
IMA Journal of Numerical Analysis(2010) Page 1 of 28
doi:10.1093/imanum/drnxxx

Quasi-Optimal Cardinality of AFEM Driven by Nonresidual Estimators
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We examine adaptive finite element methods (AFEM) with any polynomial degree satisfying rather gen-
eral assumptions on the a posteriori error estimators. We show that several non-residual estimators satisfy
these assumptions. We design an AFEM with single Dörfler marking for the sum of error estimator and
oscillation, prove a contraction property for the so-called total error, namely the scaled sum of energy
error and oscillation, and derive quasi-optimal decay rates for the total error. We also reexamine the
definition and role of oscillation in the approximation class.
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1. Introduction

Let Ω be a bounded, polyhedral domain inRd, d > 2. We consider a homogeneous Dirichlet boundary
value problem for ageneralsecond order elliptic partial differential equation (PDE)

L u := −div(A∇u)+ b ·∇u+cu= f in Ω ,

u = 0 on∂Ω .
(1.1)

The choice of boundary condition is made for ease of presentation, since similar results are valid for
other boundary conditions. Precise conditions on given dataD := (A,b,c) and f are stated in§2.1. Our
interest is on diffusion-dominated problems, that isA dominatesb but L is non-symmetric; we point
out that, except for Mekchay & Nochetto (2005), all previousresults are for the symmetric case (see
Binev et al., 2004; Bonito & Nochetto, 2010; Cascónet al., 2008; Diening & Kreuzer, 2008; Dörfler,
1996; Kreuzer & Siebert, 2010; Morinet al., 2000, 2003; Stevenson, 2007).

An AFEM is based on iterations of the loop

SOLVE → ESTIMATE → MARK → REFINE. (1.2)

HereSOLVE computes the discrete solutionexactly. The procedureESTIMATE calculates the error in-
dicators, which are used by the procedureMARK to make a judicious selection of elements to be refined.
The procedureREFINE finally refines the marked elements and creates aconformingrefinement.
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Convergence of AFEM for elliptic PDE of the form−divA∇u = f , with A piecewise constant, has
been the subject of intense research, mostly for residual estimators, starting with Morin, Nochetto and
Siebert (Morinet al., 2000, 2002, 2003). They uncovered the crucial role of data oscillation, thereby
improving upon the seminal ideas of Dörfler (1996). Mekchay& Nochetto (2005) later extended the
theory to elliptic operators (1.1) with variable coefficients. The key difficulty with (1.1) is that the energy
error and oscillation no longer decouple, hence they cannotbe handled separately.

The theory of optimal cardinality of AFEM started with Binev, Dahmen and DeVore (Binevet al.,
2004), who added a coarsening step to (1.2) for the Laplace equation andd = 2. Stevenson (2007)
removed this additional step via a fundamental insight on the structure of Dörfler marking ford > 2, but
still for the Laplace equation; this insight will be crucialfor us as well. However, in Stevenson (2007)
data oscillation is reduced within an inner loop, which is ingeneral not viable when oscillation depends
on the discrete solution, as in (1.1). Cascón, Kreuzer, Nochetto and Siebert (Cascónet al., 2008) got rid
of the inner loop forf ∈ L2(Ω). This was possible upon examining a new combined quantity, the sum
of energy error and scaled error estimator, and proving thatAFEM contracts it betweentwo consecutive
adaptive loops. Cascónet al. (2008) built on Stevenson’s insight to derive optimal cardinality of AFEM
for the total error, namely the scaled sum of energy error andoscillation. To deal withf ∈ H−1(Ω),
and perform a convergence and cardinality study of AFEM, an inner loop to handle data reappears in
Cohen, DeVore and Nochetto (Cohenet al., 2010).

The results in Cascónet al.(2008) are for the simplest and most standard AFEM based onresidual-
typeestimators, with any polynomial degreen > 1 and for symmetric problems (1.1) (i.e.b = 0). As
is customary in practice, this AFEM marks exclusively according to the error estimator and performs
a minimal element refinement. However, it is well documentedthat residual-type estimators are the
crudest ones in the literature even though they are widely used (see Ainsworth & Oden, 2000; Babuška
& Strouboulis, 2001; Verfürth, 1996). They are both reliable and efficient. In fact, they provide an upper
bound for the error (reliability) as well as a lower bound (efficiency) up to oscillation terms; the mesh
geometry enters these bounds through unknown interpolation constants of moderate size.

Alternative estimators are abundant in the literature. Hierarchical estimators have been proposed
by Bornemannet al. (1996) and further developed in Veeser (2002); Verfürth (1996). Estimators based
on solving local problems have also been analyzed, startingwith Neumann problems on elements by
Bank & Weiser (1985). This was further improved by Ainsworth& Oden (2000) via the so-called
flux equilibration, which yields a better effectivity index(ratio of estimator and error); local algebraic
problems on stars, or patches, for flux weights have to be solved. The idea of working on stars goes
back to Babuška & Miller (1987), who introduced Dirichlet problems. Carstensen & Funken (1999)
and Morinet al. (2003) proposed solving local weighted problems on stars which yield rather good
effectivity indices; a convergence proof of AFEM of the form(1.2) was also given in Morinet al.(2003)
for the Poisson problem. This method has been slightly simplified in Paréset al. (2006); Prudhomme
et al. (2004); Stroubouliset al. (2006).

On the other hand, gradient recovery techniques have provento be extremely successful beginning
with the seminal work of Zienkiewicz & Zhu (1987). This estimator is generically superior to the oth-
ers even though counterexamples show that the effectivity index may not tend to one asymptotically
(asymptotic exactness). More recently, Bank & Xu (2003) have proposed a multilevel averaging tech-
nique that performs averages in rings of higher order than stars and thereby yields asymptotic exactness
even on irregular (but still quasi-uniform) meshes. Both techniques in Bank & Xu (2003); Zienkiewicz
& Zhu (1987) hinge on reconstructing higher derivatives from discrete data, and thus may overestimate
the error if ∇u jumps, e.g. whenA is discontinuous. Finally, Braess & Schöberl (2008) combined
H(div) elements of Raviart-Thomas and flux equilibration to derivelocal a posteriori error estimators
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with good effectivity index.
In order to point out the essential difficulties in dealing with non-residual estimators, let

{T j ,V j ,U j ,η j ,oscj} j>0 be the sequence of meshes, finite element spaces, discrete solutions, estima-
tors, and oscillations produced by AFEM in thejth step. The following two key issues, crucial in Cascón
et al. (2008), must be overcome:

• The estimatorη j is not reliable, namely it does not bound the energy error from above, and does
not dominate the oscillation oscj . This means thatη j cannot drive AFEM alone, especially in the
preasymptotic regime in which data may be underresolved andoscj may dominateη j .

• The estimatorη j does not longer decrease wheneverU j does not change. The heuristic idea be-
hind the contraction property of Cascónet al. (2008) for the sum|||u−U j |||

2
Ω + γ η2

j is that when
|||u−U j |||Ω is not reduced, becauseU j does not change upon refinement, it isη j that decreases be-
cause the mesh-size does. This means that|||u−U j|||

2
Ω + γ η2

j is not the correct quantity to monitor
in the present context.

It is thus intriguing why non-residual estimators yield a practical performance of AFEM similar to
residual-type estimators (see Binevet al., 2004; Cascónet al., 2008; Mekchay & Nochetto, 2005; Morin
et al., 2000, 2002; Stevenson, 2007). Plain convergence is shown by Morin, Siebert and Veeser (Morin
et al., 2008) and Siebert (2010), but their approach is too generalas to allow for an energy decrease
property adequate for cardinality analysis. No such analysis is available in the literature for AFEM
driven by non-residual a posteriori estimators, except forthe very recent paper by Kreuzer & Siebert
(2010). This paper and Kreuzer & Siebert (2010) were developed simultaneously but independently, and
provide different answers to the main issues at stake. Therefore, it is worth comparing the philosophies
invoked, thereby emphasizing differences and similarities:

• The guiding principle in Kreuzer & Siebert (2010) is to use the equivalence of several non-residual
estimators to the residual ones to transfer the decay rates of Cascónet al. (2008) to non-residual
estimators. This has the advantage that the four basic procedures of (1.2) remain unchanged.

• Our approach examines directly a class of non-residual estimators satisfying general assumptions,
which are shown later to hold for each estimator, and leads toa contraction property between a fixed
numberJ of iterates for the so-calledtotal error, namely the sum of energy error and scaled oscil-
lation (see Cascónet al., 2008; Mekchay & Nochetto, 2005). Avoiding comparison withresidual
estimators gives better constants.

• As in Mekchay & Nochetto (2005), we need a discrete lower bound in order to prove the contraction
property, and thus an interior node in each marked element. However, in contrast to Mekchay &
Nochetto (2005), we do not enforce this extra refinement between consecutive iterations but rather
modify slightly MARK so that it takes place afterJ iterations; this is easy to do, for instance within
ALBERTA (Schmidt & Siebert, 2005). Note thatJ is explicit (for instance,J = 3 for d = 2 and
J = 6 for d = 3).

• The analysis in Kreuzer & Siebert (2010) is for the Laplace equation and piecewise linear elements,
whereas we consider the general non-symmetric operatorL of (1.1) with variable coefficients and
any polynomial degreen > 1.

• We, as well as Kreuzer & Siebert (2010), consider a singleDörfler markingfor the quantityη j +oscj ,
which is an upper bound for the energy error and is thus reliable. It is shown in (Cascónet al., 2008,
Section 6) that separate marking forη j and oscj might yield suboptimal meshes.
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• We (resp. Kreuzer & Siebert, 2010) prove quasi-optimal decay rates for AFEM provided the triple
(u,D, f ) belongs to a suitable approximation classAs with 0 < s 6 n/d (resp. s 6 1/d for n =
1). Besides, we discuss the equivalence of classesAs, for n > 1 and more practical definitions of
oscillation, to those in Cascónet al. (2008).

• We and Kreuzer & Siebert (2010) assume exact linear algebra and integration, and limit the dis-
cussion to refinement based onbisection(see Bänsch, 1991; Kossaczký, 1994; Maubach, 1995;
Mitchell, 1989; Stevenson, 2008; Traxler, 1997; Schmidt & Siebert, 2005). This leads to conform-
ing shape regular meshes; see (Nochettoet al., 2009, Section 4) for a complete description. The
theory extends tonon-conforming meshes, providedREFINE generates nested meshes using sub-
division rules with specific properties (Bonito & Nochetto,2010, Condition 7). This is the case of
hexahedral meshes with quad-refinement and simplicial meshes with red refinement provided that
the level of nonconformity is fixed (Bonito & Nochetto, 2010,Section 6).

• Our a posteriori estimators are sensitive to large discontinuities ofA or disparate sizes ofA andc.
In contrast, the results of Kreuzer & Siebert (2010) are robust.

This paper is organized as follows. In§2 we introduce the weak formulation and its discretization.In
§3 we present several non-residual a posteriori error estimators and discuss its main features. Motivated
by the examples of§3, we enunciate in§4 abstract properties that both estimator,η j , and oscillation,
oscj , must fulfill, along with assumptions on the adaptive procedure AFEM. In §5 we prove our first
main result, namely the following contraction property forthe total error:

If AFEM satisfies the abstract properties of§4, then there exist constantsγ > 0, J ∈ N and0 < α < 1,
so that the total error contracts afterJ consecutive steps

|||u−U j+J|||
2
Ω + γ osc2j+J 6 α2

(
|||u−U j |||

2
Ω + γ osc2j

)
. (1.3)

This combines ideas from Cascónet al. (2008); Chen & Feng (2004); Diening & Kreuzer (2008);
Mekchay & Nochetto (2005). In§6 we examine the decay rate of the total error. Since all decisions
of AFEM in MARK are based on the sumη j + oscj , a decay rate for the true error must rely on this
quantity. We will see in§6 that

|||u−U j |||Ω +oscj ≈ η j +oscj ,

because of the upper and lower global bounds for|||u−U j |||Ω . Therefore, the performance ofAFEM is
intrinsically linked to the total error, which measures both the approximability ofu via |||u−U j |||Ω as
well as of data, encoded in oscj . This is expressed in the approximation classAs: (u, f ,D) ∈ As if the
best possible decay rate of the total error isN−s for conforming bisection refinements of a coarse mesh
T0 with N degrees of freedom more than those ofT0; we say|u, f ,D|s < ∞. In §6 we study the classAs

for more practical definitions of oscj than that in Cascónet al.(2008), which is significant in the present
context. We conclude in§6 with our second main result:

If AFEM satisfies the abstract properties of§4, and(u, f ,D) ∈ As, then there exists a constant C solely
depending onT0,d,s, andJ, such that

|||u−U j|||Ω +oscj 6 C|u, f ,D|s
(
#T j −#T0

)−s
. (1.4)

We stress thatAFEM does not exploit any knowledge ofAs in its formulation and still delivers the
optimal decay rate. The derivation of (1.4) hinges on the insight of Stevenson (2007) on the role of
Dörfler marking for the Laplace equation.
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2. Problem Setting

We first introduce the problem setting along with assumptions on the given data(A,b,c, f ). We then
present its discretization.

2.1 Weak Formulation

Let Ω be a bounded, polyhedral domain inRd, d > 2, and letT0 be a conforming triangulation ofΩ
made of simplices. We assume that the data of (1.1) have the following properties:

(a) A : Ω 7→R
d×d is piecewise Lipschitz overT0 and is symmetric positive definite with eigenvalues

in [a∗,a∗] with 0 < a∗ 6 a∗ < ∞, i.e.,

a∗(x) |ξ |2 6 A(x)ξ ·ξ 6 a∗(x) |ξ |2 , ∀ξ ∈ R
d, x∈ Ω ;

(b) b ∈ [L∞(Ω)]d is divergence free, i. e. divb = 0 in Ω ;

(c) c∈ L∞(Ω) is nonnegative, i. e.c > 0 in Ω ;

(d) f ∈ L2(Ω).

Even though it is customary to assumef ∈ L2(Ω), which goes back to the seminal work of Babuška
& Miller (1987), we mention the recent work of Cohenet al. (2010) which deals with the weakest and
most natural conditionf ∈ H−1(Ω).

Now we turn to the weak formulation of (1.1). For any setω ⊂ Rd with non-empty interior we
denote byH1(ω) the usual Sobolev space of functions inL2(ω) whose first weak derivatives are also in
L2(ω), endowed with the norm

‖u‖H1(ω) :=
(
‖u‖2

L2(ω) +‖∇u‖2
L2(ω)

)1/2
.

Moreover, we denote by〈·, ·〉ω theL2(ω) scalar product. Finally we letV := H1
0(Ω) be the space of

functions inH1(Ω) with vanishing trace on∂Ω . A weak solution of (1.1) is a functionu satisfying

u∈ V : B[u,v] = 〈 f ,v〉Ω ∀v∈ V, (2.1)

where the bilinear form is defined to be

B[u,v] := 〈A∇u,∇v〉Ω + 〈b ·∇u+cu,v〉Ω ∀u,v∈ V.

In view of Poincaré-Friedrichs inequality (‖v‖L2(Ω) 6 CΩ‖∇v‖L2(Ω) for all v∈ H1
0(Ω)) and the diver-

gence free condition divb = 0, one hascoercivityin V

B[v,v] >

∫

Ω
a∗ |∇v|2 +cv2

> c2
B‖v‖2

H1(Ω),

andcB depends only on data andΩ . The bilinear formB induces the so-calledenergy seminorm:

|||v|||ω :=
(
〈A∇v,∇v〉ω + 〈cv,v〉ω

)1/2
∀v∈ H1(ω),

which is a norm forH1
0(ω). Note thatB also fulfills thelocal continuity

B[v,w] 6 CB |||v|||ω |||w|||ω ∀v,w∈ H1(ω), supp(w) ⊂ ω ⊂ Ω ,
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whereCB depends ona∗,‖b‖L∞(Ω), and‖c‖L∞(Ω). This local continuity is essential in derivinglocal
lower boundsin the a posteriori error analysis. Furthermore it implies continuity ofB[·, ·] onH1(Ω) at
once. Thanks to coercivity and continuity ofB, the norm|||·|||Ω is equivalent to‖ · ‖H1(Ω) on H1

0(Ω).
Existence and uniqueness of (2.1) thus follows from Lax-Milgram theorem (Gilbarg & Trudinger, 1983).

2.2 Discretization

We first introduce some notations relative to triangulations. We only consider the class of allconforming
meshesT created by successive bisections of the initial conformingtriangulationT0 of Ω . GivenT,
T∗ ∈ T we writeT∗ > T if T∗ is a refinement ofT, that isT∗ can be obtained fromT upon applying
a finite number of bisections. We denote simplices byT, interior interelement boundaries (sides) byσ ,
and their collection byS .

The generation g(T) of T ∈ T is the number of bisections needed to createT from T0. Given
T∗ > T and anyT ∈ T, we define therelative generationof descendants ofT belonging toT∗ with
respect toT to be

genT∗
(T) = min{g(T ′)−g(T) | T ′ ⊂ T andT ′ ∈ T∗}.

Finally, for anyT ′ ∈ T∗ we denote byT = ancT(T ′) ∈ T theancestorof T ′ in T, i. e. the only element
T ∈ T verifying T ′ ⊂ T.

Given any conforming triangulationT ∈ T we define the finite element space

V(T ) := {V ∈ V |V|T ∈ Pn(T) ∀T ∈ T },

wherePn denotes the space of all polynomials of degree6 n. Since continuity and coercivity ofB
are inherited by any subspace ofV the Lax-Milgram theorem implies existence and uniqueness of the
Ritz-Galerkin approximation inV(T ) uniquely defined by

U ∈ V(T ) : B[U,V ] = 〈 f ,V 〉Ω ∀V ∈ V(T ). (2.2)

We will always assume thatT∗ > T is a conforming refinement ofT and thatU∗ ∈ V(T∗) is the
corresponding Ritz-Galerkin solution.

If b 6= 0 in (1.1), the bilinear formB is no longer symmetric, and thus is not a scalar product.
Therefore, we do not have an orthogonality relation betweendiscrete solutions on nested spaces, the
so-called Pythagoras equality (Dörfler, 1996; Morinet al., 2000). We have instead a perturbation result
referred to as quasi-orthogonality, provided that the initial meshT0 is sufficiently fine (Mekchay &
Nochetto, 2005, Lemma 2.1,). This is not a severe restriction because we considerb dominated byA
(small Péclet number). The proof resorts to a duality argument (Ciarlet, 1978), and uses the regularity
H1+r(Ω) of the dual solution (Mekchay & Nochetto, 2005).

LEMMA 2.1 (Quasi-orthogonality) There existsC0 > 0, solely depending onT0, the coercivity constant
cB, and 0< r 6 1 characterizing the regularityH1+r of the dual solution, such that if the mesh-sizeh0

of T0 satisfiesC0hr
0‖b‖L∞(Ω) < 1, then

|||u−U∗|||
2
Ω 6 Λ0 |||u−U|||2Ω −|||U−U∗|||

2
Ω (2.3)

whereΛ0 :=
(
1−C0hr

0‖b‖L∞(Ω)

)−1
. The inequality in (2.3) becomes equality withΛ0 = 1 and without

restrictions onh0 providedb = 0 in Ω .
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3. Non-Residual A Posteriori Error Estimators: A Review

In this section we introduce general notation about a posteriori estimators, and review a number of
non-residuala posteriori estimators which split into local indicators.We assume that each a posteriori
indicator is associated with a closed setK, from now on calledK-element or patch, which is made of
elementsT ∈ T or sidesσ ∈ S . The shape ofK and the number of constituent elements depend on the
type of estimator used. For example, for an estimator based on local problems, in generalK is astar,
the union of elements sharing a vertex.

We denote byKT the set of allK-elements on meshT. ForK ∈ KT we denote byhK := |K|
1

dim(K)

the local mesh-size. The elements ofKT may have a finite overlapping, but the number of them is
equivalent to the cardinality ofT, that is

#KT ≈ #T (3.1)

In contrast to Cascónet al. (2008), to develop our theory we will now need to consider several levels of
refinement (or subdivision depth) between two (not necessarily consecutive) meshesT 6 T∗. We thus
define therefined set of order jto be

R
j
T→T∗

:=
{

K ∈ KT | genT∗
(T) > j ∀T ⊂ K

}
. (3.2)

We point out that the usual refined set corresponds toj = 1, and that

j > n := 3,6 for d = 2,3 implies that all the constituent elements, as well as their
sides, of K-elements inR j

T→T∗
contain a node ofT∗ in their interior (interior node

property) (Mekchay & Nochetto, 2005; Morinet al., 2000, 2002).
(3.3)

However, in contrast with Mekchay & Nochetto (2005); Morinet al. (2000, 2002), we do not enforce
this property between consecutive steps.

For K ∈ KT andV ∈ V(T ) we denote byηT (V,K) and oscT (V,K) theK-element indicator and
oscillation, and refer to following sections for specific examples. The quantity

ζT (V,K) :=
(
η2

T (V,K)+osc2T (V,K)
)1/2

∀K ∈ KT , (3.4)

the so-calledtotal error indicator, will be used to mark elements for refinement as opposed to just
ηT (V,K). Finally, for any subsetK ′

T
⊂ KT we set

ζT (V,K ′
T ) :=

(
∑

K∈K ′
T

ζ 2
T (V,K)

)1/2
,

and similarly forηT (V,K ′
T

), and oscT (T,K ′
T

).
In the rest of this section, we review the following popular estimators for the model problem (1.1)

and polynomial degreen = 1: the residual estimator, thehierarchical estimator, theMorin-Nochetto-
Siebert estimator, the Parés-D́ıez-Huerta estimator; the Zienkiewicz-Zhu estimator, and theBraess-
Scḧoberl estimator. We discuss the last two examples for the Laplace equation upon comparing with
residual estimators; this may give rise to somewhat pessimistic constants.

In doing this, we assume that we have two conforming meshesT 6 T∗ andK-elements satisfying
the interior node property (3.3). We letU ∈ V(T ),U∗ ∈ V(T∗) be the corresponding Galerkin solutions
and setE∗ :=U −U∗ ∈ V(T∗). Moreover, we letΠ p

m be theLp-best approximation operator in the space
of discontinuous polynomials of degree6 m overK ∈ KT , andEp

n = I −Π p
n be the operator error.
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3.1 Residual Estimator

GivenT ∈ T andV ∈ V(T ), we define theelementandjump residualsby

R(V ,T) := ( f −L V)|T ∀T ∈ T , J(V ,σ) := ([[A∇V ]] ·ννν)|σ ∀σ ∈ S ;

[[q]] is the jump ofq across an interior sideσ in the direction of the unit normalννν to σ , and is uniquely
defined. The error-residuals relation reads

B[u−U,v] = 〈 f ,v〉Ω −B[U,v] = ∑
T∈T

∫

T
R(U,T)v+ ∑

σ∈S

∫

σ
J(U,σ)v ∀v∈ V. (3.5)

The residual indicators and oscillation forT ∈ T read

ηT (U,T)2 := ‖hTR(U,T)‖2
L2(T) +‖h1/2

T J(U,∂T)‖2
L2(∂T) ,

oscT (U,T)2 :=
∥∥hTE2

n−1R(U,T)
∥∥2

L2(T)
+‖h1/2

T E2
n−1J(U,∂T)‖2

L2(∂T) ,
(3.6)

whereJ(U,∂T) is viewed as a piecewise function over∂T. We refer to Ainsworth & Oden (2000);
Cascónet al. (2008); Mekchay & Nochetto (2005); Morinet al. (2000, 2002); Stevenson (2007);
Verfürth (1996) for analysis of residual estimators. If they drive AFEM, then the present formula-
tion is a bit more complicated than that in Cascónet al.(2008) because we now compute the oscillation
and enforce a refinement depthn according to (3.3). We point out that oscT (U,T) is different from the
oscillation of Cascónet al. (2008):

oscT (U,T)2 :=
∥∥hTE2

2n−2R(U,T)
∥∥2

L2(T)
+‖h1/2

T E2
2n−1J(U,∂T)‖2

L2(∂T) . (3.7)

The choice of polynomial degrees 2n−2 and 2n−1 guarantees an oscillation decay as fast as the energy
error. We now tackle the more traditional polynomial degreen− 1, which is easier to implement but
more difficult to analyze. Our results in§§4, 5, and 6 cover this case. We refer to§6.2 for a further
discussion.

We mention, for later use in§3.4, that Babuška & Miller (1987) showed that the residual estimator
is equivalent to the following jump estimatorη̂T up to oscillation:

η̂T (U,T )2 := ∑
σ∈S

‖h1/2
σ J(U,σ)‖2

L2(σ) . (3.8)

This has been further explored in Babuška & Strouboulis (2001); Carstensen & Verfürth (1999); Cohen
et al. (2010); Rodrı́guez (1994).

3.2 Hierarchical Estimator

We follow Bornemannet al. (1996), Veeser (2002) and Verfürth (1996). We letKT be the set of
all interelement sides and simplices,KT := {σ : σ ∈ S } ∪ {T : T ∈ T }. For eachK ∈ KT , let
λK ∈ V(T∗) be the hat function corresponding to the interior nodezK ∈ K guaranteed by (3.3), let
ωK := suppλK be its support, and letϕK be the renormalized functionϕK := λK

|||λK |||Ω
. ForV ∈ V(T ) and

K ∈ KT we define theK-element estimator and oscillation as

ηT (V,K) := | 〈 f ,ϕK〉Ω −B[V,ϕK]| = |B[u−V,ϕK]|

oscT (V,K) :=

{
h1/2

K ‖(I −Π2
0)J(V ,K)‖L2(K), if K = σ ∈ S ,

hK‖(I −Π2
0)R(V ,K)‖L2(K) if K = T ∈ T .
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We now prove local lower and global upper a posteriori error estimates. In contrast with the residual
estimators, the former turn out to be easier to derive. In fact, if T 6 T∗ andK ∈ KT has an interior
node inT∗, thenϕK ∈ V(T ) and

ηT (U,K) = |B[u−U,ϕK]| 6 CB |||u−U|||ωK
(3.9)

as well as
ηT (U,K) = |B[U∗−U,ϕK ]| 6 CB |||U∗−U|||ωK

. (3.10)

These arelocal lower bounds. We now introduce a linear operatorPT : H1(Ω) → spanK∈KT
{ϕK} to

prove a global upper bound. We definePT to be

PT v = ∑
K∈KT

βKϕK ⇔

∫

K
PT v =

∫

K
v, ∀K ∈ KT , (3.11)

and realize that the coefficientsβK are determined uniquely and satisfy the followinglocal stability
properties for anyv∈ V, σ ∈ S , andT ∈ T (Veeser, 2002, Lemma 3.1, p. 754):

|βσ | 4 h−1/2
σ ‖v‖L2(σ) , |βT | 4 h−1

T ‖v‖L2(T) +h−1/2
T ‖v‖L2(∂T∩Ω) . (3.12)

Let v∈ V be a test function andIT v be its Scott-Zhang interpolant. Using Galerkin orthogonality we
obtain withz= v− IT v

B[u−U,v] = B[u−U,v− IT v] = B[u−U,PT z]+B[u−U,(I −PT )z].

Combining the stability properties (3.12) ofPT with the approximation properties ofIT (Scott & Zhang,
1990), and invoking the definition ofηT (U,KT ), the first term is bounded by

B[u−U,PT z] = ∑
K∈KT

βKB[u−U,ϕK] 4 ηT (U,KT )‖v‖H1(Ω).

For the second term, we use (3.5) and the definition (3.11) ofPT to arrive at

B[u−U,(I −PT )z] = ∑
T∈T

〈
(I −Π2

0)R(U,T),(I −PT )z
〉

T

+ ∑
σ∈S

〈
(I −Π2

0)J(U,σ),(I −PT )z
〉

σ 4 oscT (U,KT )‖v‖H1(Ω).

Invoking the coercivity ofB, we end up with theglobal upper bound

|||u−U|||2Ω 6 C1

(
η2

T (U,KT )+osc2T (U,KT )
)

= C1ζ 2
T (U,KT ), (3.13)

where the constantC1 depends solely onT0, cB, CB, and the dimensiond. This estimate can be localized
to the refined regionR = R1

T →T∗
of order 1 providedu is replaced byU∗, namely,

|||U∗−U|||2Ω 6 C1
{

η2
T (U,R)+osc2T (U,R)

}
. (3.14)

We prove this along the lines of (Cascónet al., 2008, Lemma 3.6), after noting that ifσ ∈ R, then the
two elements ofT sharing this side are also inR. Let Ω∗ be the union of elements ofT which are



10 of 28 J.-M. CASCÓN, R.H. NOCHETTO

refined inT∗, and denote byΩk one of the connected components of its interior. LetTk be the subset
of T contained inΩk and letV(Tk) be the restriction ofV(T ) to Ωk. Let Ik : H1(Ωk) → V(Tk) be
the Scott-Zhang interpolation operator over the meshTk, which preserves conforming boundary values.
Let V ∈ V(T ) be the following approximation of the errorE∗ = U∗−U ∈ V(T∗):

V := IkE∗ in Ωk, and V := E∗ elsewhere. (3.15)

By construction,V ∈ V(T ) is aH1-stable approximation toE∗ in Ω and satisfies the Galerkin orthog-
onalityB[E∗,V] = 0 becauseV(T ) ⊂ V(T∗). SinceE∗ = V in Ω \Ω∗, andPT is local, we proceed as
with (3.13) to deduce (3.14), namely

|||E∗|||
2
Ω = B[E∗,PT (E∗−V)]+B[E∗,(I −PT )(E∗−V)] 6 ζT (U,R) |||E∗|||Ω .

3.3 Estimators based on Solving Local Problems

We consider two a posteriori estimators which rely on the solution of small problems on stars. The first
one is the estimator introduced by Morin, Nochetto and Siebert (Morin et al., 2003), which organizes
the information by stars. The second one is due to Parés, Dı́ez and Huerta (Paréset al., 2006), which
slightly simplifies the estimator in Morinet al. (2003) and arranges it by triangles. We modify the
formulations in Morinet al. (2003); Paréset al. (2006) to account for the general nature of operatorL

and derive a few bounds that are instrumental in the present theory. Both estimators were developed for
n = 1 andd = 2; the results below are valid ford > 2.

We first introduce some notation common to both estimators. We indicate withNT := {xi}
NT

i=1 the
set of all nodes of triangulationT . For each nodexi , λi ∈ V(T ) is the canonical piecewise linear
function corresponding toxi, andωi is thestar associated toxi , i. e. the support ofλi . We denote by
γi the union of the sides touchingxi that are contained inΩ . Finally, ωT := ∪i∈T ωi is the union of the
d+1 stars containingT.

3.3.1 Morin-Nochetto-Siebert Estimator (Morinet al., 2003). Let KT be the set of allstars, i. e. the
K-elements are the setsωi . We writeωi instead ofK to avoid confusion.

The local indicators hinge on the local weighted spaceW(ωi) defined as

W(ωi) = {v∈ H1
loc(ωi) :

∫

ωi

vλi = 0 and
∫

K
|∇v|2λi < ∞}, (3.16)

if xi is an interior node, and

W(ωi) = {v∈ H1
loc(ωi) : v = 0 on∂ωi ∩∂Ω and

∫

K
|∇v|2λi < ∞}, (3.17)

otherwise. The corresponding small problem is solved on subspaceP2
0(ωi) ⊂ W(ωi), of functionsv

which are piecewise quadratic on the starωi , vanish on∂ωi , and satisfy
∫

ωi
vλi = 0. We also need to

introduce the weighted bilinear form

Bi [v1,v2] := 〈A∇v1,∇v2λi〉ωi
+ 〈b ·∇v1 +c v1,v2λi〉ωi

For each starωi andV ∈ V(T ), we defineξi ∈ P2
0(ωi) to be the solution of

ξi ∈ P
2
0(ωi) : Bi [ξi ,v] = 〈 f ,vλi〉ωi

−B[V,vλi] for all v∈ P
2
0(ωi), (3.18)
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then, the star error indicator and oscillation forV ∈ V(T ) are defined as

η2
T (V,ωi) := |||ξi |||

2
λi

:= Bi [ξi ,ξi ], (3.19)

osc2T (V,ωi) := h2
i ‖

{
(I −Π2

0,i)R(V ,ωi)
}

λ 1/2
i ‖2

L2(ωi)
+hi‖

{
(I −Π2

0,i)J(V ,γi)
}

λ 1/2
i ‖2

L2(γi)
. (3.20)

HereΠ2
0,i denotes the projection on piecewise constants with the weighted scalar product

∫
ω vwλi , with

either ω = ωi or ω = σ depending on the residual. We stress that the right-hand side of (3.18) is
equivalent to the original one in Morinet al. (2003) but it does not involve the explicit computation of
residuals (either jumpsJ(U,σ) or R(U,T)).

The proofs of upper and lower a posteriori error bounds are technical and similar to those in (Morin
et al., 2003, Theorems 3.6 and 3.1), and thus not reported here. Thefirst one requires a weighted
Poincaré inequality (Morinet al., 2003, Proposition 2.4), and the second one the definition ofa suitable
operator betweenP2

0(ωi) andW(ωi). They yield the existence of constantsC1,C2, solely depending
T0, CB/cB, andd, such that

|||u−U|||2Ω 6 C1
{

η2
T (U,KT )+osc2T (U,KT )

}
, (3.21)

C2η2
T (U,KT ) 6 |||u−U|||2Ω . (3.22)

The following discrete counterpart of (3.21) is also based on (Morin et al., 2003, Theorem 3.6): if
R = R1

T →T∗
⊂ KT is the refined set of order 1, then

|||U∗−U|||2Ω 6 C1
{

η2
T (U,R)+osc2T (U,R)

}
. (3.23)

Its proof employs the localization argument of (Cascónet al., 2008, Lemma 3.6), withV ∈ V(T )
defined as in (3.15). Properties of the partition of unity allow us to write

|||E∗|||
2
Ω = B[E∗,E∗−V] =∑

ωi∈R

〈R(U,ωi),(E∗−V)λi〉ωi
+ 〈J(U,γi),(E∗−V)λi〉γi

.

The proof continues as in (Morinet al., 2003, Theorem 3.6), but using the fact thatV = E∗ for all
ωi /∈ R. The following discrete counterpart of (3.22) is a slight variation of (Morinet al., 2003, Lemma
5.2): if R = R

j
T j→T∗

is a refined set of orderj > n, then

C3η2
T (R,U) 6 |||U∗−U |||2Ω +osc2T (U,R). (3.24)

3.3.2 Parés-D́ıez-Huerta Estimator (Paréset al., 2006). TheK-elements are simplices and, to avoid
confusion, we denote them byT: KT := {T}T∈KT

. Let T∗ satisfy the interior node property (3.3)
for all T ∈ T , let V∗ = V(T∗) andV∗(ωi) be the restriction ofV∗ to starωi . There is no boundary
condition imposed onV∗(ωi).

For eachωi andV ∈ V(T ), we let the star indicator be

ξi ∈ V∗(ωi) : Bωi [ξi ,v] = 〈 f ,vλi〉ωi
−B[V,vλi] for all v∈ V∗(ωi), (3.25)

which is similar to (3.18) and well-defined providedc > c0 > 0; otherwise we demandξi to have van-
ishing mean value. In contrast to (3.18), the local bilinearform Bωi does not have the weightλi and
the augmented space if made of piecewise linears instead of quadratics; these key differences make the
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estimator appealing ford > 2. We point out that it is sufficient for our purposes to restrict the local space
V∗(ωi) to only the interior nodes in elements and interior sides within ωi , as will become apparent in
what follows. Even though this reduces the size of local problems considerably, especially ford > 2,
we decided to stick to the original estimator for this discussion. The error indicator and oscillation are

ηT (V,T) :=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ∑
xi∈T∩NT

ξi

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
T

, (3.26)

osc2T (V,T) := h2
T‖(I −Π2

0)R(V ,T)‖2
L2(T) +hT‖(I −Π2

0)J(V ,∂T)‖2
L2(∂T). (3.27)

for any elementT ∈ T and functionV ∈ V(T ).
We present an alternative a posteriori analysis to Paréset al. (2006) and a few novel estimates; in

particular we do not need a reference mesh. We first show aglobal upper bound: there exists a constant
C1, solely dependingT0 andCB/cB, such that

|||u−U|||2Ω 6 C1

(
η2

T (U,KT )+osc2T (U,KT )
)
. (3.28)

We proceed as in§3.2 and invoke the local operatorPT of (3.11). Given a test functionv∈ V, we let
IT v be its Scott-Zhang interpolant. Using the Galerkin orthogonality, and settingz= v− IT v, we obtain

B[u−U,v] =B[u−U,v− IT v] = B[u−U,PT z)]+B[u−U,(I −PT )z]

On the one hand, the partition of unity{λi}
NT

i=1, in conjunction with (3.25), implies

B[u−U,PT z] =
NT

∑
i=1

B[u−U,PT zλi ] =
NT

∑
i=1

〈 f ,PT zλi〉ωi
−B[U,PT zλi ] =

NT

∑
i=1

Bωi [ξi ,PT z],

whence regrouping by elementsT, results in

NT

∑
i=1

Bωi [ξi ,PT z] =
NT

∑
i=1

∑
T⊂ωi

BT [ξi ,PT z] 6 ∑
T∈T

BT [ ∑
xi∈T

ξi ,PT z] 6 Cη2
T (U,T ) |||v|||Ω .

Here we have usedBT to stand for the restriction ofB to T, and the bound|||PT z|||Ω 4 |||v|||Ω from §3.2.
On the other hand, the remaining term involving(I −PT )z can be estimated again as in§3.2, thereby
concluding the proof of (3.28). This argument shows that theonly relevant nodes, namely those defining
the operatorPT , are the interior nodes inωi . This observation can in turn be exploited to simplify the
definition ofξi to precisely those nodes.

We now derive alower bound, which is consistent with our theory, and local in nature, but different
from the original one in Paréset al. (2006): there exists a constantC2, solely depending onT0 and
cB/CB, such that

C2η2
T (U,KT ) 6 |||u−U|||2Ω . (3.29)

We first use the definition (3.25) ofξi and Galerkin orthogonality〈 f ,λi〉ωi
−B[U,λi] = 0, for interior

nodesxi, to deduce

|||ξi |||
2
ωi

= Bωi [ξi ,ξi ] = 〈 f ,ξiλi〉ωi
−B[U,ξiλi ] = 〈 f ,(ξi −ci)λi〉ωi

−B[U,(ξi −ci)λi ]
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whereci = 0 for boundary nodes, andci = |ωi |
−1∫

ωi
ξi otherwise. By continuity ofB and Poincaré

inequality‖ξi −ci‖L2(ωi)
4 |||ξi |||ωi

, we thus obtain

|||ξi |||
2
ωi

= B[u−U,(ξi −ci)λi ] 4 |||u−U|||ωi
|||ξi |||ωi

.

This, together with (3.26), yields

ηT (U,T) 6 ∑
xi∈T∩NT

|||ξi |||T 4 |||u−U|||ωT
,

and thus (3.29) upon summing over allT ∈ T . We point out that we have argued bystars, instead of
triangles as in Paréset al. (2006). However, in view of the definition ofξi by stars, this seems the only
viable way to relateξi with the error.

Our next task is to derive discrete versions of (3.28) and (3.29), which are in turn crucial for the
subsequent development. We start with alocalized upper bound: if R = R1

T →T∗
⊂ KT is the refined

set of order 1, then

|||U∗−U|||2Ω 6 C1

(
η2

T (U,R)+osc2T (U,R)
)
. (3.30)

We proceed as with (3.14) and (3.23), namely we letV = IT E∗ ∈ V(T ) be the Scott-Zhang interpolant
of E∗ = U −U∗. Hence

|||E∗|||
2
Ω = B[E∗,PT (E∗−V)]+B[E∗,(I −PT )(E∗−V)]

which reduces to a sum over elementsT ∈ R becauseZ := E∗−V = PT Z = 0 for all T /∈ R. Arguing
as with (3.13), the second term leads to the oscillation overthe refined set. For the first term, we denote
by N(R) the set of nodes ofR and recall the definition (3.25) ofξi to obtain

B[E∗,PT Z] = ∑
xi∈N(R)

B[E∗,PT Zλi ] = ∑
xi∈N(R)

Bωi [ξi ,PT Z]

= ∑
T⊂R

BT [ ∑
xi∈T∩N(R)

ξi ,PT Z] 4 ηT (U,R) |||E∗|||Ω ,

because|||PT Z|||Ω 4 |||E∗|||Ω according to§3.2. This shows (3.30).
To derive a discrete version of (3.29), we observe that the argument leading to (3.29) cannot be

applied because(ξi − ci)λi∈\ V(T∗) for any refinementT∗ of T . We resort again to the interpola-
tion operatorPT of §3.2 to prove the followingdiscrete lower bound forT 6 T∗: if T ∈ T satisfies
genT∗

(T ′) > n for all T ′ ⊂ ωT , then

C3η2
T (U,T) 6 |||U∗−U |||2ωT

+osc2T (U,ωT). (3.31)

Let ωi be a star ofT containing suchT ∈ T . We recall the representation formula

|||ξi |||
2
ωi

= 〈 f ,(ξi −ci)λi〉 −B[U,(ξi −ci)λi ]

used in dealing with (3.29). Since genT∗
(T ′) > n for all T ′ ⊂ ωi , they satisfy the interior node property

(3.3) andPT is well-defined inωi . If z:= (ξi −ci)λi , then we infer that suppPT z⊂ωi because of (3.11).
We add and subtractPT z to write

|||ξi |||
2
ωi

= 〈 f ,PT z〉 −B[U,PT z]+ 〈 f ,(I −PT )z〉 −B[U,(I −PT )z].
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SincePT z∈ V∗(ωi) ⊂ V(T∗)|ωi we have for the first two terms

〈 f ,PT z〉 −B[U,PT z] = B[U∗−U,PT z] 6 C|||U∗−U |||ωi
|||ξi |||ωi

,

the last step being a consequence of the local stability (3.12) of PT and Poincaré inequality. For the
remaining terms, we proceed as with (3.13) to conclude

〈 f ,(I −PT )z〉ωi
−B[U,(I −PT )z] 4 oscT (U,ωi) |||ξi |||ωi

.

Summing over the three stars that containT ∈ M we obtain (3.31), as asserted.

3.4 Gradient Recovery Estimators (Zienkiewicz & Zhu, 1987)

These among the most popular estimators in computational engineering because of their simplicity and
accuracy. The first and most successful is due to Zienkiewicz& Zhu (1987), is defined on stars, and is
the one consider here because it islocal. Other global recovery-type estimators entail a global projection
(Bank & Xu, 2003; Carstensen, 2003) but do not fit within our theory below.

GivenT andV ∈ V(T ), we denote byGT V the orthogonal projection of∇V into the vectorial
linear finite element space with respect to theV(T )-lumpedL2(Ω)-scalar product. The nodal values of
the recovered gradientGT V obtained in this way can be written explicitly as follows foreach nodexi

GT V(xi) = ∑
T⊂ωi

|T|
|ωi |

∇V|T

whereωi is the star associated toxi . The estimator and oscillation are given by

η2
T (V,T) :=

∫

T
|GT V −∇V|2 , osc2T (T) := ∑

xi∈T
‖h( f − fi)‖

2
L2(T) ,

wherefi = |ωi |
−1∫

ωi
f . Rodrı́guez showed the equivalence of this and jump indicators by stars (Rodrı́guez,

1994, Theorem 3.1, Remark 3.1):

∑
T⊂ωi

η2
T (U,T) ≈ ∑

σ⊂γi

‖h1/2
σ J(U,σ)‖2

σ , (3.32)

with γi as in§3.3. Upperandlower a posteriori bounds, up to oscillation, follow from the equivalence
of (3.8) and the energy error (Rodrı́guez, 1994). We are not aware of a direct proof of equivalence.

If T 6 T∗ andU ∈ V(T ), U∗ ∈ V(T∗) are solutions of (2.2), then the followinglocalized upper
boundis a consequence of the corresponding one for the residual estimator (Cascónet al., 2008, Lemma
3.6):

|||U∗−U|||2Ω 6 C1

{
η2

T (U,R̂)+osc2T (U,R̂)
}

.

However, as the equivalence (3.32) is written by stars, thisbound requires a larger set̂R thanR =
R1

T →T∗
, made of all elements of stars containing triangles ofR. This does not affect our theory because

#R̂ ≈ #R. Finally, adiscrete lower boundsimilar to (3.31) follows from (3.32) and (Morinet al., 2000,
Lemma 4.2).
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3.5 Braess-Scḧoberl Estimator (Braess & Schöberl, 2008)

This estimator hinges on a theorem of Prange and Synge: ifq ∈ H(div;Ω) is such that divq + f = 0,
andu∈ H1

0(Ω) is the solution of the Laplace equation, then

‖∇u−∇v‖2
L2(Ω) +‖∇u−q‖2

L2(Ω) = ‖∇v−q‖2
L2(Ω) , ∀v∈ H1

0(Ω).

An error estimate follows upon replacingv by U in the above formula. Iff is assumed piecewise con-
stant the optimal choiceq ∈ H(div,Ω) is the solution of the original formulation by the mixed method
with Raviart-Thomas element. Since this procedure is too expensive for computing an a posteriori error
estimator, Braess & Schöberl (2008) propose an alternative construction by solving cheap local prob-
lems. In fact, letq∆ belong to the broken Raviart-Thomas space and be defined on stars ωi as the
solutions of local problems

q∆ = ∑
i∈NT

qi ⇔






div qi = −|T|−1∫
T f λi in eachT ∈ ωi

[[qi ·ννν ]] = −1/2[[∇U ·ννν ]] on each edgeσ ∈ γi

qi ·ννν = 0 on∂ωi

The vector fieldq∆ compensates for the jumps of∇U whenceq := ∇U + q∆ ∈ H(div,Ω). The local
indicator and oscillation are defined as

η2
T (V,T) := ‖q∆‖

2
L2(Ω) , osc2T (T) := ‖h( f − fT)‖2

L2(T)

where fT = |T|−1∫
T f . Braess & Schöberl (2008) propose a simple algorithm (Algorithm 4) for the

construction ofqi provided f is piecewise constant overT . In this case, it is not difficult to obtain the
equivalence

‖qi‖
2
L2(ωi)

≈ ‖h f‖2
L2(ωi)

+
∥∥∥h1/2J

∥∥∥
2

L2(γi)
.

Otherwise, data oscillation appears in this equivalence. Exploiting this relation with the residual es-
timator of §3.1, upper and lower bounds, as well as their discrete counterparts, can be derived as in
§3.4.

4. AFEM: Abstract Formulation

Motivated by the examples of§3, we now enunciate abstract properties that bothηT and oscT must
fulfill, along with assumptions on the adaptive procedure AFEM, that enable us to derive a contraction
property in§5 and decay rates in§6.

4.1 A Posteriori Error Estimators

We formulate two assumptions, the first one onηT and the second on oscT ; see Cascónet al. (2008)
for the residual estimator.

ASSUMPTION 4.1 (A posteriori error estimates) Let u ∈ H1
0(Ω) be the solution of (1.1), and letU ∈

V(T ) andU∗ ∈ V(T∗) be Galerkin solutions of (2.2) over meshesT 6 T∗. There exist constants
{Ci}

3
i=1 such that the following properties hold.

(a) Global upper bound (reliability): this gives an estimate of the energy error in terms of thetotal
error estimatorζT (U,KT )

|||u−U|||2Ω 6 C1
{

η2
T (U,KT )+osc2T (U,KT )

}
= C1 ζ 2

T (U,KT ). (4.1)
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(b) Global lower bound (efficiency): this is a measure of quality ofηT (U,KT )

C2 η2
T (U,KT ) 6 |||u−U|||2Ω +osc2T (U,KT ). (4.2)

(c) Localized upper bound: this measures|||U∗−U|||Ω in terms of the total estimator restricted to the
refined setR1 = R1

T→T∗
⊂ KT of order 1

|||U∗−U|||2Ω 6 C1
{

η2
T (V,R1)+osc2T (V,R1)

}
= C1 ζ 2

T (U,R1). (4.3)

(d) Discrete local lower bound: the estimatorηT (U,Rn) on the refined setRn = Rn
T→T∗

of order
n is a lower bound for|||U∗−U|||Ω

C3 η2
T (U,Rn) 6 |||U∗−U|||2Ω +osc2T (U,R1). (4.4)

We observe the relationC2/C1 6 1 that results from (4.1) and (4.2) in the particular case oscT (U,KT )=
0. The quality of an estimator can be measured by the deviation of this ratio from 1.

ASSUMPTION 4.2 (Oscillation) We denote byΠ p
n the Lp-best approximation operator in the space of

discontinuous polynomials of degree6 n overK ∈KT . We further letΠ p
−1 = 0 andEp

n = I −Π p
n be the

operator error. Our definition of oscillation with polynomial degreen > 1 conforms with the original
one Morinet al. (2000, 2002); Mekchay & Nochetto (2005) but it is at variancewith that in Cascón
et al. (2008). For the residual estimator we let

oscT (U,T)2 := h2
T

∥∥E2
n−1R(U,T)

∥∥2
L2(T)

+hT ‖E2
n−1J(U,∂T)‖2

L2(∂T) (4.5)

and similar expressions are valid for the other estimators.It is important to observe that the polynomial
degree in (4.5) is consistent with the interior node property (3.3). We next introduce the oscillation of
the coefficientD := (A,b,c) onT ∈ T :

oscT (D,T) := hT

(
‖E∞

0 divA‖2
L∞(T) + h−2

T ‖E∞
1 A‖2

L∞(ωT )

+‖E∞
0 b‖2

L∞(T) +h2
T

∥∥E∞
−1c

∥∥2
L∞(T)

+‖E∞
0 c‖2

L∞(T)

)1/2
;

and for any subsetT ′ ⊂ T we define

oscT (D,T ′) := max
T∈T ′

oscT (D,T).

The assume the following properties to be valid for any discrete functionsV ∈ V(T ),V∗ ∈ V(T∗),
with T 6 T∗.

(a) Oscillation reduction: there exists a constant 0< λ < 1 so that

osc2T∗
(V ,KT∗) 6 osc2T (V ,KT )−λ osc2T (V ,R1). (4.6)

(b) Lipschitz property: there exists a constantC4 > 0 depending on the shape regularity ofT0 and
the polynomial degreen so that for allK ∈ KT∗

∣∣oscT∗(V∗,K)−oscT∗(V ,K)
∣∣ 6 C4 oscT∗(D,ωK) |||V∗−V |||ωK

, (4.7)

whereωK is a small discrete neighborhood ofK.
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The proof of these properties follows along the same lines as(Cascónet al., 2008, Proposition 3.3)
because oscT (U,KT ),oscT (D,T ) are similar regardless of the specific estimator; see§3. Hence, we
do not insist on this point any longer.

Property (4.7), couple with the finite overlapping of setsωK and Young’s inequality, yields the
following perturbation propertyon the set of unchanged elements

osc2T (V ,KT ∩KT∗) 6 2osc2T∗
(V∗,KT ∩KT∗)+2Λ1osc2T0

(D,K0) |||V −V∗|||
2
Ω , (4.8)

whereΛ1 is proportional toC2
4. Combining (4.6) and (4.7) with Young’s inequality we derive the

following quasi-reduction propertyfor all δ > 0

osc2T∗
(V∗,KT∗) 6 (1+ δ )

{
osc2T (V ,KT )−λ osc2T (V ,R1)

}

+(1+ δ−1)Λ1osc2T0
(D,T0) |||V∗−V |||2Ω .

(4.9)

4.2 AFEM

The adaptive method consists of iterations of the form (1.2)so that

• SOLVE computes the exact Ritz-Galerkin solution of (2.2):

U = SOLVE(T ).

We assume exact linear algebra and integration, the former just for simplicity.

• ESTIMATE calculates thetotal error indicatorζT (U,K) of (3.4):

{ζT (U,K)}K∈KT
= ESTIMATE(U,T ).

• MARK uses Dörfler marking with parameter 0< θ 6 1,

ζT (U,M) > θ ζT (U,KT ), (4.10)

to select a setM ⊂ KT to be refined

M = MARK({ζT (U,K)}K∈KT
, T ).

• REFINE bisects all elementsT ∈ T contained inM. Since bisections are performed elementwise,
we introduce theelement refinement flagρT(T) ∈ N for T ∈ T, and decide thatT must be refined
providedρT(T) > 0. This flag is initializedρT0(T) = 0 for all T ∈ T0. REFINE first updates the
value of this flag according to the marked set

ρT (T) :=

{
n if T ⊂ K, with K ∈ M

ρT (T) otherwise

wheren∈N is defined in (3.3).REFINE next bisectsb > 1 times the elementsT ∈T with ρT (T) >
0, and generates a conforming triangulationT∗ > T . The flags are updated inT∗ as follows:

ρT∗(T) := max
{

0,ρT (ancT (T))−genT∗
(ancT (T))

}
∀T ∈ T∗;
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thus the element flag decreases with refinement depth. In summary, the marked and refined set
satisfyM ⊂ R = Rb

T →T∗
and

{
T∗,{ρT∗(T)}T∈T∗

}
= REFINE(T ,M,{ρT (T)}T∈T ).

REFINE is a minor modification of standard refinement routines and iseasy to implement within
ALBERTA (Schmidt & Siebert, 2005).

In order to obtain convergence and quasi-optimal cardinality, we have to impose some additional
conditions on the initial mesh, and a requirement on the marking strategy, which we now enunciate. The
first two conditions are crucial to get the contraction property (Theorem 5.1), whereas the other three
requirements imply quasi-optimal cardinality (Theorem 6.1).

ASSUMPTION4.3 (AFEM) We assume the following properties of AFEM:

(a) Initial Mesh - Quasi-orthogonality. If b 6= 0 in Ω , then the initial gridT0 has to be sufficiently
fine with respect toθ andD in the sense that

hr
0‖b‖L∞(Ω) <

θ 4

C0[θ 4 + µ1θ 2 + µ2osc2
T0

(D,T0)]
(4.11)

with C0 the constant in Lemma 2.1 and

µ1 :=
2C1

C3
, µ2 :=

4C1(1+C3)
2Λ1

λ 2C2
3

whereh0 = maxT∈T0 hT . If b ≡ 0, then there is no restriction onT0 besides its alignment to the
jumps ofA. This assumption clearly givesC0hr

0‖b‖L∞(Ω) < 1, and implies that the constantΛ0

in (2.3) satisfies

Λ0 < 1+
θ 4

µ1θ 2 + µ2osc2
T0

(D,T0)
. (4.12)

(b) REFINE- Refinement depth.All simplices contained in markedK-elements in stepj are subdi-
vided at leastn times afterJ := J(n,b) steps of AFEM, i. e.

genT j+J
(T) > n ∀T ⊆ K ∈ M j .

This requirement is vital to obtain the discrete lower bound(4.4) withM ⊂ Rn.

(c) Initial Mesh - Complexity ofREFINE. The labeling of refinement edges onT0 satisfies (Steven-
son, 2008, Condition (b), Section 4) ford > 2. The condition is simpler ford = 2 and is due to
Mitchell (1989) and Binevet al. (2004). See also the survey (Nochettoet al., 2009, Section 4).

(d) MARK- Parameterθ . The marking parameterθ satisfiesθ ∈ (0,θ∗) with

θ∗ :=
( C2

(1+C2)(1+C1(2+2Λ1osc2
T0

(D,T0)))

)1/2
.

(e) MARK- Minimal cardinality. The cardinality of the marked setM is minimal.

We now present AFEM with the iteration counterj as a subscript instead ofT j : given the initial
grid T0 and marking parameter0 < θ 6 1 set j := 0 and iterate
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(i) U j = SOLVE(T j );

(ii)
{

ζ j(U j ,K)
}

K∈K j
= ESTIMATE(U j , T j);

(iii) M j = MARK(
{

ζ j(U j ,K)
}

K∈K j
, T j);

(iv) {T j+1,{ρ j+1(T)}T∈T j+1}} = REFINE(M j , T j ,{ρ j(T)}T∈T j});

(v) j := j +1;

REMARK 4.1 (Marking) In contrast to Cascónet al. (2008), the proposed AFEM utilizes the oscillation
for marking. This could be avoided ifηT (U,KT ) > CoscT (U,KT ) for C > 0. While this property is
trivial for the residual estimator withC = 1, it is in general false for other families of estimators such
as those in§3. This happens for unresolved data typical of the preasymptotic regime. Therefore the
oscillation cannot be removed for marking without further assumptions.

REMARK 4.2 (Interior node property) AFEM does not enforce an interior node property between con-
secutive refinements, as in Morinet al. (2000, 2002); Veeser (2002); Morinet al. (2003); Mekchay
& Nochetto (2005); Stevenson (2007), but afterJ steps. This is easy to implement withinALBERTA
(Schmidt & Siebert, 2005) and has an insignificant impact in the refinement process. This property was
circumvented altogether in Cascónet al. (2008); Diening & Kreuzer (2008) for the residual estima-
tor, employing the crucial propertyηT (U,KT ) > oscT (U,KT ), and in Kreuzer & Siebert (2010) for
non-residual estimators upon exploiting their equivalence with the residual estimator.

5. Contraction Property of AFEM

We now prove that AFEM satisfies a contraction property with respect to the sum of energy error plus
scaled oscillation, the so-calledtotal error. The total error is reduced by a fixed rate afterJ steps. The
proof is inspired in results of Cascónet al. (2008); Mekchay & Nochetto (2005).

THEOREM 5.1 (Contraction Property) Let Assumptions 4.1(a,d), 4.2(a,b), and 4.3 (a,b) be valid. Let
θ ∈ (0,1] be the marking parameter and let{T j ,V j ,U j} j>0 be the sequence of meshes, finite element
spaces, and discrete solutions produced by AFEM.

Then, there exist constantsγ > 0, 0< α < 1, andJ ∈ N, depending solely on the shape-regularity
of T0, n, b andθ , such that

|||u−U j+J|||
2
Ω + γ osc2j+J(U j+J,K j+J) 6 α2

(
|||u−U j|||

2
Ω + γ osc2j (U j ,K j)

)
.

Proof. For convenience, we use the notation

ej := |||u−U j |||Ω , E j := |||U j+J−U j |||Ω , η j(M j) := η j(U j ,M j), R
n
j := R

n
T j→T j+J

oscj := oscj(U j ,K j), oscj(M j) := oscj(U j ,M j), osc0(D) := osc0(D,T0).

We observe thatM j ⊂ R1
j always and Assumption 4.3(b) guarantees thatM j ⊂ Rn

j , so that all the
elements contained inM j are refined at leastn times inT j+J. We combine the quasi-orthogonality
(2.3) with oscillation reduction (4.9) to write

e2
j+J + γ osc2j+J 6 Λ0e2

j −E2
j +(1+ δ−1)γ Λ1 osc20(D)E2

j +(1+ δ )γ
(
osc2j −λ osc2j (R

1
j )

)
.

To remove the third term on the right-hand side, we first writeE2
j = βE2

j +(1−β )E2
j with a constant
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β ∈ (0,1) to be selected later. We chooseγ depending onδ to be

γ :=
(1−β )

(1+ δ−1)Λ1 osc20(D)
⇔ γ (1+ δ ) =

δ (1−β )

Λ1 osc20(D)
(5.1)

whence

e2
j+J + γ osc2j+J 6 Λ0e2

j −βE2
j +(1+ δ )γ osc2j −(1+ δ )λ γ osc2j (R

1
j ).

SinceM j ⊂ Rn
j , the discrete lower boundE2

j > C3η2
j (M j)−osc2j (R

1
j ) in (4.4) is valid, thereby giving

e2
j+J + γ osc2j+J 6 Λ0e2

j +(1+ δ )γ osc2j −βC3η2
j (M j)− [(1+ δ )λ γ −β ] osc2j (R

1
j ).

We can further replace oscj(R
1
j ) by oscj(M j), which is smaller, and equate its coefficient with that of

η2
j (M j) to derive an expression forβ

β =
1

1+C3
(1+ δ )λ γ.

We next use the definition ofγ to show that the ensuingβ is admissible, namely,

0 < β :=
λ δ

λ δ +(1+C3)Λ1osc20(D)
< 1, (5.2)

whence

γ(1+ δ ) =
(1+C3)δ

λ δ +(1+C3)Λ1osc20(D)
. (5.3)

Replacingβ into the above expression fore2
j+J

+ γ osc2j+J
, and recalling thatζ 2

j (M j) = η2
j (M j) +

osc2j (M j), we obtain

e2
j+J + γ osc2j+J 6 Λ0e2

j +(1+ δ )γ osc2j −
C3

1+C3
γλ (1+ δ )ζ 2

j (M j).

Invoking Dörfler marking (4.10), namelyζ j(M j) > θζ j , we deduce

e2
j+J + γ osc2j+J 6 Λ0e2

j +(1+ δ )γ osc2j −
C3

1+C3
γλ (1+ δ )θ 2ζ 2

j .

Sinceζ j > oscj by construction, we infer that

e2
j+J + γ osc2j+J 6 Λ0e2

j +(1+ δ )γ osc2j −
C3

2(1+C3)
γλ (1+ δ )θ 2(ζ 2

j +osc2j
)
,

and thus apply the upper bound (4.1) to obtain

e2
j+J + γ osc2j+J 6 α2

1(δ )e2
j + γ α2

2(δ ) osc2j
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with

α2
1(δ ) := Λ0−

C3λ θ 2

2C1(1+C3)
γ(1+ δ ), α2

2(δ ) := (1+ δ )

(
1−

C3

2(1+C3)
λ θ 2

)
.

It remains to prove that the parameterδ can be chosen so that

α2 := max{α2
1 , α2

2} < 1.

Eliminatingγ from (5.3) leads to the following conditions onδ for α < 1:

α1(δ ) < 1⇒ δ > δ− :=
(1+C3)Λ1osc20(D)

λ
(

C3θ2

2C1(Λ0−1) −1
) , α2(δ ) < 1⇒ δ < δ+ :=

C3λ θ 2

2(1+C3)−C3λ θ 2 .

Using the restriction (4.12) onΛ0, the condition onδ− can be rewritten as

δ− <
C3 λ θ 2

2(1+C3)
,

thereby showing that it is possible to choose a compatibleδ so that

C3 λ θ 2

2(1+C3)
< δ <

C3λ θ 2

2(1+C3)−C3λ θ 2 .

This completes the proof. �

6. Quasi-Optimal Cardinality of AFEM

In this section we prove quasi-optimal cardinality of AFEM.We proceed as in Cascónet al.(2008), who
improve and extend the results of Binevet al. (2004) and Stevenson (2007) for the Poisson equation.
We only list the results and main differences, and refer to Cascónet al. (2008) for complete proofs.

6.1 Approximation Class

Since all decisions of AFEM are based on the estimatorζ (U,KT ), a decay rate for the AFEM can only
be characterized by its properties. Invoking the upper and lower bounds, (4.1) and (4.2), we realize that
this quantity is equivalent to thetotal error

|||u−U|||2Ω +osc2T (U,KT ) ≈ η2
T (U,KT )+osc2T (U,KT ) = ζ 2

T (U,KT )

which is strictly reduced by the AFEM. Therefore, as in Casc´onet al.(2008), the definition of a suitable
approximation class must be based on the total error. We start this section recalling that the total error
satisfies a Cea’s Lemma. Its proof is similar to (Cascónet al., 2008, Lemma 5.2).

LEMMA 6.1 (Quasi-Optimality of the Total Error) Let u be the solution of (2.1) and forT ∈ T let
U ∈ V(T ) be the Ritz-Galerkin approximation of (2.2).

Then, the total error satisfies

|||u−U|||2Ω +osc2T (U,KT ) 6 Λ2 inf
V∈V(T )

(
|||u−V|||2Ω +osc2T (V ,KT )

)
,

whereΛ2 = max
{

2,Λ0(1+2Λ1 osc2
T0

(D,T0))
}

, with Λ0,Λ1 defined in (2.3) and (4.9), depends on data
D, shape-regularity ofT0, and polynomial degreen.
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We now proceed as in Cascónet al.(2008) to define the corresponding approximation class, that we
denoteÂs. Let TN ⊂ T be the set of all possible conforming triangulations generated byREFINE from
T0 with at mostN elements more thanT0:

TN := {T ∈ T | #T −#T0 6 N}.

The quality of the best approximation to the total error in the setTN is given by

σ̂(N;v, f ,D) := inf
T ∈TN

inf
V∈V(T )

(
|||v−V |||2Ω +osc2T (V ,KT )

)1/2
.

where( f ,D) are hidden in oscT (V,T ); we refer to§3 for examples. Fors> 0 we define the nonlinear
approximation clasŝAs to be

Âs :=
{
(v, f ,D) | |v, f ,D|s := sup

N>0

(
Ns σ̂(N;v, f ,D)

)
< ∞

}
.

The range of decay ratess is dictated by the polynomial degreen and the dimensiond since, except in
degenerate cases,s6 n/d; this upper bound corresponds to full regularity and quasi-uniform refinement.
Thanks to Lemma 6.1, the solutionu of (1.1) with data( f ,D) satisfies

σ̂(N;v, f ,D) ≈ inf
T ∈TN

{
ζT (U,KT ) : U = SOLVE(T )

}
. (6.1)

6.2 Equivalence of Approximation Classes

The definition of̂As seems to depend on the notion of oscillation (3.7), or similar for the other estimators,
which is different from that in Cascónet al.(2008), namely (3.6). We may thus wonder about the relation
between the classeŝAs andAs, the latter being defined in Cascónet al. (2008). We now prove that they
are identical.

We recall that in residual estimation the oscillation can bedefined using anL2-projection onto piece-
wise polynomials of any degree (Verfürth, 1996). However,this margin of freedom is not possible for
other families of estimators, such as those is section§3, whose analysis requires the discrete lower bound
(4.4) and so the interior node property (3.3). Such propertycan be enforced provided we project onto
piecewise polynomials of degree6 n−1 in the definition (4.5) of oscillation.

LEMMA 6.2 (̂As = As) The approximation classeŝAs associated with the estimators of§3 are identical
to the classAs of Cascónet al. (2008).

Proof. We relabel the local residual indicator and oscillation of (3.6) as follows:

ηR
T (U,T)2 = h2

T ‖R(U)‖2
L2(T) +hT ‖J(U)‖2

L2(∂T∩Ω) ,

oscRT (U,T;2n−2)2 = h2
T

∥∥E2
2n−2R(U)

∥∥2
L2(T)

+hT
∥∥E2

2n−1J(U)
∥∥2

L2(∂T∩Ω)
,

and proceed in three steps. We first show that the classAs is independent of the polynomial degree built
in the definition of oscillation, and next deduceÂs = As.

1 The proof of lower bound (4.2) for residual estimators is local and requires projection of the residuals
onto piecewise polynomials of any degreem (Verfürth, 1996). LocalL2-stability is used and the ensuing
constant depends onm. However we always have the equivalence for anym> −1

|||u−U|||Ω +oscRT (U,T ;2n−2)≈ ηR
T (U,T ) ≈ |||u−U|||Ω +oscRT (U,T ;m),
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whereΠ2
−1 := 0 andηR

T
(U,T ) = oscR

T
(U,T ;−1). HenceAs is characterized by Cascónet al. (2008)

σ(N;v, f ,D) = inf
T ∈TN

{
ηR

T (U,T ) : U = SOLVE(T )
}

and we infer thatAs is independent of the polynomial degreemused in the definition of oscillation.
2 To prove that̂As = As, we show that they control equivalent quantities, i. e.

ηR
T (U,T ) ≈ |||u−U|||Ω +oscRT (U,T ) ≈ |||u−U|||Ω +oscT (U,KT ),

where oscT (U,KT ) is the oscillation term of any of the examples in§3 (or its extension forn > 1). We
first observe that any oscillation of§3 satisfies

oscT (U,KT ) 4 ηR
T (U,T ),

because the mere concept of oscillation is pretty much independent of the specific form of estimator at
hand. This impliesAs ⊂ Âs.

3 We next consider the Morin-Nochetto-Siebert star indicator (3.19) and corresponding star oscillation
(3.20). The other examples of§3 are somewhat simpler and can be handled similarly. LetT ∈ T be

an element contained in starωi , and letξ := Π2
0,iR(U)λ 1/2

i bT , with bT a polynomial bubble function
associated toT. Therefore, we have

‖Π2
0,iR(U)λ 1/2

i ‖2
L2(T) ≈ 〈Π2

0,iR(U)λ 1/2
i ,ξ 〉 ≈ ‖ξ‖

L2(T)
2,

and invoking the error residual equation (3.5), the continuity of the bilinear formB and an inverse
inequality, we obtain

‖Π2
0,iR(U)λ 1/2

i ‖2
L2(T) ≈−〈E2

0,iR(U),λ 1/2
i ξ 〉+B[U,λ 1/2

i ξ ]

4 ‖E2
0,iR(U)λ 1/2

i ‖L2(T)‖ξ‖L2(T) + |||u−U|||T h−1
T ‖ξ‖L2(T).

with E2
0,i = I −Π2

0,i. Simplifying ‖ξ‖L2(T) we get

hT‖Π2
0,iR(U)λ 1/2

i ‖L2(T) 4 hT‖E2
0,iR(U)λ 1/2

i ‖L2(T) + |||u−U|||T . (6.2)

On the other hand, since∑xi∈T λi = 1 and 06 λi 6 λ 1/2
i onT, we deduce

‖R(U)‖L2(T) 6 ∑
xi∈T

‖R(U)λi‖L2(T) 6 ∑
xi∈T

‖R(U)λ 1/2
i ‖L2(T) (6.3)

Combining (6.2) and (6.3), and using the fact thathT ≈ hi for all xi ∈ T, we obtain

h2
T‖R(U)‖2

L2(T) 4 ∑
xi∈T

h2
i ‖E2

0,iR(U)λ 1/2
i ‖2

L2(ωi)
+ |||u−U|||2T . (6.4)

Given a sideσ ∈ S and corresponding patchωσ , we employ a similar argument forΠ2
0,iJ(U) to

deduce

hσ‖J(U)λ 1/2
i ‖2

L2(σ) 4 hσ‖E2
0,iJ(U)λ 1/2

i ‖2
L2(σ) + ∑

x j∈ωσ

h2
j‖E2

0,iR(U)λ 1/2
i ‖2

L2(ω j )
+ |||u−U|||2ωσ

.
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Summing over allT ∈ T , and using the property that each elementT overlaps with 2(d+1) starsω j ,
we finally arrive at

ηR
T (U,T ) 4 |||u−U|||2Ω +oscT (U,KT )2.

This implies that̂As ⊂ As, and completes the proof. �

An important pending issue is the characterization ofAs, which is beyond the scope of this paper.
We refer to Cascónet al. (2008) and (Nochettoet al., 2009, