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PART I : THE NAVIER-STOKES EQUATIONS
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Abstract. The Gauge-Uzawa FEM is a new first order fully discrete projection method which
combines advantages of both the Gauge and Uzawa methods within a variational framework. A time
step consists of a sequence of d + 1 Poisson problems, d being the space dimension, thereby avoiding
both the incompressibility constraint as well as dealing with boundary tangential derivatives as in
the Gauge Method. This allows for a simple finite element discretization in space of any order in both
2d and 3d. This first part introduces the method for the Navier-Stokes equations of incompressible
fluids and shows unconditional stability and error estimates for both velocity and pressure via a
variational approach under realistic regularity assumptions. Several numerical experiments document
performance of the Gauge-Uzawa FEM and compare it with other projection methods.
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1. Introduction. Given an open bounded polygon (or polyhedron) Ω in R
d with

d = 2 (or 3), we consider the time dependent Navier-Stokes Equations:

ut + (u · ∇)u + ∇p− µ△u = f , in Ω,

div u = 0, in Ω,

u(x, 0) = u0, in Ω,

(1.1)

with vanishing Dirichlet boundary condition u = 0 on ∂Ω and pressure mean-value∫
Ω
p = 0. This system models the dynamics of an incompressible viscous Newto-

nian fluid. The viscosity µ = Re−1 is the reciprocal of the Reynolds number. The
unknowns are vector function u (velocity) and scalar function p (pressure).

The incompressibility condition div u = 0 in (1.1) leads to a saddle point struc-
ture, which requires compatibility between the discrete spaces for u and p [1, 2, 10]
(inf-sup condition). To circumvent this difficulty, projection methods have been stud-
ied since the late 60’s, which exploit the time dependence in (1.1) [4, 9, 11, 18, 21,
24, 25]. However, such methods

• yield momentum equations inconsistent with the first equation in (1.1) ;
• impose artificial boundary conditions on pressure (or related variables), which are

responsible for boundary layers and reduced accuracy [4, 9];
• require sometimes knowing a suitable initial pressure which is incompatible with

the elliptic nature of the Lagrange multiplier p and equation div u = 0 [11, 18];
• are often studied without space discretization [3, 4, 18, 20, 21, 25], and the ensuing

analysis may not apply to full discretizations;
• often require unrealistic regularity assumptions in their analysis, particularly so for

fully discrete schemes; for instance utt ∈ L∞(H2), uttt ∈ L∞(H1), ptt ∈ L∞(H2),
pttt ∈ L∞(L2) is required in [11] for a Chorin finite element method, and similar
strong assumptions are made in [27] for a Gauge finite difference method.
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The Gauge Method is a projection method, due to Osedelets [17] and E and Liu [7],
meant to circumvent these difficulties. It introduces new variables a and φ (gauge)
such that u = a + ∇φ and couple them via the boundary condition u = 0. The
method has been studied in [27] using asymptotic methods and in [16] employing
variational techniques. The boundary coupling is responsible for accuracy degradation
in problems with singular solutions (due to reentrant corners), as will be illustrated
below. It also makes the use of finite element methods (FEM) problematic for space
discretization. In this paper, we construct a Gauge-Uzawa FEM (GU-FEM) which
inherits some beneficial properties of both the Gauge Method and the Uzawa Method
and avoids dealing with boundary derivatives. We also prove that the fully discrete
method is unconditionally stable and derive error estimates for both velocity and
pressure under realistic regularity requirements.

1.1. The Gauge-Uzawa Finite Element Method. To motivate the new
method we start from the Gauge Method of Oseledets [17] and E and Liu [7]; see
also [16, 19]. Let φ be an auxiliary scalar variable, the so-called gauge variable, and
a be a vector unknown such that u = a + ∇φ. If φ and p satisfy the heat equation
∂tφ− µ∆φ = −p, then the momentum and incompressibility equations become

∂ta + (u · ∇)u − µ△a = f , in Ω,

−△φ = div a, in Ω.

This formulation is equivalent to (1.1) at the PDE level. We are now free to choose
boundary conditions for the non-physical variables a and φ for as long as u = 0

is enforced. Hereafter, we employ a Neumann condition on φ which, according to
[7, 16, 19, 27], is the most advantageous:

∂νννφ = 0, a · ννν = 0, a · τττ = −∂τττφ;

ννν and τττ are the unit vectors in the normal and tangential directions, respectively.
Upon discretizing in time via the backward Euler method [7, 27], and a semi-implicit
treatment of the convection term, we end up with the following unconditionally stable
method [16, 19]:

Algorithm 1 (Gauge Method). Start with φ0 = 0 and a0 = u0. Repeat the steps
Step 1: Find an+1 as the solution of

an+1 − an

τ
+ (un · ∇)(an+1 + ∇φn) − µ△an+1 = f(tn+1), in Ω,

an+1 · ννν = 0, an+1 · τττ = −∂τττφ
n, on ∂Ω.

(1.2)

Step 2: Find φn+1 as the solution of

−△φn+1 = div an+1, in Ω,

∂νννφ
n+1 = 0, on ∂Ω.

Step 3: Update un+1 according to

un+1 = an+1 + ∇φn+1. (1.3)

We point out that the momentum equation is linear in an+1, and that the explicit
boundary condition an+1 · τττ = −∂τττφ

n is crucial to decouple the equations for an+1

and φn+1. Since this formulation is consistent with (1.1), except for un+1 · τττ =
∂τττ (φn+1 − φn), normal mode analysis can be used to show full accuracy for smooth
solutions [3, 20]. However, several deficiencies of this algorithm are now apparent:
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• The boundary term ∂τττφ
n is non-variational and thus difficult to implement within

a finite element context, especially in 3d.
• The computation of ∂τττφ

n, which involves numerical differentiation, yields loss of
accuracy and is problematic at corners of ∂Ω where τττ is not well defined. This is
remarkably important for reentrant corners as illustrated in the comparisons below.

• The computation of pn+1 = µ∆φn+1 − τ−1(φn+1 −φn) is also unstable. This yields
a reduced rate of convergence or lack of convergence altogether [16, 19, 27].

• Numerical experiments indicate that the polynomial degree for φ must be of higher
order than that for p [19]. A suitable combination of finite element spaces for
(a,u, φ, p) is continuous piecewise polynomials (P2,P2,P3,P1), which is consistent
with (1.3) and the previous expression for pn+1. This is however rather costly
computationally since φ is just an auxiliary variable without intrinsic interest [19].

The purpose of this paper is to construct and study the Gauge-Uzawa FEM,
which overcomes these shortcomings without losing advantages of the Gauge Method.
We start by introducing a new vector variable ûn+1 having zero boundary values

ûn+1 = an+1 + ∇φn.

Inserting this into (1.2), we readily get

ûn+1 − un

τ
+ (un · ∇)ûn+1 − µ△ûn+1 + µ∇△φn = f(tn+1), in Ω. (1.4)

To deal with the third order term ∇△φn, which is a source of trouble due to lack
of commutativity of the differential operators at the discrete level, we introduce the
variable sn+1 = △φn+1 and note the connection with the Uzawa iteration:

sn+1 = △φn+1 = −div an+1 = △φn − div ûn+1 = sn − div ûn+1. (1.5)

If we also set ρn+1 = φn+1 − φn, then

−△ρn+1 = −△(φn+1 − φn) = div ûn+1. (1.6)

Combining (1.4), (1.5) and (1.6) we arrive at the discrete-time Gauge-Uzawa method.
In order to introduce the finite element discretization we need further notation.

Let Hs(Ω) be the Sobolev space with s derivatives in L2(Ω), set L2(Ω) =
(
L2(Ω)

)d

and Hs(Ω) = (Hs(Ω))d, where d = 2 or 3, and denote by L2
0(Ω) the subspace of L2(Ω)

of functions with vanishing meanvalue. We indicate with ‖·‖s the norm in Hs(Ω), and
with 〈· , ·〉 the inner product in L2(Ω). Let T = {K} be a shape-regular quasi-uniform
partition of Ω of meshsize h into closed elements K [1, 2, 10]. The vector and scalar
finite element spaces are:

Wh := {vh ∈ L2(Ω) : vh|K ∈ P(K) ∀K ∈ T}, Vh := Wh ∩ H1
0(Ω),

Ph := {qh ∈ L2
0(Ω) ∩C 0(Ω) : qh|K ∈ Q(K) ∀K ∈ T},

where P(K) and Q(K) are spaces of polynomials with degree bounded uniformly
with respect to K ∈ T [2, 10]. We stress that the space Ph is composed of continuous
functions for (1.6) to make sense. This implies the crucial equality

〈div vh , qh〉 = −〈vh , ∇qh〉 , ∀vh ∈ Vh, qh ∈ Ph.

Using the following discrete counterpart of the form N(u,v,w) = 〈(u · ∇)v , w〉

Nh(uh,vh,wh) =
1

2
〈(uh · ∇)vh , wh〉 −

1

2
〈(uh · ∇)wh , vh〉 , (1.7)
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we are ready to write the Gauge-Uzawa finite element method:
Algorithm 2 (Gauge-Uzawa FEM). Start with s0h = 0 and u0

h as a solution of〈
u0

h , wh

〉
=

〈
u0 , wh

〉
for all wh ∈ Vh.

Step 1: Find ûn+1
h ∈ Vh as the solution of

τ−1
〈
ûn+1

h − un
h , wh

〉
+ Nh(un

h, û
n+1
h ,wh) + µ

〈
∇ûn+1

h , ∇wh

〉

− µ 〈sn
h , div wh〉 =

〈
f(tn+1) , wh

〉
, ∀wh ∈ Vh.

(1.8)

Step 2: Find ρn+1
h ∈ Ph as the solution of

〈
∇ρn+1

h , ∇ψh

〉
=

〈
div ûn+1

h , ψh

〉
, ∀ψh ∈ Ph. (1.9)

Step 3: Update sn+1
h ∈ Ph according to

〈
sn+1

h , qh
〉

= 〈sn
h , qh〉 −

〈
div ûn+1

h , qh
〉
, ∀qh ∈ Ph. (1.10)

Step 4: Update un+1
h ∈ Wh according to

un+1
h = ûn+1

h + ∇ρn+1
h . (1.11)

We note that un+1
h is a discontinuous function across inter-element boundaries and

that, in light of (1.9), un+1
h is discrete divergence free in the sense that

〈
un+1

h , ∇ψh

〉
= 0, ∀ψh ∈ Ph. (1.12)

In addition, the discrete pressure pn+1
h ∈ Ph can be computed via

pn+1
h = µsn+1

h − τ−1ρn+1
h . (1.13)

Consequently, the ensuing momentum equations for either (ûn+1, pn) or (un+1, pn+1)
are fully consistent with (1.1), a distinctive feature of this new formulation:

τ−1
〈
ûn+1

h − ûn
h , wh

〉
+ Nh(un

h, û
n+1
h ,wh) + µ

〈
∇ûn+1

h , ∇wh

〉

− 〈pn
h , div wh〉 =

〈
f(tn+1) , wh

〉
, ∀wh ∈ Vh.

(1.14)

1.2. Comparison with Other Projection Methods. We now compare the
Gauge-Uzawa FEM of Algorithm 2 with the original Chorin Method [4, 25], the
Chorin-Uzawa Method [18], and the Gauge Method of Algorithm 1 [7, 16, 19] using
finite elements of degree 2 for u, û,a, of degree 1 for p, s, ρ, and of degree 3 for φ.
We consider the L-shaped domain Ω = ((−1, 1)× (−1, 1))− ([0, 1)× (−1, 0]) and the
corresponding time-dependent singular solution of the Stokes equation (Nh = 0) [26]

u(r, θ) =
3 − cos(5t)

4
rα

[
cos(θ)ψ′(θ) + (1 + α) sin(θ)ψ(θ)
sin(θ)ψ′(θ) − (1 + α) cos(θ)ψ(θ)

]
,

p(r, θ) = −
3 − cos(5t)

4
rα−1 (1 + α)2ψ′(θ) + ψ′′′(θ)

1 − α
,

where ω = 3π
2 , α = 0.544,

ψ(θ) =
sin((1 + α)θ) cos(αω)

1 + α
− cos((1+α)θ)+

sin((α− 1)θ) cos(αω)

1 − α
+cos((α− 1)θ),

and T = 5. Since α < 1, the pressure p is unbounded at the origin. The initial mesh
and time steps are τ = h = 1/8 and are subsequently halved for every experiment.

Figure 1.1 clearly shows the superior performance of the Gauge-Uzawa FEM,
particularly so in regard to pressure approximation for which the Gauge Method fails
to converge. These experiments, as well as those in §7, were carried out within the
software platform ALBERT of Schmidt and Siebert [22].
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Fig. 1.1. Error decay vs number of degrees of freedom for four projection methods; the
errors are measured in L2(L2) and L2(H1) for velocity and L2(L2) for pressure. Velocity
and pressure do not always converge for the Gauge Method, even though we use the best finite
element combination (P2,P1,P3) for (u, p, φ). The Gauge-Uzawa FEM exhibits a superior
performance overall. The numbers in parenthesis are the experimental orders of convergence.

1.3. The Main Results. We now summarize our theoretical results of the rest
of this paper for the Gauge-Uzawa FEM. In §3 we prove stability.

Theorem 1.1 (Stability). The Gauge-Uzawa FEM is unconditionally stable in
the sense that, for all τ > 0, the following a priori bound holds:

∥∥uN+1
h

∥∥2

0
+

N∑

n=0

∥∥un+1
h − un

h

∥∥2

0
+
µτ

2

N∑

n=0

∥∥∇ûn+1
h

∥∥2

0

+ 2

N∑

n=0

∥∥∇ρn+1
h

∥∥2

0
+ µτ

∥∥sN+1
h

∥∥2

0
≤

∥∥u0
h

∥∥2

0
+ Cτ

N∑

n=0

∥∥f(tn+1)
∥∥2

−1
.

(1.15)

We then study the rate of convergence of the various unknowns under appropriate
assumptions A1 − 6 described in §2. In §4 we prove error estimates for velocity.

Theorem 1.2 (Error Estimates for Velocity). If A1-6 hold and h2 ≤ Cτ , with
C > 0 arbitrary, then we have the error estimates

τ

N∑

n=0

∥∥∇
(
u(tn+1) − ûn+1

h

)∥∥2

0
≤ C(τ + h2),

τ

N∑

n=0

(∥∥u(tn+1) − un+1
h

∥∥2

0
+

∥∥u(tn+1) − ûn+1
h

∥∥2

0

)
≤ C(τ + h2)2.

Given a sequence {Wn}N
n=0, we define its discrete time derivative to be

δWn+1 :=
Wn+1 −Wn

τ
.

We also define the discrete weight σn := min(tn, 1) for 1 ≤ n ≤ N . In §5 we derive
an error estimate for time derivative of velocity and utilize it in §6 to prove and error
estimate for pressure.
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Theorem 1.3 (Error estimates for Time Derivative of Velocity and Pressure). Let

A1-6 hold and C1h
2 ≤ τ ≤ C2h

d

3
(1+ε) be valid with arbitrary constants C1 > 0 and

C2 > 0, where d is the space dimension. Then the following weighted estimates hold

τ

N∑

n=0

σn+1
(∥∥δ(u(tn+1) − un+1

h )
∥∥2

0
+

∥∥p(tn+1) − pn+1
h

∥∥2

0

)
≤ C(τ + h2).

If NLC of §2 is also satisfied, then the following uniform error estimates are valid

τ

N∑

n=0

(∥∥δ(u(tn+1) − un+1
h )

∥∥2

0
+

∥∥p(tn+1) − pn+1
h

∥∥2

0

)
≤ C(τ + h2).

The proofs of Theorems 1.1-1.3 follow the variational approach of [16, 19]. We
finally conclude in §7 with numerical experiments which document both accuracy and
performance of the Gauge-Uzawa FEM.

2. Basic Assumptions and Regularity. This section is mainly devoted to
stating assumptions and basic regularity results. We refer to Constantin and Foias
[5], Heywood and Rannacher [12], Prohl [18] for details.

2.1. Regularity. We start with three basic assumptions about data Ω, u0, f ,
and u. We consider first the stationary Stokes equations, which will be used in a
duality argument:

−△v + ∇q = g, in Ω,

div v = 0, in Ω,

v = 0, on Ω.

(2.1)

Assumption A1 (Regularity of (v, q)). The unique solution (v, q) ∈ H1
0 (Ω) ×

L2
0(Ω) of the stationary Stokes equations (2.1) satisfies

‖v‖2 + ‖q‖1 ≤ C‖g‖0.

We remark that A1 is valid provided ∂Ω is of class C 2 [5], or if Ω is a convex
two-dimensional polygon [13] or three-dimensional polyhedron [6].

Assumption A2 (Data Regularity). The initial velocity u0 and the forcing term
f in (1.1) satisfy

u0 ∈ H2(Ω) ∩ Z(Ω) and f , ft ∈ L∞(0, T ;L2(Ω)),

where Z(Ω) := {z ∈ H1
0(Ω) : div z = 0}.

Assumption A3 (Regularity of the Solution u). There exists M > 0 such that

sup
t∈[0,T ]

‖∇u(t)‖0 ≤M.

We note that A3 is always satisfied in 2d, whereas it is valid in 3d provided
∥∥u0

∥∥
1

and ‖f‖L∞(0,T ;L2(Ω)) are sufficiently small [12].

Lemma 2.1 (Uniform and Weighted A Priori Estimates [12]). Let σ(t) = min{t, 1}
be a weight function. Let A1-3 hold and 0 < T ≤ ∞. Then the solution (u, p) of (1.1)
satisfies

sup
0<t<T

(
‖u‖2 + ‖ut‖0 + ‖p‖1

)
≤M,

∫ T

0

‖ut‖
2
1dt ≤M, (2.2)
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and

sup
0<t<T

(
σ(t)‖ut‖

2
1

)
≤M,

∫ T

0

σ(t)
(
‖ut‖

2
2 + ‖utt‖

2
0 + ‖pt‖

2
1

)
dt ≤M. (2.3)

Consequently, (u, p) ∈ L∞(0, T ;H2(Ω) ×H1(Ω)) provided A1-3 are valid.
The following nonlocal assumption is used to remove the weight σ(t) for the error

estimates for ut in §5 and pressure in §6.
Assumption NLC (Nonlocal Compatibility). The data u0 and f0 = f(0, ·) are

such that ‖∇ut(0)‖0 ≤M .
In view of [12, Corollary 2.1], we realize that NLC is equivalent to the initial data

u0, p0 = p(0, ·), f0 satisfying the overdetermined system

∆p0 = div
(
f0 − (u0 · ∇)u0

)
in Ω, ∇p0 = ∆u0 + f0 − (u0 · ∇)u0 on ∂Ω.

This is true if u0 = f0 = 0, in which case also p0 = 0 and ‖∇ut(0)‖0 = 0. However,
‖∇ut(t)‖0 blows-up in general as t ↓ 0, thereby uncovering the practical limitations
of results based on higher regularity than (2.2) and (2.3) uniformly for t ↓ 0 [11, 27].

Lemma 2.2 (Uniform A Priori Estimates [12, Corollary 2.1]). Suppose A1-3 hold
and let 0 < T ≤ ∞. Then NLC is valid if and only if

∫ T

0

‖utt(t)‖
2
0dt+ sup

0<t<T
‖∇ut(t)‖

2
0 ≤M. (2.4)

Furthermore, if NLC holds, then

∫ T

0

(
‖pt(t)‖

2
1 + ‖ut(t)‖

2
2

)
dt ≤M.

Lemma 2.3 (A Priori Estimates on Z(Ω)∗ [16, 19]). If A1-3 hold, then we have

∫ T

0

‖utt(t)‖
2
∗dt ≤M, (2.5)

where Z(Ω)∗ is a dual space of Z(Ω). Furthermore, if NLC also hold, then

sup
0<t<T

‖utt(t)‖
2
∗ ≤M.

Lemma 2.4 (Div-Grad Relation [15, 16, 19, 24]). If v ∈ H1
0(Ω), then

‖div v‖0 ≤ ‖∇v‖0.

2.2. Properties of FEM. We impose the following properties on Vh,Ph.
Assumption A4 (Discrete Inf-Sup). There exists a constant β > 0 such that

inf
qh∈Ph

sup
vh∈Vh

〈div vh , qh〉

‖vh‖1‖qh‖0

≥ β.

Assumption A5 (Shape Regularity and Quasiuniformity [1, 2, 10]). There exists
a constant C > 0 such that the ratio between the diameter hK of an element K ∈ T
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and the diameter of the largest ball contained in K is bounded uniformly by C, and
hK is comparable with the meshsize h for all K ∈ T.

