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We examine adaptive finite element methods (AFEM) with arlymamial degree satisfying rather gen-
eral assumptions on the a posteriori error estimators. \Me #iat several non-residual estimators satisfy
these assumptions. We design an AFEM with single Dorflekimgrfor the sum of error estimator and
oscillation, prove a contraction property for the so-ahlftetal error, namely the scaled sum of energy
error and oscillation, and derive quasi-optimal decaysrdte the total error. We also reexamine the
definition and role of oscillation in the approximation das
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1. Introduction

Let Q be a bounded, polyhedral domaird, d > 2. We consider a homogeneous Dirichlet boundary
value problem for @eneralsecond order elliptic partial differential equation (PDE)

Zu:=—div(AQu)+b-Ou+cu=f inQ,

1.1
u=0 o0ndQ. (2.1)

The choice of boundary condition is made for ease of pretentasince similar results are valid for
other boundary conditions. Precise conditions on giveaBat (A,b,c) andf are stated i§2.1. Our
interest is on diffusion-dominated problems, thafisiominates but . is non-symmetricwe point
out that, except for Mekchay & Nochetto (2005), all previoesults are for the symmetric case (see
Binev et al,, 2004; Bonito & Nochetto, 2010; Casc@t al, 2008; Diening & Kreuzer, 2008; Dorfler,
1996; Kreuzer & Siebert, 2010; Morgt al,, 2000, 2003; Stevenson, 2007).

An AFEM is based on iterations of the loop

SOLVE — ESTIMATE — MARK — REFINE. (1.2)

HereSOLVE computes the discrete solutieractly The procedur&STIMATE calculates the error in-
dicators, which are used by the procedMi#&RK to make a judicious selection of elements to be refined.
The procedur®&EFINE finally refines the marked elements and createsrdormingrefinement.
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Convergence of AFEM for elliptic PDE of the formdivACu = f, with A piecewise constant, has
been the subject of intense research, mostly for residtial@wrs, starting with Morin, Nochetto and
Siebert (Morinet al,, 2000, 2002, 2003). They uncovered the crucial role of datillation, thereby
improving upon the seminal ideas of Dorfler (1996). MekcBaMochetto (2005) later extended the
theory to elliptic operators (1.1) with variable coeffidienThe key difficulty with (1.1) is that the energy
error and oscillation no longer decouple, hence they capebiandled separately.

The theory of optimal cardinality of AFEM started with Bindvahmen and DeVore (Binest al,
2004), who added a coarsening step to (1.2) for the Laplacaten andd = 2. Stevenson (2007)
removed this additional step via a fundamental insight ersthucture of Dorfler marking fat > 2, but
still for the Laplace equation; this insight will be crucfat us as well. However, in Stevenson (2007)
data oscillation is reduced within an inner loop, which igé@neral not viable when oscillation depends
on the discrete solution, as in (1.1). Cascon, Kreuzerhdtio and Siebert (Cascénal., 2008) got rid
of the inner loop forf € L?(Q). This was possible upon examining a new combined quarttigystim
of energy error and scaled error estimator, and provingAR&M contracts it betweetwo consecutive
adaptive loops. Cascd@t al. (2008) built on Stevenson'’s insight to derive optimal caatity of AFEM
for the total error, namely the scaled sum of energy errorasuillation. To deal withf € H=%(Q),
and perform a convergence and cardinality study of AFEM,naxeii loop to handle data reappears in
Cohen, DeVore and Nochetto (Cohetral., 2010).

The results in Cascoet al. (2008) are for the simplest and most standard AFEM basedsidual-
typeestimators, with any polynomial degree= 1 and for symmetric problems (1.1) (i.b.= 0). As
is customary in practice, this AFEM marks exclusively adiog to the error estimator and performs
a minimal element refinement. However, it is well documerterd residual-type estimators are the
crudest ones in the literature even though they are widedy (see Ainsworth & Oden, 2000; Babuska
& Strouboulis, 2001; Verfirth, 1996). They are both releadnd efficient. In fact, they provide an upper
bound for the error (reliability) as well as a lower boundi@ééncy) up to oscillation terms; the mesh
geometry enters these bounds through unknown interpolatinstants of moderate size.

Alternative estimators are abundant in the literature. réighical estimators have been proposed
by Bornemanret al. (1996) and further developed in Veeser (2002); Verfur®o@). Estimators based
on solving local problems have also been analyzed, stantittgNeumann problems on elements by
Bank & Weiser (1985). This was further improved by Ainswo&hOden (2000) via the so-called
flux equilibration, which yields a better effectivity indésatio of estimator and error); local algebraic
problems on stars, or patches, for flux weights have to beedolThe idea of working on stars goes
back to BabuSka & Miller (1987), who introduced Dirichlatoplems. Carstensen & Funken (1999)
and Morinet al. (2003) proposed solving local weighted problems on starstwhield rather good
effectivity indices; a convergence proof of AFEM of the fofin2) was also given in Moriat al. (2003)
for the Poisson problem. This method has been slightly sfieglin Paréset al. (2006); Prudhomme
et al. (2004); Stroubouligt al. (2006).

On the other hand, gradient recovery techniques have prtovea extremely successful beginning
with the seminal work of Zienkiewicz & Zhu (1987). This esttor is generically superior to the oth-
ers even though counterexamples show that the effectivitgx may not tend to one asymptotically
(asymptotic exactness). More recently, Bank & Xu (2003)eharoposed a multilevel averaging tech-
nigue that performs averages in rings of higher order thams sind thereby yields asymptotic exactness
even on irregular (but still quasi-uniform) meshes. Botthtéques in Bank & Xu (2003); Zienkiewicz
& Zhu (1987) hinge on reconstructing higher derivativesrfrdiscrete data, and thus may overestimate
the error if Ju jumps, e.g. wher is discontinuous. Finally, Braess & Schoberl (2008) camebi
H(div) elements of Raviart-Thomas and flux equilibration to deldeal a posteriori error estimators
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with good effectivity index.

In order to point out the essential difficulties in dealingttwinon-residual estimators, let
{73,V;,Uj,nj,0sG} =0 be the sequence of meshes, finite element spaces, dischaierss) estima-
tors, and oscillations produced by AFEM in tfth step. The following two key issues, crucial in Cascon
et al. (2008), must be overcome:

e The estimatomn; is not reliable, namely it does not bound the energy erranfedoove, and does
not dominate the oscillation oscThis means that; cannot drive AFEM alone, especially in the
preasymptotic regime in which data may be underresolvesdaqdnay dominatey;.

e The estimaton; does not longer decrease wheneMgrdoes not change. The heuristic idea be-
hind the contraction property of Cascénal. (2008) for the sumj|u— Uj|||§2 + ynj2 is that when
[lu—Ujllo is not reduced, becausg does not change upon refinement, igisthat decreases be-
cause the mesh-size does. This means|jthat UJ-|||§2 + ynj2 is not the correct quantity to monitor
in the present context.

It is thus intriguing why non-residual estimators yield agtical performance of AFEM similar to
residual-type estimators (see Birehal,, 2004; Cascoet al,, 2008; Mekchay & Nochetto, 2005; Morin
et al, 2000, 2002; Stevenson, 2007). Plain convergence is shgwiobin, Siebert and Veeser (Morin
et al, 2008) and Siebert (2010), but their approach is too germeréd allow for an energy decrease
property adequate for cardinality analysis. No such aimigsavailable in the literature for AFEM
driven by non-residual a posteriori estimators, excepttiervery recent paper by Kreuzer & Siebert
(2010). This paper and Kreuzer & Siebert (2010) were dewamultaneously but independently, and
provide different answers to the main issues at stake. Tdrexdt is worth comparing the philosophies
invoked, thereby emphasizing differences and similaitie

e The guiding principle in Kreuzer & Siebert (2010) is to use #yuivalence of several non-residual
estimators to the residual ones to transfer the decay rat€asronet al. (2008) to non-residual
estimators. This has the advantage that the four basic guoes of (1.2) remain unchanged.

e Our approach examines directly a class of non-residuahastirs satisfying general assumptions,
which are shown later to hold for each estimator, and leadsctmtraction property between a fixed
numberJ of iterates for the so-calletal error, namely the sum of energy error and scaled oscil-
lation (see Cascoat al, 2008; Mekchay & Nochetto, 2005). Avoiding comparison wigsidual
estimators gives better constants.

e Asin Mekchay & Nochetto (2005), we need a discrete lower ldororder to prove the contraction
property, and thus an interior node in each marked elemeatveMer, in contrast to Mekchay &
Nochetto (2005), we do not enforce this extra refinement éetwconsecutive iterations but rather
modify slightly MARK so that it takes place aftgriterations; this is easy to do, for instance within
ALBERTA (Schmidt & Siebert, 2005). Note thgtis explicit (for instancey = 3 ford = 2 and
J=6ford=3).

