-
dants is larger than for a Kuhn d-simplex. This number is 4 for d = 2; compare
Figures 4 and 5.

Fig. 5 Bisection produces at most 4 similarity classes for any initial triangle.

4.2 Mesh Refinement by Bisection

After discussing the refinement of a single simplex, we next turn to the refinement of
a given initial conforming triangulation T0 by bisection. For recurrent refinement of
a single element T0 we are free to choose any order of its vertices and element type.
The requirement to produce conforming refinements of T0 results in restrictions on
local vertex order and type of the elements in T0. We first introduce the binary forest
associated to triangulations generated by bisection and then elaborate on conformity
and basic properties of the refined triangulations.

Master Forest and Forest. We recall that recurrent bisection of an element T0 ∈T0
is uniquely associated with an infinite binary tree F(T0); see Sect. 4.1. In the same
way we can identify all possible refinements of T0 with a master forest of binary
trees.

Definition 10 (Forest and Refinement). Let T0 be an initial conforming triangula-
tion. Then

F = F(T0) :=
⋃

T0∈T0

F(T0).

is the associated master forest of binary trees. For a node T ∈ F so that T ∈ F(T0)
with T0 ∈T0, the generation g(T ) is the generation of T within F(T0).

A subset F ⊂ F is called forest iff

(1) T0 ⊂F ;
(2) all nodes of F \T0 have a predecessor;
(3) all nodes of F have either two successors or none.
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A forest F is called finite, if maxT∈F g(T ) < ∞. The nodes with no successors are
called leaves of F .

Any finite forest F is uniquely associated with a triangulation T = T (F ) of Ω

by defining T to be the set of all leaves in F . Given two finite forests F ,F∗ ∈ F
with associated triangulations T ,T∗ we call T∗ refinement of T iff F ⊂F∗ and
we denote this by T ≤T∗ or, equivalently, T∗ ≥T .

Note that the definition of a finite forest F implies that the leaf nodes cover Ω ,
whence the associated triangulation T (F ) is a partition of Ω . In general, this tri-
angulation is not conforming and it is a priori not clear that conforming refinements
of T0 exist.

Conforming Refinements. We next wonder about the properties of T0 that allow
for conforming refinements. This brings us to the notion of neighboring elements.

Definition 11 (Neighboring Elements). Two elements T1,T2 ∈T are called neigh-
boring elements if they share a common side, namely a full (d−1)-simplex.

In 2d new vertices are always midpoints of edges. Generating the descendants of
generation 2 for all elements of a given conforming triangulation T bisects all edges
of T exactly once and all midpoints of the edges are vertices of the grandchildren.
This implies conformity for d = 2. For d > 2 the situation is completely different.

Assume d = 3 and let T1,T2 ∈ T be two neighboring elements with common
side S = T1∩T2. Denote by E1,E2 their respective refinement edges and assume that
they belong to S. The 3d bisection of T1 leads to a 2d bisection of S with E1 being
the refinement edge of S induced by T1. The same holds true for T2. If E1 6= E2 the
new edges in S created by refinement of T1 and T2 are not identical but do intersect.
This leads to a non-conformity that cannot be cured by any further bisection of S.
The same holds true for d > 3 upon replacing the newly created edge by the newly
created (d−2)-simplex inside the common side. This yields for d ≥ 3 a necessary
condition for constructing a conforming refinement:

Whenever the refinement edges of two neighboring elements are
both on the common side they have to coincide.

For d = 3 this condition has been shown to also be sufficient for obtaining conform-
ing refinements. It is also known that for any initial conforming triangulation T0
there exists a local labeling of the vertices satisfying this condition [10, 46, 2].

For d > 3 the above condition is not known to be sufficient. In addition, for
proving the complexity result in Sect. 4.5 we need stronger assumptions on the
distribution of refinement edges on T0. For the general case d ≥ 2, we therefore
formulate an assumption on the labeling of T0 given by Stevenson that ensures
conformity of any uniform refinement of T0. This condition relies on the notion of
reflected neighbor.

Definition 12 (Reflected Neighbors). Two neighboring elements T = {z0, . . . ,zd}t
and T ′ = {z′0, . . . ,z′d}t are called reflected neighbors iff the ordered vertices of T or
TR coincide exactly with those of T ′ at all but one position.
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We are now in the position to pose the assumptions on the initial triangulation T0.

Assumption 1 (Admissibility of the Initial Grid). Let T0 be a conforming trian-
gulation that fulfills

(1) all elements are of the same type t ∈ {0, . . . ,d−1};
(2) all neighboring elements T = {z0, . . . ,zd}t and T ′ = {z′0, . . . ,z′d}t with common

side S are matching neighbors in the following sense: if z0zd ⊂ S or z′0z′d ⊂ S then
T and T ′ are reflected neighbors; otherwise the pair of neighboring children of
T and T ′ are reflected neighbors.

For instance, the set of the d! Kuhn-simplices of type 0 is a conforming triangulation
of the unit cube in Rd satisfying Assumption 1; see Problem 22. We also refer to
Fig. 6 and Problem 23 to explore this concept for d = 2.

Fig. 6 Matching neighbors in 2d and their descendants of generation 1 and 2. The elements in
the left and middle picture are reflected neighbors. The elements in the rightmost picture are not
reflected neighbours, but the pair of their neighboring children are.

Uniform Refinements. We next state the following important implication of this
structural assumption on T0. The proof is a combination of [72, Sect. 4] and [70,
Theorem 4.3].

Theorem 9 (Uniform Refinement). Let T0 be a conforming triangulation and for
g ∈ N0 denote by

Tg := {T ∈ F(T0) | g(T ) = g}

the uniform refinement of T0 with elements of generation exactly g.
If Assumption 1 is satisfied, then Tg is conforming for any g ∈N0. In addition, if

all elements in T0 are of the same type, then condition (2) is necessary for Tg to be
conforming for all g.

To interpret Theorem 9 we introduce the following useful definition.

Definition 13 (Compatible Bisection). We say that two elements T,T ′ ∈F are com-
patibly divisible if they have the same refinement edge. If all elements sharing an
edge are compatibly divisible, then they form a bisection patch.

Using this notion, Theorem 9 states that two elements T,T ′ ∈ F of the same genera-
tion sharing a common edge are either compatibly divisible, or the refinement of T
does not affect T ′ and vice versa. In the latter case any common edge is neither the
refinement edge of T nor of T ′.
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Let d = 2 and T = {z0,z1,z2}t and T ′ = {z′0,z′1,z′2}t be neighboring elements
with common side S. If z0zd = z′0z′d then T and T ′ are compatibly divisible and thus
form a bisection patch: they can be refined without affecting any other element. If
z1,z′1 ∈ S, then the pair of neighboring children of T and T ′ are compatibly divisible
and thus form a bisection patch; compare with Fig. 6 and Problem 23.

Remark 11 (Discussion of Assumption 1). Assumption 1, given by Stevenson [70],
is weaker than the condition required by Maubach [47] and Traxler [72]: they asked
that all neighboring elements are reflected neighbors. It is an important open ques-
tion whether for any conforming triangulation T0 there exists a suitable labeling of
the element’s vertices such that Assumption 1 is satisfied.

For dimension d = 2 such a result has been shown by Mitchell [49, Theorem 2.9]
as well as Binev et al. [13, Lemma 2.1]. Both proofs are based on graph theory
and they are not constructive. It can be shown that the problem of finding a suitable
labeling of the vertices, the so-called perfect matching, is NP-complete.

For dimension d > 2 this is an open problem. In 3d Kossaczký has constructed a
conforming refinement of any given coarse grid into an initial grid T0 that satisfies
Assumption 1. This construction has been generalized by Stevenson to any space
dimension. [70, Appendix A].

As mentioned above, the conditions of Bänsch [10], Liu and Joe [46], and Arnold
et al. [2] on the initial tetrahedral mesh can be satisfied for any given conform-
ing triangulation. But then it can only be shown that uniform refinements Tg with
gmodd = 0 are conforming [2, 10, 46]. The property that any uniform refinement
Tg for g ∈ N0 is conforming is the key tool for the complexity proof in Sect. 4.5.

We next define the class of conforming refinements of T0 to be

T = {T = T (F ) |F ⊂ F is finite and T (F ) is conforming}.

Then Theorem 9 has two direct consequences.

(a) The class T contains an infinite number of conforming refinements of T0.
(b) There exists a function REFINE(T ,M ) that, given a conforming triangulation

T ∈ T and a subset M ⊂T of marked elements, bisects all simplices in M at
least once, and outputs the smallest conforming refinement T∗ ∈ T of T with
T∗∩M = /0.

Before constructing such function REFINE we analyze some basic properties of
triangulations.

4.3 Basic Properties of Triangulations

In this section we analyze basic properties of refinement by bisection, namely uni-
form shape regularity, convergence of mesh-size functions, and the cardinality of an
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overlay of two triangulations. The results can be easily derived using the structure
of the master forest F.

Uniform Shape Regularity. A direct consequence of Corollary 5 is that refinement
by bisection only produces elements T with shape coefficient σT uniformly bounded
by a constant solely depending on T0; recall Definition 6.

Lemma 4. All elements in F are uniformly shape regular, i. e.,

sup
T∈F

σT = sup
T∈F

hT

hT
≤C(T0) < ∞.

For any conforming mesh T ∈ T, the discrete neighborhood of T ∈T is given by

NT (T ) := {T ′ ∈T | T ′∩T 6= /0}.

Lemma 4 implies that the cardinality of this patch is bounded uniformly and the
measure of all its elements is comparable

max
T∈T

#NT (T )≤C(T0), max
T ′∈NT (T )

|T |
|T ′|
≤C(T0), (55)

with C(T0) only depending on T0. This is usually called local quasi-uniformity.

Convergence of Mesh-Size Functions. Let {Tk}k≥0⊂T be any sequence of nested
refinements, i. e., Tk ≤ Tk+1 for k ≥ 0. This sequence is accompanied by the se-
quence of mesh-size functions {hk}k≥0, defined as hk ∈ L∞(Ω) with

hk |T = hT = |T |1/d for all T ∈Tk.

If the sequence is produced by uniform refinement then we easily obtain from (54)

lim
k→∞
‖hk‖L∞(Ω) = 0. (56)

However, this may not hold when the sequence Tk is generated adaptively, i. e., we
allow for local refinement. Therefore we have to generalize it appropriately. For a
first generalization of (56), we observe that the skeleton Γk :=

⋃
{∂T ∩Ω : T ∈Tk}

of Tk has d-dimensional Lebesgue measure zero. We may thus interpret hk as a
piecewise constant function in L∞(Ω). Moreover, the limiting skeleton Γ∞ :=∪k≥0Γk
has also d-dimensional Lebesgue measure zero. Since, for every x ∈ Ω \Γ∞, the
sequence hk(x) is monotonically decreasing and bounded from below by 0,

h∞(x) := lim
k→∞

hk(x) (57)

is well-defined for x ∈ Ω \Γ∞ and defines a function in L∞(Ω). As the next lemma
shows, the pointwise convergence in (57) holds actually in L∞(Ω). Another gener-
alization of (56), where the limit function is 0, will be provided in Corollary 10 in
Chap. 7.
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Lemma 5 (Uniform Convergence of Mesh-Size Functions). For any sequence
{Tk}k≥0 ⊂ T of nested refinements the corresponding sequence {hk}k≥0 of mesh-
size functions converges uniformly in Ω \Γ∞ to h∞, i. e.,

lim
k→∞
‖hk−h∞‖L∞(Ω) = 0.

Proof. 1 Denote by Fk = F (Tk) the corresponding forest of Tk. From Tk ≤Tk+1
we conclude Fk ⊂Fk+1 and thus the forest

F∞ :=
⋃
k≥0

Fk

is well defined. Note that in general F∞ is infinite.
2 For arbitrary ε > 0, let g = g(ε) ∈ N be the smallest number such that

g≥ log(εd/M)/ log( 1
2 )

with M = max{|T | | T ∈ T0}. Obviously, F̂ := {T ∈ F∞ | g(T ) ≤ g} is a finite
forest and T (F̂ ) is a triangulation of Ω . Since F̂ ⊂F∞ is finite there exists k =
k(ε)≥ 0 with F̂ ⊂Fk.

3 Let T ∈ Tk be any leaf node of Fk and let T ∈ F (T0) for some T0 ∈ T0. To
estimate hk−h∞ on T , we distinguish the following two cases:

Case 1: g(T ) < g. This implies that T is a leaf node of F∞ and thus hk |T = h∞|T
or, equivalently, (hk−h∞)|T = 0.

Case 2: g(T ) ≥ g. Hence, T is generated by at least g bisections of T0. By (54),
the monotonicity of the mesh-size functions, and the choice of g, we obtain

0≤ (hk−h∞)|T ≤ hk |T = hT ≤ 2−g(T )/dhT0 ≤ 2−g/dM1/d ≤ ε.

Combining the two cases we end up with 0 ≤ (hk− h∞)|T ≤ ε for all T ∈ Tk.
Since ε is arbitrary and 0 ≤ h`− h∞ ≤ hk− h∞ in Ω for all ` ≥ k, this finishes the
proof. ut

Overlay of Triangulations. Let T1,T2 ∈ T be conforming triangulations with cor-
responding finite forests F1 and F2. Then F1 ∪F2 is also a finite forest and we
call the unique triangulation

T1⊕T2 := T (F1∪F2) (58)

the overlay of T1 and T2. The name overlay is motivated by printing 2d triangula-
tions T1 and T2 at the same position on two slides. The overlay is then the triangu-
lation that can be seen when putting one slide on top of the other. It turns out that
the overlay is the smallest conforming triangulation with T1,T2 ≤ T1⊕T2 and its
cardinality can be estimated by the ones of T1 and T2.

Lemma 6 (Overlay of Meshes). For T1,T2 ∈ T the overlay T := T1⊕T2 is the
smallest common refinement of T1 and T2 and satisfies



Theory of Adaptive Finite Elements Methods: An Introduction 51

#T ≤ #T1 +#T2−#T0.

Proof. Argue by contradiction and assume that T contains a non-conforming ver-
tex z. That is, there exist T1,T2 ∈ T such that z is a vertex of T1 and z ∈ T2 is not a
vertex of T2. Without loss of generality let T1 ∈ T1. Since T1 is conforming, there
exists a T ′ ∈ T1, T ′ ⊂ T2 such that z is a vertex of T ′. Hence, T ′ is a descendant of
T2 in F1 and thus T2 cannot be a leaf node of F (T ), i.e., T2 /∈ T , a contradiction.
Since the overlay only contains elements from T1 or T2 and is conforming, it is the
smallest conforming refinement.

For T ∈T0 and i = 1,2 we denote by Fi(T )⊂F (T ) the binary trees with root
T corresponding to Ti and let Ti(T ) be the triangulation given by the leaf nodes of
Fi(T ). Since T (T ) ⊂ T1(T )∪T2(T ), we infer that #T (T ) ≤ #T1(T )+ #T2(T ).
We now show that #T (T )≤ #T1(T )+#T2(T )−1 by distinguishing two cases.

Case 1: T1(T )∩T2(T ) 6= /0. Then there exists T ′ ∈T1(T )∩T2(T ), and so T ′ ∈
T (T ). By counting T ′ only once in #(T1(T )∪T2(T )) we get #T (T )≤ #T1(T )+
#T2(T )−1.

Case 2: T1(T )∩T2(T ) = /0. Then there exists T ′ ∈T1(T ) (resp., T ′ ∈T2(T )) so
that T ′ 6∈T (T ), for otherwise T ′ ∈T2(T ) (resp., T ′ ∈T1(T )), thereby contradicting
the assumption. We obtain again #T (T )≤ #T1(T )+#T2(T )−1.

Finally, since Ti =
⋃

T∈T0
Ti(T ), the assertion follows by adding over the ele-

ments in T0. ut

4.4 Refinement Algorithms

We discuss two refinement algorithms based on the bisection rule introduced in
Sect. 4.1. Given a conforming triangulation T and a subset of marked elements
M both variants output the smallest conforming refinement T∗ of T such that all
elements of M are bisected, i. e., T∗∩M = /0.

Iterative Refinement. The basic idea is to first bisect all marked elements in T
leading to a non-conforming grid T∗. In order to restore conformity, we identify all
elements T ∈T containing a so-called irregular (or hanging) node z ∈ T , namely a
vertex z∈VT∗ which is not a vertex of T . These elements are then also scheduled for
refinement. This procedure has to be iterated until all irregular nodes are removed
and this step is called completion. The core of iterative refinement is a routine that
bisects all marked elements in a possibly non-conforming triangulation:

REFINE MARKED(T ,M )
for all T ∈M do
{T0,T1}= BISECT(T );
T := T \{T}∪{T0,T1};

end for
return(T )
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The refinement of a given conforming grid T with a subset of marked elements
M into a new conforming refinement is then executed by

REFINE(T ,M )
while M 6= /0 do

T := REFINE MARKED(T ,M );
M := {T ∈T | T contains an irregular node};

end while
return(T )

We let T∗ be the output of REFINE MARKED(T ,M ) on its first call. Since
non-conforming situations can only be cured by refining all elements containing
an irregular node, the above algorithm outputs the smallest conforming refine-
ment of T∗ if the while-loop terminates. We let g be the maximal generation
of any element in T∗. By Theorem 9 the uniform refinement Tg is conforming,
and by construction it satisfies T∗ ≤ Tg. Since REFINE(T ,M ) only refines ele-
ments to remove non-conforming situations, any intermediate grid T produced by
REFINE MARKED(T ,M ) satisfies T ≤ Tg and this implies that the while loop
in the above algorithm terminates.

We point out that this algorithm works without any assumption on the ordering
of vertices in T0 in 2d and with the less restrictive assumptions in [2, 10, 46] in 3d.
This follows from the fact that Tg with gmodd = 0 is conforming and thus one can
choose a suitable Tg ≥T∗; compare with Remark 11.

The above implementation of iterative refinement is not efficient since there are
too many loops in the completion step. We observe that the bisection of a single
element T enforces the bisection of all elements at its refinement edge. Some of
these elements may also be marked for refinement and will directly be refined. Other
elements have to be refined in the completion step. The algorithm can be speeded
up by directly scheduling those elements for refinement.

This motivates the simultaneous bisection of all elements meeting at the refine-
ment edge. This variant is discussed next.

Recursive Refinement. Let T be a given conforming grid and let T ∈ T be an
element with refinement edge E. We define the refinement patch of T to be

R(T ;T ) := {T ′ ∈T | T ′ ∈T with E ⊂ T ′}.

As mentioned above, a bisection of T enforces a refinement of all elements in
R(T ;T ) for regaining conformity. We could avoid non-conforming situations by
a simultaneous refinement of the whole refinement patch. This is only possible if all
elements in R(T ;T ) are compatibly divisible, i. e., E is the refinement edge of all
T ′ ∈ R(T ;T ) and R(T ;T ) is a bisection patch. This is called the atomic refinement
operation and is depicted in Fig. 7 for d = 2 (top) and d = 3 (bottom).

If there are elements in R(T ;T ) that are not compatibly divisible with T , the
basic idea is to recursively refine these elements first. This builds up the new refine-
ment patch around E that in the end allows for the atomic refinement operation.
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Fig. 7 Atomic refinement operation in 2d (top) and 3d (bottom): The common edge is the refine-
ment edge for all elements.

In 2d, there is one neighbor sharing the refinement edge E in case E is interior.
Either this neighbor is compatibly divisible, or the neighboring child is compatibly
divisible after bisection of the neighbor. If E lies on the boundary, instead, bisection
can be executed directly. Fig. 8 illustrates a situation that requires recursion.
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Fig. 8 Recursive refinement in 2d: Triangles A and B are initially marked for refinement.

In higher dimension there is in general a whole bunch of elements in R(T ;T ).
Since R(T ;T )⊂ NT (T ), (55) implies that the cardinality of R(T ;T ) is uniformly
bounded depending only on T0. Here it may happen that several elements have to be
refined before we can perform the atomic refinement operation. It may also happen
that an element inside the refinement patch has to be refined several times but the
number of bisections is bounded by d− 1; see Lemma 7 below. This lemma also
allows for an elegant formulation of the recursive algorithm.

Lemma 7. Let T0 be a conforming triangulation satisfying Assumption 1 and let
T ∈ T be a conforming refinement.

Then any T ∈T is of locally highest generation in R(T ;T ), i. e.,

g(T ) = max{g(T ′) | T ′ ∈ R(T ;T )}

and T ′ ∈ R(T ;T ) is compatibly divisible with T if and only if g(T ′) = g(T ).
Furthermore, min{g(T ′) | T ′ ∈ R(T ;T )} ≥ g(T )−d +1 and a non-compatibly

divisible neighboring element of T has generation g(T )−1.
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Proof. Denote by E the refinement edge of T and set g := g(T ). The uniform re-
finement Tg+1 of T0 contains the midpoint z̄ of E as a vertex and is a conforming
refinement of T . For any T ′ ∈ R(T ;T ) the new vertex z̄ is an irregular node on
T ′, whence T ′ 6∈ Tg+1. Since Tg+1 is a conforming refinement of T we know that
descendants of T ′ belong to Tg+1 and thus g(T ′)≤ g for all T ′ ∈ R(T ;T ).

If T ′ is compatibly divisible with T , then z̄ is the new vertex of the two children,
which belong to Tg+1; hence, g(T ′) = g. If T ′ is not compatibly divisible with T ,
then z̄ is the new vertex of descendants of one child of T ′, whence g(T ′) < g.

The refinement rule (53) implies that after d recurrent bisections all edges of the
original simplex are bisected (see Problem 20). Consequently, any T ′ ∈ R(T ;T )
has descendants of generation at most g(T ′)+ d that have z̄ as a vertex and belong
to Tg+1. This yields g(T ′)≥ g−d +1.

If T ′ is a non-compatibly divisible neighbor of T , then the refinement rule (53)
implies that the refinement edge of one child T ′′ of T ′ is contained in the common
side of T and T ′. Since Tg+1 is conforming this implies that T and T ′′ are compati-
bly divisible, and thus g(T ′) = g−1. ut

For T ∈ T the recursive refinement of a single element T ∈T now reads:

REFINE RECURSIVE(T ,T )
do forever

get refinement patch R(T ,T );
access T ′ ∈ R(T ,T ) with g(T ′) = min{g(T ′′) | T ′′ ∈ R(T ;T )};
if g(T ′) < g(T ) then

T := REFINE RECURSIVE(T ,T ′);
else

break;
end if

end do
get refinement patch R(T ,T );
for all T ′ ∈ R(T ,T ) do
{T ′0 ,T ′1}= BISECT(T ′);
T := T \{T ′}∪{T ′0 ,T ′1};

end for
return(T )

Lemma 7 implies that only elements T ′ with g(T ′) < g(T ) are not compatibly
divisible with T . Hence, recursion is only applied to elements with g(T ′) < g(T )
and thus the maximal depth of recursion is g(T ) and recursion terminates. Recursive
refinement of an element T ′ may affect other elements of R(T ;T ) with same gener-
ation g(T ′). When the do-loop aborts, all elements in the refinement patch R(T ;T )
are compatibly divisible, and the atomic refinement operation is executed in the for-
loop: all elements T ′ ∈ R(T ;T ) are refined, removed from R(T ;T ), and replaced
by the respective children sharing the refinement edge of T . Those children are all of
generation g(T ′)+1≤ g(T ). Since #R(T ;T )≤C(T0), all elements in R(T ;T ) are
of the same generation g(T ) after a finite number of iterations. Observe that, except
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for T , elements in R(T ;T ) are only refined to avoid a non-conforming situation.
This in summary yields the following result.

Lemma 8 (Recursive Refinement). Let T0 be a conforming triangulation satisfy-
ing Assumption 1 and let T ∈ T be any conforming refinement.

Then, for any T ∈ T a call of REFINE RECURSIVE(T ,T ) terminates and
outputs the smallest conforming refinement T∗ of T where T is bisected. All newly
created elements T ′ ∈T∗ \T satisfy g(T ′)≤ g(T )+1.

Remark 12. Assumption 1 is a sufficient condition for recursion to terminate but it
is not necessary. Such a characterization of recursive bisection is not known. Ob-
viously, termination of the recursion for all elements of T0 is necessary. Practical
experience shows that in 2d this is also sufficient, whereas this is not true in 3d.

We next formulate the algorithm for refining a given conforming grid T with
marked elements M into a new conforming triangulation:

REFINE(T ,M )
for all T ∈M ∩T do

T := REFINE RECURSIVE(T ,T );
end
return(T )

Let T be an element of the input set of marked elements M . Then it may happen
that there is an element T∗ ∈M scheduled prior to T for refinement and so that
the refinement of T∗ enforces the refinement of T , for instance T ∈ R(T ;T∗). In the
bisection step T is replaced by its two children in T and thus T 6∈M ∩T . This
avoids to refine T twice. In addition, since REFINE RECURSIVE(T ,T ) outputs
the smallest refinement such that T is bisected, REFINE(T ,M ) outputs the small-
est conforming refinement T∗ of T with T∗∩M = /0.

Remark 13 (Iterative vs Recursive Refinement). The iterative and recursive variant
of REFINE produce the same output mesh whenever they both terminate. Proposi-
tion 2 in Sect. 4.5 makes use of the recursive refinement algorithm but is also valid
for the iterative variant.

We concluded successful termination of both variants from the fact that the out-
put grid T∗ satisfies T∗ ≤ Tg with g sufficiently large. Therefore, the used argu-
ments do not imply that local refinement stays local. This property is an implication
of Theorem 10 below.