Assumption A6 (Approximability [1, 2, 10]). For each (v, q) ∈ H2(Ω) ×H1(Ω),
there exist approximations (vh, qh) ∈ Vh × Ph such that

‖v − vh‖0 + h‖v − vh‖1 ≤ Ch2‖v‖2 and ‖q − qh‖0 ≤ Ch‖q‖1.

Let now (vh, qh) ∈ Vh × Ph indicate the finite element solution of (2.1), namely,

〈∇vh , ∇wh〉 − 〈qh , div wh〉 = 〈g , wh〉 , ∀wh ∈ Vh,

〈rh , div vh〉 = 0, ∀rh ∈ Ph.
(2.6)

Lemma 2.5 (Error Estimates for Mixed FEM [1, 2, 10]). Let (v, q) ∈ H1
0(Ω)×L2

0(Ω)
be the solutions of (2.1) and (vh, qh) = Sh(v, q) ∈ Vh × Ph be the Stokes projections
defined by (2.6), respectively. If A4-6 hold, then

‖v − vh‖0 + h‖v − vh‖1 + h‖q − qh‖0 ≤ Ch2 (‖v‖2 + ‖q‖1) . (2.7)

If also A1 holds, then the right-hand side is bounded by Ch2‖g‖0 and if d ≤ 4

‖g‖∗ ≤ C‖∇v‖0 ≤ Ch‖g‖0 + C‖∇vh‖0, (2.8)

|||v − vh||| := ‖v − vh‖L∞(Ω) + ‖∇(v − vh)‖
L3(Ω) ≤ C‖g‖0. (2.9)

Proof. Inequality (2.7) is standard [1, 2, 10]. To prove (2.8) we simply test (2.1)
with an arbitrary z ∈ Z(Ω) for the first inequality, and next use (2.7) for the second
one. To establish (2.9) we just deal with the L∞-norm since the other can be treated
similarly. If Ih denotes the Clement interpolant, then ‖v − Ihv‖L∞(Ω) ≤ C‖v‖2 and

‖Ihv − vh‖L∞(Ω) ≤ Ch−d/2‖Ihv − vh‖L2(Ω) ≤ C‖v‖2

as a consequence of an inverse estimate and (2.7). This completes the proof.
Remark 2.6 (H1 Stability of qh). The bound ‖∇qh‖0 ≤ C (‖v‖2 + ‖q‖1) is a

simple by-product of (2.7). To see this, we add and subtract Ihq, use the stability of
Ih in H1, and observe that (2.7) implies ‖∇(qh − Ihq)‖0 ≤ Ch−1‖qh − Ihq‖ ≤ C.

We finally state without proof several properties of the nonlinear form Nh. In
view of (1.7), we have a following properties of Nh for all uh,vhwh ∈ Vh:

Nh(uh,vh,wh) = −Nh(uh,wh,vh), Nh(uh,vh,vh) = 0, (2.10)

and

div u = 0 ⇒ Nh(u,vh,wh) = N(u,vh,wh) = −N(u,wh,vh).

Applying Sobolev imbedding Lemma yields the following useful results.
Lemma 2.7 (Bounds on Nonlinear Convection [11, 12]). Let u,v ∈ H2(Ω) with

div u = 0, and let uh,vh,wh ∈ Vh. Then

Nh(u,vh,wh) ≤ C






‖u‖1‖vh‖1‖wh‖1

‖u‖2‖∇vh‖0‖wh‖0

‖u‖2‖vh‖0‖∇wh‖0,
(2.11)

Nh(uh,v,wh) ≤ ‖uh‖0‖v‖2‖∇wh‖0. (2.12)
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If in addition d ≤ 3, then

Nh(uh,vh,wh) ≤ C

{
C‖uh‖0|||vh|||‖∇wh‖0

C‖uh‖L3(Ω)‖vh‖1‖∇wh‖0.
(2.13)

3. Theorem 1.1: Stability. In this section, we show that the Gauge-Uzawa
FEM is unconditionally stable via a standard energy method. We choose wh =
2τ ûn+1

h in (1.8) and observe the following relation for the first term in (1.8)
〈
ûn+1

h − un
h , û

n+1
h

〉
=

〈
un+1

h − un
h , u

n+1
h

〉
+

〈
∇ρn+1

h , ∇ρn+1
h

〉
,

because of (1.11). Since the convection term vanishes from (2.10), we then obtain

∥∥un+1
h

∥∥2

0
− ‖un

h‖
2
0 +

∥∥un+1
h − un

h

∥∥2

0
+ 2

∥∥∇ρn+1
h

∥∥2

0
+ 2µτ

∥∥∇ûn+1
h

∥∥2

0

= 2µτ
〈
sn

h , div ûn+1
h

〉
+ 2τ

〈
f(tn+1) , ûn+1

h

〉
.

According to (1.10), we can write

2
〈
sn

h , div ûn+1
h

〉
= 2

〈
sn

h , s
n
h − sn+1

h

〉
= ‖sn

h‖
2
0 −

∥∥sn+1
h

∥∥2

0
+

∥∥sn
h − sn+1

h

∥∥2

0
.

Combining now (1.10) with Lemma 2.4, we infer that
∥∥sn+1

h − sn
h

∥∥
0
≤

∥∥div ûn+1
h

∥∥
0
≤∥∥∇ûn+1

h

∥∥, whence

∥∥un+1
h

∥∥2

0
− ‖un

h‖
2
0 +

∥∥un+1
h − un

h

∥∥2

0
+ 2

∥∥∇ρn+1
h

∥∥2

0
+ 2µτ

∥∥∇ûn+1
h

∥∥2

0

+ µτ
∥∥sn+1

h

∥∥2

0
− µτ‖sn

h‖
2
0 ≤

τ

2

∥∥f(tn+1)
∥∥2

−1
+

3µτ

2

∥∥∇ûn+1
h

∥∥2

0
.

Adding over n from 0 to N , we obtain (1.15) and complete the proof of Theorem 1.1.

4. Theorem 1.2: Error Analysis for Velocity. In this section, we prove
weak and strong error estimates for velocity for the Gauge-Uzawa FEM of Algorithm
2. The proof is rather intricate because of the limited regularity of §2.1, particularly
that utt /∈ L2(0, T ;L2(Ω)), and consists of 3 steps as follows:
• Time-Discrete Stokes: We first consider a sequence of Stokes equations with exact

forcing and convection, namely Un+1 ∈ H1
0(Ω), Pn+1 ∈ L2

0(Ω) satisfy U0 = u0 and

δUn+1 − µ∆Un+1 + ∇Pn+1 = f(tn+1) −
(
(u · ∇)u

)
(tn+1), div Un+1 = 0. (4.1)

In Lemma 4.1 we derive estimates for the errors

Gn+1 := u(tn+1) − Un+1, gn+1 := p(tn+1) − Pn+1,

which rely solely on the regularity utt ∈ L2 ([0 : T ] : Z(Ω)∗) of Lemma 2.3. This is
possible because the test function w = u(tn+1)−Un+1 is divergence free and thus
allows us to work on the spaces Z(Ω) and Z(Ω)∗.

• Stokes Projection: We define (Un+1
h , Pn+1

h ) := Sh(u(tn+1), p(tn+1)) ∈ Vh × Ph to
be the Stokes projection of the true solution at time tn+1, and derive error estimates
in Lemma 4.3 for the errors

Gn+1
h := u(tn+1) − Un+1

h , gn+1
h := p(tn+1) − Pn+1

h .

We point out that this choice of space discretization is more handy than discretizing
(4.1) by finite elements, and still gives estimates for the errors Fn+1 := Un+1−Un+1

h

and fn+1 := Pn+1 − Pn+1
h by combining the first two steps.
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• Comparing (4.1) with (1.8)-(1.11): We derive strong estimates of order 1/2 and use
then to prove weak estimates of order 1 for the errors

En+1 := Un+1 − un+1
h , Ên+1 := Un+1 − ûn+1

h , en+1 := Pn+1 − pn+1
h . (4.2)

This is the most technical step since we now must deal with the fact that ûn+1
h is

not divergence free whereas un+1
h does not vanish on ∂Ω; this is carried out in §4.3.

Upon combining the estimates of these 3 steps, we readily obtain Theorem 1.2.

4.1. Time-Discrete Stokes Problem. We now show error bounds for (4.1).
Lemma 4.1 (Uniform estimates). Let A1-3 hold. Then

∥∥GN+1
∥∥2

0
+

N∑

n=0

∥∥Gn+1 − Gn
∥∥2

0
+ µτ

N∑

n=0

∥∥∇Gn+1
∥∥2

0
≤ Cτ2, (4.3)

τ
N∑

n=0

∥∥gn+1
∥∥2

0
≤ Cτ. (4.4)

Proof. We subtract (4.1) from (1.1) at t = tn+1 and thereby write

δGn+1 − µ∆Gn+1 + ∇gn+1 = Rn+1 :=
1

τ

∫ tn+1

tn

(t− tn)utt(·, t)dt, (4.5)

where Rn+1 is the truncation error. We multiply this elliptic PDE by the admissible
test function 2τGn+1 ∈ Z(Ω) to arrive at

∥∥Gn+1
∥∥2

0
− ‖Gn‖

2
0 +

∥∥Gn+1 − Gn
∥∥2

0
+ 2µτ

∥∥∇Gn+1
∥∥2

0
≤ 2τ

∥∥Rn+1
∥∥
∗

∥∥∇Gn+1
∥∥

0
.

Adding over n and using (2.5) yield (4.3). To prove (4.4) we use the error equation
(4.5) to obtain for any w ∈ H1

0(Ω)

〈
gn+1 , div w

〉
≤

1

τ

∥∥Gn+1 − Gn
∥∥

0
‖w‖0 + µ

∥∥∇Gn+1
∥∥

0
‖∇w‖0 +

∥∥Rn+1
∥∥

0
‖w‖0.

Since
∥∥Rn+1

∥∥2

0
≤ 1

2

∫ tn+1

tn σ‖utt‖
2
0, then (2.3) and (4.3) together with the continuous

inf-sup condition imply (4.4).
Lemma 4.2 (Weighted Estimates). Let A1-3 hold. Then

σN+1
∥∥δGN+1

∥∥2

0
+

N∑

n=1

σn+1
∥∥δGn+1 − δGn

∥∥2

0
+
µτ

2

N∑

n=1

σn+1
∥∥∇δGn+1

∥∥2

0
≤ Cτ, (4.6)

sup
0≤n≤N+1

σn‖gn‖
2
0 +

N∑

n=0

σn+1
(∥∥gn+1

∥∥2

0
+

∥∥δgn+1
∥∥2

0

)
≤ Cτ. (4.7)

If NLC is also valid, then (4.6) and (4.7) become uniform, namely without weights.
Proof. To prove (4.6) we subtract two consecutive equations (4.5) and thus derive

an equation for δGn+1. We next multiply this equation by 2σn+1δGn+1 and pro-
ceed as in Lemma 4.1 to discover that In+1 := 2σn+1

〈
δ(Gn+1 − Gn) , δGn+1

〉
and

IIn+1 := 2τσn+1
〈
δRn+1 , δGn+1

〉
must be estimated. We see that

In+1 = σn+1
∥∥δGn+1

∥∥2

0
− σn‖δGn‖

2
0 + σn+1

∥∥δGn+1 − δGn
∥∥2

0
− (σn+1 − σn)‖δGn‖

2
0,
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and realize that, upon summation over n, the first two terms on the right-hand side

telescope whereas the last one leads to 1
τ

∑N
n=1

∥∥Gn+1 − Gn
∥∥2

0
≤ Cτ in view of (4.3).

On the other hand, IIn+1 can be written equivalently as follows:

IIn+1 = 2σn+1
〈
Rn+1 , δGn+1

〉
− 2σn 〈Rn , δGn〉

+ 2σn
〈
Rn , δGn − δGn+1

〉
+ 2(σn − σn+1)

〈
Rn , δGn+1

〉
.

We now add on n and observe that the first two terms telescope. The third term can be

handled via the estimate
∑N

n=1 σ
n‖Rn‖2

0 ≤ Cτ
∫ T

0
σ‖utt‖

2
0 ≤ Cτ , which results from

(2.3), together with the bound for
∑N

n=1 I
n+1. Using again

∑N
n=1 σ

n‖Rn‖
2
0 ≤ Cτ ,

now coupled with
∑N

n=1 ‖δG
n‖2

0 ≤ C from (4.3), takes care of the last term in IIn+1.
We finally observe that the presence of weights allows us to employ regularity

(2.3) for utt. If we further assume NLC, then we could omit weights and instead
resort to regularity (2.4) to establish uniform bounds. This completes the proof.

4.2. Stokes Projection. We now establish simple estimates for (Gn+1
h , gn+1

h ).
Lemma 4.3 (Stokes Projection). Let A1-6 hold. Then

∥∥Gn+1
h

∥∥
0

+ h
∥∥Gn+1

h

∥∥
1

+ h
∥∥gn+1

h

∥∥
0
≤ Ch2, (4.8)

τ

N∑

n=0

σn+1
(∥∥δGn+1

h

∥∥2

0
+ h2

∥∥δGn+1
h

∥∥2

1
+ h2

∥∥δgn+1
h

∥∥2

0

)
≤ Ch4. (4.9)

If NLC also holds, then (4.9) becomes uniform, namely without weights.
Proof. Estimate (4.8) is a direct consequence of Lemma 2.5 and (2.2). Since the

Stokes operator Sh is linear, we readily have (δUn
h, δP

n
h ) = Sh(δu(tn), δp(tn)), and

Lemma 2.5 applies again. Upon multiplying by τσn+1, the square of the right-hand
side of (2.7) can be bounded by

h4τ−1
N∑

n=0

σn+1
(∥∥u(tn+1) − u(tn)

∥∥2

2
+

∥∥p(tn+1) − p(tn)
∥∥2

1

)
.

We examine the velocity term only since the other one is similar. For n = 0 we recall

(2.2), along with σ1 = τ , to write σ1
∥∥u(t1) − u(t0)

∥∥2

2
≤ Cτ . For n ≥ 1, instead, we

use that σn+1 ≤ 2σ(t) for tn ≤ t ≤ tn+1, whence

N∑

n=1

σn+1
∥∥u(tn+1) − u(tn)

∥∥2

2
≤ Cτ

∫ T

0

σ‖ut‖
2
2 ≤ Cτ,

because of (2.3). This completes the proof.

4.3. Comparing (4.1) with (1.8)-(1.11). We derive strong estimates of order
1/2 and use then to prove weak estimates of order 1 for the errors in (4.2), namely,

En+1 = Un+1 − un+1
h , Ên+1 = Un+1 − ûn+1

h , en+1 = Pn+1 − pn+1
h .

Before embarking on this discussion, we mention several useful properties of the error
functions. If En+1

h := Un+1
h −un+1

h , Ên+1
h := Un+1

h −ûn+1
h , and Fn+1 = Un+1−Un+1

h ,
then

Ên+1 = En+1 + ∇ρn+1
h , Ên+1

h = En+1
h + ∇ρn+1

h ,

Ên+1 = Fn+1 + Ên+1
h , En+1 = Fn+1 + En+1

h ,
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as well as

〈
En+1 , ∇qh

〉
=

〈
En+1

h , ∇qh
〉

=
〈
Fn+1 , ∇qh

〉
= 0, ∀qh ∈ Ph, (4.10)

whence we deduce crucial orthogonality properties:

‖Ên+1‖2
0 = ‖En+1‖2

0 + ‖∇ρn+1
h ‖2

0, ‖Ên+1
h ‖2

0 = ‖En+1
h ‖2

0 + ‖∇ρn+1
h ‖2

0. (4.11)

Since Fn+1 = Gn+1
h − Gn+1, fn+1 = gn+1

h − gn+1, Lemmas 4.1 and 4.3 give rise to
the following estimates provided A1-6 hold

‖Fn+1‖2
0 ≤ C(τ2 + h4), µτ

N∑

n=1

‖∇Fn+1‖2
0 ≤ C(τ2 + h2),

τ

N∑

n=1

‖fn+1‖2
0 ≤ C(τ + h2).

(4.12)

We also point out that, owing to Lemma 2.4, sn+1
h ∈ Ph defined in (1.10) satisfies

∥∥sn+1
h − sn

h

∥∥
0
≤ ‖∇Ên+1‖0. (4.13)

Lemma 4.4 (Reduced Rate of Convergence for Velocity). Let A1-6 and h2 ≤ Cτ
be valid with arbitrary constant C > 0. Then the velocity error functions satisfy

∥∥EN+1
∥∥2

0
+

∥∥∥ÊN+1
∥∥∥

2

0
+ µτ

∥∥sN+1
h

∥∥2

0
+

1

2

N∑

n=0

∥∥En+1 − En
∥∥2

0

+
N∑

n=0

∥∥∇ρn+1
h

∥∥2

0
+
µτ

2

N∑

n=0

∥∥∥∇Ên+1
∥∥∥

2

0
≤ C(τ + h2).

(4.14)

Proof. Subtracting (1.8) from (4.1) yields, for all wh ∈ Vh,

τ−1
〈
Ên+1 − En , wh

〉
+ µ

〈
∇Ên+1 , ∇wh

〉
=

〈
Pn+1 , div wh

〉

− µ 〈sn
h , div wh〉 − Nh(u(tn+1),u(tn+1),wh) + Nh(un

h, û
n+1
h ,wh).

(4.15)

Choosing wh = 2τÊn+1
h = 2τ(Ên+1 −Fn+1) in (4.15), and using (4.10), we easily get

∥∥En+1
∥∥2

0
− ‖En‖

2
0 +

∥∥En+1 − En
∥∥2

0
+ 2µτ

∥∥∥∇Ên+1
∥∥∥

2

0
+ 2

∥∥∇ρn+1
h

∥∥2

0
=

4∑

i=1

Ai, (4.16)

with

A1 := 2
〈
En+1 − En , Fn+1

〉
+ 2µτ

〈
∇Ên+1 , ∇Fn+1

〉
,

A2 := 2τ
〈
Pn+1 , div Ên+1

h

〉
,

A3 := −2τ
(
Nh(u(tn+1),u(tn+1), Ên+1

h ) − Nh(un
h, û

n+1
h , Ên+1

h )
)
,

A4 := −2µτ
〈
sn

h , div Ên+1
h

〉
.
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We now estimate each term Ai separately. Applying Hölder inequality, we find a
bound of the first term

A1 ≤
1

2

∥∥En+1 − En
∥∥2

0
+ C

∥∥Fn+1
∥∥2

0
+
µτ

4

∥∥∥∇Ên+1
∥∥∥

2

0
+ Cµτ

∥∥∇Fn+1
∥∥2

0
. (4.17)

Since Un+1
h is discrete divergence free, but not so ûn+1

h , we add and subtract Pn+1
h

and p(tn+1), and recall (1.9) and Remark 2.6 to derive

A2 = 2τ
〈
fn+1 , div Ên+1

h

〉
+ 2τ

〈
∇gn+1

h , ∇ρn+1
h

〉
− 2τ

〈
∇p(tn+1) , ∇ρn+1

h

〉

≤ Cτ2Bn+1 +
Cτ

µ

∥∥fn+1
∥∥2

0
+
µτ

8

(∥∥∥∇Ên+1
∥∥∥

2

0
+

∥∥∇Fn+1
∥∥2

0

)
+

∥∥∇ρn+1
h

∥∥2

0
,

(4.18)

where Bn+1 :=
∥∥u(tn+1)

∥∥2

2
+

∥∥∇p(tn+1)
∥∥2

0
. To tackle A3 we first add and subtract

u(tn+1),un
h, and realize that Nh(un

h, Ê
n+1
h , Ên+1

h ) = 0 according to (2.10). This yields

A3 = − 2τNh((u(tn+1) − u(tn),u(tn+1), Ên+1
h )

− 2τNh((u(tn) − un
h),u(tn+1), Ên+1

h ) − 2τNh(un
h,G

n+1
h , Ên+1

h ).

Since
∥∥u(tn+1)

∥∥
2
+

∣∣∣∣∣∣Gn+1
h

∣∣∣∣∣∣ ≤ C in view of (2.2) and (2.9), and Ên+1
h = Ên+1−Fn+1,

(2.11) and (2.13) give

A3 ≤
Cτ2

µ
Dn+1+

Cτ

µ

(
‖En‖2

0 + ‖Gn‖2
0 +

∥∥Gn+1
h

∥∥2

0

)
+
µτ

8

∥∥∥∇F̂n+1
∥∥∥

2

0
+
µτ

8

∥∥∥∇Ên+1
∥∥∥

2

0
,

with Dn+1 :=
∫ tn+1

tn ‖ut(t)‖
2
0dt. Next, making use of (1.10) and (4.13), we arrive at

A4 = 2µτ
〈
sn

h , div ûn+1
h

〉
= 2µτ

〈
sn

h − sn+1
h , sn

h

〉

≤ µτ
(
‖sn

h‖
2
0 −

∥∥sn+1
h

∥∥2

0

)
+ µτ

∥∥∥∇Ên+1
∥∥∥

2

0
.

Inserting the above estimates into (4.16), summing over n from 0 to N gives

∥∥EN+1
∥∥2

0
+

1

2

N∑

n=0

∥∥En+1 − En
∥∥2

0
+
µτ

2

N∑

n=0

∥∥∥∇Ên+1
∥∥∥

2

0

+ µτ
∥∥sN+1

h

∥∥2

0
+

N∑

n=0

∥∥∇ρn+1
h

∥∥2

0
≤ C(τ + h2) +

Cτ

µ

N∑

n=0

‖En‖
2
0,

(4.19)

where we have used (2.2) to bound Bn+1, Dn+1, together with (4.3) and (4.8) to
estimate ‖Gn‖0 and ‖Gn+1

h ‖0, respectively, and (4.12) as well as h2 ≤ Cτ to bound
‖Fn+1‖0, ‖F

n+1‖0 and ‖fn+1‖0. The discrete Gronwall lemma finally yields (4.14)

except for ‖Ên+1‖2
0. The latter results from (4.11) and completes the proof.

Remark 4.5 (Initial Errors). If N = 0 in (4.19), then Lemmas 4.1 and 4.3 give

∥∥E1
∥∥2

0
+

1

2

∥∥E1 − E0
∥∥2

0
+
µτ

2

∥∥∥∇Ê1
∥∥∥

2

0
+ µτ

∥∥s1h
∥∥2

0
+

∥∥∇ρ1
h

∥∥2

0

≤ C(τ2 + τh2 + h4) +
Cτ

µ

∥∥f1
∥∥2

0
≤ C(τ + τh2 + h4),
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or alternatively ≤ C(τ2 + τh2 + h4) provided NLC holds in conjunction with (4.7).
Remark 4.6 (Suboptimal Order). The suboptimal order O(τ +h2) of Lemma 4.4

is due to terms ‖Fn+1‖2
0 + τ‖∇Fn+1‖2

0 in (4.17) and the fact that Ên+1
h in (4.18) is

not discrete divergence free. To improve upon this we must get rid of both terms.
Lemma 4.7 (Full Rate of Convergence for Velocity). Let A1-6 hold and h2 ≤ Cτ

be valid with arbitrary constant C > 0. Then we have

∥∥EN+1
∥∥2

∗
+

N∑

n=0

∥∥En+1 − En
∥∥2

∗
+

(
µτ

∥∥En+1
∥∥2

0
+

∥∥∥Ên+1
∥∥∥

2

0

)
≤ C

(
τ2 + h4

)
. (4.20)

Proof. Let (vn, qn) and (vn
h , q

n
h) be solutions of the Stokes equations (2.1) and

(2.6) with g = En. Then Lemma 2.5 and A1 yield a crucial inequality

‖vn − vn
h‖0 + h‖vn − vn

h‖1 + h‖qn − qn
h‖0 ≤ Ch2‖En‖0. (4.21)

Since vn+1
h is discrete divergence free, then

〈
∇ρn+1

h , vn+1
h

〉
= 0 and

〈
Ên+1 − En , vn+1

h

〉
=

〈
En+1 − En , vn+1

h

〉
=

〈
∇(vn+1

h − vn
h) , ∇vn+1

h

〉
.

Choosing wh = 2τvn+1
h in (4.15), thus yields

∥∥∇vn+1
h

∥∥2

0
− ‖∇vn

h‖
2
0 +

∥∥∇(vn+1
h − vn

h)
∥∥2

0
+ 2µτ

∥∥En+1
∥∥2

0
=

4∑

i=1

Ai, (4.22)

with

A1 := −2µτ
〈
∇Fn+1 , ∇vn+1

h

〉
,

A2 := 2µτ
(〈

Fn+1 , En+1
〉

+
〈
∇ρn+1

h , ∇qn+1
h

〉)
,

A3 := 2τ
〈
Pn+1 , div vn+1

h

〉
,

A4 := −2τ
(
Nh(u(tn+1),u(tn+1),vn+1

h ) − Nh(un
h, û

n+1
h ,vn+1

h )
)
.

We now estimate A1 to A4 separately. We use the inequality (4.21) to get

A1 = 2µτ
〈
∇Fn+1 , ∇

(
vn+1 − vn+1

h

)
−∇vn+1

〉

≤ Cµτ
(
h2

∥∥∇Fn+1
∥∥2

0
+

∥∥Fn+1
∥∥2

0

)
+
µτ

6

∥∥En+1
∥∥2

0

as well as

A2 ≤ Cµτ
(∥∥Fn+1

∥∥2

0
+

∥∥∇ρn+1
h

∥∥2

0

)
+
µτ

6

∥∥En+1
∥∥2

0
.

We next use that vn+1
h is discrete divergence free and vn+1 is divergence free. Hence

A3 = 2τ
〈
Pn+1 − Pn+1

h , div (vn+1
h − vn+1)

〉

≤ Cτh
∥∥fn+1

∥∥
0

∥∥vn+1
∥∥

2
≤
Cτh2

µ

∥∥fn+1
∥∥2

0
+
µτ

6

∥∥En+1
∥∥2

0
.

At the same time, the convection term A4 can be rewritten as A4 =
∑3

i=1 A4,i with

A4,1 := −2τNh((u(tn+1) − u(tn)) + (u(tn) − un
h),u(tn+1),vn+1

h ),

A4,2 := 2τNh

(
u(tn) − un

h,u(tn+1) − ûn+1
h , (vn+1

h − vn+1) + vn+1
)
,

A4,3 := −2τNh

(
u(tn),u(tn+1) − ûn+1

h ,vn+1
h

)
.
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Since u(tn) − un
h = En + Gn, (2.2) in conjunction with (2.12) yields

A4,1 ≤ Cτ2µ

∫ tn+1

tn

‖ut(t)‖
2
0dt+

µτ

6

(
‖En‖2

0 + ‖Gn‖2
0

)
+
Cτ

µ

∥∥∇vn+1
h

∥∥2

0
.

Before tackingA4,2 we observe that (4.3) and (4.14) imply ‖u(tn)−un
h‖0 ≤ C(h+τ1/2),

and that (2.9) and (4.21) yield
∣∣∣∣∣∣vn+1

h − vn+1
∣∣∣∣∣∣ ≤ C‖vn+1‖2 ≤ C‖En+1‖0.

Therefore, (2.12) and (2.13) lead to

A4,2 ≤
Cτ

µ

(
τ + h2

) (∥∥∇Gn+1
∥∥2

0
+

∥∥∥∇Ên+1
∥∥∥

2

0

)
+
µτ

6

∥∥En+1
∥∥2

0
.

Since u(tn) is divergence free, we can resort to (2.11) and (4.11) to obtain

A4,3 ≤
µτ

6

(∥∥En+1
∥∥2

0
+

∥∥∇ρn+1
h

∥∥2

0
+

∥∥Gn+1
∥∥2

0

)
+
Cτ

µ

∥∥∇vn+1
h

∥∥2

0
.

Inserting the above estimates into (4.22) and summing over n from 0 to N , we deduce

∥∥∇vN+1
h

∥∥2

0
+

N∑

n=0

∥∥∇(vn+1
h − vn

h)
∥∥2

0
+ µτ

N∑

n=0

∥∥En+1
∥∥2

0

≤ C
(
τ2 + h4

)
+
Cτ

µ

N∑

n=0

∥∥∇vn+1
h

∥∥2

0

(4.23)

because of (4.3), (4.12), and (4.14) bound the remaining terms. The discrete Gronwall
lemma and (2.8) allows us to remove the rightmost term in (4.23), and thereby arrive

at (4.20) upon invoking (2.8). However, this does not give a bound for ‖Ên+1‖0,
which comes from (4.11) and (4.14) instead. The proof is thus finished.

Proof of Theorem 1.2. This is a consequence of Lemmas 4.1, 4.4, and 4.7.
Remark 4.8 (Estimates for

∥∥∇v1
h

∥∥
0
). These estimates will be crucial in §5 and

can be extracted from (4.23) upon invoking Remark 4.5 and choosing N = 0. Since
v0

h = 0 because E0 is orthogonal to Vh, (4.23) reduces to

∥∥∇v1
h

∥∥2

0
≤ Cτ(τ2 + h4) +

Cτh2

µ

∥∥f1
∥∥2

0
≤ Cτ(τ2 + h2).

On the other hand, if NLC is also valid then ‖f1‖2
0 ≤ Cτ and

∥∥∇v1
h

∥∥2

0
≤ Cτ(τ2 +h4).

5. Theorem 1.3: Error Analysis for Time Derivative of Velocity. In this
section we embark on an error analysis for the time derivative of velocity.

Lemma 5.1 (Stability of Time-Derivative of Velocity). Let A1-6 hold and h2 ≤

C1h
2 ≤ τ ≤ C2h

d

3
(1+ε) be valid with arbitrary constants C1, C2 > 0. Then the error

functions satisfy the weighted estimates

σN+1
∥∥δEN+1

∥∥2

0
+

N∑

n=1

σn+1
∥∥δEn+1 − δEn

∥∥2

0
+

N∑

n=1

σn+1
∥∥∇δρn+1

h

∥∥2

0

+ µτσN+1
∥∥δsN+1

h

∥∥2

0
+ µτ

N∑

n=1

σn+1
∥∥∥∇δÊn+1

∥∥∥
2

0
≤ C.

(5.1)
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If NLC also valid, then (5.1) become uniform, namely without weights.
Proof. Subtracting two consecutive expressions (4.15) yields
〈
δÊn+1 − δEn , wh

〉
+ µτ

〈
∇δÊn+1 , ∇wh

〉

= τ
〈
δPn+1 , div wh

〉
− µτ 〈δsn

h , div wh〉

− Nh(u(tn+1),u(tn+1),wh) + Nh(un
h , û

n+1
h ,wh)

+ Nh(u(tn),u(tn),wh) − Nh(un−1
h , ûn

h,wh).

(5.2)

Choosing wh = 2δÊn+1
h = 2δ(Ên+1 − Fn+1) in (5.2), and using (4.10), implies

∥∥δEn+1
∥∥2

0
− ‖δEn‖

2
0 +

∥∥δEn+1 − δEn
∥∥2

0

+ 2
∥∥∇δρn+1

h

∥∥2

0
+ 2µτ

∥∥∥∇δÊn+1
∥∥∥

2

0
=

4∑

i=1

Ai,
(5.3)

with

A1 := 2
〈
δEn+1 − δEn , δFn+1

〉
+ 2µτ

〈
∇δÊn+1 , ∇δFn+1

〉
,

A2 := 2τ
〈
δPn+1 , div δÊn+1

h

〉
,

A3 := −2µτ
〈
δsn

h , div δÊn+1
h

〉
,

A4 := −2Nh(u(tn+1),u(tn+1), δÊn+1
h ) + 2Nh(un

h, û
n+1
h , δÊn+1

h ),

+ 2Nh(u(tn),u(tn), δÊn+1
h ) − 2Nh(un−1

h , ûn
h , δÊ

n+1
h ).

We now estimate each term Ai separately. First, we easily find out that

A1 ≤
µτ

14

∥∥∥∇δÊn+1
∥∥∥

2

0
+ Cµτ

∥∥∇δFn+1
∥∥2

0
+

1

2

∥∥δEn+1 − δEn
∥∥2

0
+ C

∥∥δFn+1
∥∥2

0
,

A2 = 2τ
〈
δp(tn+1) − δgn+1 , div δÊn+1

h

〉

≤
C

µ

∫ tn+1

tn

‖pt(t)‖
2
0dt+

Cτ

µ

∥∥δgn+1
∥∥2

0
+
µτ

14

∥∥∥∇δÊn+1
∥∥∥

2

0
+
µτ

14

∥∥∇δFn+1
∥∥2

0
.

Since Un+1
h is discrete divergence free, then A3 = 2µτ

〈
δsn

h , div δûn+1
h

〉
. Conse-

quently, making use of (1.10) and (4.13), we arrive at

A3 = 2µτ
〈
δsn

h , δs
n
h − δsn+1

h

〉
≤ µτ

(
‖δsn

h‖
2
0 −

∥∥δsn+1
h

∥∥2

0

)
+ µτ

∥∥∥∇δÊn+1
∥∥∥

2

0
.

At the same time, we further split A4 to read A4 = A4,1 +A4,2 with

A4,1 := − 2τ
(
Nh(δu(tn+1),u(tn+1), δÊn+1

h ) − Nh(δu(tn),u(tn), δÊn+1
h )

− Nh(u(tn) − un
h,u(tn+1), δÊn+1

h ) + Nh(u(tn−1) − un−1
h ,u(tn), δÊn+1

h )
)
,

A4,2 := − 2
(
Nh(un

h,u(tn+1) − ûn+1
h , δÊn+1

h ) − Nh(un−1
h ,u(tn) − ûn

h, δÊ
n+1
h )

)
.

In light of (2.2) and definitions of Gi and Ei, (2.12) produces

A4,1 ≤
C

µ
Dn+1 +

µτ

14

∥∥∥∇δÊn+1
∥∥∥

2

0
+
µτ

14

∥∥∇δFn+1
∥∥2

0
+
C

µτ

n∑

i=n−1

(∥∥Gi
∥∥2

0
+

∥∥Ei
∥∥2

0

)
,
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with Dn+1 :=
∫ tn+1

tn−1 ‖ut(t)‖
2
0dt. To bound A4,2 we rewrite as A4,2 =

∑3
i=1 Bi with

B1 := −2Nh(un
h ,G

n+1
h , δÊn+1

h ),

B2 := 2Nh(un−1
h ,Gn

h, δÊ
n+1
h ),

B3 := −2Nh(un
h , Ê

n+1
h , δÊn+1

h ) + 2Nh(un−1
h , Ên

h, δÊ
n+1
h ).

Since
∣∣∣∣∣∣Gn+1

h

∣∣∣∣∣∣ ≤ C
(
‖u(tn+1)‖2 + ‖p(tn+1)‖1

)
≤ C, (2.11) and (2.13) give

B1 = 2Nh

(
(u(tn) − un

h) − u(tn),Gn+1
h , δÊn+1

h

)

≤
C

µτ

(
‖En‖

2
0 + ‖Gn‖

2
0 +

∥∥Gn+1
h

∥∥2

0

)
+
µτ

14

∥∥∥∇δÊn+1
∥∥∥

2

0
+
µτ

14

∥∥∇δFn+1
∥∥2

0
,

as well as

B2 ≤
C

µτ

(∥∥En−1
∥∥2

0
+

∥∥Gn−1
∥∥2

0
+ ‖Gn

h‖
2
0

)
+
µτ

14

∥∥∥∇δÊn+1
∥∥∥

2

0
+
µτ

14

∥∥∇δFn+1
∥∥2

0
.

Invoking crucial properties of Nh, written in (2.10), we infer that

B3 =
2

τ

(
Nh(un

h , Ê
n+1
h , Ên

h) + Nh(un−1
h , Ên

h, Ê
n+1
h )

)
= 2τNh(δun

h , δÊ
n+1
h , Ên

h).

Hence

B3 = −2τNh(δGn
h − δu(tn), δÊn+1

h , Ên
h) − 2τNh(δEn

h, δÊ
n+1
h , Ên

h) = B4 +B5.

Since ‖Ên
h‖1 ≤ C according to (4.12) and (4.14), then (2.11) yields

B4 ≤ Cτ (‖δGn
h‖1 + ‖δu(tn)‖1)

∥∥∥δÊn+1
h

∥∥∥
1

∥∥∥Ên
h

∥∥∥
1

≤
Cτ

µ
‖∇δGn

h‖
2
0 +

C

µ

∫ tn+1

tn

‖ut(t)‖
2
1dt+

µτ

14

∥∥∥∇δÊn+1
∥∥∥

2

0
+
µτ

14

∥∥∇δFn+1
∥∥2

0
.

We now deal with B5 via (2.13), namely B5 ≤ Cτ‖δEn
h‖L3(Ω)‖δÊ

n+1
h ‖1‖Ê

n
h‖1. In

contrast to [16], here we no longer have En+1
h ∈ H1

0 and we have to resort to the

inverse inequality ‖δEn
h‖L3(Ω) ≤ Ch−

d

6 ‖δEn
h‖0, whence

B5 ≤
Cτh−

d

3

µ
‖δEn

h‖
2
0

∥∥∥∇Ên
h

∥∥∥
2

0︸ ︷︷ ︸
=:Λn

+
µτ

14

∥∥∥∇δÊn+1
∥∥∥

2

0
+
µτ

14

∥∥∇δFn+1
∥∥2

0
.

We postpone the discussion of Λn until the end since it is rather delicate. We now
insert the above estimates into (5.3), multiply by the weight σn+1, and add over n
from 1 to N . Arguing as in Lemma 4.4, we see that the first two terms in (5.3) become

σN+1
∥∥δEN+1

∥∥2

0
− σ1

∥∥δE1
∥∥2

0
− τ

N∑

n=1

‖δEn‖2
0 ≥ −C + σN+1

∥∥δEn+1
∥∥2

0
. (5.4)
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On the other hand, we resort to property σn+1

σn ≤ 2 for n ≥ 1 to write

N∑

n=1

σn+1A2 ≤
Cτ

µ

N∑

n=1

σn+1
∥∥δgn+1

∥∥2

0
+
C

µ

∫ tN+1

t1
σ(t)‖pt(t)‖

2
0dt

+
µτ

14

N∑

n=1

σn+1

(∥∥∥∇δÊn+1
∥∥∥

2

0
+

∥∥∇δFn+1
∥∥2

0

)
.

(5.5)

Collecting these estimates, and using Lemmas 4.1-4.4 and 4.7, we get for D1, D2 > 0

σN+1
∥∥δEN+1

∥∥2

0
+

1

2

N∑

n=1

σn+1
∥∥δEn+1 − δEn

∥∥2

0
+
µτ

2

N∑

n=1

σn+1
∥∥∥∇δÊn+1

∥∥∥
2

0

+
N∑

n=1

σn+1
∥∥∇δρn+1

h

∥∥2

0
+ µτσN+1

∥∥δsN+1
h

∥∥2

0
≤ D1 +D2

N∑

n=1

σn+1Λn.

To complete this proof, it suffices to show
∑N

n=1 σ
n+1Bn

6 ≤ C. To do so, we start
with a simpler form of the above estimate, namely,

σN+1
∥∥δEN+1

∥∥2

0
≤ D1 +D2τh

− d

3

N∑

n=1

σn+1‖δEn
h‖

2
0

∥∥∥∇Ên
h

∥∥∥
2

0
. (5.6)

Since τ2
∑N

n=1 ‖δE
n‖

2
0 =

∑N
n=1

∥∥En − En−1
∥∥2

0
≤ Cτ and

∥∥∥∇Ên
h

∥∥∥
2

0
≤ C according to

Lemma 4.4, we readily obtain the rough estimate

σN+1
∥∥δEN+1

∥∥2

0
≤ Ch−

d

3 .

To improve upon this, we utilize
∑N

n=1 ‖∇Ên
h‖

2
0 ≤ C, a by-product of (4.12) and

(4.14). Hence

σN+1
∥∥δEN+1

∥∥2

0
≤ D1 +D2τh

− 2d

3

N∑

n=1

∥∥∥∇Ên
h

∥∥∥
2

0
≤ Cτh−

2d

3 .

We realize that the net effect is a an additional factor Cτh−d/3 in (5.6). After m
iterations, we obtain

σN+1
∥∥δEN+1

∥∥2

0
≤M(m)

(
τh−

d

3

)m
h−

d

3 ,

where M(m) > 0 possibly grows with m. Since τh−
d

3 ≤ C2h
dε

3 , for m > ε−1 we

obtain
∑N

n=1 σ
n+1Λn ≤ C. This shows our assertion (5.1).

If NLC is valid, then so is Lemma 2.2, thereby making unnecessary the use of
weight σn+1 in (5.4) and (5.5). This yields an inequality similar to (5.1) without
weights, and implies the asserted uniform estimate.

Lemma 5.2 (Rate of Convergence for Time-Derivative of Velocity). Let A1-6 hold

and C1h
2 ≤ τ ≤ C2h

d

3
(1+ε) be valid with arbitrary constants C1, C2 > 0. Then the

error function En satisfies the weighted estimates

σN+1
∥∥δEN+1

∥∥2

∗
+

N∑

n=1

σn+1
(∥∥δEn+1 − δEn

∥∥2

∗
+ µτ

∥∥δEn+1
∥∥2

0

)
≤ C

(
τ + h2

)
. (5.7)
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If NLC also valid, then the following uniform error estimates hold

∥∥δEN+1
∥∥2

∗
+

1

2

N∑

n=1

∥∥δEn+1 − δEn
∥∥2

∗
+ µτ

N∑

n=1

∥∥δEn+1
∥∥2

0
≤ C

(
τ + h2

)
. (5.8)

Proof. Let (vn, qn) and (vn
h , q

n
h) be solutions of the Stokes equations (2.1) and

(2.6) with g = En+1. Choosing wh = 2δvn+1
h in (5.2), we arrive at

∥∥∇δvn+1
h

∥∥2

0
− ‖∇δvn

h‖
2
0 +

∥∥∇(δvn+1
h − δvn

h)
∥∥2

0
+ 2µτ

∥∥δEn+1
∥∥2

0
=

4∑

i=1

Ai, (5.9)

with

A1 := −2µτ
〈
∇δFn+1 , ∇δvn+1

h

〉
,

A2 := 2µτ
(〈
δEn+1 , δFn+1

〉
+

〈
∇δqn+1

h , ∇δρn+1
h

〉)
,

A3 := 2τ
〈
δPn+1 , div δvn+1

h

〉
,

A4 := 2Nh(un
h , û

n+1
h , δvn+1

h ) − 2Nh(un−1
h , ûn

h, δv
n+1
h )

− 2Nh(u(tn+1),u(tn+1), δvn+1
h ) + 2Nh(u(tn),u(tn), δvn+1

h ).

Except for A4, we can proceed as in Lemma 4.7 to estimate A1 −A3, whence

A1 ≤ Cµτ
(
h2

∥∥∇δFn+1
∥∥2

0
+

∥∥δFn+1
∥∥2

0

)
+
µτ

6

∥∥δEn+1
∥∥2

0
,

A2 ≤ Cµτ
(∥∥δFn+1

∥∥2

0
+

∥∥∇δρn+1
h

∥∥2

0

)
+
µτ

6

∥∥δEn+1
∥∥2

0
,

A3 ≤
Cτh2

µ

∥∥δfn+1
∥∥2

0
+
µτ

6

∥∥δEn+1
∥∥2

0
.

The remaining termA4 gives rise to rather technical calculations. A tedious but simple
rearrangement yields A4 =

∑6
i=1 A4,i with each term Ai to be examined separately

A4,1 := −2Nh(u(tn+1) − 2u(tn) + u(tn−1),u(tn+1), δvn+1
h ),

A4,2 := −2Nh((u(tn) − un
h) − (u(tn−1) − un−1

h ),u(tn+1), δvn+1
h ),

A4,3 := −2Nh(un
h − un−1

h ,u(tn+1) − ûn+1
h , δvn+1

h ),

A4,4 := −2Nh(u(tn) − u(tn−1),u(tn+1) − u(tn), δvn+1
h ),

A4,5 := −2Nh(u(tn−1) − un−1
h ,u(tn+1) − u(tn), δvn+1

h ),

A4,6 := −2Nh(un−1
h , (u(tn+1) − u(tn)) − (ûn+1

h − ûn
h), δvn+1

h ).

Since
∥∥u(tn+1) − 2u(tn) + u(tn−1)

∥∥2

0
≤ Cτ2

∫ tn+1

tn−1 σ‖utt‖
2
0 dt, (2.2) and (2.12) yield

A4,1 ≤ Cτ

∫ tn+1

tn−1

σ(t)‖utt(t)‖
2
0dt+ Cτ

∥∥∇δvn+1
h

∥∥2

0
,

as well as

A4,2 ≤
µτ

8
(‖δGn‖2

0 + ‖δEn‖) +
Cτ

µ

∥∥∇δvn+1
h

∥∥2

0
.
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Dealing with A4,3 entails further rearrangement as follows:

A4,3 = 2τNh(δu(tn) − δun
h,u(tn+1) − ûn+1

h , δvn+1
h − δvn+1)

+ 2τNh(δu(tn) − δun
h,u(tn+1) − ûn+1

h , δvn+1)

− 2τNh(δu(tn),u(tn+1) − ûn+1
h , δvn+1

h − δvn+1)

− 2τNh(δu(tn),u(tn+1) − ûn+1
h , δvn+1).

In view of (2.12) and (2.13), we can thus write

A4,3 ≤ Cτ‖δu(tn) − δun
h‖L3(Ω)

∥∥u(tn+1) − ûn+1
h

∥∥
1

∥∥δvn+1 − δvn+1
h

∥∥
1

+ Cτ‖δu(tn) − δun
h‖0

∥∥u(tn+1) − ûn+1
h

∥∥
1

∥∥δvn+1
∥∥

2

+ Cτ‖δu(tn)‖1

∥∥u(tn+1) − ûn+1
h

∥∥
1

∥∥δvn+1 − δvn+1
h

∥∥
1

+ Cτ‖δu(tn)‖1

∥∥u(tn+1) − ûn+1
h

∥∥
0

∥∥δvn+1
∥∥

2
.

Since ‖δ(vn+1 −vn+1
h )‖1 ≤ Ch‖En+1‖0 because of (2.7), we see that the problematic

term with L3 norm can be easily handled. In fact, invoking Lemma 5.1 together with
an inverse inequality from L3 to L2 gives

σn‖δu(tn) − δun
h‖

2
0 + σnh2‖δu(tn) − δun

h‖
2
L3(Ω) ≤ C.

We note that this inequality also holds without weight σn if NLC is valid. Since,

according with (2.2), we have ‖δu(tn)‖2
0 ≤M and ‖δu(tn)‖2

1 ≤ τ−1
∫ tn+1

tn ‖ut(t)‖
2
1dt ≤

Mτ−1, after a simple calculation we get

A4,3 ≤
C

µ
(τ + h2)Dn +

Cτ

σnµ

(∥∥∥∇Ên+1
∥∥∥

2

0
+

∥∥∇Gn+1
∥∥2

0

)
+
µτ

8

∥∥δEn+1
∥∥2

0
,

where Dn :=
∫ tn

tn−1 ‖∇ut(t)‖
2
0dt. We use again the bound for ‖δu(tn)‖1 to get

A4,4 ≤ Cτ2‖δu(tn)‖1

∥∥δu(tn+1)
∥∥

1

∥∥δvn+1
h

∥∥
1
≤ CτDn + Cτ

∥∥∇δvn+1
h

∥∥2

0
.

To estimate A4,5, A4,6 we again have to handle an L3 norm, this time for u(tn)− un
h.

Combining once more Lemma 5.1 with an inverse estimate, yields h‖u(tn) − un
h‖L3(Ω)

≤ C‖u(tn) − un
h‖0 ≤ C(τ + h2)

1
2 . Consequently,

A4,5 ≤Cτ
∥∥u(tn−1) − un−1

h

∥∥
L3(Ω)

∥∥δu(tn+1)
∥∥

1

∥∥δvn+1 − δvn+1
h

∥∥
1

+ Cτ
∥∥u(tn−1) − un−1

h

∥∥
0

∥∥δu(tn+1)
∥∥

1

∥∥δvn+1
∥∥

2

≤
C

µ
(τ + h2)Dn+1 +

µτ

8

∥∥δEn+1
∥∥2

0
.

In addition, since

A4,6 =2τNh(u(tn−1) − un−1
h , δu(tn+1) − δûn+1

h , δvn+1
h − δvn+1)

+ 2τNh(u(tn−1) − un−1
h , δu(tn+1) − δûn+1

h , δvn+1)

− 2τNh(u(tn−1), δu(tn+1) − δûn+1
h , δvn+1

h ),

a similar argument leads to

A4,6 ≤
Cτ

µ

(∥∥∥δÊn+1 + δGn+1
∥∥∥

2

0
+ (τ + h2)

∥∥∥δÊn+1 + δGn+1
∥∥∥

2

1

)
+
µτ

8

∥∥δEn+1
∥∥2

0
.
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We now multiply both sides of (5.9) by the weight σn+1 and sum over n for
1 ≤ n ≤ N . We first examine the ensuing first two terms on the left-hand side
of (5.9). In light of σ1 = τ , h2 ≤ Cτ ,

∑N
n=1 ‖∇δv

n
h‖

2
0 ≤ C (see Lemma 4.7) and

σ1
∥∥∇δv1

h

∥∥2

0
≤ Cτ (see Remark 4.8), we deduce

N∑

n=1

(
σn+1

∥∥∇δvn+1
∥∥2

0
− σn‖∇δvn

h‖
2
0 −

(
σn+1 − σn)‖∇δvn

h‖
2
0

)

≥ σN+1
∥∥∇δvN+1

h

∥∥2

0
− σ1

∥∥∇δv1
h

∥∥2

0
− τ

N∑

n=1

‖∇δvn
h‖

2
0 ≥ σN+1

∥∥∇δvN+1
h

∥∥2

0
− Cτ.

Since σn+1

σn ≤ 2 for n ≥ 1, we can replace σ/σn in A4,3 by a constant. Therefore, we

can achieve an estimate for σn+1‖∇δvn+1
h ‖2

0 with the aid of Lemmas 4.1, 4.7, and 5.1,
as well as the discrete Gronwall lemma. The asserted weighted error estimate follows
from (2.8).

If NLC is valid, we do not need to multiply (5.9) by σn+1 to derive the uniform
error estimate (5.8). In this case we have, instead, ‖δGn‖0+‖δEn‖0 ≤ C (see Lemmas
4.2 and 5.1). We finally proceed as before to obtain (5.8).

6. Theorem 1.3: Error Analysis for Pressure. We derive here the error of
pressure of Theorem 1.3 by exploiting all previous results.

Lemma 6.1 (Rate of Convergence for Pressure). Let A1-6 hold and C1h
2 ≤ τ ≤

C2h
d

3
(1+ε) be valid with arbitrary constants C1, C2 > 0. Then the pressure error

function satisfies the weighted estimates

τ

N∑

n=0

σn+1
∥∥en+1

h

∥∥2

0
≤ C

(
τ + h2

)
. (6.1)

If NLC is also valid, then the following uniform error estimate holds

τ

N∑

n=0

∥∥en+1
h

∥∥2

0
≤ C

(
τ + h2

)
. (6.2)

Proof. Since pn+1
h = µsn+1

h − τ−1ρn+1
h and Ên+1

h = En+1
h + ∇ρn+1

h according to
(1.11) and (1.13), we can rearrange (4.15) to read

〈
en+1

h , div wh

〉
= A1 +A2 with

A1 :=
〈
δEn+1 , wh

〉
+ µ

〈
∇Ên+1 , ∇wh

〉
−

〈
µ(sn+1

h − sn
h) + fn+1 , div wh

〉
,

A2 := Nh

(
u(tn+1),u(tn+1),wh

)
− Nh

(
un

h, û
n+1
h ,wh

)
.

In view of (4.13), A1 can be bounded as follows:

sup
wh∈Vh

|A1|

‖∇wh‖0
≤ C

∥∥δEn+1
∥∥

0
+ Cµ

∥∥∥∇Ên+1
∥∥∥

0
+ C

∥∥fn+1
∥∥

0
.

The remaining term A2 can be further split as follows:

A2 = − Nh(u(tn+1) − u(tn),u(tn+1), zn+1
h )

− Nh(u(tn) − un
h,u(tn+1), zn+1

h )

− Nh(u(tn),u(tn+1) − ûn+1
h , zn+1

h )

− Nh(un
h − u(tn),u(tn+1) − ûn+1

h , zn+1
h ).
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The only problematic term is the last one because it requires use of (2.13). To this

end, note that ‖u(tn) − un
h‖L3(Ω) ≤ C + Ch−

d

6 (τ
1
2 + h) ≤ C, as results from adding

and subtracting Ihu(tn), and employing an inverse inequality together with (4.14).

Therefore, since (2.2) implies
∫ tn+1

tn ‖ut(t)‖0dt ≤ Cτ ,

sup
wh∈Vh

|A2|

‖∇wh‖0
≤ Cτ + C

(
‖En‖0 + ‖Gn‖0 +

∥∥∥Ên+1
∥∥∥

1
+

∥∥Gn+1
∥∥

1

)
.

Altogether, invoking the inf-sup condition A4 in conjunction with (4.3) and (4.14),
we thus obtain

β‖en+1
h ‖0 ≤ sup

wh∈Vh

〈
en+1

h , div wh

〉

‖∇wh‖0

≤ C
(
τ

1
2 + h

)
+ C

(∥∥δEn+1
∥∥

0
+

∥∥∥Ên+1
∥∥∥

1
+

∥∥Gn+1
∥∥

1
+

∥∥fn+1
∥∥

0

)
.

What remains now is to square, multiply by τσn+1 (resp. τ in case NLC is valid)),
and sum over n from 0 to N . Recalling (4.3), (4.12), (4.14) and (5.7), assertion (6.1)
(resp. (6.2)) follows immediately. This concludes the proof.

7. Numerical Experiments. In this section, we document the computational
performance of the Gauge-Uzawa FEM with two relevant examples. They were both
computed within the finite element toolbox ALBERT of Schmidt and Siebert [22].

7.1. Example 1: Smooth Solution. This example is meant to confirm our
main theorems numerically. The domain is the unit square Ω = [0, 1]× [0, 1] and the
(smooth) solution is given by






u(x, y, t) = cos(t)(x2 − 2x3 + x4)(2y − 6y2 + 4y3)
v(x, y, t) = − cos(t)(y2 − 2y3 + y4)(2x− 6x2 + 4x3)
p(x, y, t) = cos(t)(x2 + y2 − 2

3
).

The forcing term f(t) is determined accordingly for any µ; here µ = 1. Computations
are performed with the Taylor-Hood (P2,P1) finite element pair on quasi-uniform
meshes of size h. However, the coarsest mesh is quite distorted to avoid superconver-
gence effects. Since we expect a rate of convergence in L2(H1×L2) of order O(τ+h2),
we impose the relation τ = h2 to avoid dominance of either space or time error over
the other. Table 7.1 shows second order accuracy for both velocity and pressure. This
computational result is consistent with our theory for velocity in L2(L2) but is better
than we predict for pressure as well as several stronger norms for both velocity and
pressure.

7.2. Example 2: Backward Step and Do-nothing Boundary Condition.

In order to explore the applicability of the Gauge-Uzawa method beyond the theory,
we consider the backward step flow problem with do-nothing boundary condition; this
is a natural boundary condition for the stress, namely

(−∇u + Ip) · ννν = 0, on Γout, (7.1)

where Γout ⊂ ∂Ω. This condition can be imposed for fluid problems with an open
outlet without forcing. Conditions involving the stress and geometric quantities such
as mean curvature are ubiquitous in dealing with free boundary problems for fluids.
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h 1/8 1/16 1/32 1/64 1/128

‖E‖L∞(L2)
0.000620853 0.00015719 3.93629e-05 9.84413e-06 2.46124e-06

Order 1.981742 1.997601 1.999501 1.999878

‖E‖L∞(L∞)
0.00161487 0.000405717 9.99044e-05 2.47218e-05 6.14264e-06

Order 1.992872 2.021854 2.014764 2.008853

‖E‖L2(L2)
0.00156787 0.000430621 0.000111099 2.80291e-05 7.02442e-06

Order 1.864315 1.954573 1.986848 1.996474

‖E‖L∞(H1)
0.00823813 0.0021339 0.00053749 0.000134617 3.36693e-05

Order 1.948824 1.989183 1.997377 1.999355

‖E‖L2(H1)
0.0220663 0.00643655 0.00171973 0.000442083 0.000111798

Order 1.777485 1.904106 1.959793 1.983423

‖e‖L∞(L2)
0.0105357 0.0027511 0.000694088 0.000173903 4.34992e-05

Order 1.937206 1.986818 1.996836 1.999222

‖e‖L∞(L∞)
0.0894505 0.0293408 0.00887096 0.00258632 0.000737458

Order 1.608181 1.725746 1.778189 1.810268

‖e‖L2(L2)
0.0894505 0.00836859 0.0023322 0.000620179 0.0001615

Order 3.418033 1.843293 1.910935 1.941151

Table 7.1
Example 7.1: The Error Decay of Gauge-Uzawa FEM for a smooth solution and several norms

for velocity and pressure. The computations are performed with the Taylor-Hood (P2,P1) finite
element pair on quasi-uniform meshes. The meshes are distorted though to prevent superconvergence
effects. The table shows second order accuracy for both velocity and pressure for the relation τ = h2.

The mere fact that projection methods decouple velocity and pressure computations,
and that both u and p appear together in (7.1) makes its implementation a challenge.
This is the case for several projections methods such as the Chorin’s method [4, 21, 18]
and the Gauge method [8, 7, 27].

Since the momentum equation (1.8) is consistent for the pair (ûn+1
h , pn

h), as written
in (1.14), to impose (7.1) on the Gauge-Uzawa method, we use the modified form
(−∇un+1 + Ipn) · ννν = 0. This amounts to solving (1.14), namely,

τ−1
〈
ûn+1

h − ûn
h , wh

〉
+ Nh(un

h , û
n+1
h ,wh) + µ

〈
∇ûn+1

h , ∇wh

〉

− µ 〈pn
h , div wh〉 =

〈
f(tn+1) , wh

〉
,

but with test function wh free on Γout. This leads, however, to an incompatible
Poisson problem (1.9) if we insist on a homogeneous Neumann condition; note that
now it is plausible that

∫
∂Ω ûn+1

h · ννν 6= 0.
To circumvent this issue, we consider a space-continuous Gauge-Uzawa formula-

tion. In view of (1.9) and (1.12), we can write
〈
∇ρn+1 , ∇ψ

〉
= −

〈
ûn+1 , ∇ψ

〉
=

〈
un+1 − ûn+1 , ∇ψ

〉
, ∀ψ ∈ P.

This amounts to the natural boundary condition ∂νννρ
n+1 = (un+1 − ûn+1) · ννν, which

is not computable since we do not yet know un+1. We now decompose ∂Ω into an
inflow part Γin, where we prescribe velocity, an outflow part Γout, where we impose
(7.1), and the rest where ûn+1 ·ννν = un+1 ·ννν = 0. Since

∫
∂Ω un+1 ·ννν =

∫
Ω div un+1 = 0

∫

Γout

un+1 · ννν = −

∫

Γin

un+1 · ννν = −

∫

Γin

ûn+1 · ννν,
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whence
∫

Γout

(un+1 − ûn+1) · ννν =

∫

∂Ω

ûn+1 · ννν.

We thus solve (1.9) with a constant flux condition, namely,

∂νννρ
n+1 = |Γout|

−1

∫

∂Ω

ûn+1 · ννν on Γout.

We consider a simple geometry consisting of a backward step flow with do-nothing
boundary condition. This example has been studied extensively and our results are
consistent with those in the literature [14, 23]. The computational domain Ω is [0, 6]×
[0, 1] with an obstacle [1.2, 1.6]× [0, 0.4] (see Figure 7.1). No slip boundary condition
is imposed except on the inflow boundary Γin and on the outflow boundary Γout. We
assign u = (1, 0) on Γin and (7.1) on Γout for all time t. The viscosity is µ = 0.005
and the discretization parameters are τ = 0.05 and h = 1/32.

(0,0)

(0,1)

1.2 1.6 (6,0)

-
-
-
-
-

u = 0

u = 0

ΓoutΓin

Fig. 7.1. Example 7.2: The computational domain and boundary values. The viscosity is
µ = 0.005 and the discretization parameters are τ = 0.05 and h = 1/32.
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Fig. 7.2. Example 7.2: The streamlines and velocity vector fields at times t = 1,2, 5, and 50.

Figure 7.2 is a time sequence of streamlines and velocity vector fields for t = 1, 2, 5, 50.
For t = 50 the evolution already became stationary. Figure 7.3 displays zooms of the
recirculation zone behind the step.
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1.6 1.8 2 2.2 2.4
0

0.2

0.4

2 2.5 3
0

0.2

0.4

2 2.5 3 3.5 4
0

0.2

0.4

2 3 4 5
0

0.2

0.4

Fig. 7.3. Example 7.2: Zooms of velocity vector field in the recirculation zone behind the step
at times t = 1,2, 5, and 50
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