e The analysis in Kreuzer & Siebert (2010) is for the Laplaceatipn and piecewise linear elements,
whereas we consider the general non-symmetric opetétof (1.1) with variable coefficients and
any polynomial degree > 1.

e We, aswell as Kreuzer & Siebert (2010), consider a sibgidler markingfor the quantity; +0sg,
which is an upper bound for the energy error and is thus fielidbis shown in (Cascoet al., 2008,
Section 6) that separate marking fgrand osg might yield suboptimal meshes.
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e We (resp. Kreuzer & Siebert, 2010) prove quasi-optimal geates for AFEM provided the triple
(u,D, f) belongs to a suitable approximation classwith 0 < s< n/d (resp. s< 1/d for n=
1). Besides, we discuss the equivalence of clagse$or n > 1 and more practical definitions of
oscillation, to those in Cascat al. (2008).

e We and Kreuzer & Siebert (2010) assume exact linear algeitaraegration, and limit the dis-
cussion to refinement based bisection(see Bansch, 1991; Kossaczky, 1994; Maubach, 1995;
Mitchell, 1989; Stevenson, 2008; Traxler, 1997; Schmidti&®rt, 2005). This leads to conform-
ing shape regular meshes; see (Nochettal, 2009, Section 4) for a complete description. The
theory extends tmon-conforming meshgprovidedREFINE generates nested meshes using sub-
division rules with specific properties (Bonito & Nochet§10, Condition 7). This is the case of
hexahedral meshes with quad-refinement and simplicial esesfith red refinement provided that
the level of nonconformity is fixed (Bonito & Nochetto, 208¥kction 6).

e Our a posteriori estimators are sensitive to large disoaities of A or disparate sizes & andc.
In contrast, the results of Kreuzer & Siebert (2010) are sbbu

This paper is organized as follows. §& we introduce the weak formulation and its discretization.
§3 we present several non-residual a posteriori error egtimiand discuss its main features. Motivated
by the examples 0§3, we enunciate if§4 abstract properties that both estimaipy, and oscillation,
osg, must fulfill, along with assumptions on the adaptive prazedAFEM. In§5 we prove our first
main result, namely the following contraction property fioe total error:

If AFEM satisfies the abstract properties§af, then there exist constangs> 0, J € NandO < a < 1,
so that the total error contracts aftérconsecutive steps

llu=Uj:allf +yosd, s < a?(flu-UjlI3 +vosé ). (1.3)

This combines ideas from Cascé al. (2008); Chen & Feng (2004); Diening & Kreuzer (2008);
Mekchay & Nochetto (2005). 1§6 we examine the decay rate of the total error. Since all dss
of AFEM in MARK are based on the sum + o0sg, a decay rate for the true error must rely on this
guantity. We will see ir§6 that

llu=Ujllq +0sg ~ nj +osg,

because of the upper and lower global boundg|fior Uj|| . Therefore, the performance AFEM is
intrinsically linked to the total error, which measurestbtte approximability ol via [|u—Uj||, as
well as of data, encoded in gscThis is expressed in the approximation class (u, f,D) € As if the
best possible decay rate of the total errdlis® for conforming bisection refinements of a coarse mesh
o with N degrees of freedom more than thoseZgf we say|u, f,D|s < . In §6 we study the clas&s

for more practical definitions of ogthan that in Cascoet al.(2008), which is significant in the present
context. We conclude if6 with our second main result:

If AFEM satisfies the abstract propertiesi@f, and(u, f,D) € A, then there exists a constant C solely
depending o, d, s, andg, such that
llu=Uilllq +o0sg < Clu, f,Dls (#7} — #5) . (1.4)

We stress thaAFEM does not exploit any knowledge défs in its formulation and still delivers the
optimal decay rate. The derivation of (1.4) hinges on théghtsof Stevenson (2007) on the role of
Dorfler marking for the Laplace equation.
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2. Problem Setting

We first introduce the problem setting along with assumgtion the given datéA,b,c, f). We then
present its discretization.

2.1 Weak Formulation

Let Q be a bounded, polyhedral domain®9, d > 2, and let% be a conforming triangulation a@
made of simplices. We assume that the data of (1.1) have llogviiog properties:

(a) A: Q — R9s piecewise Lipschitz ovef, and is symmetric positive definite with eigenvalues
in[a,alwith0<a, <a* <o, ie,

a.(X) |EP<AMXE-E<a‘(x)|E°, VEERY xeQ;

(b) b e [L°(Q)]%is divergence free, i.e. div=0in Q;
(c) ceL*(Q) is nonnegative,i.ec > 0in Q;
d) feL?Q).

Even though it is customary to assurhe L?(Q), which goes back to the seminal work of Babuska
& Miller (1987), we mention the recent work of Cohenal. (2010) which deals with the weakest and
most natural conditiori € H=1(Q).

Now we turn to the weak formulation of (1.1). For any set- RY with non-empty interior we
denote byH(w) the usual Sobolev space of functiond fi{w) whose first weak derivatives are also in
L?(w), endowed with the norm

1/2
Nl = (U2 + 10Ul )

Moreover, we denote by, ), the L?(w) scalar product. Finally we I6¢ := H3(Q) be the space of
functions inH(Q) with vanishing trace 0@ Q. A weak solution of (1.1) is a functiomsatisfying

uev: BluN] = (f,v) g YWev, (2.1)
where the bilinear form is defined to be
ABlu V] = (AOu,0Ov) 5 + (b-Ou+cu,v), Yu,ve V.

In view of Poincaré-Friedrichs inequality\(| 2oy < Co||DV|| 2(g) for all ve H&(Q)) and the diver-
gence free condition dlvy= 0, one hagoercivityin V

2 2 2
A > [ a0V o > GV o)
andcg depends only on data ar2l. The bilinear form# induces the so-calleghergy seminorm
1/2 1
IV, == (<Amv, V), + (cv,v)w) W e H(w),
which is a norm foH}(w). Note that% also fuffills thelocal continuity

BNW <C [Vl lIWll,  Vv.we HY(w), suppw) C w C Q,
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whereCg depends om", ||bl| =), and|[c[| =(o). This local continuity is essential in derivirigcal
lower boundsn the a posteriori error analysis. Furthermore it impliestmuity of [-,-] onH(Q) at
once. Thanks to coercivity and continuity &f, the norm||-||| is equivalent ta| - ||y o) On H(Q).
Existence and uniqueness of (2.1) thus follows from Laxgkéim theorem (Gilbarg & Trudinger, 1983).

2.2 Discretization

We first introduce some notations relative to triangulatioive only consider the class of ainforming
meshesT created by successive bisections of the initial confornifangulationZp of Q. Given.7,
7. € T we write 7, > Jif 7, is arefinement of7, that is.Z, can be obtained fron¥ upon applying
a finite number of bisections. We denote simpliceShynterior interelement boundaries (sides)dy
and their collection by?.

The generation ¢T) of T € Zis the number of bisections needed to créateom 5. Given
. =2 Jand anyT € .7, we define theelative generatiorof descendants of belonging to.7, with
respect tdl to be

geny, (T) =min{g(T') —g(T) | T'C T andT' € Z.}.

Finally, for anyT’ € .7, we denote byT = ancy(T’) € S theancestorf T’ in .7, i. e. the only element
T € JverifyingT' C T.
Given any conforming triangulatiod” € T we define the finite element space

V() ={V eV |VrePy(T)VT € 7},

whereP,, denotes the space of all polynomials of deggea. Since continuity and coercivity o8
are inherited by any subspaceWtthe Lax-Milgram theorem implies existence and uniquenésiseo
Ritz-Galerkin approximation iV (.7) uniquely defined by

UeV(Z): BUNV]=(fV), VVeV(I). (2.2)

We will always assume tha?. > .7 is a conforming refinement o and thatU, € V(.7,) is the
corresponding Ritz-Galerkin solution.

If b#0in (1.1), the bilinear form#Z is no longer symmetric, and thus is not a scalar product.
Therefore, we do not have an orthogonality relation betwdiserete solutions on nested spaces, the
so-called Pythagoras equality (Dorfler, 1996; Magtral., 2000). We have instead a perturbation result
referred to as quasi-orthogonality, provided that thdahihesh.% is sufficiently fine (Mekchay &
Nochetto, 2005, Lemma 2.1,). This is not a severe restridiiecause we considbrdominated byA
(small Péclet number). The proof resorts to a duality arguiniCiarlet, 1978), and uses the regularity
H(Q) of the dual solution (Mekchay & Nochetto, 2005).

LEMMA 2.1 (Quasi-orthogonality) There exist&y > 0, solely depending or¥p, the coercivity constant
cs, and O< r < 1 characterizing the regularity’*" of the dual solution, such that if the mesh-sige
of % satisfiesCohp||b|[ = (o) < 1, then

2 2 2
llu=U.llg < Aoflu—=Ullg - IV - Uil (2.3)

whereAg := (1— Coh{3||b||Lm<Q))71. The inequality in (2.3) becomes equality witlg = 1 and without
restrictions orhg providedb =0in Q.
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3. Non-Residual A Posteriori Error Estimators. A Review

In this section we introduce general notation about a pimsterstimators, and review a number of
non-residuak posteriori estimators which split into local indicatovée assume that each a posteriori
indicator is associated with a closed Bgtfrom now on callecK-element or patchwhich is made of
elementsl € Jor sideso € .. The shape oK and the number of constituent elements depend on the
type of estimator used. For example, for an estimator basddaal problems, in gener#l is astar,

the union of elements sharing a vertex.

We denote by# the set of alK-elements on mesH. ForK € .75 we denote by := |K|dim71<*<>
the local mesh-size. The elements.sf; may have a finite overlapping, but the number of them is
equivalent to the cardinality o, that is
HA 7 BT (3.1)

In contrast to Cascoet al. (2008), to develop our theory we will now need to consideesaMevels of
refinement (or subdivision depth) between two (not necégsamsecutive) mesheg < 7. We thus
define theefined set of order fo be

Ry 5 ={KeHz| gen,(T)>] VT cCK}. (3.2)
We point out that the usual refined set correspondsdl, and that

j =n:=3,6ford=23implies that all the constituent elements, as well as their
sides, of K-elements i@gﬁ% contain a node ofZ. in their interior (interior node (3.3)
property) (Mekchay & Nochetto, 2005; Moreét al, 2000, 2002)

However, in contrast with Mekchay & Nochetto (2005); Modhal. (2000, 2002), we do not enforce
this property between consecutive steps.

ForK € #7andV € V(.7) we denote by1+(V,K) and ose (V,K) the K-element indicator and
oscillation, and refer to following sections for specifi@exples. The quantity

27(V,K) = (n%(V,K) +0s& (V,K))* VK € .47, (3.4)

the so-calledotal error indicator, will be used to mark elements for refinement as opposed to jus
nz(V,K). Finally, for any subset?”, C % we set

v =( 5 BvK)”

K,

and similarly forn 7 (V,.#7), and osg- (T, . %7).

In the rest of this section, we review the following populatimators for the model problem (1.1)
and polynomial degree = 1: the residual estimator, theerarchical estimatarthe Morin-Nochetto-
Siebert estimatqrthe Parés-Diez-Huerta estimatorthe Zienkiewicz-Zhu estimatpand theBraess-
Scloberl estimator. We discuss the last two examples for the Laplgoat®n upon comparing with
residual estimators; this may give rise to somewhat pessingonstants.

In doing this, we assume that we have two conforming meshes .7, andK-elements satisfying
the interior node property (3.3). We léte V(.7),U,. € V() be the corresponding Galerkin solutions
and se€, :=U —U, € V(.7,). Moreover, we lef1}, be thel P-best approximation operator in the space
of discontinuous polynomials of degreem overK € .#5, andE} = | — 1} be the operator error.
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3.1 Residual Estimator

Given € T andV € V(2), we define thelementndjump residualdy
RV, T)=(f-2V)r VTeT, J\V,0) = ([ALV]-v); Voe.Z,

[q]] is the jump ofg across an interior side in the direction of the unit normal to o, and is uniquely
defined. The error-residuals relation reads

Blu—U V] = (f,v) g — BlU,V] = Z / RU,T)v+ Z /J(U,a)v YWev. (3.5)
Tez /T oger’/9
The residual indicators and oscillation fére .7 read

1/2
N7(U,T)?:= I RU. )22, + 107 23U, 0T) 2o

1/2

2 (3.6)
0s¢7 (U, T)? i= [|hrEZ_1RU, T)|| 27 + 107 EZ13(U, 0T) |[E2 1)

whereJ(U,dT) is viewed as a piecewise function ow&f. We refer to Ainsworth & Oden (2000);
Casconet al. (2008); Mekchay & Nochetto (2005); Moriet al. (2000, 2002); Stevenson (2007);
Verfurth (1996) for analysis of residual estimators. léyhdrive AFEM, then the present formula-
tion is a bit more complicated than that in Cas&brl. (2008) because we now compute the oscillation
and enforce a refinement deptfaccording to (3.3). We point out that osU, T) is different from the
oscillation of Cascomet al.(2008):

2 1/2
08¢, (U, T)2 = ||hrB3,_oR(U, )| + 1M *E30_13(U, 0T) [Z2 5 - (3.7)

The choice of polynomial degrees 2 2 and 21— 1 guarantees an oscillation decay as fast as the energy
error. We now tackle the more traditional polynomial degneel, which is easier to implement but
more difficult to analyze. Our results k4, 5, and 6 cover this case. We refers@&?2 for a further
discussion.

We mention, for later use i§3.4, that Babuska & Miller (1987) showed that the residwstiheator
is equivalent to the following jump estimatqgr- up to oscillation:

NrU,7)72:=Y [hd%(U,0)lI0)- (3.8)
e

This has been further explored in BabuSka & Stroubouli®20Carstensen & Verfiirth (1999); Cohen
et al.(2010); Rodriguez (1994).

3.2 Hierarchical Estimator

We follow Bornemanret al. (1996), Veeser (2002) and Verfurth (1996). We Jét, be the set of
all interelement sides and simplice¥» '={o:0¢ Z}U{T : T € J}. For eachK € %7, let
Ak € V(Z,) be the hat function corresponding to the interior nadecs K guaranteed by (3.3), let
wx := suppAk be its support, and lefik be the renormalized functiapk := HM}‘K—K‘HQ ForV e V(.7) and
K € % we define th&k-element estimator and oscillation as

Nz (V,K):=[{f,¢x) o = BV, ¢«]| = [B[u—V, ¢«]|

1/2 .
oser (V.K) e 4 NIV Kl ifK=0 €7,
s he|[(1 = IRV, K) [l 2) fK=TeT.
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We now prove local lower and global upper a posteriori erstingates. In contrast with the residual
estimators, the former turn out to be easier to derive. Ih facZ < 7, andK € J#5 has an interior
node in%, then¢x € V(.7) and

N7 (U,K) = [Blu—U,¢«]| <CgJu—Ully, (3.9)

as well as
Nz U,K) =[ZU, - U, ¢]| < Cg[Us = Ul - (3.10)

These ardocal lower boundsWe now introduce a linear operatey : H(Q) — spare x, {¢x} to
prove a global upper bound. We defiag to be

Prv= 5 PBx¢x <« /PQVZ/Va VK e X7, (3.11)
Kexts K 7K

and realize that the coefficien@x are determined uniquely and satisfy the followilogal stability
properties forany € V, 0 € ., andT € .7 (Veeser, 2002, Lemma 3.1, p. 754):

-1/2 _ ~1/2
Bol < o™ 2| Vllzoy s 1Br] < 0Tt IVlzqr) + P2 IVl zarrg) (3.12)

Letv e V be a test function anld;v be its Scott-Zhang interpolant. Using Galerkin orthogapave
obtain withz=v—14v

Blu—U V| = Blu—U,v—15V] = Blu—U,PsZ + Blu—U, (I — P2)Z.

Combining the stability properties (3.12)®$ with the approximation properties bj- (Scott & Zhang,
1990), and invoking the definition af 7 (U, .2~ ), the first term is bounded by

Blu-U,Ps= % BcPBlu—U,¢] <Nz, 727)Vlnq)
KeXg

For the second term, we use (3.5) and the definition (3.1B)0to arrive at

Au=U.(1=P7)Z = Y ((I=MRU.T),(I —Pr)2);
TeT

+ 3 {(1=M3)3(U.0).(1 - P7)2), < 0567 (U, 7#7) [Vl s o).
oes

Invoking the coercivity of%, we end up with thglobal upper bound
llu=UlI% < Ci(n3 (U, #7) +08E (U, #7)) =Coi3 (U, H7), (3.13)

where the consta@l; depends solely 0%, ¢g, Cg, and the dimensiod. This estimate can be localized
to the refined regiow? = %17%7 of order 1 provided is replaced by,, namely,

IU. ~UlI% <C1 {n3(U.2) +0s&,(U. %)} (3.14)

We prove this along the lines of (Cascénal., 2008, Lemma 3.6), after noting thatdfe %, then the
two elements of7 sharing this side are also . Let Q. be the union of elements o which are
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refined in.Z;, and denote by2, one of the connected components of its interior. Egtbe the subset
of 7 contained inQy and letV(.%) be the restriction oW (.7) to Q. Letl: HY(Qy) — V(%) be
the Scott-Zhang interpolation operator over the méghwhich preserves conforming boundary values.
LetV € V(7) be the following approximation of the err&, = U, —U € V(Z,):

V:=IkE, inQ, and V:=E, elsewhere. (3.15)

By constructionY € V(.7) is aH!-stable approximation t&. in Q and satisfies the Galerkin orthog-
onality Z[E,,V] = 0 becaus& (.7) C V(7). SinceE, =V in Q\ Q,, andP~ is local, we proceed as
with (3.13) to deduce (3.14), namely

IE|IG = Z[E..P7(E.~V)]+ B[E.,(I -P7)(E. V)] < {7 (U, D) ||E||o

3.3 Estimators based on Solving Local Problems

We consider two a posteriori estimators which rely on thetsah of small problems on stars. The first
one is the estimator introduced by Morin, Nochetto and Sigiddorin et al, 2003), which organizes
the information by stars. The second one is due to Par&z, &id Huerta (Par&s al, 2006), which
slightly simplifies the estimator in Moriet al. (2003) and arranges it by triangles. We modify the
formulations in Morinet al. (2003); Parést al. (2006) to account for the general nature of operator
and derive a few bounds that are instrumental in the preBenty. Both estimators were developed for
n=1 andd = 2; the results below are valid far> 2.

We first introduce some notation common to both estimatorsindicate with 4 := {xi}i'\fl the
set of all nodes of triangulatio¥. For each node;, A € V() is the canonical piecewise linear
function corresponding tg;, andcy is thestar associated tg;, i. e. the support of;. We denote by
¥ the union of the sides touching that are contained i®. Finally, wr := Uict @ is the union of the
d + 1 stars containing .

3.3.1 Morin-Nochetto-Siebert Estimator (Morgt al, 2003). Let.#5 be the set of alétars i. e. the
K-elements are the sets. We write (g instead oK to avoid confusion.
The local indicators hinge on the local weighted spakiey ) defined as

W(w) = {ve Hi(w): / VA =0 and/ IOV2A; < oo}, (3.16)
w K
if X; is an interior node, and
W(w) = {ve HL (@) v=00ndwNaQ and / IV < oo}, (3.17)
JK

otherwise. The corresponding small problem is solved orsmﬂ:ef/"g(m) C W(w), of functionsv
which are piecewise quadratic on the st@y vanish onda, and satisfy_f(q vAi = 0. We also need to
introduce the weighted bilinear form

Bi[va, V2] i= (ADvy, Ov2Ai) , + (b Ovi+c vy, v2Ai)
For each staw andV € V(.7), we define§j € 22(w) to be the solution of

§eZ4(w) : B&N = (fVA), —BV,VA] forallve Z§(w), (3.18)
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then, the star error indicator and oscillation Yoe V(.77) are defined as

n%(V,@) =&l = #il&. &l (3.19)
0s& (V,@) := 2| {(1 = MRV, @) }AY 2|12 ) + il {01 = TIEDIV W IA 2 ) (320)

Hereﬂ&i denotes the projection on piecewise constants with theieigscalar produdf, vwA;, with
either w = «y or w = o depending on the residual. We stress that the right-hared &fid3.18) is
equivalent to the original one in Moriet al. (2003) but it does not involve the explicit computation of
residuals (either jump}U, o) or R(U, T)).

The proofs of upper and lower a posteriori error bounds arfertieal and similar to those in (Morin
et al, 2003, Theorems 3.6 and 3.1), and thus not reported here.filBh®ne requires a weighted
Poincaré inequality (Moriet al,, 2003, Proposition 2.4), and the second one the definitiensoftable
operator betweer?3(w) andW(w). They yield the existence of consta@s C,, solely depending
0, Cg/cg, andd, such that

lu=Ull5 <C1{n% U, %#7)+0s& U, #7)}, (3.21)
Con% (U, 7)< lu—Ul|5. (3.22)

The following discrete counterpart of (3.21) is also basedMorin et al,, 2003, Theorem 3.6): if
R =R _., C A7 isthe refined set of order 1, then

IU. ~UlI% <C1 {n3(U.2) + 0s&, (U, %)} (3.23)

Its proof employs the localization argument of (Casetral, 2008, Lemma 3.6), witl/ € V(.7)
defined as in (3.15). Properties of the partition of unitpwalus to write

IEE = #[E..E.~V] :ZJ;R(UM), (B =V)Ai)gy + (U, %), (B =V)Ai),, .
WeZ

The proof continues as in (Moriat al., 2003, Theorem 3.6), but using the fact thvat= E, for all
w ¢ Z. The following discrete counterpart of (3.22) is a slightion of (Morinet al,, 2003, Lemma
52).if% = %J?J _z Isarefined set of ordgr> n, then

Can%(%2,U) < ||V, —U||% +0s& (U, %). (3.24)

3.3.2 Parés-Oez-Huerta Estimator (Pdset al, 2006). TheK-elements are simplices and, to avoid
confusion, we denote them By, .77 := {T }1c »,. Let 7, satisfy the interior node property (3.3)
forall T € 7, letV, =V(7) andV,.(w) be the restriction oV, to stara. There is no boundary
condition imposed oV, (w).

For eachwy andV € V(.77), we let the star indicator be

GeVi(w) 1 Buléivi=(f,VAi), —ZIV,vAi] forallve V.(w), (3.25)

which is similar to (3.18) and well-defined provided: ¢y > 0; otherwise we demang to have van-
ishing mean value. In contrast to (3.18), the local bilinkeam %, does not have the weigh and
the augmented space if made of piecewise linears insteadgbofrgtics; these key differences make the
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estimator appealing fat > 2. We point out that it is sufficient for our purposes to restiie local space
V.«(w) to only the interior nodes in elements and interior side&iwity, as will become apparent in
what follows. Even though this reduces the size of local [enois considerably, especially fdr> 2,

we decided to stick to the original estimator for this distas. The error indicator and oscillation are

éi

xieTNAN

neyV,T):= (3.26)

)

.
0s& (V,T) := | (1 = IRV, T)[IFzr) +hrll (1 = 118)IV,0T) [ Z2 - (3.27)

for any elemen® € .7 and functionV € V(.7).

We present an alternative a posteriori analysis to Patrés (2006) and a few novel estimates; in
particular we do not need a reference mesh. We first shgiatzal upper boundthere exists a constant
Cy, solely depending/p andCg/cg, such that

llu=Ullg <Ca(n3U,#7) +0s& (U, 47)). (3.28)

We proceed as if3.2 and invoke the local operatBy- of (3.11). Given a test functiome V, we let
| 7V be its Scott-Zhang interpolant. Using the Galerkin orthadity, and setting =v—1 »v, we obtain

Bu—U V| =Bu—U,v—IzV]|=Bu—U,Pz2)|+ Blu—U, (I —Pz)7Z
On the one hand, the partition of uni{}i}:\':%, in conjunction with (3.25), implies

Nz

N N
Blu—U,Pz7 = Z@[U*U,F’,ﬂ/\ ZI (f,P72Ai)y, — ZU,P72Ai] = Z%q [&,P712,
L =

whence regrouping by elemerfisresults in

Nz

No
Z%m [&,PsZ :_Z > #r(&,PrZ < Q%T erl,Pﬂ cn% WU, 7)|IVllq -
i= i Te Xj€

=1TCaw

Here we have use@#r to stand for the restriction a# to T, and the bounfiP>Z|| 5 < || V]| o from §3.2.
On the other hand, the remaining term involvifig- P> )z can be estimated again asg8.2, thereby
concluding the proof of (3.28). This argument shows thabttlg relevant nodes, namely those defining
the operatoP+, are the interior nodes i@. This observation can in turn be exploited to simplify the
definition of §; to precisely those nodes.

We now derive dower boundwhich is consistent with our theory, and local in nature,different
from the original one in Parést al. (2006): there exists a constad4, solely depending oy and
cg/Ca, such that

Con% (U, 27) < lu-U|5. (3.29)

We first use the definition (3.25) &f and Galerkin orthogonalityf, Ai) ,, — %[U, Ai] = O, for interior
nodesx;, to deduce

&%, = B (&, &] = (F,& i), — BIU, &N = (F, (& —c)Ai), — B, (& — C)A]
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wherec; = 0 for boundary nodes, argl = |oq|*lfm & otherwise. By continuity of4 and Poincaré
inequality|[&i — Gil[ 2(y) =< [lI&ill» We thus obtain

1&g, = Blu—U, (& - c)Ai] < lu=Ullg Il

This, together with (3.26), yields

n7(U,T) < ; l&illlr < llu=Ullgy »
XieTNAN 7

and thus (3.29) upon summing over @lie .7. We point out that we have argued btars instead of
triangles as in Parést al. (2006). However, in view of the definition &f by stars, this seems the only
viable way to relaté; with the error.

Our next task is to derive discrete versions of (3.28) ang9(3.which are in turn crucial for the
subsequent development. We start witlo@alized upper boundf % = «%717H7 C K7 is the refined
set of order 1, then

. ~UJI, < C1 (n%(U. %) +0s& (U, 2)). (3.30)

We proceed as with (3.14) and (3.23), namely w&/let | >E* € V(.77) be the Scott-Zhang interpolant
of E. =U —U.. Hence

IEI5 = B[E.,P7(E. —V)]+ B[E., (I = P7)(E.~ V)]

which reduces to a sum over elemefits # becaus& :=E, -V =PsZ=0forall T ¢ Z. Arguing
as with (3.13), the second term leads to the oscillation thesrefined set. For the first term, we denote
by M%) the set of nodes o and recall the definition (3.25) & to obtain

#EPrZl= 5 BE,PrZA]= Y HBul&,PrZ]
X €M) X €M)
=5 % 5 &PrZlxnsU.Z)|E,.
TCZ X €eTNMZRZ)

becausd|PsZ|| 5 < ||E«|| o @according t&3.2. This shows (3.30).

To derive a discrete version of (3.29), we observe that theraent leading to (3.29) cannot be
applied becausééi — ¢)Aig V(.7) for any refinementZ, of 7. We resort again to the interpola-
tion operatoP4 of §3.2 to prove the followingliscrete lower bound fo7 < J.: if T € .7 satisfies
gen, (T') >nforall T’ C wr, then

Can%(U,T) <[|U. — V|3, +0s& (U, wr). (3.31)
Let ey be a star of7 containing sucii € .7. We recall the representation formula
I18ill, = (f. (& —c)Ai) — B, (& —c)Al

used in dealing with (3.29). Since geriT’) > n forall T’ C w, they satisfy the interior node property
(3.3) andP~ is well-defined inw. If z:= (& — ¢i)A;, then we infer that supp,z C w because of (3.11).
We add and subtraét,z to write

IEI2, = (f.P72) — B[U,P72 + (f,(1 - P7)2) — AU, (1 - P7)2.
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SincePzze V. (w) C V(Z;)|u We have for the first two terms
(f.P72) —B[U,P7Z = BU" —U,P7Z <C[U" = Ul llIillg -

the last step being a consequence of the local stability2]2flP» and Poincaré inequality. For the
remaining terms, we proceed as with (3.13) to conclude

(f,(1 =P2)2) ¢ — BV, (1 —P7)Z < 0s¢r (U, @) [[&ill, -

Summing over the three stars that confhia .# we obtain (3.31), as asserted.

3.4 Gradient Recovery Estimators (Zienkiewicz & Zhu, 1987)

These among the most popular estimators in computatiogaieering because of their simplicity and
accuracy. The first and most successful is due to Zienkiefighu (1987), is defined on stars, and is
the one consider here because ibisal. Other global recovery-type estimators entail a globajgation
(Bank & Xu, 2003; Carstensen, 2003) but do not fit within owdty below.

Given 7 andV € V(.7), we denote byG~V the orthogonal projection dilV into the vectorial
linear finite element space with respect to the7 )-lumpedL,(Q)-scalar product. The nodal values of
the recovered gradie@ 4V obtained in this way can be written explicitly as follows fmach node;

IT|

GaV(xi)= % ﬁDV\T
TCw

whereq is the star associated xp. The estimator and oscillation are given by
n5(v.T):= [ 65V - VP, 058, (T):= 3 I(f~ ).
JT Xi€

wherefi = | |*lfm f. Rodriguez showed the equivalence of this and jump indisdtty stars (Rodriguez,
1994, Theorem 3.1, Remark 3.1):

Y nZUT)~ S [h*U,0)2, (3.32)
TCw aCy

with y as in§3.3. Upperandlower a posteriori bounds, up to oscillation, follow from the eglénce
of (3.8) and the energy error (Rodriguez, 1994). We arewateof a direct proof of equivalence.

If 7 <7 andU € V(9), U, € V() are solutions of (2.2), then the followirigcalized upper
boundis a consequence of the corresponding one for the residirakbgsr (Cascoet al,, 2008, Lemma
3.6):

IU. = UlI% < €1 {n% (U, 2) +0s& (U, %) }.

However, as the equivalence (3.32) is written by stars, libisnd requires a larger sét than Z =
%’}7%@7 made of all elements of stars containing triangle€ofThis does not affect our theory because

HR ~H#A. Finally, adiscrete lower boundimilar to (3.31) follows from (3.32) and (Moriet al., 2000,
Lemma 4.2).
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3.5 Braess-Saobberl Estimator (Braess & Sderl, 2008)

This estimator hinges on a theorem of Prange and Synge<iH (div; Q) is such that dig+ f =0,
andu € H}(Q) is the solution of the Laplace equation, then

10u—OV[[Z2g) + 10U —dalf2 ) = IOV=allf2q),  WEHG(Q).

An error estimate follows upon replacingy U in the above formula. If is assumed piecewise con-
stant the optimal choice € H(div, Q) is the solution of the original formulation by the mixed medh
with Raviart-Thomas element. Since this procedure is t@eegive for computing an a posteriori error
estimator, Braess & Schoberl (2008) propose an altematiwmstruction by solving cheap local prob-
lems. In fact, letgqy belong to the broken Raviart-Thomas space and be definedamsstas the
solutions of local problems

divgi=—|T|"1 /7 fAi  ineachT cw
Oa = g < [gi-v]=—-1/2[0U-v] oneachedge € y
i€ gi-v=0 ondw
The vector fieldgy compensates for the jumps @fJ whenceq := 0OU + g, € H(div, Q). The local
indicator and oscillation are defined as

nZ(\V.T) = aalZ2q) 05 (T) = [Ih(f — fr)|Z2)

where fr = [T|~1 f; f. Braess & Schoberl (2008) propose a simple algorithm (Atgm 4) for the
construction ofy; providedf is piecewise constant over. In this case, it is not difficult to obtain the
equivalence

2 gy~ 11122+ || 120

2
L2(y)

Otherwise, data oscillation appears in this equivalencelditing this relation with the residual es-
timator of §3.1, upper and lower bounds, as well as their discrete couentts, can be derived as in
§3.4.

4. AFEM: Abstract For mulation

Motivated by the examples @f3, we now enunciate abstract properties that bpthand os¢, must
fulfill, along with assumptions on the adaptive procedurd&AF that enable us to derive a contraction
property in§5 and decay rates i§6.

4.1 A Posteriori Error Estimators

We formulate two assumptions, the first onems and the second on 0g¢ see Cascomt al. (2008)
for the residual estimator.

ASSUMPTION4.1 (A posteriori error estimates) Letu € H3(Q) be the solution of (1.1), and I&t €
V(Z) andU, € V(Z,) be Galerkin solutions of (2.2) over mesh&s< .7,.. There exist constants
{Ci}2_; such that the following properties hold.

(a) Global upper bound (reliability)this gives an estimate of the energy error in terms ofttital
error estimatot » (U, Z7)

lu=Ull5 <C1{n5 U, #7)+05& U, #7)} =C1 {5, %7). (4.1)
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(b) Global lower bound (efficiencyjhis is a measure of quality of» (U, . #~)
C2n% (U, #7) < [lu=Ul[G +0s& (U, #7). (4.2)

(c) Localized upper boundhis measurefU. — U, in terms of the total estimator restricted to the
refined se?' = %%, , C 7 of order 1

IU: = UlIg < Ci{n%(V.2") +o0s& (V. 2"} = C15 (U, %Y. (4.3)

(d) Discrete local lower boundthe estimaton (U, %") on the refined se#" = %%,  , of order
nis a lower bound fofijU, — U||| o

Can% (U, Z") < ||Us —U||5 +0s& (U, 22%). (4.4)

We observe the relatid@y /C; < 1 that results from (4.1) and (4.2) in the particular case/dsk 75 ) =
0. The quality of an estimator can be measured by the dewiafithis ratio from 1.

ASSUMPTION4.2 (Oscillation) We denote by the LP-best approximation operator in the space of
discontinuous polynomials of degreen overK € #. We further letr1?, = 0 andEf =1 — 11{ be the
operator error. Our definition of oscillation with polynaahdegreen > 1 conforms with the original
one Morinet al. (2000, 2002); Mekchay & Nochetto (2005) but it is at variamggh that in Cascon
et al.(2008). For the residual estimator we let

2
OS@(U,T)Z = h% HEr%flR(UaT)HLZ(T) +hr HErzlfl‘](UvaT)”Ez(dT) (4-5)

and similar expressions are valid for the other estimators.important to observe that the polynomial
degree in (4.5) is consistent with the interior node prop€3t3). We next introduce the oscillation of
the coefficienD := (A,b,c) onT € 7:

os¢7(D,T) :==hr (HESOdiVAHEW(T) + D2 ERA o o)
o w |12 ® 12
+|EFb[En () + |[E16]| Lo ry + IEG C”E‘”(T)) ’
and for any subse?’ C 7 we define

osc7 (D, T') = Trr;%osqﬂD,T).

The assume the following properties to be valid for any @igefunctions/ € V(7),V, € V(Z),
with 7 < ..

(a) Oscillation reductionthere exists a constantQA < 1 so that
0s&, (V, #7) <08 (V, #7) — A 0s& (V, %%). (4.6)

(b) Lipschitz property there exists a consta@} > 0 depending on the shape regularity.&f and
the polynomial degrer so that for allK € %5,

|0scz (Vi K) —0sez, (V,K)| < C408¢7 (D, ) [V =V » (4.7)

wherewx is a small discrete neighborhoodif
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The proof of these properties follows along the same linefCasconet al, 2008, Proposition 3.3)
because osg(U, 7~ ),0scs (D, 7) are similar regardless of the specific estimator;§eHence, we
do not insist on this point any longer.

Property (4.7), couple with the finite overlapping of sejs and Young'’s inequality, yields the
following perturbation propertyon the set of unchanged elements

0 (V, H7 N H7) < 2088, (Vo, K7 N H7) +2A105G; (D, ) IV —V.||5 (4.8)

where A\ is proportional toCZ. Combining (4.6) and (4.7) with Young’s inequality we derithe
following quasi-reduction propertfor all 6 > 0

0s& (Vi, #7) < (1+8){0s& (V, #7) — A 0s& (V, %)}

(4.9)
+(1+ 8 HA10sE, (D, Zo) [IV- — V|5 -

4.2 AFEM
The adaptive method consists of iterations of the form (d0Zhat

e SOLVE computes the exact Ritz-Galerkin solution of (2.2):
U = SOLVE(.9).
We assume exact linear algebra and integration, the fousefgr simplicity.
e ESTIMATE calculates théotal error indicator { » (U, K) of (3.4):
{27(U,K)}ker, = ESTIMATE(U, 7).

e MARK uses Dorfler marking with parametex00 < 1,

(7, #)>007U,7%7), (4.10)

to select a seZ C # 7 to be refined
M =MARK({{7(U,K)}ker,, 7).

e REFINE bisects all elemenff € .7 contained in#. Since bisections are performed elementwise,
we introduce theslement refinement flgg(T) € N for T € .7, and decide thal must be refined
providedp#(T) > 0. This flag is initializedo 7 (T) = 0 for all T € %. REFINE first updates the
value of this flag according to the marked set

(T) = n if T CK,withK € .7
Pz )= p7(T) otherwise

wheren € Nis defined in (3.3)REFINE next bisect$ > 1 times the elemen® € .7 with p#(T) >
0, and generates a conforming triangulati@n> .7. The flags are updated i#x. as follows:

p2(T) :=max{0,p7(anc7(T)) — geny, (anc,(T))} VT € 7;
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thus the element flag decreases with refinement depth. In amynthe marked and refined set
satisfy.# c #=%%_, , and

{Z.Ap7.(T)}rez } = REFINE(T, 4 {p7(T)}rer).

REFINE is a minor modification of standard refinement routines arehsy to implement within
ALBERTA (Schmidt & Siebert, 2005).

In order to obtain convergence and quasi-optimal cardinalie have to impose some additional
conditions on the initial mesh, and a requirement on the ingritrategy, which we now enunciate. The
first two conditions are crucial to get the contraction propéTrheorem 5.1), whereas the other three
requirements imply quasi-optimal cardinality (Theorerh)6.

ASSUMPTION4.3 (AFEM) We assume the following properties of AFEM:

(a) Initial Mesh - Quasi-orthogonalitylf b # 0 in Q, then the initial grid% has to be sufficiently
fine with respect t@ andD in the sense that
94
Co[04+ 1162+ osé’-%(D, D))

hollblli=(0) < (4.11)

with Cg the constant in Lemma 2.1 and

2 4G (1+C3)N
H1 = G M2 = A2C2
wherehg = maxrc # hr. If b =0, then there is no restriction o besides its alignment to the
jumps ofA. This assumption clearly givé&hg||b||~(o) < 1, and implies that the constanp
in (2.3) satisfies
94

. 4.12
162 + 2 0G5 (D, F) (4.12)

No<1l+

(b) REFINE- Refinement depttAll simplices contained in markeld-elements in step are subdi-
vided at least times aftery := J(n, b) steps of AFEM, i. e.

gengm(T) 2n VT CKe #.

This requirement is vital to obtain the discrete lower bo(thd) with.# c Z#".

(c) Initial Mesh - Complexity oREFINE. The labeling of refinement edges 6§ satisfies (Steven-
son, 2008, Condition (b), Section 4) fdr> 2. The condition is simpler fod = 2 and is due to
Mitchell (1989) and Bineet al. (2004). See also the survey (Nochettal., 2009, Section 4).

(d) MARK- Parameter8. The marking parametét satisfiesd € (0, 6.) with

o (e
© \(1+C)(1+C(2+2M,088, (D, %))/

(e) MARK- Minimal cardinality. The cardinality of the marked se# is minimal.

We now present AFEM with the iteration countieas a subscript instead ofj: given the initial
grid % and marking parametdéd < 6 < 1 set j:= 0 and iterate
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(i) Uj = SOLVE(.%});
(i) {(U}.K)} ey, = ESTIMATE(Uj, 7});

(i) ., =MARK({{; (UJ-,K)}KG,Kj K

V) {71, {p11(T)}res, }} = REFINE(A, 75, {py(T)}bre s });
V) =i+

REMARK 4.1 (Marking) In contrast to Cascoet al.(2008), the proposed AFEM utilizes the oscillation
for marking. This could be avoidedifs (U, #%) > Coscs (U, . #7) for C > 0. While this property is
trivial for the residual estimator wit@ = 1, it is in general false for other families of estimatorstsuc
as those irg3. This happens for unresolved data typical of the preasytieptegime. Therefore the
oscillation cannot be removed for marking without furthesamptions.

REMARK 4.2 (Interior node property) AFEM does not enforce an interior node property between con
secutive refinements, as in Morét al. (2000, 2002); Veeser (2002); Morgt al. (2003); Mekchay

& Nochetto (2005); Stevenson (2007), but affesteps. This is easy to implement withth BERTA
(Schmidt & Siebert, 2005) and has an insignificant impacdhérefinement process. This property was
circumvented altogether in Cascénal. (2008); Diening & Kreuzer (2008) for the residual estima-
tor, employing the crucial property» (U, #%) > oscz (U, #7), and in Kreuzer & Siebert (2010) for
non-residual estimators upon exploiting their equivadenih the residual estimator.

5. Contraction Property of AFEM

We now prove that AFEM satisfies a contraction property wétpect to the sum of energy error plus
scaled oscillation, the so-call¢dtal error. The total error is reduced by a fixed rate afjesteps. The
proof is inspired in results of Casc@tnal. (2008); Mekchay & Nochetto (2005).

THEOREM 5.1 (Contraction Property) Let Assumptions 4.1(a,d), 4.2(a,b), and 4.3 (a,b) be valiet
0 € (0,1] be the marking parameter and {e?j, V;,U;} >0 be the sequence of meshes, finite element
spaces, and discrete solutions produced by AFEM.

Then, there exist constangs> 0, 0< a < 1, andy € N, depending solely on the shape-regularity
of %, n, b and®@, such that

2 2 2
llu=Ujallf +y 0G5 (Uy 3, #53) < @ (llu= Uil + yosg(u;, ) ).
Proof. For convenience, we use the notation

e :==|lu=Ujllg. Ej == lVj+3 = Vjllq, nj(#) = n;jUj,.4}), %} = %5 .7,
0sG :=0sG(Uj,.%#]), 0sG(.#j) :=o0sG(Uj,.#;), 0s@(D):=0s¢(D,%).
We observe that#j C %’Jl always and Assumption 4.3(b) guarantees t#gtC %', so that all the
elements contained i are refined at least times in.7j, 5. We combine the quasi-orthogonality
(2.3) with oscillation reduction (4.9) to write

€, 5 +y0sG, 5 < No& —E?+ (1+ 5 1) yA 05G(D)E? + (1+8) y (05 —A 05 (1)) .

To remove the third term on the right-hand side, we first wife= BE?+ (1— )E? with a constant
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B € (0,1) to be selected later. We choogdepending o to be

(1-B)
(146 HA, 05&(D)

_%(1-p)
& y(1+9) = /MT(%(D) (5.1)

yi=
whence
2 5+ y0sC, 5 <Ao€ — BEZ + (14 8) yos¢ —(1+ 6) A y 0sC (7).
Since.#; C 2}, the discrete lower bourl? > C3n?(.#;) — 0sG(%}) in (4.4) is valid, thereby giving
€ 5 +Y0sC, 5 < No€f + (14 8) yos¢ —BCanf (4j) — [(1+ ) Ay — Bl 0sG(%]).

We can further replace o!s(c%jl) by osqg(.#;), which is smaller, and equate its coefficient with that of
nf(%j) to derive an expression fg&

1

B= 1+C3

(1+9)Ay.

We next use the definition gfto show that the ensuing is admissible, namely,

_ Y
0<P = AT cynosgD) ~ & (5-2)
whence
_ (1+Cs)d
Mt 0) = S 1+ CyA05&D) (5.3)

Replacingf into the above expression fef+3 + yoscjzﬁ, and recalling thasz(///j) = r)j’-(///j) +
0s¢(.;), we obtain

Cs

&, 5 +yosc, 5 <N+ (14 cS)yosch—1+C3

VA(L+8)CE(A).
Invoking Dorfler marking (4.10), namel§; (.#}) > 6;, we deduce

C
&, 5 +y0sE ;< No€ + (1+8)yosé — 1+3C3 yA(1+8)6%7.

Sincelj > osqg by construction, we infer that

C
2,1 +y0sé.y < Ao+ (14 6>vosé—ﬁw<l+ 8)6%(¢} +o0sg),

3)
and thus apply the upper bound (4.1) to obtain

€.5+Y0sG, 5 < af(3) e +ya3(d) 0s¢



QUASI-OPTIMAL CARDINALITY OF AFEM 21 of 28

with

Cs) 62
07 2C1(1+Cy)
It remains to prove that the paramedecan be chosen so that

a?:=max{a? a3} <1.

a2(5) = V1+3),  ad(8):=(1+0) (1 2C73)A 92> .

(1+C3

Eliminatingy from (5.3) leads to the following conditions @nfor a < 1:

(1+C3)A10sG(D) C3A 62
, 02(0)<1l=0<0; = .
C302 — 2
A (2(31(3\071) _ 1) 2(1+C3) C3A 6

Using the restriction (4.12) afy, the condition ord_ can be rewritten as

01(0)<1=0>0_:=

C3A 62
5 < m
thereby showing that it is possible to choose a compafilde that
C3A 62 < CsA 62 _
2(1+GCy) 2(1+C3) —CA 62
This completes the proof. O

6. Quasi-Optimal Cardinality of AFEM

In this section we prove quasi-optimal cardinality of AFEWe proceed as in Cascénal.(2008), who
improve and extend the results of Binetal. (2004) and Stevenson (2007) for the Poisson equation.
We only list the results and main differences, and refer tecGaet al. (2008) for complete proofs.

6.1 Approximation Class

Since all decisions of AFEM are based on the estiméfb,. 7> ), a decay rate for the AFEM can only
be characterized by its properties. Invoking the upper angtt bounds, (4.1) and (4.2), we realize that
this quantity is equivalent to thetal error

lu-U|%+0s& U, #7) ~ n% (U, #7)+0s& U, #7) =%, %7)

which is strictly reduced by the AFEM. Therefore, as in Gaset al. (2008), the definition of a suitable
approximation class must be based on the total error. Wetktarsection recalling that the total error
satisfies a Cea’s Lemma. Its proof is similar to (Casebal., 2008, Lemma 5.2).

LEMMA 6.1 (Quasi-Optimality of the Total Error) Let u be the solution of (2.1) and faf” € T let
U € V(.7) be the Ritz-Galerkin approximation of (2.2).
Then, the total error satisfies
u—U||% +0s& (U, #7) <Ay inf u—V|[3 +os V., *7) ),
llu=Ullg +056 (U, #7) < Az inf (Jlu=VIg +05E (V.. 77))
whereA; = max{2,Ao(1+2/; osc?%(D, o)) }» with Ao, A1 defined in (2.3) and (4.9), depends on data
D, shape-regularity ofp, and polynomial degree
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We now proceed as in Cascéhal.(2008) to define the corresponding approximation classwea
denoteds. Let Ty C T be the set of all possible conforming triangulations geteerayREFINE from
Jp with at mostN elements more thafip:

Tn:={7 €T |#7 —#J <N}.

The quality of the best approximation to the total error ia etTy is given by

o(N;v,f.D inf f V V., 7 v
OGN 1,D):= inf int ([v=VIl5+0sG (v, #7))"
where(f,D) are hidden in osg (V,.7); we refer to§3 for examples. Fos > 0 we define the nonlinear
approximation clasés to be

As = {(v, f,D) ||v,f,D|s:= sup(NS ag(N;v,f,D)) < }

The range of decay ratass dictated by the polynomial degreeand the dimensiod since, except in
degenerate casess n/d; this upper bound corresponds to full regularity and quessierm refinement.
Thanks to Lemma 6.1, the solutiorof (1.1) with data( f, D) satisfies

G(Niv.1,D) ~ inf {{7(U.#7): U=SOLVE(7)}. (6.1)

6.2 Equivalence of Approximation Classes

The definition ofAs seems to depend on the notion of oscillation (3.7), or sirfidliethe other estimators,
which is different from that in Cascaet al.(2008), namely (3.6). We may thus wonder about the relation
between the classés; andAs, the latter being defined in Cascéhal.(2008). We now prove that they
are identical.

We recall that in residual estimation the oscillation canlefined using ah?-projection onto piece-
wise polynomials of any degree (Verfurth, 1996). Howeteis margin of freedom is not possible for
other families of estimators, such as those is se@Bmwhose analysis requires the discrete lower bound
(4.4) and so the interior node property (3.3). Such propeatybe enforced provided we project onto
piecewise polynomials of degreen— 1 in the definition (4.5) of oscillation.

LEMMA 6.2 (As = As) The approximation classés; associated with the estimators§® are identical
to the class\s of Cascoret al. (2008).

Proof. We relabel the local residual indicator and oscillation®6] as follows:

n%(U,T)2=h%|RU H,_z y+hr]JU )”EZaTmQ)’

0s& (U, T;2n-2)> =2 | EZ, ,RU) (2, + M1 [[EZ19(U)||2orr) -

and proceed in three steps. We first show that the elagsindependent of the polynomial degree built
in the definition of oscillation, and next dedude = Ag.

The proof of lower bound (4.2) for residual estimators isaland requires projection of the residuals
onto piecewise polynomials of any degragVerfuirth, 1996). Local 2-stability is used and the ensuing
constant depends on However we always have the equivalence for amy —1

llu=Ullq +o0s¢ (U, 7:2n—-2) = n5(U,7) = [lu=Ullq +0sc U, 7:m),
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wherer2, :=0andn® (U, 7) = 0s& (U, 7; —1). HenceAs is characterized by Casc@tal.(2008)

o(N;v,f,0) = inf {n3(U,7):U=SOLVE(7)}

T7€TN

and we infer thaf\s is independent of the polynomial degmeised in the definition of oscillation.
To prove thaths = Ag, we show that they control equivalent quantities, i. e.

n%(U.7) = [Ju=Ullg+0s& (U, 7) = |Jlu-Ul|q +0scs (U, #7),

where osg- (U, #7) is the oscillation term of any of the examplegB(or its extension fon > 1). We
first observe that any oscillation §8 satisfies

oser (U, #7) < n%(U,.7),

because the mere concept of oscillation is pretty much iedegnt of the specific form of estimator at
hand. This implies\s C As.

We next consider the Morin-Nochetto-Siebert star indicé8dl9) and corresponding star oscillation
(3.20). The other examples §8 are somewhat simpler and can be handled similarly. TLet7 be

an element contained in stax, and leté := I‘I&iR(U)/\il/sz, with bt a polynomial bubble function
associated td . Therefore, we have

1/2 1/2
IRUN? % ) & (TERUAYZ E) & €]l 2 2

and invoking the error residual equation (3.5), the contynaf the bilinear form% and an inverse
inequality, we obtain

2 2 2
IMGRUAYZ |2, ~ — (B3 RU),AY2E) + 2IU, A28
< IEZRWA 2 1€ gy + llu— Ul b2 E Lz
with E§; =1 — ;. Simplifying [|€ [ (1) we get

AL/2

1/2
e (|8 RUAZ |2y < br [BGRWU)AY 2 zry + lu— Ul (6.2)

On the other hand, sincg .t Ai = 1 and 0< Aj < )\1/2 onT, we deduce
ROz < 3 IRWAllzry < 3 IRUAYZ e (6.3)
L Zr L X; L2(
Combining (6.2) and (6.3), and using the fact thats h; for all x; € T, we obtain

12
h[ROU) |2, ;hZHEo. N2 + U=l (6.4)

Given a sideg € . and corresponding patah,, we employ a similar argument f(ﬂ&i\](u) to
deduce '

1/2 1/2 1/2
hollIUIN 2122 ) < Nl BB WA 20+ 5 MRIERRUIAYZ I, + =V, -
XJ'GOJg
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Summing over alll € .7, and using the property that each elemeraverlaps with 2d + 1) starsw;,
we finally arrive at

53U, 7)< lu-UJj5 +oser (U, #7)

This implies thaths C As, and completes the proof. O

An important pending issue is the characterizatiodgfwhich is beyond the scope of this paper.
We refer to Cascoet al. (2008) and (Nochettet al,, 2009, Section 9) for a discussion Af and to
Binev et al. (2004, 2002); Stevenson (2007) for a connection with Betasses for the Laplacian. We
stress thaf\g is not a typical linear approximation class for functionsdugse of the nonlinear interaction
between dat® = (A,b,c) andU through osg- (U, 77 ).

6.3 Cardinality of .Z;

We now assume thati, f,D) € Asfor some O< s< n/d, and prove that the approximatioh generated
by AFEM converges tal with the same raté#.7; —#.%) ° as the best approximation describedy
up to a multiplicative constant. The proof follows Casdiral. (2008), and is inspired in Stevenson'’s
insight for the Laplacian with vanishing oscillation (S¢éeson, 2007):

Any conforming refinemen#, of .7 which reduces the total error by a suitable percentage
verifies a Wrfler marking (Lemma 6.3). This allows comparison with tlesttmesh because
our Dorfler marking is minimal (Lemma 6.4)

This clever observation is not enough though to examiné (ith variable coefficients, and so with
non-vanishing oscillation, which is our main objectived»l We reiterate that Lemma 6.3 below estab-
lishes a fundamental relation between total error redoeitd Dorfler marking.

LEMMA 6.3 (Optimal Marking) Let AFEM satisfy Assumptions 4.1 (b,c), 4.2 (a,b), and 418 &4nd set

M= %(17 g—z) > 0. Let.7 € T andU € V(.7) be the discrete solution of (2.2), and I&t € T be any
refinement of7, i.e. 7 < 7, such that the discrete solutibh € V(.7,) satisfies

llu=U.lIf +05&;, (U, #7) < 1 llu= Ul + o5& (U, #7) ). (6.5)
Then the refined se#’ := %19%7 C J# of order 1 satisfies the Dorfler property

{7U,%Y) > 007U, %7). (6.6)

Proof. The proof hinges on the following key ingredients: the fallog consequence of the global

lower bound (4.2)
C
203U, #7) < |lu-U||% +0s& (U, H7),
1+C,

the localized upper bound (4.3), the dominancedt, K) < (U, K), the perturbation of oscillation
(4.8), and the following consequence of Young'’s inequality

2 2 2
llu=Ullig < 2fjlu=Usig +2[JV. - Ulig -

It is otherwise identical to (Cascdt al., 2008, Lemma 5.9) and so omitted. O

To estimate the cardinality o#j we need to invoke optimal meshes, which are in principlelated
to .7j. The key to unravel the relation between AFEM and the ciass the fact thaMARK selects a
minimalset.#; (Assumption 4.3 (e)).
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LEMMA 6.4 (Cardinality of .#;) Let AFEM satisfy Assumptions 4.1 (b,c), 4.2 (a,b), and 42). Let
u be the solution of (1.1), and 1§t7},V,U; } >0 be the sequence of meshes, finite element spaces, and
discrete solutions produced by AFEM.(Ii, f,D) € As, then the following estimate is valid
92 2 1 1 _1
ity < (1= 35) Z|u £.DIEAS (Jlu=UjlI +osé; (U, 7)) =, (6.7)
whereA; is the constantin Lemma 6.1.

Proof. We proceed along the lines of (Casdiral, 2008, Lemma 5.10). Lef := pA, *([|lu—U; |||2Q +
05(,291_ (Uj, Z5)) and let7; € T andV; € V(.7) satisfy

#T —#% < |u, £,D% Y5, [lu—Ve||% +0sE, (Ve, Z) < 2.

Let 7. = 9 ® J¢ be the overlay of7; and 7. Apply Lemma 6.1 to7, > .7 to get
llu=U.Ig + 05, (U., Z2) < i llu=Ujli% +0s; (U}, 7)),

Whence%’j1 = %}Jﬁg satisfies Dorfler property because of Lemma 6.3. Invokingufgotion 4.3 (e),
we finally deduce

1

1
HM <HAL <HT. —#T < HT; —#Tp << |u,f,Dlse™s,

which is the asserted estimate. O

6.4 Quasi-Optimal Decay Rates

REFINE usually refines more elements than those#fito enforce conformity of7, (completion).
The cardinality of those additional elements is not coterbby that of marked ones in one single
step (Nochettet al,, 2009, Section 4.5). Binev, Dahmen, and DeVoredoet 2 (Binevet al,, 2004,
Theorem 2.4) and Stevenson fr> 2 (Stevenson, 2008, Theorem 6.1) showed thatctiraulative
number of elements added by conformity does not inflate tiaamber of marked elements provided
the initial mesh? is suitably labeled; see the survey (Nochettal, 2009, Section 4) for details.

LEMMA 6.5 (Complexity of REFINE) Let Assumption 4.3 (c) be valid. Lgt7j};>0 be any sequence
of refinements ot% where.7j. is generated fron?; by REFINE. Then, there exists a constaly
solely depending o, b andn such that

i-1
KT #H<CoF i ViZ1
i=

Even though the original results are written in terms of oisedtion per simplex Bineet al. (2004);
Stevenson (2008), they easily extend to accounb fleisections per step and a refinement depdfiter
J(n,b) steps. Moreover, the cardinality is usually expressedrimgeof number of simplices, but itis as
well valid for K-elements.

The following decay rate is a consequence of Lemmas 6.4 &aé.well as Theorem 5.1, which
establishes a contraction property of AFEM for the totabeaftery iterates. Compared with Stevenson
(2007); Cascomet al.(2008) we now have to account fyr We give a complete proof below for the sake
of completeness.
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THEOREM 6.1 (Quasi-Optimal Decay Rates) Let AFEM satisfy Assumptions 4.1, 4.2, and 4.3. let
be the solution of (1.1), and I§t7}, Vj,U;} >0 be the sequence of meshes, finite element spaces, and
discrete solutions produced by AFEM.

Let (u, f,D) € AsandO(a, 0,s) := (1 - al/%)=S(1- 372)*1/2 describe the asymptotics of AFEM
asa — 1,0 — 6, or s— 0. Then there exists a constady, depending on datdy, b and .9, but
independent o§, such that

llu=Ujllq +0sG (U}, %)) < Cs©(8,a,9)|u, T, Dl (#F; —#%)

Proof. Combining Lemmas 6.4 and 6.5, we deduce

1
2s

i-1 -1 _
- . m2 2011
#7, #%<i;#///.<mi;{|nu Uil +os@(ui, )} = (6.8)

1 11 Lo
with M := (1— g—i) =u, f,D|§ AZ. We use Lemma 6.1 to obtain foK j

llu=Ujli +0s¢(Uj, ) < Ax{ llu—Uill + os¢ (Ui, #0) }.
We exploit this to rewrite (6.8) in groups gfconsecutive terms as follows
4 /3] 5 _
47, #%<MAZY 3 {lu-Upglh +osd iaUa A0}

Bl

where[-] denotes the integer part function. On the other hand
llu=Uill%, + y os¢(Ui, ) < max{L,y} { llu— Uill, + os@(U;, ) }

and the contraction property of Theorem 5.1, for the sum efgnerror and scaled oscillation, implies
for0<i<[j/J]

llu=Ujli + v 0s¢(U;,#5) < a®{ lu=U; gl +y 05¢ i3 (Uy 1. 4 i3) }-

Combining these estimates we infer that
21—~ 1 2 *zis i
#T, — #T0 < MAZImax{1,y} 3 {|||u—Uj|||Q + yosclz(Uj,Ji/j)} Z) as.
i=

Sincea < 1, the geometric series converges and completes the proof. O
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