On a first glance, the iterative variant seems to be easier to implement. But it turns
out that handling non-conforming situations can become rather knotty, especially
for d ≥ 3. The implementation of the recursive variant avoids any non-conforming
situation by performing the atomic refinement operation, which, as a consequence,
simplifies the implementation drastically. The drawback of recursive refinement are
stronger assumptions on the distribution of refinement edges on the initial grid.
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4.5 Complexity of Refinement by Bisection

In this section we analyze the cardinality of conforming triangulations produced
by adaptive iterations of the form (4). Assuming that a function REFINE(T ,M )
outputs the smallest conforming refinement of T with all elements in M bisected,
we study a sequence of conforming refinements T0≤T1≤ ·· · ≤Tk ≤ . . . generated
by an iteration of the form

for k ≥ 0 do
determine a suitable subset Mk ⊂Tk;
Tk+1 := REFINE(Tk,Mk);

end

The main result is the following theorem.

Theorem 10 (Complexity of Refinement by Bisection). Let T0 be a conforming
triangulation satisfying Assumption 1.

Then there exists a constant Λ > 0 solely depending on T0, such that for any
K ≥ 0 the conforming triangulation TK produced by the above iteration verifies

#TK−#T0 ≤Λ

K−1

∑
k=0

#Mk.

The proof of this theorem is split into several steps. Before embarking on it we
want to remark that an estimate of the form

#Tk+1−#Tk ≤Λ #Mk (59)

would imply Theorem 10 by summing up over k = 0, . . . ,K− 1. But such a bound
does not hold for refinement by bisection. To see this, consider the initial grid T0

Fig. 9 An example showing that the depth of recursion in is only bounded by the generation of the
selected element. Initial triangulation in the leftmost picture and grids TK for K = 2,4,6. Recursion
has depth K for the refinement of the elements marked with bullets.

depicted as the leftmost picture in Fig. 9. For all elements the boundary edge is
selected as refinement edge and this choice satisfies Assumption 1. Pick up any
even K ∈ N and let
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Mk := {T ∈Tk | 0 ∈ T} for k = 0, . . . ,K−1

and
MK := {T ∈TK | g(T ) = K and 0 6∈ T}.

In Fig. 9 we show the grids TK for K = 2,4,6 and the two elements in MK
are indicated by a bullet. For k ≤ K we only refine marked elements, whence
#Tk+1−#Tk = #Mk = 2 for k = 0 . . . ,K−1. When refining TK into TK+1 we have
to recursively refine elements of generation K−1,K−2, . . . ,0 for both elements in
MK . From this it is easy to verify that #TK+1−#TK = 4K +2. Since #MK = 2 and
K is an arbitrary even number it is obvious that (59) can not hold. On the other hand,

K

∑
k=0

#Tk+1−#Tk = (4K +2)+
K−1

∑
k=0

2 = 6K +2≤ 3(2K +2) = 3
K

∑
k=0

#Mk.

This shows that Theorem 10 holds true for this example.
The proof of the theorem can be heuristically motivated as follows. Consider

the set M :=
⋃K−1

k=0 Mk used to generate the sequence T0 ≤ T1 ≤ ·· · ≤ TK =: T .
Suppose that each element T∗ ∈M is assigned a fixed amount C1 of money to spend
on refined elements in T , i. e., on T ∈ T \T0. Assume further that λ (T,T∗) is the
portion of money spent by T∗ on T . Then it must hold

∑
T∈T \T0

λ (T,T∗)≤C1 for all T∗ ∈M . (60a)

In addition, we suppose that the investment of all elements in M is fair in the sense
that each T ∈T \T0 gets at least a fixed amount C2, whence

∑
T∗∈M

λ (T,T∗)≥C2 for all T ∈T \T0. (60b)

Therefore, summing up (60b) and using the upper bound (60a) we readily obtain

C2(#T −#T0)≤ ∑
T∈T \T0

∑
T∗∈M

λ (T,T∗) = ∑
T∗∈M

∑
T∈T \T0

λ (T,T∗)≤C1 #M ,

which proves the theorem for T and M . In the remainder of this section we de-
sign such an allocation function λ : T ×M → R+ in several steps and prove that
recurrent refinement by bisection yields (60) provided T0 satisfies Assumption 1.

In view of (54), measure and diameter of an element are related to its generation:

D12−g(T ) ≤ |T | and diam(T )≤ D22−g(T )/d for all T ∈ F, (61)

with D1 = min{|T0| | T0 ∈T0} and D2 ≈max{|T0| | T0 ∈T0}. The constant hidden
in ≈ solely depends on the shape regularity of F (and thus on T0).

Suppose now that T ′ is generated by REFINE RECURSIVE(T ,T ). The con-
stant D2 enables us to relate the distance of T ′ to T with its generation g(T ′), where
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dist(T,T ′) = inf
x∈T,x′∈T ′

∣∣x− x′
∣∣ .

Proposition 2 (Distance and Generation). Let T ∈ T, T ∈T and assume that T ′

is created by REFINE RECURSIVE(T ,T ). Then there holds

dist(T,T ′)≤ D2 21/d
g(T )

∑
g=g(T ′)

2−g/d < D2
21/d

1−2−1/d 2−g(T ′)/d .

Proof. We prove dist(T,T ′)≤ D2 21/d
∑

g(T )
g=g(T ′) 2−g/d by induction over the genera-

tion of T . The rightmost inequality is a direct consequence of the geometric sum.
1 If g(T ) = 0, then the refinement patch R(T ;T ) is compatibly divisible thanks to

Lemma 7. Consequently REFINE RECURSIVE(T ,T ) only creates elements T ′

with dist(T,T ′) = 0 and the assertion follows trivially.
2 Let now g(T ) > 0 and assume that the assertion holds for any T ′′ ∈ T with

0≤ g(T ′′) < g(T ). We only need to consider dist(T,T ′) > 0, whence T ′ is created by
a recursive call REFINE RECURSIVE(T ,T ′′) for an element T ′′ ∈ R(T ;T ) that
is not compatibly divisible with T ; thus g(T ′′) < g(T ) by Lemma 7. The induction
hypothesis yields

dist(T ′′,T ′)≤ D2 21/d
g(T ′′)

∑
g=g(T ′)

2−g/d .

Since T ′′ ∈ R(T ,T ), and so T ′′ contains the refinement edge of T , we realize that
dist(T ′′,T ) = 0. Combining the last estimate with (61), we deduce

dist(T,T ′)≤ dist(T ′′,T ′)+diam(T ′′)≤ D2 21/d
g(T ′′)

∑
g=g(T ′)

2−g/d +D2 2−g(T ′′)/d

= D2 21/d
g(T ′′)+1

∑
g=g(T ′)

2−g/d ≤ D2 21/d
g(T )

∑
g=g(T ′)

2−g/d ,

where we have used g(T ′′) < g(T ) in the last step. This finishes the proof. ut

We next construct the allocation function λ . The construction is based on two
sequences {a(`)}∞

`=−1,{b(`)}∞
`=0 ⊂ R+ of positive numbers satisfying

∑
`≥−1

a(`) = A < ∞, ∑
`≥0

2−`/d b(`) = B < ∞, inf
`≥1

b(`)a(`) = c∗ > 0,

and b(0)≥ 1. Valid instances are a(`) = (`+2)−2 and b(`) = 2`/(d+1).
With these settings we are prepared to define λ : T ×M → R+ by

λ (T,T∗) :=

{
a(g(T∗)−g(T )), dist(T,T∗) < D3 B2−g(T )/d and g(T )≤ g(T∗)+1
0, else,
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where D3 := D2
(
1 + 21/d(1− 2−1/d)−1

)
. Therefore, the investment of money by

T∗ ∈M is restricted to cells T that are sufficiently close and are of generation
g(T ) ≤ g(T∗)+ 1. Only elements of such generation can be created during refine-
ment of T∗ according to Lemma 7.

The following lemma shows that the total amount of money spend by this allo-
cation function per marked element is bounded.

Lemma 9 (Upper Bound). There exists a constant C1 > 0 only depending on T0
such that λ satisfies (60a), i. e.,

∑
T∈T \T0

λ (T,T∗)≤C1 for all T∗ ∈M .

Proof. 1 Given T∗ ∈M we set g∗= g(T∗) and we let 0≤ g≤ g∗+1 be a generation
of interest in the definition of λ . We claim that for such g the cardinality of the set

T (T∗,g) = {T ∈T | dist(T,T∗) < D3 B2−g/d and g(T ) = g}

is uniformly bounded, i. e., #T (T∗,g)≤C with C solely depending on D1,D2,D3,B.
From (61) we learn that diam(T∗) ≤ D22−g∗/d ≤ 2D22−(g∗+1)/d ≤ 2D22−g/d

as well as diam(T ) ≤ D22−g/d for any T ∈ T (T∗,g). Hence, all elements of
the set T (T∗,g) lie inside a ball centered at the barycenter of T∗ with radius
(D3B+3D2)2−g/d . Again relying on (61) we thus conclude

#T (T∗,g)D12−g ≤ ∑
T∈T (T∗,g)

|T | ≤ c(d)(D3B+3D2)d2−g,

whence #T (T∗,g)≤ c(d)D−1
1 (D3B+3D2)d =: C.

2 Accounting only for non-zero contributions λ (T,T∗) we deduce

∑
T∈T \T0

λ (T,T∗) =
g∗+1

∑
g=0

∑
T∈T (T∗,g)

a(g∗−g)≤C
∞

∑
`=−1

a(`) = CA =: C1,

which is the desired upper bound. ut

The definition of λ also implies that each refined element receives a fixed amount
of money.

Lemma 10 (Lower Bound). There exists a constant C2 > 0 only depending on T0
such that λ satisfies (60b), i. e.,

∑
T∗∈M

λ (T,T∗)≥C2 for all T ∈T \T0.

Proof. 1 Fix an arbitrary T0 ∈T \T0. Then there is an iteration count 1≤ k0 ≤ K
such that T0 ∈ Tk0 and T0 /∈ Tk0−1. Therefore there exists an T1 ∈Mk0−1 ⊂M
such that T0 is generated during REFINE RECURSIVE(Tk0−1,T1). Iterating this
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process we construct a sequence {Tj}J
j=1 ⊂M with corresponding iteration counts

{k j}J
j=1 such that Tj is created by REFINE RECURSIVE(Tk j−1,Tj+1). The se-

quence is finite since the iteration counts are strictly decreasing and thus kJ = 0 for
some J > 0, or equivalently TJ ∈T0.

Since Tj is created during refinement of Tj+1 we infer from Lemma 8 that

g(Tj+1)≥ g(Tj)−1.

Accordingly, g(Tj+1) can decrease the previous value of g(Tj) at most by 1. Since
g(TJ) = 0 there exists a smallest value s such that g(Ts) = g(T0)− 1. Note that for
j = 1, . . . ,s we have λ (T0,Tj) > 0 if dist(T0,Tj)≤ D3Bg−g(T0)/d .
2 We next estimate the distance dist(T0,Tj). For 1≤ j ≤ s and `≥ 0 we define the

set
T (T0, `, j) := {T ∈ {T0, . . . ,Tj−1} | g(T ) = g(T0)+ `}

and denote by m(`, j) its cardinality. The triangle inequality combined with an in-
duction argument yields

dist(T0,Tj)≤ dist(T0,T1)+diam(T1)+dist(T1,Tj)

≤
j

∑
i=1

dist(Ti−1,Ti)+
j−1

∑
i=1

diam(Ti).

We apply Proposition 2 for the terms of the first sum and (61) for the terms of the
second sum to obtain

dist(T0,Tj) < D2
21/d

1−2−1/d

j

∑
i=1

2−g(Ti−1)/d +D2

j−1

∑
i=1

2−g(Ti)/d

= D2

(
1+

21/d

1−2−1/d

)
j−1

∑
i=0

2−g(Ti)/d

= D3

∞

∑
`=0

m(`, j)2−(g(T0)+`)/d

= D32−g(T0)/d
∞

∑
`=0

m(`, j)2−`/d .

For establishing the lower bound we distinguish two cases depending on the size of
m(`,s). This is done next.

3 Case 1: m(`,s)≤ b(`) for all `≥ 0. From this we conclude

dist(T0,Ts) < D32−g(T0)/d
∞

∑
`=0

b(`)2−`/d = D3B2−g(T0)/d

and the definition of λ then readily implies
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∑
T∗∈M

λ (T0,T∗)≥ λ (T0,Ts) = a(g(Ts)−g(T0)) = a(−1) > 0.

4 Case 2: There exists ` ≥ 0 such that m(`,s) > b(`). For each of these `’s there
exists a smallest j = j(`) such that m(`, j(`)) > b(`). We let `∗ be the index ` that
gives rise to the smallest j(`), and set j∗ = j(`∗). Consequently

m(`, j∗−1)≤ b(`) for all `≥ 0 and m(`∗, j∗) > b(`∗).

As in Case 1 we see dist(T0,Ti) < D3B2−g(T0)/d for all i≤ j∗−1, or equivalently

dist(T0,Ti) < D3B2−g(T0)/d for all Ti ∈T (T0, `, j∗).

We next show that the elements in T (T0, `
∗, j∗) spend enough money on T0. We

first consider `∗ = 0 and note that T0 ∈ T (T0,0, j∗). Since m(0, j∗) > b(0) ≥ 1 we
discover j∗ ≥ 2. Hence, there is an Ti ∈T (T0,0, j∗)∩M , which yields the estimate

∑
T∗∈M

λ (T0,T∗)≥ λ (T0,Ti) = a(g(Ti)−g(T0)) = a(0) > 0.

For `∗> 0 we see that T0 6∈T (T0, `
∗, j∗), whence T (T0, `

∗, j∗)⊂M . In addition,
λ (T0,Ti) = a(`∗) for all Ti ∈T (T0, `

∗, j∗). From this we conclude

∑
T∗∈M

λ (T0,T∗)≥ ∑
T∗∈T (T0,`∗, j∗)

λ (T0,T∗) = m(`∗, j∗)a(`∗)

> b(`∗)a(`∗)≥ inf
`≥1

b(`)a(`) = c∗ > 0.

5 In summary we have proved the assertion since for any T0 ∈T \T0

∑
T∗∈M

λ (T0,T∗)≥min{a(−1),a(0),c∗}=: C2 > 0. ut

Lemmas 9 and 10 show that the allocation function λ satisfies (60), which implies
Theorem 10.

Remark 14 (Several Bisections). In practice, one often likes to bisect selected ele-
ments several times, for instance each marked element is scheduled for b≥ 1 bisec-
tions. This can be done by assigning the number b(T ) = b of bisections that have to
be executed for each marked element T . If T is bisected then we assign (b(T )−1)
as the number of pending bisections to its children and the set of marked elements
is M := {T ∈T | b(T ) > 0}.

To show the complexity estimate when REFINE performs b > 1 bisections, the
set Mk is to be understood as a sequence of single bisections recorded in sets
{Mk( j)}b

j=1, which belong to intermediate triangulations between Tk and Tk+1

with #Mk( j)≤ 2 j−1#Mk, j = 1, . . . ,b. Then we also obtain Theorem 10 because
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b

∑
j=1

#Mk( j)≤
b

∑
j=1

2 j−1#Mk = (2b−1)#Mk.

Remark 15 (Optimal Constant). Trying to trace the value of the constant Λ one re-
alizes that Λ becomes rather large since it depends via C1 and C2 on the constants
A,B,c∗. Experiments suggest that Λ ≈ 14 in 2d and Λ ≈ 180 in 3d when T0 is
the initial triangulation of the d-dimension cube (0,1)d build from the d! Kuhn-
simplices of type 0. According to Problem 22, T0 satisfies Assumption 1.

There is an interesting connection to a result by Atalay and Mount that can be
formulated as follows [3]: there exists a constant Cd ≤ 3dd! such that the smallest
conforming refinement T∗ ∈T of any non-conforming refinement T of T0 satisfies

#T∗ ≤Cd#T .

For 2d the optimal constant is shown to be C2 = 14 and the constant C3 = 162
for d = 3 is quite close to the constant observed in experiments. The agreement
between theory and experiments for 2d is quite exiting, but nevertheless the estimate
by Atalay and Mount cannot be used to show Theorem 10.

4.6 Problems

Problem 20. Show that after d recurrent bisections of a simplex T all edges of T
are bisected exactly once. To this end, let first T = {z0, . . . ,zd}0 be of type 0 and
show by induction that any sub-simplex T ′ of T with generation t = g < d has the
structure

T ′ =
{

zk0
, z̄t , z̄t−1 , . . . , z̄1 ,zk1

,zk2
, . . . ,zkd−t

}
t
,

where z̄i are the new vertices of the bisection step i, i = 1, . . . , t, and k0, . . . ,kd−t
are consecutive natural numbers, for instance 0,1,2, . . . ,d− 1 or d,d− 1, . . . ,1 for
t = 1. Then generalize the claim to a simplex T of type t ∈ {0, . . . ,d−1}.

Problem 21. Show that the output of BISECT(T ) and BISECT(TR) is the same,
i. e., the children of T and its reflected element TR are identical.

Problem 22. Show that the set of the d! Kuhn-simplices of type 0 is a conforming
triangulation of the unit cube (0,1)d ⊂ Rd satisfying Assumption 1.

Problem 23. Let d = 2 and T = {z0,z1,z2}t ,T ′ = {z′0,z′1,z′2}t be neighboring ele-
ments with common side S = T ∩T ′. Show that

(a) T and T ′ are reflected neighbors if and only if z0z2 = z′0z′2 or z1 = z′1.
(b) If T and T ′ are reflected neighbors, then so are their neighboring children.
(c) If z1 = z′2 and z2 = z′1, then T and T ′ are not reflected neighbors but their neigh-

boring children are.
(d) If S = z0z2 = z′0z′2 or z1,z′1 ∈ S, then T and T ′ are matching neighbors.
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5 Piecewise Polynomial Approximation

The numerical solution of a boundary value problem may be seen as a special ap-
proximation problem where the target function is not given explicitly but implicitly.
Theorem 5 shows that the error of a Petrov-Galerkin solution of a stable discretiza-
tion is dictated by the best approximation from the discrete space. In this chapter
we investigate approximation properties of continuous piecewise polynomials, the
standard discretization for the model problem in Sect. 2.2.1. We do not strive for
completeness but rather want to provide some background and motivation for the
successive chapters. To this end, we depart from classical finite element approxima-
tion and end up with a result on nonlinear or adaptive approximation.

For more information about nonlinear and constructive approximation, we refer
to the survey [28] and the book [29].

5.1 Quasi-Interpolation

We start with a brief discussion on piecewise polynomial interpolation of rough
functions, namely those without point values as we expect H1-functions to be. This
leads to the concept of quasi-interpolation and to a priori error estimates for the
standard discretization of our model problem in Sect. 2.2.1.

Using the Lagrange basis {φz}z∈Nn(T ) ⊂ Sn,0(T ) from Theorem 7 we have for
any v ∈ Sn,0(T ) the representation v = ∑z∈Nn(T ) v(z)φz. This may suggest to use
for given v the Lagrange interpolant

IT v(x) := ∑
z∈Nn(T )

v(z)φz(x). (62)

However, this operator requires that point values of v are well-defined. If v∈W s
p(Ω),

this entails the condition sob(W s
p) > 0, which in turn requires regularity beyond the

trial space H1
0 (Ω) when d ≥ 2.

Quasi-interpolants, like those in Clément [26] or Scott-Zhang [65], replace v(z)
in (62) by a suitable local average and so are well-defined also for rough functions,
e.g. from H1

0 (Ω). For any conforming refinement T ≥ T0 of T0, the averaging
process extends beyond nodes and so brings up the discrete neigborhood

NT (T ) := {T ′ ∈T | T ′∩T 6= /0}

for each element T ∈T along with the uniform properties (55), namely,

max
T∈T

#NT (T )≤C(T0), max
T ′∈NT (T )

|T |
|T ′|
≤C(T0),

where C(T0) depends only on the shape coefficient of T0. We shall make use of the
following estimate of the local interpolation error; see [16, 65].
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Proposition 3 (Local Error Estimate for Quasi-Interpolant). Let s be the regu-
larity index with 0≤ s≤ n+1, and 1≤ p≤ ∞ be the integrability index.
(a) There exists an operator IT : L1(Ω)→ Sn,0(T ) such that for all T ∈T we have

‖Dt(v− IT v)‖Lq(T ) . h
sob(W s

p)−sob(W t
q)

T ‖Dsv‖Lp(NT (T )) (63)

where 0≤ t ≤ s, 1≤ q≤ ∞ are such that sob(W s
p) > sob(W t

q). The hidden constant
depends on the shape coefficient of T0 and d.
(b) There exists an operator IT : W 1

1 (Ω)→ Sn,0(T ) satisfying (63) for s ≥ 1 and,
in addition, if v ∈W 1

1 (Ω) has a vanishing trace on ∂Ω , then so does IT v.
Both operators are invariant in Sn,0(T ), namely IT V = V for all V ∈ Sn,0(T ).

Proof. We sketch the proof; see [16, 65] for details. Recall that {φz}z∈Nn(T ) is the
global Lagrange basis of Sn,0(T ) and {φ ∗z }z∈Nn(T ) is the global dual basis and,
according to Remark 7, suppφ ∗z = suppφz for all z ∈Nn(T ). We thus define IT :
L1(Ω)→ Sn,0(T ) to be

IT v = ∑
z∈Nn(T )

〈v, φ
∗
z 〉φz,

and observe that by construction this operator is invariant in Sn,0(T ), namely,

IT P = P for all P ∈ Sn,0(T ).

In particular, the averaging process giving rise to the values of IT v for each element
T ∈ T takes place in the neighborhood NT (T ), whence we also deduce the local
invariance

IT P|T = P for all P ∈ Pn(NT (T ))

as well as the local stability estimate

‖IT v‖Lq(T ) . ‖v‖Lq(NT (T )).

We thus may write

v− IT v|T = (v−P)− IT (v−P)|T for all T ∈T ,

where P ∈ Ps−1 is arbitrary. It suffices now to prove (63) in the reference element
T̂ and scale back and forth via Lemma 1; the definition (5) of Sobolev number
accounts precisely for this scaling. We keep the notation T for T̂ , apply the inverse
estimate for Pn-polynomials ‖Dt(IT v)‖Lq(T ) . ‖IT v‖Lq(T ) to v−P instead of v, and
use the above local stability estimate, to infer that

‖Dt(v− IT v)‖Lq(T ) . ‖v−P‖W t
q(NT (T )) . ‖v−P‖W s

p(NT (T )).

The last inequality is a consequence W s
p(NT (T ))⊂W t

q(NT (T )) because sob(W s
p) >

sob(W t
q). Estimate (63) now follows from the Bramble-Hilbert lemma [16, Lemma

4.3.8], [25, Theorem 3.1.1]



Theory of Adaptive Finite Elements Methods: An Introduction 65

inf
P∈Ps−1(NT (T ))

‖v−P‖W s
p(NT (T )) . ‖Dsv‖Lp(NT (T )). (64)

This proves (a). To show (b) we modify the averaging process for boundary nodes
and define a set of dual functions with respect to an L2-scalar product over (d−1)-
subsimplices contained on ∂Ω ; see again [16, 65] for details. This retains the in-
variance property of IT on Sn,0(T ) and guarantees that IT v has a zero trace if
v ∈W 1

1 (Ω) does. Hence, the same argument as above applies and (63) follows. ut

Remark 16 (Sobolev Numbers). We cannot expect (63) to be valid if sob(W s
p) =

sob(W t
q) since this may not imply W s

p(Ω) ⊂ W t
q(Ω); recall the counterexample

W s
p(Ω) =W 1

d (Ω) and W t
q(Ω) = L∞(Ω) of Sect. 2.1.1. However, equality of Sobolev

numbers is allowed in (63) as long as the space embedding is valid.

Remark 17 (Fractional Regularity). We observe that (63) does not require the regu-
larity indices t and s to be integer. The proof follows the same lines but replaces the
polynomial degree s−1 by the greatest integer smaller that s; the generalization of
(64) can be taken from [33].

Remark 18 (Local Error Estimate for Lagrange Interpolant). Let the regularity in-
dex s and integrability index 1 ≤ p ≤ ∞ satisfy s− d/p > 0. This implies that
sob(W s

p) > sob(L∞), whence W s
p(Ω)⊂C(Ω) and the Lagrange interpolation opera-

tor IT : W s
p(Ω)→ Sn,0(T ) is well defined and satisfies the fully local error estimate

‖Dt(v− IT v)‖Lq(T ) . h
sob(W s

p)−sob(W t
q)

T ‖Dsv‖Lp(T ), (65)

provided 0≤ t ≤ s, 1≤ q≤ ∞ are such that sob(W s
p) > sob(W t

q). We point out that
NT (T ) in (63) is now replaced by T in (65). We also remark that if v vanishes on ∂Ω

so does IT v. The proof of (65) proceeds along the same lines as that of Proposition
3 except that the nodal evaluation does not extend beyond the element T ∈ T and
the inverse and stability estimates over the reference element are replaced by

‖Dt IT v‖Lq(T̂ ) . ‖IT v‖Lq(T̂ ) . ‖v‖L∞(T̂ ) . ‖v‖W s
p(T̂ ).

Remark 19 (Boundary values). The procedure described at the end of the proof of
Proposition 3 can be used to interpolate functions with boundary values different
from zero while retaining invariance over the finite element space. We refer to [16,
65] for details.

Remark 20 (Localized Estimate). Suppose that v ∈W 1
1 (Ω) happens to be a piece-

wise polynomial of degree ≤ n on a subdomain Ω∗ of Ω . Let ω be a connected
component of Ω\Ω∗ and let the quasi-interpolant IT v preserve the boundary values
of v on ∂ω , as indicated in Remark 19. If we repeat this construction for each con-
nected component ω of Ω\Ω∗ and define IT v = v in Ω∗, then IT v ∈ Sn,0(T ) and
we deduce the localized estimate for all 1≤ p≤ ∞

∑
T⊂ω

h−2
T ‖v− IT v‖p

Lp(T ) +h−2+2/p
T ‖v− IT v‖p

Lp(∂T ) . ‖∇v‖p
Lp(ω). (66)
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This property will be crucial in Chap. 9 to prove quasi-optimality of AFEM.

The local interpolation error estimate in Proposition 3 implies a global one. The
latter will be discussed as an upper bound for the error of the finite element solution
in the next section.

5.2 A Priori Error Analysis

Combining Theorem 5 with Proposition 3 we derive a so-called a priori error esti-
mate, which bounds the error of the finite element solution in terms of the mesh-size
function and regularity of the exact solution beyond H1(Ω). We present a slightly
more general variant than usual. This will help in the successive discussion on error
reduction.

Theorem 11 (A Priori Error Estimate). Let 1 ≤ s ≤ n + 1,1 ≤ p ≤ 2, and let
the solution u of the model problem (13) satisfy u ∈W s

p(Ω) with r := sob(W s
p)−

sob(H1) > 0. Let U ∈ V(T ) = Sn,0(T )∩H1
0 (Ω) be the corresponding discrete

solution. If h : Ω → R denotes the piecewise constant mesh density function, then

‖∇(u−U)‖L2(Ω) .
α2

α1
‖hrDsu‖Lp(Ω). (67)

The hidden constant depends on shape coefficient of T0 and the dimension d.

Proof. Theorem 5 and Proposition 3 yield

‖∇(u−U)‖2
L2(Ω) .

α2

α1
‖∇(u− IT u)‖2

L2(Ω) .
α2

α1
∑

T∈T
h2r

T ‖Dsu‖2
Lp(NT (T )).

In order to sum up the right-hand side we need to accumulate in `p rather than `2.
We recall the elementary property of series ∑n an ≤ (∑n aq

n)1/q for 0 < q ≤ 1. We
take q = p/2 and apply this property, in conjunction with (55), to arrive at

|u− IT u|2H1(Ω) .

(
∑

T∈T
hrp

T ‖D
su‖p

Lp(NT (T ))

) 2
p

.

(∫
Ω

h(x)rp |Dsu(x)|p dx
) 2

p

.

This is the asserted estimate (67). ut

Notice that in Theorem 11 the exploitable number of derivatives of the exact
solution is limited by the polynomial degree

1≤ s≤ 1+n.

Moreover, decreasing the mesh-size function reduces the upper bound (67). The
reduction rate is dictated by the difference of the Sobolev numbers
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r = sob(W s
p)− sob(H1),

and is thus sensitive to the integrability of the relevant derivatives in both left and
right-hand sides of (67). The best rate is obtained for integrability index p = 2,
which coincides with the integrability of the error notion.

Relying solely on decreasing of the mesh-size function, and thus ignoring the
local distribution of the derivative Dsu of the exact solution u, leads to uniform
refinement or quasi-uniform meshes. The specialization of Theorem 11 to this case
reads as follows:

Corollary 6 (Quasi-Uniform Meshes). Let 1≤ s≤ n+1, and let the solution u of
the model problem (13) satisfy u ∈ Hs(Ω). Let TN be a quasi-uniform partition of
Ω with N interior nodes and let UN ∈V(TN) be the discrete solution corresponding
to the model problem (13). Then

‖∇(u−UN)‖L2(Ω) .
α2

α1
|u|Hs(Ω)N

−(s−1)/d . (68)

Proof. Quasi-uniformity of TN implies

max
T∈TN

hd
T ≤ max

T∈TN
h

d
T . min

T∈TN
hT

d ≤ 1
N ∑

T∈TN

hd
T =
|Ω |
N

Since r = (s−d/2)− (1−d/2) = s−1, the assertion follows (67). ut

A simple consequence of (68), under full regularity u ∈Hn+1(Ω) is the maximal
decay rate in terms of degrees of freedom

‖∇(u−UN)‖L2(Ω) .
α2

α1
|u|Hn+1(Ω)N

−n/d . (69)

One may wonder whether (68) is sharp whenever s < n+1. The following example
addresses this question.

Example 1 (Corner Singularity). We consider the Dirichlet problem for −∆u = f ,
for which α1 = α2 = 1, with exact solution (in polar coordinates)

u(r,θ) = r
2
3 sin(2θ/3)− r2/4,

on an L-shaped domain Ω ; this function satisfies u ∈ Hs(Ω) for s < 5/3. Recall
that even though s is fractional, the error estimates are still valid; see Remark 17. In
particular, (68) can be derived by space interpolation between H1(Ω) and Hn+1(Ω).
In Figure 1 we depict the sequence of uniform meshes, for which N ≈ h−2, h being
the mesh-size. In Table 1 we report the order of convergence for polynomial degrees
n = 1,2,3. The asymptotic rate is about h2/3, or equivalently N−1/3, regardless of n
and is consistent with the estimate (68). This indicates that (68) is sharp.

The question arises whether the rate N−1/3 in Example 1 is just a consequence
of uniform refinement or unavoidable. It is important to realize that u 6∈ Hs(Ω) for
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Fig. 10 Sequence of uniform meshes for L-shaped domain Ω

h linear (n = 1) quadratic (n = 2) cubic (n = 3)
1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 0.66 0.67 0.67

Table 1 The asymptotic rate of convergence is about h2/3, or equivalently N−1/3, irrespective of
the polynomial degree n as predicted by (68).

s ≥ 5/3 and thus (68) is not applicable. However, the problem is not that second
order derivatives of u do not exist but rather that they are not square-integrable. In
particular, it is true that u∈W 2

p (Ω) if 1≤ p < 3/2. We therefore may apply Theorem
11 with, e.g., n = 1, s = 2, and p ∈ [1,3/2) and then ask whether the structure of
(67) can be exploited, e.g., by compensating the local behavior of Dsu with the local
mesh-size h. If u is assumed to be known, this enterprise naturally leads to meshes
adapted to u that may be graded. We discuss this possibility in Sect. 5.3 and propose
a condition that should be satisfied by these meshes.

5.3 Principle of Error Equidistribution

For the model problem and its standard discretization, Theorem 5 and the consider-
ations at the end of Sect. 5.2 suggest the optimization problem:

Given a function u ∈ H1(Ω) and an integer N > 0 find conditions for a
shape regular mesh T to minimize the error |u− IT u|H1(Ω) subject to
the constraint that the number of degrees of freedom does not exceed N.

In the framework of Chap. 4 this becomes a discrete optimization problem. Here we
consider a simplified setting and, similar to Babuška and Rheinboldt [5], invoke a
continuous model:

• The dimension is d = 2 and the regularity of u∈C2(Ω)∩W 2
p (Ω) with 1 < p≤ 2;

• There exists a C1 function h : Ω → R, a mesh density function, with the prop-
erty that h(x) is equivalent to hT for all T ∈ T with equivalence constants only
depending on shape regularity (thus on the shape coefficient of T0);
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• The number of degrees of freedom and local mesh-size are related through the
relation

N =
∫

Ω

dx
h(x)2 .

• The mesh T is sufficiently fine so that D2u is essentially constant within each
element T ∈T ;

• The error is given by the formula(∫
Ω

h(x)2(p−1) |D2u(x)|p dx
) 2

p

.

A few comments about this model are in order. The first condition is motivated by
the subsequent discussion and avoids dealing with Besov spaces with integrability
index p < 1; in particular, all corner singularities for d = 2 are of the form u(x)≈ |x|γ
and satisfy u ∈ C2(Ω)∩W 2

p (Ω) for some p > 1. The second assumption is quite
realistic since shape regularity is sufficient for the existence of a C∞ mesh density
with the property Dth≈ h1−t ; see Nochetto et al. [57]. The third condition is based
on the heuristics that the number of elements per unit of area is about h(x)−2. The
fourth assumption can be rephrased as follows:

∫
T |D2u|p ≈ h2

T |D2u(xT )|p where xT
is the barycenter of T ∈ T . Finally, the fifth assumption replaces the error by an
upper bound. In fact, if IT is the Lagrange interpolation operator, we can use the
local interpolation estimates (65) to write

|u− IT u|H1(T ) . h
sob(W 2

p )−sob(H1)
T |u|W 2

p (T ) . h
2− 2

p
T |u|W 2

p (T ) for all T ∈T

and then argue as in the proof of Theorem 11 to derive the upper bound

‖∇(u−U)|2L2(Ω) .

(∫
Ω

h(x)2(p−1) |D2u(x)|p dx
) 2

p

.

Since we would like to minimize the error for a given number of degrees of
freedom N, we propose the Lagrangian

L [h,λ ] =
∫

Ω

(
h(x)2(p−1) |D2u(x)|p− λ

h(x)2

)
dx,

with Lagrange multiplier λ ∈R. A stationary point of L satisfies (see Problem 25)

h(x)2(p−1)+2 |D2u(x)|p = constant,

and thus requires a variable mesh-size h(x) that compensates the local behavior of
D2u(x). This relation can be interpreted as follows: since the error ET associated
with element T ∈T satisfies

ET = h2(p−1)
T

∫
T
|D2u|p ≈ h2(p−1)+2

T |D2u(xT )|p,
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we infer that the element error is equidistributed.
Summarizing (and ignoring the asymptotic aspects of the above continuous

model), a candidate for the sought condition is

ET ≈Λ (constant) for all T ∈T .

Meshes satisfying this property have been constructed by Babuška et al [4] for cor-
ner singularities and d = 2; see also [39]. Problem 27 explores this matter and pro-
poses a specific mesh grading towards the origin. However, what the above argument
does not address is whether such meshes exist in general and whether they can be
actually constructed upon bisecting the initial mesh T0, namely that T ∈ T.

5.4 Adaptive Approximation

The purpose of this concluding section is to show that the maximum decay rate
N−n/d in (69) can be reached under weaker regularity assumption when using suit-
ably adapted meshes. Following the work of Binev et al. [14], we use an adaptive
algorithm that is based on the knowledge of the element errors and on bisection.

The algorithm can be motivated with the above equidistribution principle in the
following manner. Let δ > 0 be a given tolerance and the polynomial degree n = 1.
If the element error is equidistributed, that is ET ≈ δ 2, and the global error decays
with maximum rate N−1/2, then

δ
4N ≈ ∑

T∈TN

E2
T = |u− IT u|2H1(Ω) . N−1

that is N . δ−2. With this in mind, we impose ET ≤ δ 2 as a common threshold to
stop refining and expect N . δ−2.

The following algorithm implements this idea.

Algorithm (Thresholding). Given a tolerance δ > 0 and a conforming mesh T0,
THRESHOLD finds a conforming refinement T ≥T0 of T0 by bisection such that
ET ≤ δ 2 for all T ∈T : let T = T0 and

THRESHOLD(T ,δ )
while M := {T ∈T |ET > δ 2} 6= /0

T := REFINE(T ,M )
end while
return(T )

We now discuss the situation mentioned above. Assume

u ∈W 2
p (Ω), p > 1, d = 2, (70)

which implies that u is uniformly continuous in Ω and we can take IT to be the
Lagrange interpolation operator. Since p > 1 we have r = 2(1−1/p) > 0, according
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to (65), and
ET . hr

T ‖D2u‖Lp(T ). (71)

Therefore, THRESHOLD terminates because hT decreases monotonically to 0 with
bisection. The quality of the resulting mesh is assessed next.

Theorem 12 (Thresholding). If u ∈ H1
0 (Ω) verifies (70), then the output T ∈ T of

THRESHOLD satisfies

|u− IT u|H1(Ω) ≤ δ
2(#T )1/2, #T −#T0 . δ

−2 |Ω |1−1/p‖D2u‖Lp(Ω).

Proof. Let k ≥ 1 be the number of iterations of THRESHOLD before termination.
Let M = M0∪·· ·∪Mk−1 be the set of marked elements. We organize the elements
in M by size in such a way that allows for a counting argument. Let P j be the set
of elements T of M with size

2−( j+1) ≤ |T |< 2− j ⇒ 2−( j+1)/2 ≤ hT < h− j/2
T .

We proceed in several steps.
1 We first observe that all T ’s in P j are disjoint. This is because if T1, T2 ∈P j

and T̊1∩ T̊2 6= /0, then one of them is contained in the other, say T1 ⊂ T2, due to the
bisection procedure. Thus

|T1| ≤
1
2
|T2|

contradicting the definition of P j. This implies

2−( j+1) #P j ≤ |Ω | ⇒ #P j ≤ |Ω |2 j+1. (72)

2 In light of (71), we have for T ∈P j

δ
2 ≤ ET . 2−( j/2)r‖D2u‖Lp(T ).

Therefore

δ
2p #P j . 2−( j/2)rp

∑
T∈P j

‖D2u‖p
Lp(T ) ≤ 2−( j/2)rp ‖D2u‖p

Lp(Ω)

whence
#P j . δ

−2p 2−( j/2)rp ‖D2u‖p
Lp(Ω). (73)

3 The two bounds for #P in (72) and (73) are complementary. The first is good for
j small whereas the second is suitable for j large (think of δ � 1). The crossover
takes place for j0 such that

2 j0+1|Ω |= δ
−2p 2− j0(rp/2)‖D2u‖p

Lp(Ω) ⇒ 2 j0 ≈ δ
−2 ‖D

2u‖Lp(Ω)

|Ω |1/p .
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4 We now compute

#M = ∑
j

#P j . ∑
j≤ j0

2 j|Ω |+δ
−2p ‖D2u‖p

Lp(Ω) ∑
j> j0

(2−rp/2) j.

Since
∑
j≤ j0

2 j ≈ 2 j0 , ∑
j> j0

(2−rp/2) j . 2−(rp/2) j0 = 2−(p−1) j0

we can write

#M .
(
δ
−2 +δ

−2p
δ

2(p−1)) |Ω |1−1/p ‖D2u‖Lp(Ω) ≈ δ
−2 |Ω |1−1/p ‖D2u‖Lp(Ω).

We finally apply Theorem 10 to arrive at

#T −#T0 . #M . δ
−2 |Ω |1−1/p ‖D2u‖Lp(Ω).

5 It remains to estimate the energy error. We have, upon termination of THRESH-
OLD, that ET ≤ δ 2 for all T ∈T . Then

|u− IT u|2H1(Ω) = ∑
T∈T

E2
T ≤ δ

4 #T .

This concludes the Theorem. ut

By relating the threshold value δ and the number of refinements N, we obtain a
result about the convergence rate.

Corollary 7 (Convergence Rate). Let u ∈ H1
0 (Ω) satisfy (70). Then for N > #T0

integer there exists T ∈ T such that

|u− IT u|H1(Ω) . |Ω |1−1/p ‖D2u‖Lp(Ω)N
−1/2, #T −#T0 . N.

Proof. Choose δ 2 = |Ω |1−1/p ‖D2u‖Lp(Ω)N−1 in Theorem 12. Then, there exists
T ∈ T such that #T −#T0 . N and

|u− IT u|H1(Ω) . |Ω |1−1/p ‖D2u‖Lp(Ω)N
−1(N +#T0

)1/2

. |Ω |1−1/p ‖D2u‖Lp(Ω)N
−1/2

because N > #T0. This finishes the Corollary. ut

Remark 21 (Piecewise smoothness). The global regularity (70) can be weakened to
piecewise W 2

p regularity over the initial mesh T0, namely W 2
p (Ω ;T0), and global

H1
0 (Ω). This is because W 2

p (T ) ↪→C0(T ) for all T ∈ T0, whence IT can be taken
to be the Lagrange interpolation operator.

Remark 22 (Case p < 1). Consider either polynomial degree n > 1 and d = 2 or
n ≥ 1 for d > 2. The Sobolev number corresponding to a space with regularity of
order n+1 is
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n+1− d
p

= sob(H1) = 1− d
2
⇒ p =

d
n+d/2

.

For d = 2 this implies p < 1. Spaces based on Lp(Ω), p < 1, are unusual in finite
element theory but not in approximation theory [71, 30, 28]. The argument of The-
orem 12 works provided we replace (71) by a modulus of regularity; in fact, Dn+1u
would not be locally integrable and so would fail to be a distribution. This requires
two ingredients:

• The construction of a quasi-interpolation operator IT : Lp(Ω)→ Sn,0(T ) for
p < 1 with optimal approximation properties; such operator IT is inevitably non-
linear. We refer to [30, 28, 58], as well as [37] where the following key property
is proven: IT (v+P) = IT (v)+P for all P ∈ Sn,0(T ) and v ∈ Lp(Ω).

• Besov regularity properties of the solution u of an elliptic boundary value prob-
lem; we refer to [27] for such an endeavor for 2d Lipschitz domains and the
Laplace operator. For the model problem with discontinuous coefficients as well
as for d > 2 this issue seems to be open in general.

Applying Corollary 7 to Example 1, we see that the maximum decay rate N−1/2

for polynomial degree n = 1 and dimension d = 2, as well as N−n/d for n ≥ 1,d ≥
2 when taking Remark 22 into account, can be reestablished by judicious mesh
grading. Of course the thresholding algorithm cannot be applied directly within the
finite element method because the exact solution u is typically unknown. In fact,
we are only able to replace the element energy error by computable element error
indicators, and thus gain access to u indirectly. This is the topic of a posteriori error
analysis and is addressed in Chap. 6.

5.5 Problems

Problem 24. Let T be a shape regular and quasi-uniform triangulation of Ω ⊂Rd .
Let VT be the space of (possibly discontinuous) finite elements of degree ≤ n.
Given u ∈ L2(Ω), the L2-projection UT ∈ VT is defined by∫

Ω

(u−UT )V = 0 for all V ∈ VT .

Show

(a) ‖u−UT ‖L2(Ω) . hn+1 |u|Hn+1(Ω)

(b) ‖u−UT ‖H−m(Ω) . hn+1+m |u|Hn+1(Ω)

for 0 ≤ m ≤ n + 1 and h being the maximal mesh size of T . The estimate in (b)
ensures superconvergence.

Problem 25. Let h(x) a smooth function locally equivalent to the mesh-size. Prove
that a stationary point of the Lagrangian
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L [h,λ ] =
∫

Ω

(
h(x)2(p−1) |D2u(x)|p− λ

h(x)2

)
dx

satisfies the optimality condition

h2(p−1)+2 |D2u|p = constant.

Problem 26. Consider the solution u of the model problem in Sect. 2.2.1 with corner
singularity:

u(r,θ) = rγ
φ(θ) 0 < γ < 1

in polar coordinates (r,θ). Show that u ∈W 2
p (Ω)\H2(Ω) for 1≤ p < 2/(2− γ).

Problem 27. Use the Principle of Equidistribution to determine the grading of an
mesh for a corner singularity

u(r,θ) = rγ
φ(θ) (0 < γ < 1).

In fact, show that

hT = Λ dist(T,0)1−γ/2 (Λ = constant).

Count the number of elements using the expression N ≈
∫

Ω
dx

h(x)2 and derive an op-

timal bound |u− ITN u|H1(Ω) . N−1/2 for polynomial degree n = 1.

Problem 28. Consider the function u of Problem 26.
(a) Examine the construction of an graded mesh via the Thresholding Algorithm.
(b) Repeat the proof of Theorem 12 replacing the W 2

p regularity by the correspond-
ing local H2 regularity of u depending on the distance to the origin.
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6 A Posteriori Error Analysis

Suppose, as it is generically the case, that the solution of a boundary value prob-
lem is unknown. Then we may use a numerical method to compute an approximate
solution. Of course, it is useful to have information about the error of such an ap-
proximation. Moreover, if the error is still to big, one would like to know how to
modify the discretization so as to reduce the error effectively.

The results of the preceding chapters provide little such information, because
they involve the exact solution and/or are of asymptotic nature. However, so-called
a posteriori error estimators extract such information from the given problem and
the approximate solution, without invoking the exact solution. Starting with the pio-
neering work [5] of Babuška and Rheinboldt , a great deal of work has been devoted
to their derivation. We refer to [1, 6, 76] for an overview of the state-of-the-art.

This chapter is an introduction to a posteriori error estimators, providing the es-
sentials for the following chapters about adaptive algorithms. To this end, we shall
mainly restrict ourselves to the model problem of Sect. 2.2.1 and we will drop the
index N or T , since it will be kept fixed during the whole chapter.

6.1 Error and Residual

Let u be the exact solution of (10) and U be a corresponding Petrov-Galerkin solu-
tion as in (37). We want to obtain information about the error function u−U , which
is typically unknown. The so-called residual R = R(U, f ) ∈W ∗ given by

〈R, w〉 := 〈 f , w〉 −B[U, w] for all w ∈W

depends only on data and the approximate solution U and is related to the error
function by

〈R, w〉 = B[u−U, w] for all w ∈W. (74)

If the error notion of interest is ‖u−U‖V, the following lemma determines a dual-
norm of R that is equivalent to the error.

Lemma 11 (Abstract A posteriori Error Estimate). There holds

α‖u−U‖V ≤ ‖R‖W∗ ≤ ‖B‖‖u−U‖V, (75)

where 0 < α ≤ ‖B‖ are the inf-sup and continuity constants of B from (21a) and
(16).

Proof. The inf-sup condition (21a) and (74) imply

α‖u−U‖V ≤ sup
‖w‖W=1

B[u−U, w] = ‖R‖W∗ ,

while (74) and (16) imply
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‖R‖W∗ = sup
‖w‖W=1

B[u−U, w]≤ ‖B‖‖u−U‖V. ut

In view of the result, we are left with (approximately) evaluting ‖R‖W∗ at an ac-
ceptable cost. Notice that, while the quasi-best approximation property (5) relies on
the stability of the discretization, Lemma 11 relies on the well-posedness of the con-
tinuous problem (10). It is thus a first, discretization-independent step. Here it was
rather straight-forward, it can get more involved depending on problem and error
notion.

There are various techniques for evaluting ‖R‖W∗ . This second step depends on
the discretization. In what follows, we present the most basic and common approach,
standard residual estimation, in the case of our model problem of Sect. 2.2.1 and its
standard discretization of Sect. 3.2.2.

Before embarking on it, it is instructive to analyze the structure of the residual
for the model problem, where W∗ = H−1(Ω), U is piecewise polynomial function
over a triangulation T , and the residual is the distribution

R = f +div(AAA∇U) ∈ H−1(Ω).

To this end, we suppose f ∈ L2(Ω). This allows us to write 〈R,w〉 as integrals over
each T ∈T and integration by parts yields the representation:

〈R, w〉 =
∫

Ω

f w−∇U ·AAA∇w = ∑
T∈T

∫
T

f w−∇U ·AAA∇w

= ∑
T∈T

∫
T

rw+ ∑
S∈S̊

∫
S

jw,
(76)

with

r = f +div(AAA∇U) in any simplex T ∈T ,

j = [[AAA∇U ]] = nnn+ ·AAA∇U|T+ +nnn− ·AAA∇U|T− on any internal side S ∈ S̊

and nnn+, nnn− are unit normals pointing towards T +, T− ∈ T . We see that the dis-
tribution R consists of a regular part r, called interior or element residual, and a
singular part j, called jump or interelement residual. The regular part is absolutely
continuous w.r.t. the d-dimensional Lebesgue measure and is related to the strong
form of the PDE. The singular part is supported on the skeleton Γ =

⋃
S∈S̊ S of T

and is absolutely continuous w.r.t. the (d−1)-dimensional Hausdorff measure.
We point out that this structure is not special to the model problem and its dis-

cretization but rather arises from the weak formulation of the PDE and the piecewise
construction of finite element spaces.
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6.2 Global Upper Bound

As already mentioned, we provide an a posteriori analysis for the model problem
in Sect. 2.2.1 using standard residual estimation. This approach provides an upper
bound ‖R‖W∗ with the help of suitably weighted Lebesgue norms (which are con-
sidered to be computable). We will see below that the weights are crucial for the
sharpness of the derived bound.

In what follows, we shall write ’.’ instead of . C, where the constant C is
bounded in terms of the shape coefficent σT of the triangulation T and the di-
mension d. The presentation here is a simplified version of [74], which has been
influenced by [5, 20, 54] and provides in particular constants that are explicit in
terms of local Poincaré constants.

6.2.1 Tools

For bounding ‖R‖W∗ we need two tools: a trace inequality that will help to bound
the singular part with the jump residual and a Poincaré-type inequality that will take
care of the lower order norms arising in the trace inequality and from the regular
part with the element residual. We start by deriving the trace inequality.

Lemma 12 (Trace Identity). Let T be a d-simplex, S a side of T , and z the vertex
opposite to S. Defining the vector field qqqS by

qqqS(x) := x− z

the following equality holds

1
|S|

∫
S

v =
1
|T |

∫
T

v+
1

d|T |

∫
T

qqqS ·∇v for all v ∈W 1
1 (T ).

Proof. We start with properties of the vector field qqqS. Let S′ be an arbitrary side of
T and fix some y ∈ S′. We then see qqqS(x) ·nnnT = qqqS(y) ·nnnT +(x−y) ·nnnT = qqqS(y) ·nnnT
for any x ∈ S′ since x− y is a tangent vector to S′. Therefore, on each side of T , the
associated normal flux qqqS · nnnT is constant. In particular, we see qqqS · nnnT vanishes on
∂T \S by choosing y = z for sides emanating from z. Moreover, divqqqS = d. Thus, if
v ∈C1(T ), the Divergence Theorem yields∫

T
qqqS ·∇v =−d

∫
T

v+(qqqS ·nnnT )|S
∫

S
v.

Take v = 1 to show (qqqS · nnnT )|S = d|T |/|S| and extend the result to v ∈W 1
1 (T ) by

density. ut

The following corollary is a ready-to-use form for our purposes.

Corollary 8 (Scaled Trace Inequality). For any side S⊂ T the following inequality
holds
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‖v‖L2(S) . h−1/2
S ‖v‖L2(T ) +h1/2

S ‖∇v‖L2(T ) for all v ∈ H1(T ) (77)

where hS =: |S|1/(d−1).

Proof. Problem 30. ut

We next present the Poincaré-type inequality. Let

ωz = ∪T3zT

be the star (or patch) around a vertex z ∈ V of T . We define

hz := |ωz|1/d

and notice that this quantity is, up to the shape coefficient of T , equivalent to the
diameter of ωz, to hT if T ⊂ ωz and to hS if S⊂ ωz.

Lemma 13 (Local Poincaré-Type Inequality). For any v∈H1
0 (Ω) and z∈V there

exists cz ∈ R such that

‖v− cz‖L2(ωz) . hz‖∇v‖L2(ωz). (78)

If z ∈ ∂Ω is a boundary vertex, then we can take cz = 0.

Proof. 1 In fact, for any z ∈ V the value

c̄z =
1
|ωz|

∫
ωz

v

is an optimal choice and (78) can be shown with cz = c̄z as (64).
2 If z ∈ ∂Ω , then we observe that there exists a side S⊂ ∂ωz∩∂Ω such that v = 0

on S. We therefore can write

v = v− 1
|S|

∫
S

v = (v− c̄z)−
1
|S|

∫
S
(v− c̄z)

and thus, using Corollary 8 and Step 1 for the second term,

‖v‖L2(ωz) . ‖v− c̄z‖L2(ωz) +hz‖∇v‖L2(ωz) . hz‖∇v‖L2(ωz),

which establishes the supplement for boundary vertices. ut

6.2.2 Derivation of the Upper Bound

We now pass to the proper derivation of the upper bound. The following properties
of the Courant basis {φz}z∈V from Theorem 6 are instrumental:

• It provides a discrete partition of unity:
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∑
z∈N

φz = 1 in Ω . (79)

• Each function φz is contained in Sn,0(T ) and so the residual is orthogonal to the
interior contributions of the partition of unity:

〈R, φz〉 = 0 for all z ∈ V̊ := V ∩Ω . (80)

The second property corresponds to the Galerkin orthogonality. Notice that the first
property involve all vertices, while in the second one the boundary vertices are ex-
cluded. For this reason, the supplement on boundary vertices in Lemma 78 is im-
portant.

For any w ∈ H1
0 (Ω) we start by applying (79) and then (80) with cz from

Lemma 13 for w to write

〈R, w〉 = ∑
z∈V
〈R, wφz〉 = ∑

z∈V
〈R, (w− cz)φz〉,

where cz = 0 whenever z ∈ ∂Ω . In view of representation (76), we can write

|〈R, (w− cz)φz〉| ≤
∫

ωz

|r||w− cz|φz +
∫

γz

| j||w− cz|φz

where γz is the skeleton of ωz, i.e. the union of all sides emanating from z. We
examine each term on the right hand side seperately. Invoking ‖φz‖L∞(ωz) ≤ 1 and
(78), we obtain∫

ωz

|r||w− cz|φz ≤ ‖r φ
1/2
z ‖L2(ωz)‖w− cz‖L2(ωz) . hz‖r φ

1/2
z ‖L2(ωz)‖∇w‖L2(ωz).

Likewise, employing (77) and (78), we get∫
γz

| j||w− cz|φz ≤ ‖ j φ
1/2
z ‖L2(γz)‖w− cz‖L2(γz) . h1/2

z ‖ j φ
1/2
z ‖L2(γz)‖∇w‖L2(ωz).

Therefore,

|〈R, wφz〉|.
(

hz‖r φ
1/2
z ‖L2(ωz) +h1/2

z ‖ j φ
1/2
z ‖L2(γz)

)
‖∇w‖L2(ωz).

Summing over z ∈ V and using Cauchy-Schwarz in R#T gives

|〈R, w〉|.
(

∑
z∈V

h2
z‖r φ

1/2
z ‖2

L2(ωz)
+hz‖ j φ

1/2
z ‖2

L2(γz)

)1/2(
∑

z∈V
‖∇w‖2

L2(ωz)

)1/2

.

Denote by h : Ω → R+ the mesh-size function given by h(x) := |S|1/k if x belongs
to the interior of the k-subsimplex S of T with k ∈ {1, . . . ,d}. Then for all x ∈ ωz
we have hz . h(x). Therefore employing (79) once more and recalling that Γ is the
union of all interior sides of T , we proceed by
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∑
z∈V

h2
z‖r φ

1/2
z ‖2

L2(ωz)
+hz‖ j φ

1/2
z ‖2

L2(γz)
. ∑

z∈V
‖hr φ

1/2
z ‖2

L2(Ω) +‖h
1/2 j φ

1/2
z ‖2

L2(Γ )

= ‖hr‖2
L2(Ω) +‖h

1/2 j‖2
L2(Γ ).

We next resort to the finite overlapping property of stars, namely

∑
z∈V

χωz(x)≤ d +1

to deduce
∑

z∈V
‖∇w‖2

L2(ωz)
. ‖∇w‖2

L2(Ω).

Thus, introducing the element indicators

E 2(U,T ) := h2
T‖r‖2

L2(T ) +hT‖ j‖2
L2(∂T\∂Ω) (81)

and the error estimator

E 2(U,T ) = ∑
T∈T

E 2(U,T ), (82)

we have derived
‖R‖W∗ . E (U,T ).

Combing this with the abstract a posteriori bound in Lemma 11, we obtain the main
result of this section.

Theorem 13 (Upper Bound). Let u and U be exact and Galerkin solution of the
model problem and its standard discretization. Then there holds the following global
upper bound:

‖∇(u−U)‖L2(Ω) ≤
C
α1

E (U,T ) (83)

where α1 is the global smallest eigenvalue of AAA(x) and C depends only on the shape
coefficient σT and on the dimension d.

6.2.3 Sharpness of Weighted Lebesgue Norms

The indicators E (U,T ), T ∈ T , consists of weighted L2-norms. The weights hT

and h1/2
T arise from the local Poincaré inequalities (78), which in turn rely on the or-

thogonality (80) of the residual. If we do not exploit orthogonality and use a global
Poincaré-type inequality instead of the local ones, the resulting weights are 1 and
h−1/2

T and the corresponding upper bound has a lower asymptotic decay rate. We
wonder whether the ensuing weights hT and h1/2

T are accurate and explore this is-
sue for the first weight hT of the element residual. The following discussion is a
elaborated version of [62, Remark 3.1].

First we notice that the local counterpart of ‖R‖H−1(Ω) is ‖R‖H−1(T ) and observe
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‖R‖H−1(T ) = sup
‖∇w‖L2(T )≤1

〈R, w〉 = sup
‖∇w‖L2(T )≤1

∫
T

rw = ‖r‖H−1(T ) (84)

thanks to the representation (76). This suggests to compare the weighted norm
hT‖r‖L2(T ) in the indicator with the local negative norm ‖r‖H−1(T ). Mimicking the
local part in the argument of Sect. 6.2.2, we derive∫

T
rw≤ ‖r‖L2(T )‖w‖L2(T ) . hT‖r‖L2(T )‖∇w‖L2(T )

with the help of the Poincaré-Friedrichs inequality (7). Consequently there holds

‖r‖H−1(T ) . hT‖r‖L2(T ). (85)

Since L2(Ω) is a proper subspace of H−1(Ω) the inverse inequality cannot hold for
arbitrary r. Consequently, hT‖r‖L2(T ) may overestimates ‖r‖H−1(T ). On the other
hand, if r ∈ R is constant and η denotes a non-negative function with properties

|T |.
∫

T
η , suppη = T, ‖∇η‖L∞(T ) . h−1

T (86)

(postpone the question of existence until (90) below), we deduce

‖r‖2
L2(T ) .

∫
T

r(rη)≤ ‖r‖H−1(T )‖∇(rη)‖L2(T )

≤ ‖r‖H−1(T )‖r‖L2(T )‖∇η‖L∞(T ) . h−1
T ‖r‖H−1(T )‖r‖L2(T ).

whence
hT‖r‖L2(T ) . ‖r‖H−1(T ). (87)

This shows that overestimation in (85) is caused by oscillation of r at a scale finer
than the mesh-size. The estimate (87) is also valid for r ∈ Pl(T ), but the constant
deteriorates with the degree l; see Problem 34.

To conclude this discussion, we observe that hT‖r‖L2(T ) can be easily approxi-
mated with the help of numerical integration, while this is not true for ‖r‖H−1(T ).
We therefore may say the weights are asymptotically acurate and that the possible
overestimation of the weighted Lebesgue norms in (81) is the price for (almost)
computability. This view is consistent with the fact that the indicators associated
with the approximation of the Dirichlet boundary values in [62], which do not to
invoke weighted Lebesgue norms, are overestimation-free.

6.3 Lower Bounds

The discussion in Sect. 6.2.3 suggests that hT‖r‖L2(T ) bounds ‘asymptotically’
‖R‖H−1(T ) from below. This is the main step towards a local lower bound for the
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error. Such local lower bounds are the subject of this section. They do not contradict
the global nature of the boundary value problem and their significance goes beyond
a verification of the sharpness of the global upper bound (83).

For the sake of presentation, we present the case with polynomial degree n = 1
and leave the general case as problems to the reader.

6.3.1 Interior Residual

Let us start with a lower bound in terms of the interior residual and first check that
hT‖r‖L2(T ) bounds asymptotically ‖R‖H−1(T ) from below. To this end, we introduce
the oscillation of the interior residual in T by

hT‖r− rT‖L2(T ),

where rT denotes the mean value of r in T . Replacing r in (85) by r− rT and in (87)
by rT as well as recalling (84), we derive

hT‖r‖L2(T ) ≤ hT‖rT‖L2(T ) +hT‖r− rT‖L2(T )

. ‖rT‖H−1(T ) +hT‖r− rT‖L2(T )

. ‖r‖H−1(T ) +‖r− rT‖H−1(T ) +hT‖r− rT‖L2(T )

. ‖R‖H−1(T ) +hT‖r− rT‖L2(T ).

(88)

This is the desired statement because the oscillation hT‖r− rT‖L2(T ) is expected to
convergence faster than hT‖r‖L2(T ) under refinement. In the case n = 1 at hand there
holds r = f and, for example, there is one additional order if f ∈ H1(Ω).

Since

‖R‖H−1(T ) = sup
w∈H1

0 (T )

〈R, w〉
‖∇w‖L2(T )

= sup
w∈H1

0 (T )

B[u−U, w]
‖∇w‖L2(T )

≤ α2 ‖∇(u−U)‖L2(T ),

we have derived the following local lower bound

hT‖r‖L2(T ) . α2 ‖∇(u−U)‖L2(T ) +hT‖r− rT‖L2(T ), (89)

which also holds with rT chosen from Pl(T ) at the price of a larger constant hidden
in ..

Finally we comment on the choice of the cut-off function ηT ∈W 1
∞(T ) with (86).

For example, we may take

ηT = (d +1)d+1
∏

z∈V ∩T
λz, (90)

where λz, z∈V ∩T , are the barycentric coordinates of T ; see Lemma 3. This choice
is due to Verfürth [75, 76]. Another choice, due to Dörfler [32], can be defined as
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follows: refine T such that there appears an interior node and take the correspond-
ing Courant basis function on the virtual triangulation of T ; see Fig. 11 for the
2-dimensional case.

�������
�������
�������
�������

�������
�������
�������
�������

supp η

z

T

Fig. 11 Virtual refinement of a triangle for the Dörfler cut-off function.

The Dörfler cut-off function has the additional property that it is an element of
a refined finite element space. This is not important here but useful when prov-
ing lower bounds for the differences of two discrete solutions. Such estimates are
therefore called discrete lower bound whereas the bound for the true error is called
continuous lower bound.

6.3.2 Jump Residual

We next strive for a local lower bound for the error in terms of the jump residual
h1/2

S ‖ j‖L2(S), S ∈ S̊ , and use Sect. 6.3.1 on the interior residual as guideline.

We first notice that j = [[AAA∇U ]] is not necessary constant on an interior side S∈ S̊
due to the presence of A. We therefore introduce the oscillation of the jump residual
in S:

h1/2
S ‖ j− jS‖L2(S),

where jS stands for the mean value of j on S. Notice that the important question
about the order of this oscillation is not obvious because, in contrast to the oscillation
of the element residual, the approximate solution U is involved. We postpone a
corresponding discussion to Remark 23.

To choose a counterpart of ηT , let ωS denote the patch composed of the two
elements of T sharing S; see Fig. 12 for the 2-dimensional case. Obviously ωS has
a nonempty interior. Let ηS ∈W 1

∞(ωS) be a cut-off function with the properties

|S|.
∫

S
ηS, suppηS = ωS, ‖ηS‖L∞(ωS) = 1, ‖∇ηS‖L∞(ωS) . h−1

S . (91)

Following Verfürth [75, 76] we may take ηS given by

ηS|T = dd
∏

z∈V ∩S
λ

T
z , (92)

where T ⊂ ωS and λ T
z , z ∈ V ∩T , are the barycentric coordinates of T . Also here
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Fig. 12 Patch ωS of triangles associated to interior side (left) and its refinement for Dörfler cut-off
function (right).

Dörfler [32] proposed an alternative which is obtained as follows: refine ωS such
that there appears an interior node of S and take the corresponding Courant basis
function on the virtual triangualtion of ωS; see Fig. 12 for the 2-dimensional case.

After these preparations we are ready to derive a counterpart of (88). In view of
the properties of ηS, we have

‖ jS‖2
L2(S) .

∫
S

jS( jSηS) =
∫

S
j ψS +

∫
S
( jS− j)ψS (93)

with ψS = jSηS. We rewrite the first term on the right hand side with the represen-
tation formula (76) as follows:∫

S
j ψS =−

∫
ωS

r ψS + 〈R, ψS〉,

where, in contrast to Sect. 6.3.1, the jump residual couples with the element residual.
Hence ∣∣∣∣∫

ωS

j ψS

∣∣∣∣≤ ‖r‖L2(ωS)‖ψS‖L2(ωS) +‖R‖H−1(ωS)‖∇ψS‖L2(ωS).

In view of |ωS|. hS|S| and (91), we have

‖ψS‖L2(ωS) ≤ ‖ jS‖L2(ωS)‖ηS‖L∞(ωS) . h1/2
S ‖ jS‖L2(S)

and
‖∇ψS‖L2(ωS) ≤ ‖ jS‖L2(ωS)‖∇ηS‖L∞(ωS) . h−1/2

S ‖ jS‖L2(S).

We infer that∣∣∣∣∫
ωS

j ψS

∣∣∣∣. (h1/2
S ‖r‖L2(ωS) +h−1/2

S ‖R‖H−1(ωS)

)
‖ jS‖L2(S).

In addition∣∣∣∣∫S
( jS− j)ψS

∣∣∣∣≤ ‖ jS− j‖L2(S)‖ψS‖L2(S) . ‖ jS− j‖L2(S)‖ jS‖L2(S).



Theory of Adaptive Finite Elements Methods: An Introduction 85

Inserting these estimates into (93) yields

‖ jS‖2
L2(S) .

(
h1/2

S ‖r‖L2(ωS) +h−1/2
S ‖R‖H−1(ωS) +‖ jS− j‖L2(S)

)
‖ jS‖L2(S)

whence, using (89) and ‖R‖H−1(T ) ≤ ‖R‖H−1(ωS) for T ⊂ ωS,

h1/2
S ‖ j‖L2(S) . ‖R‖H−1(ωS) +‖h(r− r)‖L2(ωS) +‖h

1/2( j− j)‖L2(S), (94)

where h denotes the mesh-size function from Sect. 6.2.2 and r and j are given by

r|T = rT for all T ∈T and j|S = jS for all S ∈ S̊ .

Since

‖R‖H−1(ωS) ≤ α2 ‖∇(u−U)‖L2(ωS),

we obtain the local lower bound in terms of the jump residual:

h1/2
S ‖ j‖L2(S) . α2‖∇(u−U)‖L2(ωS) +‖h(r− r)‖L2(ωS) +‖h

1/2( j− j)‖L2(S). (95)

Also this estimate holds with j piecewise polynomial of degree l; see Problem 39.

6.3.3 Local Lower Bound

We combine the two results on interior and jump residual and discuss its signifi-
cance. To this end, we associate with each simplex T ∈T the patch

ωT :=
⋃

S⊂∂T\∂Ω

ωS,

see Fig. 13 for the 2-dimensional case, and define the oscillation in ωT by

osc(U,ωT ) = ‖h(r− r)‖L2(ωT ) +‖h
1/2( j− j)‖L2(∂T\∂Ω). (96)

Recall that the higher order nature of hT‖r−rT‖L2(T ) in (88) is crucial. We therefore
compare the convergence order of (96) with that of the local error.

Remark 23 (On Asymptotics of Oscillation). For simplicity, we consider only poly-
nomial degree n = 1, maximum convergence rates and suppose that AAA and f are
smooth. One then expects that the local error vanishes like

‖∇(u−U)‖2
L2(T ) = O(hd+2

T )

and interior and jump residual oscillations like

‖h(r− r)‖2
L2(ωT ) +‖h

1/2( j− j)‖2
L2(∂T\∂Ω) = O(hd+4

T ).
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ω T

T

Fig. 13 Patch associated to a triangle in the local lower bound.

We already argued about the higher order of the interior residual after (88). Regard-
ing the jump residual, the fact that ∇U is piecewise constant entails the identity

j− jS = [[(AAA−AAAS)∇U ]] = (AAA−AAAS)AAA−1 j on an interior S ∈ S̊ ,

which reveals the additional order for sufficiently smooth AAA.
The oscillation osc(U,ωT ) is therefore expected to be a higher order term for

hT ↓ 0. However, as we shall see from the example in Remark 26 below, it may
dominate on relatively coarse triangulations.

Similar arguments may be used to determine an appropriate polynomial degree
of jS and rT in the case of general n. We do not insist on this and anticipate that
in Chaps. 8 and 9 rT will be the L2(T )-best approximation in P2n−2(T ) and jS
the L2(S)-best approximation in P2n−1(S). This choices ensure, also for piecewise
smooth A and f , that the oscillation is of higher order.

Since (89) and (95) hold also for piecewise polynomial r and j, we have the
following result for single indicators.

Theorem 14 (Local Lower Bound). Let u and U be exact and Galerkin solution
of the model problem and its standard discretization. Then, up to oscillation, each
indicator is bounded by the local error:

E (U,T ) . α2 ‖∇(u−U)‖L2(ωT ) +osc(U,ωT ) for all T ∈T , (97)

where α2 is the largest eigenvalue of AAA(x) in ωT and the hidden constant depends
only on the shape coefficients of the simplices in ωT , the dimension d and the poly-
nomial degrees for r and j.

Proof. Simply add the generalizations of (89) and (95) for all interior sides S ∈ S̊
with S⊂ ∂T . ut

It is worthwhile to observe that in proving the local lower bound we have used the
following the abstract notion of local continuity of the bilinear form B. Let V, W be
normed spaces over Ω that are equipped with integral norms. If ω is a subdomain
of Ω , then

B[v, w]≤CB‖v‖V(ω)‖w‖W for all w with w = 0 in Ω \ω, (98)
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where ‖ · ‖V(ω) stands for the restriction of ‖ · ‖V to ω . Obviously, the continuity
constant ‖B‖ satisfies ‖B‖ ≤ CB and therefore local continuity is stronger than
global continuity. Property (98) readily implies an abstract local counterpart of the
lower bound in Lemma 11.

We conclude this section with a remark about the importance of the fact that the
lower bound in Theorem 14 is local and a remark about a simplifying setting in
following chapters.

Remark 24 (Local Lower Bound and Marking). If osc(U,ωT )�‖∇(u−U)‖L2(ωT ),
as we expect asymptotically, then (97) translates into

E (U,T ) . α2 ‖∇(u−U)‖L2(ωT ).

This means that an element T with relatively large error indicator contains a large
portion of the error. To improve the solution U effectively, such T must be split giv-
ing rise to a procedure that tries to equidistribute errors. This is consistent with the
discussion of adaptive approximation in 1d of Sect. 1.1 and constructive approxi-
mation of Chap. 5.

Remark 25 (Oscillation vs Data Oscillation). The quantity (96) measures oscilla-
tions of both interior residual r and jump residual j beyond the local mesh scale.
Note that if U is piecewise affine and AAA(x) is piecewise constant, then

r = f +div(AAA∇U) = f and j = [[AAA∇U ]]S = jS.

Consequently
osc(U,ωT ) = ‖h( f − f )‖L2(ωT )

becomes data oscillation, which is independent of the discrete solution U . Other-
wise, for variable AAA, osc depends on the discrete solution U . This additional de-
pendence creates a nonlinear interaction in the adaptive algorithm and so leads to
difficulties in characterizing an appropriate approximation class for adaptive meth-
ods, see Chap. 9.

6.3.4 Global Lower Bound and Equivalence

We derive a global lower bound from Theorem 14 and summarize the achievements
of global nature in this chapter.

To formulate the global lower bound, we introduce the global oscillation

osc(U,T ) = ‖h(r− r)‖L2(Ω) +‖h
1/2( j− j)‖L2(Γ ), (99)

recalling that Γ is the interior skeleton of T . By summing (97) over all T ∈T and
taking into account (55), which entails a finite overlapping of the patches ωT , we
obtain the following global result.
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Corollary 9 (Global Lower Bound). Let u and U be exact and Ritz-Galerkin so-
lutions of the model problem and its standard discretization. Then there holds the
following global lower bound:

E (U,T ) . α2‖∇(u−U)‖L2(Ω) +osc(U,T ) (100)

where α2 is the largest global eigenvalues of AAA and the hidden constant depends on
the shape coefficient of T , the dimension d, and the polynomial degrees for r and
j.

As already alluded to in Sect. 6.2.3, the presence of osc(U,T ) in the lower bound
is the price to pay for having a simple and computable estimator E (U,T ). In the
following remark, we present an example that shows that osc(U,T ) cannot be re-
moved from (100).

Remark 26 (Necessity of oscillation). Let ε = 2−K for K integer and extend the func-
tion 1

2 x(ε−|x|) defined on (−ε,ε) to a 2ε-periodic C1 function uε on Ω = (−1,1).
Moreover, let the forcing function be fε =−u′′, which is 2ε-periodic and piecewise
constant with values ±1 that change at multiples of ε; see Fig. 14. Let T be a uni-

f
ε

<ε < h T

0 z

ε

T

Fig. 14 An strongly oscillating forcing function.

form mesh with mesh-size h = 2−k, with k� K. We consider piecewise linear finite
elements V(Tε) and corresponding Galerkin solution Uε ∈V(Tε). It is easy to ver-
ify that fε is L2-orthogonal to both the space of piecewise constants and linears over
Tε , whence Uε = f̄ε = 0 and

‖u′ε −U ′ε‖L2(Ω) = ‖u′ε‖L2(Ω) =
ε√
6

=
2−K
√

6
� 2−k = h = ‖h fε‖L2(Ω) = osc(Uε ,T ) = E (Uε ,T ).

Therefore, the ratio ‖u′ε −U ′ε‖L2(Ω)/E (Uε ,T ) can be made arbitrarily small by in-
creasing K/k, and osc(Uε ,T ) accounts for the discrepancy. On the other hand, mea-
suring the oscillation in H−1(Ω), as suggested in [13, 69],

‖ fε − f̄ε‖H−1(Ω) = ‖ fε‖H−1(Ω) = ‖u′ε‖L2(Ω) ≈ ε,

would avoid overestimation but brings us back to the question how to (approxi-
mately) evaluate the H−1(Ω)-norm at acceptable cost.
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This 1d example can be extended via a checkerboard pattern to any dimension.

We see that osc(U,T ) may be dominant in early stages of the adaptive itera-
tion (4). Therefore, it cannot be ignored in an optimality analysis without fineness
assumptions on the initial mesh T0; compare with Example 3.

We conclude by combing the two global bounds in Theorem 13 and Corollary 9.

Theorem 15 (Asymptotic Equivalence). Let u and U be exact and Galerkin solu-
tions of the model problem and its standard discretization. Then the error estimator
(82) is asymptotically equivalent to the error:

1
α2

(
E (U,T )−osc(U,T )

)
. ‖∇(u−U)‖L2(Ω) .

1
α1

E (U,T ) (101)

where 0 < α1 ≤ α2 are the smallest and largest global eigenvalues of AAA and the
hidden constants depend only on the shape coefficient of T , the dimension d and
the polynomial degrees for r and j.

We thus have derived a computable quantity that may be used to stop the adaptive
iteration (4) and, in view of the local lower bound in Sect. 6.3.3, the indicators may
be used to provide the problem-specific information for local refinement.

6.4 Problems

Problem 29. The gap in (75) is dictated by ‖B‖/α . Determine this quantity for the
model problem in Sect. 2.2.1 and

(a) ‖v‖V = |v|1,Ω ,

(b) ‖v‖V =
(∫

Ω
∇v ·A∇v

)1/2.

Problem 30. Prove the scaled trace inequality (Corollary 8)

‖v‖L2(S) . h−1/2
S ‖v‖L2(T ) +h1/2

S ‖∇v‖L2(T ) for all v ∈ H1(T ).

Problem 31. Show that, up to oscillation terms, the jump residual

ηT (U,T ) =
(

∑
S∈S
‖h1/2 j‖2

L2(S)

)1/2

bounds ‖R‖H−1(Ω), which entails that the estimator E (U,T ) is dominated by
ηT (U,T ). To this end, revise the proof of the upper bound for ‖R‖H−1(Ω), use

cz =
1∫

ωz
φz

∫
ωz

r φz.

and rewrite
∫

ωz
r (w− cz)φz by exploiting this weighted L2-orthogonality.



90 R. H. Nochetto, K. G. Siebert, and A. Veeser

Problem 32. Considering the model problem with its standard discretization, de-
rive the upper a posteriori error bound without using the discrete partition of unity.
To this end use (76) and combine the scaled trace inequality (77) with the local
interpolation error estimate (63). Derive as an intermediate step the upper bound:

|〈R, w〉| ≤ ∑
T∈T

E (U,T )‖∇w‖L2(N(T )),

with N(T ) from (55). Discuss the differences of the two derivations.
This form of the upper bound is useful in Chap. 7.

Problem 33. Verify that a suitable multiple of the Verfürth cut-off function (90)
satisfies the properties (86). To this end, recall Lemma 1. Repeat for the Dörfler
cut-off function.

Problem 34. (Try this problem after Problem 33.) Show that the choice (90) for ηT
verifies, for all p ∈ Pl(T ),∫

T
p2 .

∫
T

p2
ηT , ‖∇(pηT )‖L2(T ) . h−1

T ‖p‖L2(T )

with constants depending on l and the shape coefficient of T . To this end, recall the
equivalence of norms in finite-dimensional spaces. Derive the estimate

hT ‖r‖L2(T ) . ‖r‖H−1(T )

for r ∈ Pl(T ).

Problem 35. Consider the model problem and its discretization for d = 2 and n = 1.
Let U1 be the solution over a triangulation T1 and U2 the solution over T2, where T2
has been obtained by applying at least 3 bisections to every triangle of T1. Moreover,
suppose that f is piecewise constant over T1. Show

‖∇(U2−U1)‖L2(Ω) ≥ ‖h1 f‖L2(Ω),

where h1 is the mesh-size function of T1.

Problem 36. Verify that a suitable multiple of the Verfürth cut-off function (92)
satisfies the properties (91). Repeat for the Dörfler cut-off function.

Problem 37. Let S be a side of a simplex T . Show that for each q ∈ Pl(S) there
exists a p ∈ Pl(T ) such that

p = q on S and ‖p‖L2(T ) . h1/2
T ‖q‖L2(S).

Problem 38. Let S be a side of a simplex T . Show that the choice (92) for ηS veri-
fies, for all q ∈ Pk(S ) and all p ∈ Pl(T ),∫

S
q2 .

∫
S

q2
ηS, ‖∇(pηS)‖L2(T ) . h−1

T ‖p‖L2(T )
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with constants depending on l and the shape coefficient of T .

Problem 39. Derive the estimate (95), where r and j are piecewise polynomials of
degree l1 and l2.

Problem 40. Generalize Remark 23 to polynomial degree n≥ 2.

Problem 41. Supposing (98), formulate and prove an abstract local lower bound in
the spirit of Lemma 11.

Problem 42. Derive a posteriori error bounds for the energy norm

|||v|||
Ω

=
(∫

Ω

∇v ·AAA∇v
)1/2

and compare with Theorem 15.
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7 Adaptivity: Convergence

The purpose of this chapter is to prove that the standard adaptive finite element
method characterized by the iteration

SOLVE −→ ESTIMATE −→ MARK −→ REFINE (102)

generates a sequence of discrete solutions converging to the exact one. This will be
established under assumptions that are quite weak or even minimal. In particular,
we will not suppose any regularity of the exact solution that goes beyond the natural
one in the variational formulation. We therefore can expect only a plain conver-
gence result that does not give any convergence rate in terms of degrees of freedom.
The assumptions on the general variational problem allow for various examples that
are of quite different from the model problem in Sect. 2.2.1. Examples are left as
problems to the reader.

The presentation is based on the basic convergence result by Morin et al. [55]
and the modifications by Siebert [67].

7.1 The Adaptive Algorithm

Given a continuous bilinear form B : V×W→ R and an element f ∈W∗ we con-
sider the variational problem

u ∈ V : B[u, w] = 〈 f , w〉 for all w ∈W (103)

introduced in Chap. 2. We assume that B satisfies the inf-sup condition (21).
For the adaptive approximation of the solution u we consider a loop of the form

(102). To be more precise, starting with an initial conforming triangulation T0 of the
underlying domain Ω and a refinement procedure REFINE as described in Sect. 4.4
we execute an iteration of the following main steps:

(1) Uk := SOLVE
(
V(Tk),W(Tk)

)
;

(2) {Ek(Uk,T )}T∈Tk := ESTIMATE
(
Uk,Tk

)
;

(3) Mk := MARK
(
{Ek(Uk,T )}T∈Tk , Tk

)
;

(4) Tk+1 := REFINE
(
Tk, Mk

)
, increment k and go to Step (1).

(104)

In practice, a stopping test is used after Step (2) for terminating the iteration; here we
shall ignore it for notational convenience. Besides the initial grid T0 and the module
REFINE from Sect. 4.4, the realization of these steps requires the following objects
and modules:
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• For any grid T ∈ T, there are finite element spaces V(T ) and W(T ) and the
module SOLVE outputs the corresponding Petrov-Galerkin approximation UT

to u.
• A module ESTIMATE that, given a grid T ∈ T and the corresponding discrete

solution UT , outputs the a posteriori error estimator {ET (UT ,T )}T∈T , where
the so-called indicator ET (UT ,T )≥ 0 is associated with the element T ∈T .

• A strategy in the module MARK that, based upon the a posteriori error indica-
tors {ET (UT ,T )}T∈T , collects elements of T in M , which serves as input for
REFINE.

Obviously, the modules SOLVE and ESTIMATE do strongly depend on the vari-
ational problem, i. e., on data B and f ; compare with Sects. 3.1.3 and 6. For con-
venience of notation we have suppressed this dependence. The refinement module
REFINE is problem independent and the same applies in general to the module
MARK. We list the most popular marking strategies for (104):

(a) Maximum Strategy: For given parameter θ ∈ [0,1] we let

M =
{

T ∈T | ET (UT ,T )≥ θET ,max
}

with ET ,max = max
T∈T

ET (UT ,T ).

(b) Equidistribution Strategy: For given parameter θ ∈ [0,1] we let

M =
{

T ∈T | ET (Uk,T )≥ θET (UT ,T )/
√

#T
}

.

(c) Dörfler’s Strategy: For given parameter θ ∈ (0,1] we let M ⊂T such that

ET (UT ,M )≥ θET (UT ,T ).

For efficiency reasons one wants to mark as few elements as possible. This can
be achieved by selecting the elements holding the largest indicators, whence

min
T∈M

ET (UT ,T )≥ max
T∈T \M

ET (UT ,T ).

The objective of this chapter is to prove that, under quite weak assumptions on
the modules SOLVE, ESTIMATE, and MARK, the sequence {Uk}k≥0 of discrete
solutions converges to u, i. e.,

lim
k→∞
‖Uk−u‖V = 0. (105)

This is a priori not clear, since the estimator only provides a global upper bound for
the error. All the techniques used in Chap. 5 are based on completely local interpo-
lation estimates and therefore cannot be used when working with an estimator. Then
again, as long as Uk 6= u the estimator is non-zero. This should lead to convergence
provided that the indicators {Ek(Uk,T )}T∈Tk pick up some local error information
and the selection of elements in MARK accounts for that.
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For convenience of notation we replace in what follows the argument Tk by a
subscript k, for instance we set Vk := V(Tk).

7.2 Density and Convergence

Plain convergence for a sequence of uniformly refined grids is a simple consequence
of density. To see this, we set Mk = Tk in each iteration of (104). Then (61) implies

hmax(Tk) := max{hT | T ∈Tk} ≤ D2 2−k b/d → 0 as k→ ∞,

if elements in Mk are scheduled for b≥ 1 bisections. Furthermore, let Vs ⊂ V be a
dense subspace and Ik : Vs→ Vk be an interpolation operator with

‖Ikv− v‖V ≤C hs
max(Tk)‖v‖Vs for all v ∈ Vs (106)

for s > 0. In case of the model problem with V = H1
0 (Ω) we could take for instance

Vk to be conforming Lagrange finite elements over Tk, and Ik the Lagrange inter-
polant, which satisfies (106) with s = 1 on V2 = H2(Ω)∩H1

0 (Ω); compare with
Remark 18. For any v ∈ V and v̄ ∈ Vs we then derive

‖Ikv̄− v‖V ≤ ‖Ikv̄− v̄‖V +‖v̄− v‖V ≤C hs
max(Tk)‖v̄‖Vs +‖v̄− v‖V.

For given v and ε we first can choose v̄ ∈Vs such that ‖v− v̄‖V ≤ ε/2 by density of
Vs in V. Then (106) implies C hs

max(Tk)‖v̄‖Vs ≤ ε/2 provided k is sufficiently large,
whence ‖Ikv̄− v‖V ≤ ε . Therefore,

lim
k→∞

min
Vk∈Vk

‖Vk− v‖V = 0 for all v ∈ V

or, equivalently,
V =

⋃
k≥0

Vk. (107)

This density property already implies convergence if the sequence {Vk,Wk}k≥0 is
stable, i. e., it satisfies a uniform inf-sup condition. Recalling the quasi-best approx-
imation property of the Petrov-Galerkin solution Uk established in Theorem 5, sta-
bility of the discretization yields

‖Uk−u‖V ≤
‖B‖

β
min

Vk∈Vk
‖Vk−u‖V→ 0 as k→ ∞, (108)

thanks to density (107). Note, that this convergence result holds true irrespective of
any regularity property of u beyond V.

Assume now that the sequence {Tk}k≥0 is adaptively generated. We observe that
(107) still holds whenever

lim
k→∞

hmax(Tk) = 0, (109)
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whence (108) is also true. But (109) does not hold in general for an adaptively
generated sequence of meshes, as was already observed by Babuška and Vogelius
[7]. Recalling the definition of the mesh-size function

hk ∈ L∞(Ω) : hk |T = |T |1/d , T ∈Tk

in Sect. 4.3 and its L∞ limit h∞ ∈ L∞(Ω) of Lemma 5, Eq. (109) is equivalent to
h∞ ≡ 0 in Ω . If h∞ 6≡ 0, then there exists an x ∈Ω \Γ∞ with h∞(x) > 0. This implies
that there is an element T 3 x and an iteration counter K = K(x) such that T ∈ Tk
for all k ≥ K.

This motivates to split the triangulations Tk into two classes of elements

T +
k :=

⋂
`≥k

Tk = {T ∈Tk | T ∈T` ∀`≥ k}, and T 0
k := Tk \T +

k . (110)

The set T +
k contains all elements that are not refined after iteration k and we observe

that the sequence
{
T +

k

}
k≥0 is nested, i. e., T +

` ⊂ T +
k for all k ≥ `. The set T 0

k
contains all elements that are refined at least once more in a forthcoming step of the
adaptive procedure. Since the sequence {T +

k }k≥0 is nested the set

T + :=
⋃
k≥0

T +
k

is well-defined and we conclude

h∞ ≡ 0 if and only if T + = /0.

If T + 6= /0 then the finite element spaces cannot be dense in V since inside T ∈
T + we can only approximate discrete functions. Therefore, taking into accout the
arguments at the beginning of the section, we have that (107) is equivalent to h∞≡ 0.

On the other hand, when using adaptivity we do not aim at approximating all
functions in V but rather one single function, namely the solution u to (103). A
necessary condition for being able to approximate u is

lim
k→∞

min
Vk∈Vk

‖u−Vk‖V = 0.

Assuming that the finite element spaces are nested, the space

V∞ :=
⋃
k≥0

Vk

is well-defined and we can approximate u by discrete functions if and only if u∈V∞.
We realize that V∞ is defined via the adaptively generated spaces Vk. Therefore,
u ∈ V∞ hinges on properties of the modules SOLVE, ESTIMATE, MARK, and
REFINE. In addition, if V∞ is a proper subspace of V and u ∈ V∞ then u is locally
a discrete function. This implies, that the adaptive method must only decide not
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to refine an element any more if u locally belongs to the finite element space, for
instance u is affine in some part of the domain in case of Courant elements.

But this is not the generic case. If u is not locally discrete, then the decisions
of the adaptive method have to yield T + = /0, and if so, convergence is a direct
consequence of density as for uniform refinement. We aim at a convergence result
for adaptive finite elements that just relies on this density argument in this case. In
doing this we shall use a local density property of the finite element spaces in the
region {h∞ ≡ 0} and properties of the adaptive method in its complement.

7.3 Properties of the Problem and the Modules

In this section we state structural assumptions on the Hilbert spaces V and W and
the modules SOLVE, ESTIMATE, and MARK. For notational convenience we use
‘a . b’ for ‘a≤Cb’ whenever the constant C only depends on T0 and data of (103)
like B and f .

7.3.1 Properties of Hilbert Spaces

We assume that V is a subspace of L2(Ω ;Rm) with some m ∈ N and that ‖ · ‖V
is an L2-type integral norm implying the following properties: The square of the
norm ‖·‖V(Ω) is set-additive, i. e., for any subset ω ⊂ Ω that is decomposed into
ω = ω1∪ω2 with |ω1∩ω2|= 0 there holds

‖v‖2
V(ω) = ‖v‖2

V(ω1) +‖v‖
2
V(ω2) for all v ∈ V(ω). (111)

In addition, we ask ‖ · ‖V to be absolutely continuous with respect to the Lebesgue
measure, this is, for any v ∈ V holds

‖v‖V(ω)→ 0 as |ω| → 0.

Finally we require W to have the same properties.

7.3.2 Properties of SOLVE

For any grid T ∈ T we assume the existence of a pair of finite element spaces
{V(T ),W(T )} and suppose the following properties:

(1) They are conforming

V(T )⊂ V, W(T )⊂W for all T ∈ T (112a)

and nested
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V(T )⊂ V(T∗), W(T )⊂W(T ∗) for all T ≤T∗ ∈ T. (112b)

(2) The finite element spaces are a stable discretization, i. e., there exists β > 0 such
that for all T ∈ T

dimV(T ) = dimW(T ) and inf
V∈V(T )
‖V‖V=1

sup
W∈W(T )
‖W‖W=1

B[V, W ]≥ β . (112c)

(3) Let Ws ⊂W be a dense sub-space with norm ‖ · ‖Ws such that ‖ · ‖2
Ws is set-

additive and let IT ∈ L(Ws,W(T )) be a continuous, linear interpolation oper-
ator such that

‖w− IT w‖W(T ) . hs
T‖w‖Ws(T ) for all T ∈T and w ∈Ws (112d)

with s > 0.
(4) We suppose that SOLVE

(
V(T ), W(T )

)
outputs the exact Petrov-Galerkin ap-

proximation of u, i. e.,

UT ∈ V(T ) : B[UT , W ] = 〈 f , W 〉 for all w ∈W(T ). (112e)

This entails exact integration and linear algebra; see Remarks 9 and 10.

Note, that for non-adaptive realizations of (104), condition (112c) is necessary for
the well-posedness of (112e) and convergence irrespective of f ∈W∗; compare with
Problem 12. Although phrasing the interpolation estimate (112d) as a condition on
the choice of the finite element space, the construction of any finite element space
is based on such a local approximation property.

7.3.3 Properties of ESTIMATE

Given a grid T ∈T and the Petrov-Galerkin approximation UT ∈VT of (112e) we
suppose that we can compute a posteriori error indicators {ET (UT ,T )}T∈T by

{ET (UT ,T )}T∈T = ESTIMATE(UT , T )

with the following properties:

(1) The estimator provides the following upper bound for the residual RT ∈W∗ of
UT :

|〈RT , w〉|. ∑
T∈T

ET (UT ,T )‖w‖W(NT (T )) for all w ∈W. (113a)

(2) The estimator is efficient in that it satisfies the continuous local lower bound

ET (UT ,T ) . ‖UT −u‖V(NT (T )) +oscT (UT ,T ) for all T ∈T , (113b)

where the oscillation indicator oscT (UT ,T ) satisfies
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oscT (UT ,T ) . hq
T

(
‖UT ‖V(NT (T )) +‖D‖L2(NT (T ))

)
. (113c)

Hereafter, q > 0 and D ∈ L2(Ω) is given by data of (103).

The upper bound as stated in (113a) is usually an intermediate step when deriving
a posteriori error estimates; compare with Problem 32. It allows us to extract local
information about the residual. This is not possible when directly using the global
upper bound ‖UT −u‖V(Ω) . ET (UT ,T ).

7.3.4 Properties of MARK

The last module for the adaptive algorithm is a function

M = MARK
(
{ET (UT ,T )}T∈T , T

)
that, given a mesh T ∈T and indicators {ET (UT ,T )}T∈T , selects elements subject
to refinement. Given a fixed function g : R+

0 → R+
0 that is continuous at 0 with

g(0) = 0, we ask that the set M of marked elements has the property

max{ET (UT ,T ) | T ∈T \M } ≤ g
(

max{ET (UT ,T ) | T ∈M }
)
. (114)

Marking criterion (114) implies that all indicators in T are controlled by the maxi-
mal indicator in M . Marking strategies that pick up the elements holding the largest
indicator, as those from Sect. 7.1, satisfy (114) with g(s) = s.

7.4 Convergence

In this section we show that the realization of (104) generates a sequence of Petrov-
Galerkin solutions that converges to the true solution in V under the above assump-
tions.

Theorem 16 (Convergence). Let u be the exact solution of (103) and suppose that
(21) holds. Let the finite element spaces and the functions SOLVE, ESTIMATE,
and MARK satisfy (112), (113), and (114), respectively.

Then the sequence of Galerkin approximations {Uk}k≥0 generated by iteration
(104) satisfies

lim
k→∞
‖Uk−u‖V = 0 and lim

k→∞
Ek(Uk,Tk) = 0.

In particular, any prescribed tolerance TOL > 0 for the estimator is reached in a
finite number of steps. In other words: there is an iteration k∗ with

‖Uk∗ −u‖V . Ek∗(Uk∗ ,Tk∗)≤ TOL.
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We split the proof in several steps.

7.4.1 Two limits

In this paragraph we give another generalization of (56) for a sequence of adaptively
generated triangulations. In combination with the interpolation estimate (112d) this
result yields a local density property of adaptively generated finite element spaces.
Additionally we show that for any realization of (104) the Petrov-Galerkin solutions
are a Cauchy-sequence in V.

The uniform convergence hk → h∞ shown in Lemma 5 helps to locate the set
{h∞ ≡ 0} in terms of the splitting Tk = T 0

k ∪T +
k introduced in (110). According

to T 0
k and T +

k we decompose the domain Ω into

Ω̄ = Ω(T +
k )∪Ω(T 0

k ) =: Ω
+
k ∪Ω

0
k ,

where for any sub-triangulation T ′
k ⊂Tk we let

Ω(T ′
k ) :=

⋃
{T : T ∈T ′

k }

be the part of Ω covered by T ′
k . A direct consequence of Lemma 5 is the following

result.

Corollary 10 ({h∞ ≡ 0}). Denote by χ0
k the characteristic function of Ω 0

k .
Then the definition of T 0

k implies

lim
k→∞

∥∥hk χ
0
k

∥∥
L∞(Ω) = lim

k→∞
‖hk‖L∞(Ω 0

k ) = 0.

Proof. The definition of T 0
k implies that all elements in T 0

k are refined at least
once. Hence, h∞ ≤ 2−

1
d hk in Ω 0

k , yielding
(
1− 2−1/d

)
hk ≤ hk− h∞ in Ω 0

k . This in
turn implies with γ = 1−21/d > 0∥∥hk χ

0
k

∥∥
L∞(Ω) ≤ γ

−1∥∥(hk−h∞)χ
0
k

∥∥
L∞(Ω) ≤ γ

−1‖hk−h∞‖L∞(Ω)→ 0

for k→ ∞ thanks to Lemma 5. ut

Remark 27 (Local Density). We employ set-additivity of ‖ · ‖2
Ws combined with the

local approximation property (112d) to deduce for any sub-triangulation T ′
k ⊂ Tk

and any w̄ ∈Ws the local interpolation estimate

‖w̄− Ikw̄‖W(Ω(T ′k )) . ‖hs
k‖L∞(Ω(T ′k ))‖w̄‖Ws(Ω(T ′k )). (115)

Using this estimate for T ′
k = T 0

k the above corollary implies

‖Ikw̄− w̄‖V(Ω 0
k ) . ‖hs

k‖L∞(Ω 0
k )‖w̄‖Ws(Ω) for all w̄ ∈Ws.
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For any pair w∈W and w̄∈Ws we then argue as in Sect. 7.2 for uniform refinement
but restricted to subdomain Ω(T 0

k ) to conclude the ‘local density’

lim
k→∞

min
Wk∈Wk

‖w−Wk‖V(Ω 0
k ) = 0 for all w ∈W. (116)

We use the interpolation estimate (115) in Proposition 4 below.

We next turn to the sequence {Uk}k≥0 of approximate solutions. For characteriz-
ing the limit of this sequence we need the spaces

V∞ :=
⋃
k≥0

Vk and W∞ :=
⋃
k≥0

Wk.

Lemma 14 (Convergence of Petrov-Galerkin Approximations). Assume that the
sequence {(Vk,Wk)}k≥0 satisfies (112c) and (112b).

Then the sequence {Uk}k≥0 of approximate solutions converges in V to the solu-
tion u∞ with respect to the pair (V∞,W∞), which is characterized by

u∞ ∈ V∞ : B[u∞, w] = f (w) for all w ∈W∞. (117)

Proof. 1 Let us first prove that the pair (V∞,W∞) satisfies the inf-sup condition

inf
v∈V∞
‖v‖V=1

sup
w∈W∞
‖w‖W=1

B[v, w]≥ β , inf
w∈W∞
‖w‖W=1

sup
v∈V∞
‖v‖V=1

B[v, w]≥ β (118)

with β > 0 from (112c).
To this end, fix first any v∈V∞ \{0} and choose a sequence {Vk}k≥0 of functions

Vk ∈ Vk such that Vk→ v in V as k→ ∞. Moreover, with the help of (112c) choose
a sequence {Wk}k≥0 of functions Wk ∈Wk such that

‖Wk‖W = 1 and B[Vk, Wk]≥ β‖Vk‖V. (119)

Thanks to (112a), the sequence {Wk}k≥0 is in W. Since the latter is reflexive, there
exists a subsequence

{
Wk j

}
j≥0 and a function w ∈W such that Wk j ⇀ w weakly

in W as j → ∞. Since W∞ is closed and convex as well as ‖ · ‖W weakly lower
semicontinuous, we have w ∈W∞ and ‖w‖W ≤ lim j→∞ ‖Wk j‖W = 1. Combing this
with (112c) yields

B[v, w]≥ β‖v‖V ≥ β‖v‖V‖w‖W.

In view of the first inequality, w 6= 0 and the first part of (118) is proved.
Proposition 1 states that (112c) is equivalent to

inf
W∈W(T )
‖W‖W=1

sup
V∈V(T )
‖V‖V=1

B[V, W ]≥ β . (120)

In the same way, but using (120) instead of (112c), we show that for any w ∈W∞

there exists v ∈ V∞ \{0} such that B[v, w]≥ β‖v‖V‖w‖W. This shows (118).
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2 The spaces V∞ ⊂ V and W∞ ⊂W are closed and thus Hilbert spaces. The bi-
linear form B is continuous on V∞×W∞ and satisfies the inf-sup condition (118).
Therefore, by Theorem 2 there exits a unique u∞ ∈ V∞ with (117).

3 By construction, Vk ⊂V∞, which implies that the Petrov-Galerkin solution Uk is
a ‖ · ‖V-quasi-optimal choice in Vk with respect to u∞, i. e., there holds

‖u∞−Uk‖V ≤
‖B‖
β

min
V∈Vk

‖u∞−V‖V;

compare with Theorem 5. Besides that,
⋃

k≥0 Vk is dense in V∞ and therefore

lim
k→∞
‖Uk−u∞‖V = 0. ut

In case of coercive B the proof is much simpler since coercivity is inherited
from V to V∞ and Step 1 of the proof is trivial. Existence of u∞ is then a direct
consequence of Corollary 2 (Lax-Milgram theorem). For symmetric and coercive
B the above result has already been shown by Babuška and Vogelius [7].

Lemma 14 yields convergence of Uk → u∞ in V as k → ∞ irrespective of the
decisions in the module MARK. We are going to prove below that the residual R∞

of U∞ satisfies R∞ = 0 in W∗. The latter is equivalent to u∞ = u and thus shows
Theorem 16. This, of course, hinges on the properties of ESTIMATE and MARK.

7.4.2 Auxiliary Results

Next we prove two auxiliary results, namely boundedness of the estimator and
convergence of the indicators. Before embarking on this, we observe that the set-
additivity of ‖ · ‖2

V allows us to sum over overlapping patches, if the overlap is fi-
nite; compare also with the proof of Theorem 11. To be more precise: Local quasi-
uniformity of Tk (55) implies #Nk(T ) . 1 for all T ∈ Tk. Thus set-additivity (111)
of ‖ · ‖2

V gives for any subset T ′
k ⊂Tk and any v ∈ V

∑
T∈T ′k

‖v‖2
V(Nk(T )) = ∑

T∈T ′k
∑

T ′∈Nk(T )
‖v‖2

V(T ′) . ∑
T∈T ∗k

‖v‖2
V(T ) = ‖v‖2

V(Ω∗k ) (121)

with T ∗
k = {T ′ ∈Tk | T ′ ∈Nk(T ), T ⊂T ′

k } and Ω ∗k := Ω(T ∗
k ). The same argument

applies to ‖ · ‖2
W, ‖ · ‖2

Ws , and ‖ · ‖2
L2(Ω).

In the next results we use the stability estimate

ET (UT ,T ) . ‖UT ‖V(NT (T )) +‖D̃‖L2(NT (T )) for all T ∈T , (122)

where D̃ = D̃(u,D) ∈ L2(Ω) with D from (113b). This bound can be derived as
follows. Combining the lower bound (113b) and the triangle inequality we infer
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ET (UT ,T ) . ‖UT −u‖V(NT (T )) +oscT (UT ,T )

. ‖UT ‖V(NT (T )) +‖u‖V(NT (T )) +‖D‖L2(NT (T )),

where the constant in . also depends on ‖hq
0‖L∞(Ω) via (113c). Since ‖·‖V(Ω) is an

L2-type norm, the stability of the indicators (122) is a direct consequence of (113b)
with D̃ = D̃(u,D) ∈ L2(Ω).

Lemma 15 (Stability). Let the finite element spaces and the error the indicators
satisfy (112c) respectively (122).

Then the estimators Ek(Uk,Tk) are uniformly bounded, i. e.,

Ek(Uk,Tk) . 1 for all k ≥ 0.

Proof. Using (121) and the stability of the indicators (122) we derive for all k ≥ 0

E 2
k (Uk,Tk) . ∑

T∈Tk

‖Uk‖2
V(Nk(T )) +‖D̃‖

2
L2(Nk(T )) . ‖Uk‖2

V(Ω) +‖D̃‖
2
L2(Ω).

The uniform estimate ‖Uk‖V(Ω) ≤ β−1‖ f‖V∗ implies the claim. ut

We next investigate the maximal indicator in the set of marked elements. In ad-
dition to convergence of the discrete solutions and mesh-size functions we exploit
stability of the indicators, and properties of REFINE.

Lemma 16 (Marking). Suppose that the finite element spaces fulfill (112) and the
estimator (113b) and (113c).

Then the maximal indicator of the marked elements vanishes in the limit:

lim
k→∞

max{Ek(Uk,T ) | T ∈Mk}= 0.

Proof. Let Tk ∈Mk such that Ek(Uk,Tk) = max{Ek(Uk,T ) | T ∈M }. All elements
in Mk are refined and therefore Tk ∈T 0

k . Local quasi-uniformity (55) of Tk implies

|Nk(Tk)|. |Tk| ≤ ‖hd
k‖L∞(Tk) ≤ ‖h

d
k‖L∞(Ω 0

k )→ 0 (123)

as k→ ∞ by Corollary 10.
As shown above (113b) and (113c) imply the stability (122), whence we can

proceed by the triangle inequality to estimate the maximal indicator by

Ek(Uk,Tk) . ‖Uk−u∞‖V(Ω) +‖u∞‖V(Nk(Tk)) +‖D̃‖L2(Nk(Tk)).

The first term on the right hand side converges to 0 as k→ ∞, thanks to Lemma 14
and the other terms vanish in the limit too, by continuity of ‖·‖V(Ω) and ‖ · ‖L2(Ω)
with respect to the Lebesgue measure |·| and (123).
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7.4.3 Convergence of the Residuals

In this section we establish the weak convergence Rk ⇀ 0 in W∗. In doing this, we
distinguish two regions in Ω : in Ω 0

k we use local density of the finite element spaces
Wk in W, and in Ω

+
k we rely on properties of estimator and marking.

Proposition 4 (Weak Convergence of the Residuals). Assume that (112), (113),
and (114) are satisfied.

Then the sequence of discrete solutions {Uk}k≥0 generated by iteration (104)
verifies

lim
k→∞
〈Rk, w〉 = 0 for all w ∈Ws.

Proof. 1 For k ≥ ` the inclusion T +
` ⊂ T +

k ⊂ Tk holds. Therefore, the sub-
triangulation Tk \T +

` of Tk covers the sub-domain Ω 0
` , i. e., Ω 0

` = Ω(Tk \T +
` ).

We notice that any refinement of Tk does not affect any element in T +
` . Therefore,

defining
T ∗

k = {T ′ | T ′ ∈ Nk(T ), T ∈Tk \T +
` }.

we also see that for k ≥ `

Ω
∗
k = Ω(T ∗

k ) =
⋃
{T ′ : T ′ ∈ N`(T ), T ∈T 0

` }. (124)

2 Let w ∈Ws with ‖w‖Ws(Ω) = 1 be arbitrarily chosen. Since Uk is the Petrov-
Galerkin solution we can employ Galerkin orthogonality (41) in combination with
the upper bound (113a) to split for k ≥ `

|〈Rk, w〉|= |〈Rk, w− Ikw〉|
. ∑

T∈Tk\T +
`

Ek(Uk,T )‖w− Ikw‖V(Nk(T )) + ∑
T∈T +

`

Ek(Uk,T )‖w− Ikw‖V(Nk(T ))

. Ek(Uk,Tk \T +
` )‖w− Ikw‖V(Ω∗k ) +Ek(Uk,T

+
` )‖w− Ikw‖V(Ω),

by the Cauchy-Schwarz inequality and (121) for ‖ · ‖2
V. In view of Lemma 15 we

bound Ek(Uk,Tk \T +
` ) ≤ Ek(Uk,Tk) . 1. We next use (115) with T ′

k = T ∗
k to

obtain ‖w− Ikw‖W(Ω∗k ) . ‖hs
k‖L∞(Ω∗k ), recalling ‖w‖Ws(Ω) = 1. From (124) we see

that for any T ′ ∈T ∗
k we find T ∈T 0

` with T ′ ⊂ N`(T ). Local quasi-uniformity (55)
of T` and monotonicity of the mesh-size functions therefore imply

‖hk‖L∞(Ω∗k ) . ‖hk‖L∞(Ω 0
` ) ≤ ‖h`‖L∞(Ω 0

` ).

In summary this yields

‖w− Ikw‖V(Ω∗` ) . ‖hs
`‖L∞(Ω 0

` ) and ‖w− Ikw‖V(Ω) . 1,

which entails the existence of constants 0≤C1,C2 < ∞, such that

|〈Rk, w〉| ≤C1‖hs
`‖L∞(Ω 0

` ) +C2Ek(Uk,T
+

` ) for all k ≥ `. (125)
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3 For any given ε > 0, convergence of the mesh-size function ‖h`‖L∞(Ω 0
` )→ 0 for

`→ ∞, proven in Corollary 10, and s > 0 allows us to first choose `≥ 0 such that

‖hs
`‖L∞(Ω 0

` ) ≤
ε

2C1
.

Employing the marking rule (114), we conclude

lim
k→∞

max{Ek(Uk,T ) | T ∈Tk \Mk} ≤ lim
k→∞

g
(

max{Ek(Uk,T ) | T ∈Mk}
)

= 0

by Lemma 16 and continuity of g in 0 with g(0) = 0. Since T +
` ∩Mk = /0, this

especially implies max{Ek(Uk,T ) | T ∈ T +
` } → 0, whence we can next choose

K ≥ ` such that

Ek(Uk,T )≤ ε

2C2
(#T +

` )−1/2 for all T ∈T +
` and all k ≥ K,

yielding C2Ek(Uk,T
+

` )≤ ε/2 for those k. In summary, estimate (125) then implies
|〈Rk, w〉| ≤ ε for k ≥ K. Since ε is arbitrary this finishes the proof. ut

7.4.4 Proof of Convergence

Collecting the auxillary results, we are in the position to prove the main result.

Proof of Theorem 16. 1 We first show convergence Uk → u in V. For any w ∈Ws

we deduce

〈R∞, w〉 = 〈R∞−Rk, w〉+ 〈Rk, w〉 = B[u∞−Uk, w]+ 〈Rk, w〉
≤ ‖B‖‖u∞−Uk‖V(Ω)‖w‖V(Ω) + 〈Rk, w〉 → 0

as k→∞ by Lemma 14 and Proposition 4, whence 〈R∞, w〉= 0 for all w∈Ws. This
implies R∞ = 0 in W∗ since Ws is dense in W. The continuous inf-sup condition
(21) yields

α‖u∞−u‖V ≤ sup
‖w‖W=1

B[u∞−u, w] = sup
‖w‖W=1

〈R∞, w〉 = 0,

which shows u = u∞. Convergence of the Galerkin approximations finally implies

lim
k→∞

Uk = u∞ = u in V.

2 After proving Uk→ u we next turn to the convergence of the estimators. Just like
in the proof of Proposition 4 we split for k ≥ `

E 2
k (Uk,Tk) = E 2

k (Uk,Tk \T +
` )+E 2

k (Uk,T
+

` )
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and we estimate the first term with the help of the local lower bound (113b), (113c)
by

E 2
k (Uk,Tk \T +

` ) . ∑
T∈Tk\T +

`

‖Uk−u‖2
V(Nk(T )) +h2q

T

(
‖Uk‖2

V(Nk(T )) +‖D‖
2
L2(Nk(T ))

)
. ‖Uk−u‖2

V +
∥∥h2q

k

∥∥
L∞(Ω 0

` )

(
β
−2‖ f‖2

V∗ +‖D‖2
L2(Ω)

)
,

where we have used (121) for ‖·‖V(Ω) and ‖ · ‖L2(Ω) as well as ‖Uk‖V ≤ β−1‖ f‖W∗
in the second step. Using once again monotonicity of the mesh-size functions we
deduce for some constants C1,C2

E 2
k (Uk,Tk)≤C1

∥∥h2q
`

∥∥
L∞(Ω 0

` ) +C2‖Uk−u‖2
V(Ω) +E 2

k (Uk,T
+

` ).

By Corollary 10 we can make the first term small by choosing ` sufficiently large.
In the proof of Proposition 4 we already have shown Ek(Uk,T

+
` )→ 0 for fixed `

and k→ ∞. Step 1 implies ‖Uk−u‖V(Ω)→ 0 as k→ ∞ which allows to make the
last two terms small by choosing k large after fixing `. This proves Ek(Uk,Tk)→ 0
as k→ ∞ and finishes the proof. ut

Remark 28 (Lower Bound). For convergence Uk → u we have only utilized the sta-
bility (122) of the indicators, which is much weaker than efficiency (113b) because
it allows for overestimation. Since most of the estimators for linear problems are
shown to be reliable and efficient, we directly asked for efficiency of the estimator.
For nonlinear problems this might be different and just asking for (122) may provide
access for proving convergence for a larger problem class.

All convergence results but [21, 67] rely on a discrete local lower bound. For the
model problem there is no difference in deriving the continuous or the discrete lower
bound; compare with Sect. 6.3. In general, the derivation of a discrete lower bound
is much more involved than its continuous counterpart. For instance, in Problem 44
below the discrete lower bound is not known and in Problem 45 it is only known
for the lowest order elements. In respect thereof a convergence proof without lower
bound enlarges the problem class where it applies to.

Yet, only asking for (122) yields convergence Uk → u but the progress without
convergence Ek(Uk,Tk)→ 0 is not observable in the adaptive iteration. Therefore,
a convergence result for non-efficient estimators is of little practical use.

Remark 29 (Characterization of Convergent Marking). The results in [55] and [67]
also give a characterization of convergent marking. In our setting

lim
k→∞

max{Ek(Uk,T ) | T ∈Mk}= 0 =⇒ lim
k→∞

Ek(Uk,T ) = 0 for all T ∈T +

(126)
is necessary and sufficient for convergence of (104). To see this, the hypothesis
of (126) we have shown in Lemma 16 and the conclusion of (126) is obviously
necessary for Ek(Uk,Tk)→ 0. If limk→∞ osck(Uk,T ) = 0 for all T ∈ T + then it is
also necessary for ‖Uk− u‖V → 0 by the lower bound (113b), for instance in the
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model problem when AAA and f are piecewise constant over T0. Condition (114) on
marking we only have used in Step 3 of the proof to Proposition 4 and there it can
be replaced by (126), whence (126) is also sufficient.

On the one hand, this assumption is not ‘a posteriori’ in that it can not be checked
at iteration k of the adaptive loop and thus seems of little practical use. On the
other hand, being a characterization of convergent marking it may be used to treat
marking strategies that are based on extrapolation techniques involving indicators
from previous iterations [5], or that are based on some optimization procedure [41].

Similarly, the condition on marking can be generalized to marking procedures
where a given tolerance of the adaptive method enters the selection of elements, for
instance the original equidistribution strategy for parabolic problems in [34]. Such
methods then in turn only aim at convergence into tolerance. For details we refer to
[67, Sect. 5].

7.5 Problems

Problem 43. Consider the general 2nd order elliptic problem from Sect. 2.2.2, where
AAA piecewise Lipschitz over T0 with smallest eigenvalue strictly bounded away from
0 and c− 1/2divbbb ≥ 0. Therefore, the corresponding bilinear form B is coercive
on V = H1

0 (Ω); compare with Sect.2.5.2.
Show that a discretization with H1

0 conforming Lagrange elements of order n≥ 1
introduced in Sect. 3.2.2 and the residual estimator from Sect. 6.2 satisfy the as-
sumptions (112) and (113). This implies convergence of the adaptive iteration (104)
for the general 2nd order elliptic equation with any of the marking strategies from
Sect. 7.3.4.

Problem 44. Consider the biharmonic equation in 2d from Sect. 2.2.2 which leads
to a variational problem in V = H2

0 (Ω) with a continuous and coercive bilinear form.
Show that the discretization with the Argyris triangle defined in [25, Theo-

rems 2.2.11 and 2.2.13] of Ciarlet’s book satisfies (112). In addition verify that the
estimator derived by Verfürth in [76, Section 3.7] fulfills (113). This implies con-
vergence of the adaptive iteration (104) for the biharmonic equation with any of the
marking strategies from Sect. 7.3.4.

Problem 45. Consider the 3d Eddy Current Equations from Sect. 2.2.2 which leads
to a variational problem in V = H0(curl;Ω) with a continuous and coercive bilinear
form.

Show that the discretization with Nédélec finite elements of order n ∈ N com-
ply with (112); compare with [51, Sect. 5.5]. Consider the estimator derived by
Schöberl [64, Corollary 2] that has been shown to be efficient by Beck et al. [12,
Theorem 3.3]. Show that it fulfills (113). This implies convergence of the adaptive
iteration (104) for the 3d Eddy Current Equations with any of the marking strategies
from Sect. 7.3.4.
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Problem 46. Consider the Stokes problem from Sect. 2.2.2 that leads to a varia-
tional problem in V = H1

0 (Ω ;Rd)× L2
0(Ω) with a non-coercive bilinear form B

that satisfies the inf-sup condition (23).
For the discretization with the Taylor-Hood element of order n ≥ 2, this means

we approximate the velocity with continuous piecewise polynomials of degree n and
the pressure with continuous piecewise polynomials of degree n−1, Otto has shown
(112c) in [59]. Prove that the Taylor-Hood element satisfies the other requirements
of (112). Finally show that the estimator by Verfürth for the Stokes system [75]
complies with (113). This implies convergence of the adaptive iteration (104) for
the Stokes problem with any of the marking strategies from Sect. 7.3.4.
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8 Adaptivity: Contraction Property

This chapter discusses the contraction property of AFEM for the model problem of
Sect. 2.2.1, namely

−div(AAA(x)∇u) = f in Ω , u = 0 on ∂Ω . (127)

The variational formulation of (127) from Sect. 2.5.1 reads with V = W = H1(Ω)

u ∈ V : B[u, v] :=
∫

Ω

∇v ·AAA(x)∇u =
∫

Ω

f v =: 〈 f , v〉 for all v ∈ V.

We revisit the modules of the basic adaptive loop (4), i. e.,

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

Similar to Chap. 7, the outcome of each iteration with counter k ≥ 1 is a sequence
{Tk,Vk,Uk}∞

k=0 of conforming bisection refinements Tk of T0, spaces of conform-
ing finite element spaces Vk = Wk = Sn,0(Tk)∩H1

0 (Ω), i. e., C0 continuous piece-
wise polynomials of degree ≤ n for both ansatz and test spaces, and Ritz-Galerkin
solutions Uk ∈ Vk.

Since error monotonicity is closely related to a minimization principle, we can-
not in general expect a contraction property for problems governed by an inf-sup
condition. We thus restrict ourselves to the special class of coercive and symmet-
ric problems of the form (127). The first contribution in dimension d > 1 is due
to Dörfler [32], who introduced a crucial marking, the so-called Dörfler marking
of Sect. 7.1, and proved strict energy error reduction for the Laplacian provided
the initial mesh T0 satisfies a fineness assumption. The Dörfler marking will play
an essential role in the present discussion, which does not seem to extend to other
marking strategies such as those in Sect. 7.1. Morin, Nochetto, and Siebert [52, 53]
showed that such strict energy error reduction does not hold in general even for
(127). By introducing the concept of data oscillation and the interior node property,
they proved convergence of the AFEM without restrictions on T0. The latter result,
however, is valid only for AAA in (127) piecewise constant on T0. Inspired by the work
of Chen and Feng [24], Mekchay and Nochetto [48] proved a contraction property
for the total error, namely the sum of the energy error plus oscillation, for general
second order elliptic operators such as those in Sect. 2.5.2. For non-symmetric B
this requires a sufficient fineness of the initial grid T0. The total error will reappear
in the study of convergence rates in Chap. 9.

Diening and Kreuzer proved a similar contraction property for the p-Laplacian
replacing the energy norm by the so-called quasi-norm [31]. They were able to
avoid marking for oscillation by using the fact that oscillation is dominated by the
estimator. Most results for nonlinear problems utilize the equivalence of the energy
error and error in the associated (nonlinear) energy; compare with Problem 49. This
equivalence was first used by Veeser in a convergence analysis for the p-Laplacian
[73] and later on by Siebert and Veeser for the obstacle problem [68].
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The result of Diening and Kreuzer inspired the work by Cascón et al. [21], who
proved a contraction property for the quasi-error:

|||u−Uk|||2Ω + γE 2
k (Uk,Tk),

where γ > 0 is a suitable scaling constant. This approach hinges solely on a strict re-
duction of the mesh-size within refined elements, the upper a posteriori error bound,
an orthogonality property natural for (127) in nested approximation spaces, and
Dörfler marking. This appears to be the simplest approach currently available and is
presented next.

8.1 The Modules of AFEM for the Model Problem

We assume Ω is triangulated by some initial grid T0. We suppose that AAA is uniformly
SPD so that (127) is coercive and in addition we ask AAA to be piecewise Lipschitz
over T0. We next describe the modules of the adaptive algorithm.

Module SOLVE. For any T ∈ T we set V(T ) = Sn,0(T )∩H1
0 (Ω) and suppose

that
UT = SOLVE

(
V(T )

)
outputs the exact Ritz-Galerkin approximation in V(T ), namely,

UT ∈ V(T ) : B[UT , V ] = 〈 f , V 〉 for all V ∈ V(T ).

This entails exact integration and linear algebra; see Remarks 9 and 10.

Module ESTIMATE. Given a grid T ∈ T and the Ritz-Galerkin approximation
UT ∈ V(T ) the output

{ET (UT ,T )}T∈T = ESTIMATE
(
UT ,T

)
are the indicators of the residual estimator derived in Chap. 6. We recall that for a
generic function V ∈ V(T ) the element and jump residuals are defined by

r(V )|T = f +div(AAA∇V ) = f for all T ∈T ,

j(V )|S = [[AAA∇V ]]S for all S ∈ S̊

and the element indicator evaluated in V is then

E 2
T (V,T ) = h2

T ‖r(V )‖2
L2(T ) +hT ‖ j(V )‖2

L2(∂T∩Ω) for all T ∈T .

Module MARK. For any T ∈ T and indicators {ET (UT ,T )}T∈T the module
MARK selects elements for refinement using Dörfler Marking, i. e., using a fixed
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parameter θ ∈ (0,1] the output

M = MARK
(
{ET (UT ,T )}T∈T ,T

)
satisfies

ET (UT ,M )≥ θ ET (UT ,T ).

Dörfler Marking guarantees that the total estimator is controlled up the constant
θ−1 by the estimator on the marked elements. This is a crucial property in our
arguments. The choice of M does not have to be minimal at this stage, that is, the
marked elements T ∈M do not necessarily must be those with largest indicators.
However, minimality of M will be crucial to derive rates of convergence in Chap. 9.

Module REFINE. We fix the number b∈N of bisections and consider the module
REFINE from Sect. 4.4 to refine all marked elements b times. Then for any T ∈ T
the output

T∗ = REFINE
(
T , M

)
satisfies T∗ ∈ T. Furthermore, if RT→T∗ is the set of refined elements of T , then
M ⊂RT→T∗ and hT∗ ≤ 2−b/dhT inside all elements of RT→T∗ .

8.2 Properties of the Modules of AFEM

We next summarize some basic properties of the adaptive algorithm that emanate
from the symmetry of the differential operator and features of the modules. In do-
ing this, any explicit constant or hidden constant in . must, apart from explicitly
stated other dependencies, only depend on the uniform shape-regularity of T, the
dimension d, the polynomial degree n, and the (global) eigenvalues of AAA, but not on
a specific grid T ∈ T. Further on, u will always be the weak solution of (127).

Lemma 17 (Nesting of Spaces). Any sequence {Vk = V(Tk)}k≥0 of discrete spaces
generated by the basic adaptive loop (4) is nested, this is,

Vk ⊂ Vk+1 for all k ≥ 0.

Proof. See Problem 47. ut

The following property relies on the fact that B is coercive and symmetric, and
so induces a scalar product in V equivalent to the H1

0 -scalar product.

Lemma 18 (Pythagoras). Let T ,T∗ ∈ T such that T ≤ T∗. The respective Ritz-
Galerkin solutions U ∈ V(T ) and U∗ ∈ V(T∗) satisfy the following orthogonality
property in the energy norm |||·|||

Ω

|||u−U |||2
Ω

= |||u−U∗|||2Ω + |||U∗−U |||2
Ω

. (128)
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Proof. See Problem 48. ut

A by-product of (128) is the monotonicity property

|||U∗−U |||
Ω
≤ |||u−U |||

Ω
. (129)

A perturbation of (128) is still valid for the general 2nd order elliptic operators
of Sect. 2.5.2, as shown in [48], but not for non-coercive problems. Even for (127),
property (128) is valid exclusively for the energy norm. This restricts the subsequent
analysis to the energy norm, or equivalent norms, but does not extend to other, per-
haps more practical, norms such as the maximum norm. This is an open problem.

We now continue the discussion of oscillation of Sect. 6.3.3. In view of (96), we
denote by oscT (V,T ) the element oscillation for any V ∈ V

oscT (V,T ) = ‖h(r(V )− r(V ))‖L2(T ) +‖h
1/2( j(V )− j(V ))‖L2(∂T∩Ω),

where r(V ) = P2n−2r(V ) and j(V ) = P2n−1 j(V ) stand for L2-projections of the resid-
uals r(V ) and j(V ) onto the polynomials P2n−2(T ) and P2n−1(S) defined on the ele-
ment T or side S⊂ ∂T , respectively. For variable AAA, oscT (V,T ) depends on the dis-
crete function V ∈V, and its study is more involved than for piecewise constant AAA. In
the latter case, oscT (V,T ) becomes data oscillation oscT (V,T ) = ‖h( f − f̄ )‖L2(T );
compare with Remark 25.

We now rewrite the a posteriori error estimates of Theorem 15 in the energy
norm.

Lemma 19 (A Posteriori Error Estimates). There exist constants 0 < C2 ≤ C1,
such that for any T ∈ T and the corresponding Ritz-Galerkin solution U ∈ V(T )
there holds

|||u−U |||2
Ω
≤C1 E 2

T (U,T ) (130a)

C2 E 2
T (U,T )≤ |||u−U |||2

Ω
+osc2

T (U,T ). (130b)

The constants C1 and C2 depend on the smallest and largest global eigenvalues of AAA.
This dependence can be improved if the a posteriori analysis is carried out directly
in the energy norm instead of the H1

0 -norm; see Problem 42. The definitions of
r(V ) and j(V ), as well as the lower bound (130b), are immaterial for deriving a
contraction property. However, they will be important for proving convergence rates
in Chap. 9.

Lemma 20 (Lipschitz Property). For any T ∈ T and T ∈T , there holds

|ET (V,T )−ET (W,T )|. ηT (AAA,T )‖∇(V −W )‖L2(ωT ) for all V,W ∈ V(T ).

By ωT we again denote the union of elements sharing a side with T , divAAA ∈ Rd is
the divergence of AAA computed by rows, and

ηT (AAA,T ) := hT‖divAAA‖L∞(T ) +‖AAA‖L∞(ωT ).
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Proof. Recalling the definition of the indicators, the triangle inequality yields

|ET (V,T )−ET (W,T )| ≤ hT‖r(V )− r(W )‖L2(T ) +h1/2
T ‖ j(V )− j(W )‖L2(∂T ).

We set E := V −W ∈ V(T ), and observe that

r(V )− r(W ) = div(AAA∇E) = divAAA ·∇E +AAA : D2E,

where D2E is the Hessian of E. Since E is a polynomial of degree≤ n in T , applying
the inverse estimate ‖D2E‖L2(T ) . h−1

T ‖∇E‖L2(T ), we deduce

hT‖r(V )− r(W )‖L2(T ) . ηT (AAA,T )‖∇E‖L2(T ).

On the other hand, for any S⊂ ∂T applying the inverse estimate of Problem 50 gives

‖ j(V )− j(W )‖L2(S) = ‖ j(E)‖L2(S) = ‖ [[A∇E]] ‖L2(S) . h−1/2
T ‖∇E‖L2(ωT )

where the hidden constant is proportional to ηT (AAA,T ). This finishes the proof. ut

One serious difficulty in dealing with AFEM is that one has access to the energy
error |||u−U |||

Ω
only through the estimator ET (U,T ). The latter, however, fails to

exhibit a monotonicity property such as (129) because it depends on the discrete
solution U ∈ V(T ) that changes with the mesh. We account for this change in the
next lemma, which is a direct consequence of Lemma 20.

Lemma 21 (Estimator Reduction). Let T ∈ T be given with a subset M ⊂ T of
marked elements and let T∗ = REFINE

(
T ,M

)
.

There exists a constant Λ > 0, such that all V ∈ V(T ), V∗ ∈ V∗(T∗) and any
δ > 0 we have

E 2
T∗(V∗,T∗)≤ (1+δ )

(
E 2

T (V,T )−λ E 2
T (V,M )

)
+(1+δ

−1)Λ η
2
T (AAA,T ) |||V∗−V |||2

Ω
,

where λ = 1−2−b/d and

ηT (AAA,T ) := max
T∈T

ηT (AAA,T ).

Proof. We proceed in several steps.
1 Global Estimate. We first observe that V ∈ V(T∗) since the spaces are nested.

We next invoke Lemma 20 for T ∈T∗ and V,V∗ ∈ V(T∗) to get

ET∗(V∗,T )≤ ET∗(V,T )+C ηT∗(AAA,T )‖V∗−V‖H1(ωT ).

Given δ > 0, we apply Young’s inequality (a+b)2 ≤ (1+δ )a2 +(1+δ−1)b2 and
add over T ∈T∗ to arrive at

E 2
T∗(V∗,T∗)≤ (1+δ )E 2

T∗(V,T∗)+Λ (1+δ
−1)η2

T (AAA,T ) |||V∗−V |||2
Ω

. (131)
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Here, Λ = (d +1)C/α1 results from the finite overlapping property of sets ωT and
the relation between norms

α1 ‖∇v‖2
L2(Ω) ≤ |||v|||

2
Ω

for all v ∈ V.

In addition we have used the monotonicity property ηT∗(AAA,T∗)≤ ηT (AAA,T ).
2 Accounting for M . We next decompose E 2

T∗
(V,T∗) over elements T ∈T , and

distinguish whether or not T ∈M . If T ∈M , then T is bisected at least b times and
so T can be written as the union of elements T ′ ∈T∗ We denote this set of elements
T∗(T ) and observe hT ′ ≤ 2−b/d hT for all T ′ ∈T∗(T ). Therefore

∑
T ′∈T∗(T )

h2
T ′‖r(V )‖2

L2(T ′) ≤ 2−(2b)/d h2
T‖r(V )‖2

L2(T )

and
∑

T ′∈T∗(T )
hT ′ ‖ j(V )‖2

L2(∂T ′∩Ω) ≤ 2−b/d hT ‖ j(V )‖2
L2(∂T∩Ω).

This implies
E 2

T∗(V,T )≤ 2−b/d E 2
T (V,T ) for all T ∈M .

For the remaining elements T ∈ T \M we only know that mesh-size does not
increased because T ≤T∗, whence

E 2
T∗(V,T )≤ E 2

T (V,T ) for all T ∈T \M .

3 Assembling. Combining the two estimates we see that

E 2
T∗(V,T∗)≤ 2−b/d E 2

T (V,M )+E 2
T (V,T \M )

= E 2
T (V,T )−

(
1−2−b/d)E 2

T (V,M ).

Recalling the definition of λ = 1−2−b/d and replacing E 2
T∗

(V,T∗) in (131) by the
right hand side of this estimate yields the assertion. ut

8.3 Contraction Property of AFEM

Recall that AFEM stands for the iteration loop (104) for the model problem. A key
question to ask is what is (are) the quantity(ies) that AFEM may contract. In view of
(129), an obvious candidate is the energy error |||u−Uk|||Ω . We show next that this
may not be the case unless REFINE enforces several levels of refinement.

Example 2 (Interior Node). Let Ω = (0,1)2, AAA = I, f = 1, and consider the sequence
of meshes depicted in Fig. 15. If φ0 denotes the basis function associated with the
only interior node of T0, then
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Fig. 15 Grids T0, T1, and T2 of the interior node example.

U0 = U1 =
1
12

φ0, U2 6= U1.

The mesh T1 ≥ T0 is produced by a standard 2-step bisection (b = 2) in 2d. Since
U0 = U1 we conclude that the energy error does not change

|||u−U0|||Ω = |||u−U1|||Ω

between consecutive steps of AFEM. This is no longer the case provided an interior
node in each marked element is created, because then U2 6= U1 and so |||u−U2|||Ω <
|||u−U1|||Ω (see (128)).

This example appeared first in [52, 53], and was used to justify the interior node
property: T∗ must have one node in each side and interior of every T ∈M . This
property entails a minimal number of bisections that increases with the dimension
d. The following heuristics explains why this property, closely related to a local dis-
crete lower bound (see Problem (35)), is no longer needed in the present approach.

Heuristics. According to (128), the energy error is monotone, but the previous
example shows that strict inequality may fail. However, in case Uk+1 = Uk, the es-
timator reduction in Lemma 21 for V∗ = Uk+1 and V = Uk reveals a strict estimator
reduction. We could thus expect that a suitable combination of them, the so-called
quasi error

|||u−Uk|||2Ω + γ E 2
k (Uk,Tk),

may be contractive. This heuristics illustrates a distinct aspect of AFEM theory, the
interplay between continuous quantities such the energy error |||u−Uk|||Ω and dis-
crete ones such as the estimator Ek(Uk,Tk): no one alone has the requisite properties
to yield a contraction between consecutive adaptive steps.

Theorem 17 (Contraction Property). Let θ ∈ (0,1] be the Dörfler Marking pa-
rameter, and {Tk,Vk,Uk}∞

k=0 be a sequence of conforming meshes, finite element
spaces and discrete solutions created by AFEM for the model problem (127).

Then there exist constants γ > 0 and 0 < α < 1, additionally depending on the
number b of bisections and θ , such that for all k ≥ 0

|||u−Uk+1|||2Ω + γ E 2
k+1(Uk+1,Tk+1)≤ α

2
(
|||u−Uk|||2Ω + γ E 2

k (Uk,Tk)
)
.
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Proof. We split the proof into four steps. For convenience, we use the notation

ek = |||u−Uk|||Ω , Ek = |||Uk+1−Uk|||Ω , Ek = Ek(Uk,Tk), Ek(Mk) = Ek(Uk,Mk).

1 The error orthogonality (128) reads

e2
k+1 = e2

k−E2
k . (132)

Employing Lemma 21 with T = Tk, T∗ = Tk+1, V = Uk and V∗ = Uk+1 gives

E 2
k+1 ≤ (1+δ )

(
E 2

k −λ E 2
k (Mk)

)
+(1+δ

−1)Λ0 E2
k , (133)

where Λ0 = Λη2
T0

(AAA,T0) ≥ Λη2
Tk

(AAA,Tk). After multiplying (133) by γ > 0, to be
determined later, we add (132) and (133) to obtain

e2
k+1 + γ E 2

k+1 ≤ e2
k +
(
γ (1+δ

−1)Λ0−1
)

E2
k + γ (1+δ )

(
E 2

k −λ E 2
k (Mk)

)
.

2 We now choose the parameters δ ,γ , the former so that

(1+δ )
(
1−λθ

2)= 1− λθ 2

2
,

and the latter to verify
γ (1+δ

−1)Λ0 = 1.

Note that this choice of γ yields

e2
k+1 + γ E 2

k+1 ≤ e2
k + γ (1+δ )

(
E 2

k −λ E 2
k (Mk)

)
.

3 We next employ Dörfler Marking, namely Ek(Mk)≥ θEk, to deduce

e2
k+1 + γ E 2

k+1 ≤ e2
k + γ(1+δ )(1−λθ

2)E 2
k

which, in conjunction with the choice of δ , gives

e2
k+1 + γ E 2

k+1 ≤ e2
k + γ

(
1− λθ 2

2

)
E 2

k = e2
k−

γλθ 2

4
E 2

k + γ

(
1− λθ 2

4

)
E 2

k .

4 Finally, the upper bound (130a), namely e2
k ≤C1 E 2

k , implies that

e2
k+1 + γ E 2

k+1 ≤
(

1− γλθ 2

4C1

)
e2

k + γ

(
1− λθ 2

4

)
E 2

k .

This in turn leads to
e2

k+1 + γ E 2
k+1 ≤ α

2(e2
k + γ E 2

k
)
,

with
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α
2 := max

{
1− γλθ 2

4C1
,1− λθ 2

4

}
,

and proves the theorem because α2 < 1. ut

Remark 30 (Ingredients). This proof hinges on the following basic ingredients:
Dörfler marking; symmetry of B and nesting of spaces, which imply the Pythagoras
identity (Lemma 18); the a posteriori upper bound (Lemma 19); and the estimator
reduction property (Lemma 21). It does not use the lower bound (130b) and does
not require marking by oscillation, as previous proofs do [24, 48, 52, 53, 54]. The
marking is driven by Ek exclusively, as it happens in all practical AFEM.

8.4 Example: Discontinuous Coefficients

We invoke the formulas derived by Kellogg [43] to construct an exact solution of an
elliptic problem with piecewise constant coefficients and vanishing right-hand side
f . We now write these formulas in the particular case Ω = (−1,1)2, AAA = a1III in the
first and third quadrants, and AAA = a2III in the second and fourth quadrants. An exact
weak solution u for f ≡ 0 is given in polar coordinates by u(r,θ) = rγ µ(θ), where

Fig. 16 Discontinuous coefficients in checkerboard pattern: Graph of the discrete solution, which
is u≈ r0.1, and underlying strongly graded grid. Notice the steep gradient of u at the origin.
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µ(θ) =


cos((π/2−σ)γ) · cos((θ −π/2+ρ)γ) if 0≤ θ ≤ π/2,

cos(ργ) · cos((θ −π +σ)γ) if π/2≤ θ ≤ π,

cos(σγ) · cos((θ −π−ρ)γ) if π ≤ θ < 3π/2,

cos((π/2−ρ)γ) · cos((θ −3π/2−σ)γ) if 3π/2≤ θ ≤ 2π,

and the numbers γ , ρ , σ satisfy the nonlinear relations

R := a1/a2 =− tan((π/2−σ)γ) · cot(ργ),
1/R =− tan(ργ) · cot(σγ),
R =− tan(σγ) · cot((π/2−ρ)γ),
0 < γ < 2,

max{0,πγ−π}< 2γρ < min{πγ,π},
max{0,π−πγ}<−2γσ < min{π,2π−πγ}.

(134)

Since we want to test the algorithm AFEM in a worst case scenario, we choose
γ = 0.1, which produces a very singular solution u that is barely in H1; in fact
u ∈ Hs(Ω) for s < 1.1 but still piecewise in W 2

p (Ω) for some 1 < p < 20
19 (see

Figure 16). We then solve (134) for R, ρ , and σ using Newton’s method to obtain
within computing precision

R = a1/a2 ∼= 161.4476387975881, ρ = π/4, σ ∼=−14.92256510455152,

and finally choose a1 = R and a2 = 1. A smaller γ would lead to a larger ratio R, but
in principle γ may be as close to 0 as desired.
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Fig. 17 Quasi-optimality of AFEM for discontinuous coefficients: estimate and true error. The
optimal decay for piecewise linear elements in 2d is indicated by the green line with slope −1/2.

We realize from Fig. 17 that AFEM attains optimal decay rate for the energy
norm. As we have seen in Sect. 5.4, this is consistent with adaptive approximation
for functions piecewise in W 2

p (Ω), but nonobvious for AFEM which does not have
direct access to u. We also notice from Fig. 18 that a graded mesh with mesh-size of
order 10−10 at the origin is achieved with about 2×103 elements. To reach a similar
resolution with a uniform mesh we would need N ≈ 1020 elements! This example
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clearly reveals the advantages and potentials of adaptivity within the FEM even with
modest computational resources.

zoom to [-0.001,0.001]x[-0.001,0.001]

zoom to [-0.000,0.000]x[-0.000,0.000] zoom to [-0.000,0.000]x[-0.000,0.000]

Fig. 18 Discontinuous coefficients in checkerboard pattern: Final grid (full grid with < 2000
nodes) (top left), zooms to (−10−3,10−3)2 (top right), (−10−6,10−6)2 (bottom left), and
(−10−9,10−9)2 (bottom right). The grid is highly graded towards the origin. For a similar res-
olution, a uniform grid would require N ≈ 1020 elements.

What is missing is an explanation of the recovery of optimal error decay N−1/2

through mesh grading. This is the subject of Chap. 9, where we have to deal with
the interplay between continuous and discrete quantities as already alluded to in the
heuristics.

8.5 Problems

Problem 47 (Nesting of Spaces). If T1,T2 ∈ T satisfy T1 ≤ T2, that is T2 is a
refinement by bisection of T1, then the corresponding (Lagrange) finite element
spaces are nested, i. e., V(T1)⊂ V(T2).
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Problem 48 (Pythagoras). Let V1 ⊂ V2 ⊂ V = H1
0 (Ω) be nested, conforming and

closed subspaces. Let u ∈V be the weak solution to (127), U1 ∈V1 and U2 ∈V2 the
respective Ritz-Galerkin approximations to u. Prove the orthogonality property

|||u−U1|||2Ω = |||u−U2|||2Ω + |||U2−U1|||2Ω . (135)

Problem 49 (Error in Energy). Let V1 ⊂ V2 ⊂ V and U1,U2,u be as in Prob-
lem 48. Recalling Problem 7, we know that u,U1,U2 are the unique minimizer of
the quadratic energy

I[v] := 1
2B[v, v]−〈 f , v〉

in V,V1,V2 respectively. Show that (135) is equivalent to the identity

I[U1]− I[u] = (I[U2]− I[u])+(I[U1]− I[U2]).

To this end prove

I[Ui]− I[u] = 1
2 |||Ui−u|||2

Ω
and I[U1]− I[U2] = 1

2 |||U1−U2|||2Ω .

Problem 50. Let S∈ S̊ be a side of T ∈T , and let AAA∈W 1
∞(T ). Prove the following

inverse estimate by a scaling argument to the reference element

‖AAA∇V‖S . h−1/2
S ‖∇V‖T for all V ∈ V(T ),

where the hidden constant depends on the shape coefficient of T , the dimension d,
and ‖AAA‖L∞(S).

Problem 51. Let K be either a d or a (d − 1)-simplex. For ` ∈ N denote by
Pp

m : Lp(K,R`)→ Pm(K,R`) the operator of best Lp-approximation in K. Then for
all v ∈ L∞(K,R`), V ∈ Pn(K,R`) and m≥ n, there holds

‖vV −P2
m(vV )‖L2(K) ≤ ‖v−P∞

m−nv‖L∞(K)‖V‖L2(K).

Problem 52. Let AAA∈W 1
∞(T ) for all T ∈T . Prove the quasi-local Lipschitz property

|oscT (V,T )−oscT (W,T )|. oscT (AAA,T )‖V −W‖H1(ωT ) for all V,W ∈ V,

where oscT (AAA,T ) = hT ‖divAAA−P∞
n−1(divAAA)‖L∞(T ) +‖AAA−P∞

n AAA‖L∞(ωT ). Proceed as
in the proof of Lemma 20 and use Problem 51.

Problem 53. Let T ,T∗ ∈ T, with T ≤ T∗. Use Problem 52 to prove that, for all
V ∈ V(T ) and V∗ ∈ V(T∗), there is a constant Λ1 > 0 such that

osc2
T (V,T ∩T∗)≤ 2osc2

T∗(V∗,T ∩T∗)+Λ1 oscT0(AAA,T0)2 |||V −V∗|||2Ω .
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9 Adaptivity: Convergence Rates

We have already realized in Chap. 5 that we can a priori accommodate the degrees of
freedom in such a way that the finite element approximation retains optimal energy
error decay for a class of singular functions. This presumes knowledge of the exact
solution u. At the same time, we have seen numerical evidence in Sect. 8.4 that the
AFEM of Chap. 8, achieves such a performance without direct access to the regu-
larity of u. Practical experience strongly suggests that this is even true for a much
larger class of problems and adaptive methods. The challenge ahead is to reconcile
these two distinct aspects of AFEM. In doing this we have to restrict ourselves to
the setting of Chap. 8. The mathematical foundation to justify the observed optimal
error decay of adaptive methods in case of non-symmetric or non-coercive bilinear
forms and other marking strategies is completely open.

One key to connect the two worlds for the simplest scenario, the Laplacian and
f piecewise constant, is due to Stevenson [69]: any marking strategy that reduces
the energy error relative to the current value must contain a substantial bulk of
ET (U,T ), and so it can be related to Dörfler Marking. This allows us to compare
AFEM with an optimal mesh choice and to conclude optimal error decay.

The objective of this section is to study the model problem (127) for general data
f and AAA and the AFEM from Chap. 8. In what follows it is important to use an error
notion that is strictly reduced by the adaptive method. In this section we closely
follow Cascón et al. [21] by utilizing the quasi-error as contracting quantity. This
approach allows us to include variable data f and AAA and thus improves upon and
extends Stevenson [69].

As in Chap. 8, u will always be the weak solution of (127) and, except when
stated otherwise, any constant explicit or hidden constant in . may depend on
the uniform shape-regularity of T, the dimension d, the polynomial degree n, the
(global) eigenvalues of AAA, and the oscillation oscT0(AAA,T0) of AAA on the initial mesh
T0, but not on a specific grid T ∈ T.

9.1 Approximation Class

Since AFEM selects elements for refinement based on information provided ex-
clusively by the error indicators {ET (U,T )}T∈T , it is natural that the measure of
regularity and ensuing decay rate is closely related to the indicators. We explore this
connection now.

The Total Error. We first introduce the concept of total error [48]

|||u−U |||2
Ω

+osc2
T (U,T ),

and next assert that it is equivalent to the quasi error, for the Galerkin function
U ∈ V(T ). In fact, in view of the upper and lower a posteriori error bounds (130a)
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and (130b), and
osc2

T (U,T )≤ E 2
T (U,T )

we have

C2 E 2
T (U,T )≤ |||u−U |||2

Ω
+osc2

T (U,T )

≤ |||u−U |||2
Ω

+E 2
T (U,T )≤ (1+C1)E 2

T (U,T ),

whence
E 2

T (U,T )≈ |||u−U |||2
Ω

+osc2
T . (136)

We thus realize that the decay rate of AFEM must be characterized by the total error.
Moreover, on invoking the upper bound once again, we also see that the total error
is equivalent to the quasi error

|||u−U |||2
Ω

+osc2
T (U,T )≈ |||u−U |||2

Ω
+E 2

T (U,T ).

This is the quantity being strictly reduced by AFEM (Theorem 17). Finally, the total
error satisfies the following Cea’s type-lemma. In fact, if AAA is piecewise constant,
then this is Cea’s Lemma stated in Problem 11.

Lemma 22 (Quasi-Optimality of Total Error). There exists a constant Λ2, such
that for any T ∈ T and the corresponding Ritz–Galerkin solution U ∈V(T ) holds

|||u−U |||2
Ω

+osc2
T (U,T )≤Λ2 inf

V∈V(T )

(
|||u−V |||2

Ω
+osc2

T (V,T )
)
.

Proof. For ε > 0 choose Vε ∈ V(T ), with

|||u−Vε |||2Ω +osc2
T (Vε ,T )≤ (1+ ε) inf

V∈V(T )

(
|||u−V |||2

Ω
+osc2

T (V,T )
)
.

Applying Problem 53 with T∗ = T , V = U , and V∗ = Vε yields

osc2
T (U,T )≤ 2 osc2

T (Vε ,T )+C3 |||U−Vε |||2Ω ,

with
C3 := Λ1 oscT0(AAA,T0)2.

Since U ∈V(T ) is the Galerkin solution, U−Vε ∈V(T ) is orthogonal to u−U in
the energy norm, whence |||u−U |||2

Ω
+ |||U−Vε |||2Ω = |||u−Vε |||2Ω and

|||u−U |||2
Ω

+osc2
T (U,T )≤

(
1+C3

)
|||u−Vε |||2Ω +2 osc2

T (Vε ,T )

≤ (1+ ε)Λ2 inf
V∈V(T )

(
|||u−U |||2

Ω
+osc2

T (V,T )
)
,

with Λ2 = max
{

2,1+C3
}

, and the assertion follows from ε → 0. ut
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We next give a definition of an appropriate approximation class As that hinges on
the concept of total error. We first let TN ⊂ T be the set of all possible conforming
refinements of T0 with at most N elements more than T0, i. e.,

TN = {T ∈ T | #T −#T0 ≤ N}.

The quality of the best approximation in TN with respect to the total error is char-
acterized by

σ(N;u, f ,AAA) := inf
T ∈TN

inf
V∈V(T )

(
|||u−V |||2

Ω
+osc2

T (V,T )
)1/2

,

and the approximation class As for s > 0 is defined by

As :=
{
(v, f ,AAA) | |v, f ,AAA|s := sup

N>0

(
Ns

σ(N;v, f ,AAA)
)

< ∞

}
.

Thanks to Lemma 22, the solution u with data ( f ,AAA) satisfies

σ(N;u, f ,AAA)≈ inf
T ∈TN

{
ET (U,T ) |U = SOLVE(V(T ))

}
. (137)

We point out the upper bound s≤ n/d for polynomial degree n≥ 1; this can be seen
with full regularity and uniform refinement (see (69)). Note that if (v, f ,AAA) ∈ As
then for all ε > 0 there exist Tε ≥ T0 conforming and Vε ∈ V(Tε) such that (see
Problem 54)

|||v−Vε |||2Ω +osc2
Tε
≤ ε

2 and #Tε −#T0 ≤ |v, f ,AAA|1/s
s ε

−1/s. (138)

For the subsequent discussion we recall Lemma 6: the overlay T1⊕T2 ∈ T of
two meshes T1,T2 ∈ T is the smallest common refinement of T1 and T2 and

#T1⊕T2 ≤ #T1 +#T2−#T0. (139)

We first investigate the class As for piecewise constant coefficient matrix AAA with
respect to T0. In this simplified scenario, the oscillation oscT (U,T ) reduces to
data oscillation (see Remark 25):

oscT = ‖hT ( f −P2n−2 f )‖L2(Ω).

We then have the following characterization of As in terms of the standard approxi-
mation classes [13, 14, 69]:

As :=
{

v ∈ V | |v|As
:= sup

N>0

(
Ns inf

T ∈TN
inf

V∈V(T )
|||v−V |||

Ω

)
< ∞

}
,

¯As :=
{

g ∈ L2(Ω) | |g| ¯As
:= sup

N>0

(
Ns inf

T ∈TN
‖hT (g−P2n−2 g)‖L2(Ω)

)
< ∞

}
.
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Lemma 23 (Equivalence of Classes). Let AAA be piecewise constant over T0. Then
(u, f ,AAA) ∈ As if and only if (u, f ) ∈As× ¯As and

|u, f ,AAA|s ≈ |u|As
+ | f | ¯As

. (140)

Proof. It is obvious that (u, f ,AAA)∈As implies (u, f )∈As× ¯As as well as the bound
|u|As

+ | f | ¯As
. |u, f ,AAA|s.

In order to prove the reverse inequality, let (u, f ) ∈ As× ¯As. Then there exist
T1,T2 ∈ TN so that |||u−U |||

Ω
≤ |u|As

N−s where U ∈ V(T1) is the best approxi-
mation and ‖hT2( f −P2

2n−2 f )‖L2(Ω) ≤ | f | ¯As
N−s.

The overlay T = T1⊕T2 ∈ T2N according to (139), and

|||u−U |||2
Ω

+osc2
T ≤ |||u−U |||2

Ω
+osc2

T2
≤ 2s( |u|2As

+ | f |2 ¯As

)
(2N)−s.

This yields (u, f ,AAA) ∈ As together with the bound |u, f ,AAA|s . |u|As
+ | f | ¯As

. ut

We next turn to the special case of linear finite elements.

Corollary 11 (Membership in A1/2). Let d = 2, polynomial degree n = 1, f ∈
L2(Ω), and AAA piecewise constant with respect to T0. If u ∈W 2

p (Ω ;T0) for some
p > 1, then (u, f ,AAA) ∈ A1/2 and

|u, f ,AAA|1/2 . ‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω)

Proof. We start with the data oscillation oscT , and realize that

oscT = ‖hT ( f −P0 f )‖L2(Ω) ≤ hmax(T )‖ f‖L2(Ω) . (#T )−1/2‖ f‖L2(Ω),

for any uniform refinement T ∈ T. This implies f ∈ ¯A1/2 with | f | ¯A1/2
. ‖ f‖L2(Ω).

For u ∈W 2
p (Ω ;T0) we learn from Corollary 7 and Remark 21 that u ∈A1/2 and

|u|A1/2
. ‖D2u‖L2(Ω ;T0). The assertion then follows from Lemma 23. ut

Example 3 (Pre-asymptotics). Corollary 11 shows that oscillation decays at least
with rate 1/2 for f ∈ L2(Ω). Since the decay rate of the total error is s ≤ 1/2,
oscillation can be ignored asymptotically. However, Remark 26 shows that oscil-
lation may dominate the total error, or equivalently the class As may fail to de-
scribe the behavior of |||u−Uk|||Ω , in the early stages of adaptivity. In fact, we
recall that osck(Uk,Tk) = ‖hk( f − P0 f )‖L2(Ω), the discrete solution Uk = 0, and
|||u−Uk|||Ω ≈ 2−K is constant for as many steps k ≤ K as desired. In contrast,
Ek(Uk,Tk) = osck(Uk,Tk) = ‖hk f‖L2(Ω) reduces strictly for k ≤ K but overesti-
mates |||u−Uk|||Ω . The fact that the preasymptotic regime k ≤ K for the energy er-
ror could be made arbitrarily long would be problematic if we focus exclusively on
|||u−Uk|||Ω . In practice, this effect is typically less dramatic because f is not orthog-
onal to V(Tk). Figure 19 displays the behavior of AFEM for the smooth solution
u = uS given by
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Fig. 19 Decay of the energy error (left) and the estimator (right) for the smooth solution uS of
(141) with frequencies κ = 5,10, and 15. The energy error exhibits a frequency-dependent plateau
in the preasymptotic regime and later an optimal decay. This behavior is allowed by As.

uS(x,y) = 10−2a−1
i (x2 + y2)sin2(κπx)sin2(κπy), 1≤ i≤ 4. (141)

of the problem in Sect. 8.4 with discontinuous coefficients {ai}4
i=1 in checkerboard

pattern and frequencies κ = 5,10, and 15. We can see that the error exhibits a
frequency-dependent plateau in the preasymptotic regime and later an optimal de-
cay. In contrast, the estimator decays always with the optimal rate. Since all deci-
sions of the AFEM are based on the estimator, this behavior has to be expected and
is consistent with our notion of approximation class As, which can be characterized
just by the estimator according to (137).

We next turn to the nonlinear interaction encoded in oscT (U,T ) via the prod-
uct AAA∇U . It is this interaction which makes the class As a non-standard object in
approximation theory that deserves further scrutiny.

Lemma 24 (Decay Rate of Oscillation). Let AAA be piecewise Lipschitz with respect
to T0, f ∈ L2(Ω), and polynomial degree n = 1. If U ∈ V(T ) is the Ritz-Galerkin
solution, then oscillation oscT (U,T ) has at least a decay rate of order −1/d

inf
T ∈TN

oscT (U,T ) .
(
‖ f‖L2(Ω) +‖AAA‖W 1

∞(Ω ;T0)

)
N−1/d .

Proof. Let T ∈ TN be a uniform refinement of T0 with #T ≈ N. By applying
Problem 52 with V = U and W = 0, we obtain

oscT (U,T ) . hT‖ f −P2
0 f‖L2(T ) +oscT (AAA,T )‖U‖H1(ωT )

with hT‖ f −P2
0 f‖L2(T ) ≤ hT‖ f‖L2(T ) and

oscT (AAA,T ) = h‖divAAA−P∞
0 (divAAA)‖L∞(T ) +‖AAA−P∞

1 AAA‖L∞(ωT ) . hT‖AAA‖W 1
∞(ωT ;T0).

Uniform refinement yields the relation hT ≈ N−1/d for all T ∈T , whence

osc2
T (U,T ) = ∑

T∈T
osc2

T (U,T ) .
(
‖ f‖2

L2(Ω) +‖AAA‖
2
W 1

∞(Ω ;T0)

)
N−2/d ,
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because ‖U‖H1(Ω) ≤ α
−1
1 ‖ f‖L2(Ω) according to (40). ut

Remark 31 (Asymptotic Order of Oscillation). Let’s assume the following piecewise
regularity of data ( f ,AAA) with respect to a conforming refinement T∗ of T0:

f ∈ H1(Ω ;T∗), AAA ∈W 2
∞(Ω ;T∗).

The proof of Lemma 24, in conjunction with Proposition 3(a), shows that for n = 1

inf
T ∈TN :T ≥T∗

oscT (U,T ) .
(
‖ f‖H1(Ω ;T∗) +‖AAA‖W 2

∞(Ω ;T∗)

)
N2/d ,

and the rate in Lemma 24 can be improved. Since the energy error decay is never
better than N−1/d , according to (69), we realize that oscillation is of higher order
than the energy error asymptotically as N ↑ ∞; compare with Remark 23.

Corollary 12 (Membership in A1/2). Let d = 2, polynomial degree n = 1, AAA ∈
W 1

∞(Ω ;T0), and f ∈ L2(Ω). If u ∈W 2
p (Ω ;T0) for some p > 1, then (u, f ,AAA) ∈A1/2

and
|u, f ,AAA|1/2 . ‖D2u‖Lp(Ω ;T0) +‖AAA‖W 1

∞(Ω ;T0) +‖ f‖L2(Ω).

Proof. Repeat the proof of Corollary 11 with the help of Lemma 24. ut

A complete characterization of As for general d and n is still missing. It is impor-
tant to realize that the nonlinear interaction between data AAA and U must be accounted
for, thereby leading to a new concept of approximation class As, which generalizes
those in [13, 14, 69]. It is worth mentioning that a near characterization of the stan-
dard approximation class As in terms of Besov spaces for d = 2 can be found in
[13, 14, 37]: u ∈As implies that u ∈ B2s+1

p (Lp(Ω)) for p = 2
2s+1 [13, Theorem 9.3];

u ∈ B2s+1
p (Lp(Ω)) for p > 2

2s+1 implies that u ∈ As [13, Theorem 9.1]. Note that
p < 1 for s > 1/2; see Remark 22.

9.2 Cardinality of Mk

To assess the performance of AFEM in terms of degrees of freedom #Tk, we need to
impose further restrictions on the modules of AFEM beyond those of Sect. 8.1. We
recall that C2 ≤C1 are the constants in (130a) and (130b) and C3 = Λ1 osc2

T0
(AAA,T0)

is the constant in Problem 53 and Lemma 22.

Assumption 2 (Assumptions for Optimal Decay Rate). We assume the following
additional properties of the marking procedure MARK and the initial grid T0:

(a) The marking parameter θ of Dörfler Marking satisfies θ ∈ (0,θ ∗) with

θ
2
∗ =

C2

1+C1(1+C3)
;
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(b) MARK outputs a set M with minimal cardinality;

(c) The initial triangulation T0 satisfies Assumption 1.

A few comments are now in order.

• Threshold θ∗ < 1: We first point out that, according to (130a) and (130b), the
ratio C2/C1 ≤ 1 is a quality measure of the estimator ET (U,T ): the closer to 1
the better! It is thus natural to be cautious in marking if the reliability constant C1
and efficiency constant C2 are very disparate. The additional factor C3 accounts
for the effect of a function dependent oscillation (see Problem 53), and is zero if
the oscillation just depends on data f because then oscT0(AAA,T0) = 0.

• Minimal Mk: According to Remark 24 about the significance of the local lower
a posteriori error estimate for relatively small oscillation, it is natural to mark
elements with largest error indicators. This leads to a minimal set Mk and turns
out to be crucial to link AFEM with optimal meshes and approximation classes.

• Initial Triangulation: The initial labeling of the element’s vertices on T0 stated
in Assumption 1 of Sect.4.2 is rather restrictive for dimension d > 2 but guaran-
tees the complexity estimate of Theorem 10 for our module REFINE. Any other
refinement ensuing the same complexity estimate can replace REFINE together
with the assumption on T0.

We stress that we cannot expect local upper bounds between the continuous solu-
tion u and discrete solution U due to the global nature of the underlying PDE: the er-
ror in a region may be dictated by pollution effects arising somewhere else. The fol-
lowing crucial result shows, however, that this is a matter of scale: if T∗ ≥T , then
what determines the error between Galerkin solutions U ∈V(T ) and U∗ ∈V(T∗) is
the refined set RT→T∗ , namely the region of Ω where the scale of resolution differs
from T to T∗. This is not, of course, in contradiction with the previous statement
because one needs an infinitely fine scale to reach the exact solution u.

Lemma 25 (Localized Upper Bound). Let T ,T∗ ∈ T satisfy T∗ ≥ T and define
R := RT→T∗ to be the set of refined elements in T . If U ∈V(T ) and U∗ ∈V(T∗)
are the corresponding Galerkin solutions, then

|||U∗−U |||2
Ω
≤C1 E 2

T (U,R).

where C1 > 0 is the same constant as in (130a).

Proof. Problem 55. ut

The following result reveals the importance of Dörfler’s marking in the present
context. The original result, established by Stevenson [69], referred to the energy
error alone. We follow [21] in this analysis.

Lemma 26 (Optimal Marking). Let the marking parameter θ satisfy Assump-
tion 2(a) and set µ := 1

2 (1− θ 2

θ 2∗
) > 0. For T∗ ≥ T let the corresponding Galerkin

solution U ∈ V(T ) and U∗ ∈ V(T∗) satisfy
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|||u−U∗|||2Ω +osc2
T∗(U∗,T∗)≤ µ

(
|||u−U |||2

Ω
+osc2

T (U,T )
)
. (142)

Then the set R = RT→T∗ of refined elements of T satisfies the Dörfler property

ET (U,R)≥ θ ET (U,T ). (143)

Proof. We split the proof into four steps.
1 In view of the global lower bound (130b)

C2 E 2
T (U,T )≤ |||u−U |||2

Ω
+osc2

T (U,T )

and (142), we can write

(1−2µ)C2 E 2
T (U,T )≤ (1−2µ)

(
|||u−U |||2

Ω
+osc2

T (U,T )
)

≤
(
|||u−U |||2

Ω
−2 |||u−U∗|||2Ω

)
+
(

osc2
T (U,T )−2osc2

T∗(U∗,T∗)
)
.

2 Combining the orthogonality relation (128)

|||u−U |||2
Ω
−|||u−U∗|||2Ω = |||U−U∗|||2Ω .

with the localized upper bound Lemma 25 yields

|||u−U |||2
Ω
−2 |||u−U∗|||2Ω ≤C1 E 2

T (U,R).

3 To deal with oscillation we decompose the elements of T into two disjoint sets:
R and T \R. In the former case, we have

osc2
T (U,R)−2osc2

T∗(U∗,R)≤ osc2
T (U,R)≤ E 2

T (U,R),

because oscT (U,T ) ≤ ET (U,T ) for all T ∈ T . On the other hand, we use that
T \R = T ∩T∗ and apply Problem 53 in conjunction with Lemma 25 to arrive at

osc2
T (U,T \R)−2osc2

T∗(U∗,T \R)≤C3 |||U−U∗|||2Ω ≤C1C3E
2
T (U,R).

Adding these two estimates gives

osc2
T (U,T )−2osc2

T∗(U∗,T∗)≤ (1+C1C3)E 2
T (U,R).

4 Returning to 1 we realize that

(1−2µ)C2 E 2
T (U,T )≤

(
1+C1(1+C3)

)
E 2

T (U,R),

which is (143) in disguise. In fact, recalling that θ 2
∗ = C2/

(
1 +C1(1 +C3)

)
then

θ 2 = (1−2µ)θ 2
∗ < θ 2

∗ as asserted. ut
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We are now ready to explore the cardinality of Mk. To this end, we must relate
AFEM with the approximation class As. This might appear like an undoable task.
However, the key to unravel this connection is given by Lemma 26.

Lemma 27 (Cardinality of Mk). Let Assumptions 2(a) and 2(b) be satisfied. If
(u, f ,AAA) ∈ As then

#Mk . |u, f ,AAA|1/s
s
(
|||u−Uk|||Ω +osck(Uk,Tk)

)−1/s for all k ≥ 0. (144)

Proof. We split the proof into three steps.
1 We set ε2 := µΛ

−1
2

(
|||u−Uk|||2Ω + osc2

k(Uk,Tk)
)

with µ = 1
2

(
1− θ 2

θ 2∗

)
> 0 as in

Lemma 26 and Λ2 given Lemma 22. Since (u, f ,AAA) ∈ As, in view of (138) there
exists Tε ∈ T and Uε ∈ V(Tε) such that

|||u−Uε |||2Ω +osc2
ε(Uε ,Tε)≤ ε

2 and #Tε −#T0 . |u, f ,AAA|1/2
s ε

−1/s.

Since Tε may be totally unrelated to Tk we introduce the overlay

T∗ = Tk⊕Tε .

2 We claim that the total error over T∗ reduces by a factor µ relative to that one
over Tk. In fact, since T∗ ≥Tε and so V(T∗)⊃V(Tε), we use Lemma 22 to obtain

|||u−U∗|||2Ω +osc2
T∗(U∗,T∗)≤Λ2

(
|||u−Uε |||2Ω +osc2

ε(Uε ,Tε)
)

≤Λ2ε
2 = µ

(
|||u−Uk|||2Ω +osc2

k(Uk,Tk)
)
.

Upon applying Lemma 26 we conclude that the set R = RTk→T∗ of refined elements
satisfies a Dörfler marking (143) with parameter θ < θ∗.

3 According to Assumption 2(b) MARK selects a minimal set Mk satisfying this
property. Therefore, we deduce

#Mk ≤ #R ≤ #T∗−#Tk ≤ #Tε −#T0 . |u, f ,AAA|1/s
s ε

−1/s,

where we have employed Lemma 6 for the overlay. Now recalling the definition of
ε we end up with the asserted estimate (144). ut

Remark 32 (Blow-up). The constant hidden in (144) blows up as θ ↑ θ∗ because
µ ↓ 0.

9.3 Quasi-Optimal Convergence Rates

We are ready to prove the main result of this section, which combines Theorem 17
and Lemma 27.
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Theorem 18 (Quasi-Optimality). Let Assumption 2 be satisfied. If (u, f ,AAA) ∈ As
then AFEM gives rise to a sequence {Tk,Vk,Uk}∞

k=0 such that

|||u−Uk|||Ω +osck(Uk,Tk) . |u, f ,AAA|s (#Tk−#T0)−s for all k ≥ 1.

Proof. 1 Since no confusion arises, we use the notation osc j = osc j(U j,T j) and
E j = E j(U j,T j). In light of Assumption 2(c) and (144) we have

#Tk−#T0 .
k−1

∑
j=0

#M j . |u, f ,AAA|1/s
s

k−1

∑
j=0

(∣∣∣∣∣∣u−U j
∣∣∣∣∣∣2

Ω
+osc2

j
)−1/(2s)

.

2 Let γ > 0 be the scaling factor in the (contraction) Theorem 17. The lower bound
(130b) along with osc j ≤ E j implies∣∣∣∣∣∣u−U j

∣∣∣∣∣∣2
Ω

+ γ osc2
j ≤
∣∣∣∣∣∣u−U j

∣∣∣∣∣∣2
Ω

+ γ E 2
j ≤

(
1+

γ

C2

)(∣∣∣∣∣∣u−U j
∣∣∣∣∣∣2

Ω
+osc2

j
)
.

3 Theorem 17 yields for 0≤ j < k

|||u−Uk|||2Ω + γ E 2
k ≤ α

2(k− j) (∣∣∣∣∣∣u−U j
∣∣∣∣∣∣2

Ω
+ γ E 2

j
)
,

whence

#Tk−#T0 . |u, f ,AAA|1/s
s
(
|||u−Uk|||2Ω + γ E 2

k
)−1/(2s)

k−1

∑
j=0

α
(k− j)/s.

Since ∑
k−1
j=0 α(k− j)/s = ∑

k
j=1 α j/s < ∑

∞
j=1 α j/s < ∞ because α < 1, the assertion fol-

lows immediately. ut

Corollary 13 (Estimator Decay). Let Assumption 2 be satisfied. If (u, f ,AAA) ∈ As
then the estimator Ek(Uk,Tk) satisfies

Ek(Uk,Tk) . |u, f ,AAA|1/s
s (#Tk−#T0)−s.

Proof. Use (136) and Theorem 18. ut

Corollary 14 (W 2
p -Regularity). Let d = 2, the polynomial degree n = 1, f ∈ L2(Ω),

and let AAA be piecewise constant over T0. If u ∈W 2
p (Ω ;T0) for p > 1, then AFEM

gives rise to a sequence {Tk,Vk,Uk}∞
k=0 satisfying osck = ‖hk( f −P0 f )‖L2(Ω) and

|||u−Uk|||Ω +osck .
(
‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω)

)
(#Tk−#T0)−1/2

for all k ≥ 1.

Proof. Combine Corollary 11 with Theorem 18. ut
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Corollary 15 (W 2
p -Regularity). Besides the assumptions of Corollary 14, let AAA be

piecewise Lipschitz over the initial grid T0. Then AFEM gives rise to a sequence
{Tk,Vk,Uk}∞

k=0 satisfying for all k ≥ 1

|||u−Uk|||Ω +osck(Uk,Tk)

.
(
‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω) +‖AAA‖W 1

∞(Ω ;T0)

)
(#Tk−#T0)−1/2.

Proof. Combine Corollary 12 with Theorem 18. ut

So far we have assumed that the module SOLVE gives the exact Galerkin solu-
tion Uk and in doing this we have ignored the effects of numerical integration and
inexact solution of the linear system; recall Remarks 9 and 10. The two issues above
are important for AFEM to be fully practical. If one could control a posteriori the
errors due to inexactness of SOLVE, then it would still be possible to prove a con-
traction property, as in Chap. 8, and examine the number of operations of AFEM in
terms of #Tk for a desired accuracy, following the steps of Sect. 9.2 and Sect. 9.3.
We refer to Stevenson [69], who explores this endeavor for problem (127) with AAA
piecewise constant.

9.4 Marking vs Optimality

We conclude with a brief discussion of processes that optimize more than one quan-
tity at once and the critical role of marking, i. e., we consider adaptive algorithms
that mark in each iteration for different error contributions separately. For instance,
in earlier work on adaptivity error indicator and oscillation are treated independently
[52, 53, 48]. Furthermore, when dealing with systems one is easily tempted to mark
separately for the different components; compare for instance with [40]. It is worth
observing that Binev et al. [13], Stevenson [69] and also Cascón et al. [21] avoided
to use separate marking in their algorithms when proving optimal error decay. When
dealing with the Poisson problem, oscillation becomes data oscillation and allows
one to first approximate data sufficiently well and then reduce the energy error. This
is done in different ways in [13] and [69]. However, for variable AAA the oscillation
depends on the discrete solution, as discussed in Sect. 9.1, and the above splitting
does not apply. Nonetheless marking solely for the estimator gives an optimal decay
rate according to Sect. 9.3.

The design of adaptive algorithms that rely on separate marking is extremely
delicate when aiming for optimal decay rates. To shed light on this issue we first
present some numerical experiments based on separate marking, and next analyze
the effect of separate marking in a simplified setting.
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9.4.1 Separate Marking

The procedure ESTIMATE of Morin, Nochetto and Siebert, used in previous con-
vergence proofs [52, 53, 48], calculates both the error and oscillation indicators
{Ek(Uk,T ),osck(Uk,T )}T∈Tk (see Remarks 23 and 31), and the procedure MARK
uses Dörfler marking for both the estimator and oscillation. More precisely, the rou-
tine MARK is of the form: given parameters 0 < θest,θosc < 1,

mark any subset Mk ⊂Tk such that Ek(Uk,Mk)≥ θestEk(Uk,Tk); (145a)
if necessary enlarge Mk to satisfy osck(Uk,Mk)≥ θosc osck(Uk,Tk). (145b)

Since oscillation is generically of higher order than the estimator, the issue at stake is
whether elements added by oscillation, even though immaterial relative to the error,
could ruin the optimal cardinality observed in experiments. If Ek(Uk,Tk) has large
indicators in a small area, then Dörfler marking for the estimator (145a) could select
a set Mk with a small number of elements relative to Tk. However, if osck(Uk,Tk)
were globally distributed in Tk, then separate marking would require additional
marking of a large percentage of all elements to satisfy (145b); i.e., #Mk could be
large relative to #Tk.

To explore this idea computationally, we consider a simple modification of the
Example of Sect. 8.4 with exact solution that we denote hereafter by uR. Let uS
be the smooth solution of (141), which is of comparable magnitude with uR, while
the corresponding f =−divAAA∇uS exhibits an increasing amount of data oscillation
away from the origin. Let u = uR +uS be the modified exact solution and let f be the
corresponding forcing function. Procedure MARK takes the usual value of θest = 0.5
[32, 52, 53, 63], and procedure REFINE subdivides all elements in Mk by using
two bisections.
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Fig. 20 Decay of the error (left) and the estimator (right) vs. degrees of freedom for θest = 0.5
and values θosc = 0.0,0.2,0.4,0.6, and 0.8. For values of θosc ≤ 0.4 the rate of convergence is
quasi-optimal, but for θosc > 0.4 the curves flatten out, thereby indicating lack of optimality.

The behavior of separate marking for several values of θosc is depicted in Fig-
ure 20. We can visualize its sensitivity with respect to parameter θosc. For values of
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θosc ≤ 0.4 the rate of convergence appears to be quasi-optimal. However, beyond
this threshold the curves for both the error and the estimator flatten out, thereby in-
dicating a lack of optimality. The threshold value θosc = 0.4, even though consistent
with practice, is tricky to find in general since it is problem-dependent. Therefore,
marking by oscillation (145b) is questionable.

9.4.2 Analysis of Separate Marking

In order to gain mathematical insight on the key issues related to separate mark-
ing, we examine the adaptive approximation of two given functions in an idealized
scenario. We show that separate marking, similar to (145), may lead to suboptimal
meshes in general. However, a suitable choice of marking parameters may restore
optimality. The numerical experiments of Sect. 9.4.1 confirm this theoretical insight
in a realistic environment.

For the discussion, we assume that we have two functions ui, i = 1,2, and have
access to their local approximation error

eT (ui;T ) = |ui− IT ui|i;T ∀T ∈T

and global error e2
T (ui) = ∑T∈T e2

T (ui;T ); hereafter | · |i are unspecified norms, and
IT is a local interpolation operator over T ∈ T. We define the total error to be

e2
T := e2

T (u1)+ e2
T (u2)

and are interested in its asymptotic decay. If T = Tk, then we denote ek = eTk .
To explore the use of (145), we examine the effect of separate marking for ek(ui)

on a sequence of meshes T i for i = 1,2. We put ourselves in an idealized, but
plausible, situation governed by the following three simplifying assumptions:

Independence: T 1
k and T 2

k are generated from T0 and are independent
of each other;

(146a)

Marking: Separate Dörfler marking with parameters θi ∈ (0,1) implies
that ek(ui)≈ αk

i on T i
k , with αi ∈ (0,1); (146b)

Approximability: ek(ui)≈ (#T i
k −#T0)−si , with s1 ≤ s2 maximal. (146c)

We are interested in the decay of the total error ek on the overlay Tk := T 1
k ⊕T 2

k .
This scenario is a simplification of the more realistic approximation of u1 and u2
with separate Dörfler marking on the same sequence of grids Tk but avoids the
complicated interaction of the two marking procedures.

Lemma 28 (Separate Marking). Let assumptions (146) be satisfied. Then the de-
cay of the total error ek on the overlay Tk = T 1

k ⊕T 2
k for separate marking is

always suboptimal except when α1 and α2 satisfy

α2 ≤ α1 ≤ α
s1/s2
2 .
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Proof. 1 Assumption (146b) on the average reduction rate implies for the total
error that

ek ≈ ek(u1)+ ek(u2)≈max{ek(u1),ek(u2)} ≈max{αk
1 ,αk

2}. (147)

Combining (146b) and (146c) yields αk
i ≈ (#T i

k −#T0)−si , whence

#T 1
k −#T0 ≈ α

−k/s1
1 = β

k
α
−k/s2
2 ≈ β

k(#T 2
k −#T0), (148)

with β = α
−1/s1
1 α

1/s2
2 . In view of Lemma 6, this gives for the overlay Tk

#Tk−#T0 ≈

{
#T 1

k −#T0, β ≥ 1,

#T 2
k −#T0, β < 1.

(149)

The optimal decay of total error ek corresponds to ek ≈ (#Tk − #T0)−s1 because
s1 ≤ s2. In analyzing the relation of ek to the number of elements #Tk in the overlay
Tk, we distinguish three cases and employ (147), (148), and (149).

2 Case: α1 < α2. We note that α1 < α2 and s1 ≤ s2 yields β ≥ 1. We thus deduce

ek ≈max{αk
1 ,αk

2}= α
k
2 = (α2/α1)

k
α

k
1

≈ (α2/α1)
k (#T 1

k −#T0)−s1 ≈ (α2/α1)
k (#Tk−#T0)−s1 .

Since α2/α1 > 1, the approximation of ek on Tk is suboptimal.
3 Case: α1 ≥ α2 and β < 1. We obtain

ek ≈max{αk
1 ,αk

2}= α
k
1 ≈ (#T 1

k −#T0)−s1

≈ β
−ks1(#T 2

k −#T0)−s1 ≈ β
−ks1(#Tk−#T0)−s1 ,

whence the approximation of the total error on Tk is again suboptimal.
4 Case: α1 ≥ α2 and β ≥ 1. We infer that

ek ≈max{αk
1 ,αk

2}= α
k
1 ≈ (#T 1

k −#T0)−s1 ≈ (#Tk−#T0)−s1

and that Tk exhibits optimal cardinality. This exceptional case corresponds to the
assertion and concludes the proof. ut

We learn from Lemma 28 that separate marking requires a critical choice of
parameters θi to retain optimal error decay with respect to the total error ek. In
light of Lemma 28, we could identify the AFEM estimator Ek with the error ek(u1)
and the AFEM oscillation osck with the error ek(u2). We observe that osck ≤ Ek
combined with (146b) implies that α2 ≤ α1 and that osck is generically of higher
order than Ek, thereby yielding s1 < s2.

We wonder whether or not the optimality condition α1 ≤ α
s1/s2
2 is valid. Note

that α
s1/s2
2 increases as the gap between s1 and s2 increases. Since the oscillation

reduction estimate of [52] reveals that α2 increases as θosc decreases, we see that
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separate marking may be optimal for a wide range of marking parameters θest,θosc;
this is confirmed by the numerical experiments in Sect. 9.4.1 even though it is un-
clear whether Ek and osck satisfy (146). However, choosing marking parameters
θest,θosc is rather tricky in practice because neither the explicit dependence of aver-
age reduction rates α1,α2 on θest,θosc nor the optimal exponents s1,s2 are known.
In contrast to [52, 53, 48], the standard AFEM of Chap. 8 marks solely according to
the estimator Ek(Uk,Tk) and thus avoids separate marking.

9.5 Problems

Problem 54. Show that (v, f ,AAA) ∈As if and only there exists a constant Λ > 0 such
that for all ε > 0 there exist Tε ≥T0 conforming and Vε ∈ V(Tε) such that

|||v−Vε |||2Ω +osc2
Tε
≤ ε

2 and #Tε −#T0 ≤Λ
1/s

ε
−1/s;

in this case |v, f ,AAA|s≤Λ . Hint: Let Tε be minimal for |||v−Vε |||2Ω +osc2
Tε
≤ ε2. This

means that for all T ∈ T such that #T = #Tε −1 we have |||v−Vε |||2Ω +osc2
Tε

> ε .

Problem 55. Prove Lemma 25: if T ,T∗ ∈ T satisfy T∗ ≥ T , R := RT→T∗ is the
refined set to go from T to T∗, and U ∈V, U∗ ∈V∗ are the corresponding Galerkin
solutions, then

|||U∗−U |||2
Ω
≤C1 E 2

T (U,R).

To this end, write the equation fulfilled by U∗−U ∈ V∗ and use as a test function
the local quasi-interpolant IT (U∗−U) of U∗−U introduced in Proposition 3(b) and
compare with Remark 20.

Problem 56. Trace the dependence as θ→ θ∗ and s→ 0 in Lemma 27 and Theorem
18.

Problem 57. Let d = 2 and n = 1. Let f be piecewise W 1
1 over the initial mesh T0,

namely f ∈W 1
1 (Ω ;T0). Show that

inf
T ∈TN

‖hT ( f −P0 f )‖L2(Ω) . ‖ f‖W 1
1 (Ω ;T0)N

−1.

This shows the same decay rate of data oscillation as in Remark 31 but with weaker
regularity.
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4. Babuška, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements
with mesh refinements. Numer. Math. 33(4), 447–471 (1979)
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6. Babuška, I., Strouboulis, T.: The finite element method and its reliability. Numerical Mathe-
matics and Scientific Computation. The Clarendon Press Oxford University Press, New York
(2001)
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195–202 (2003)


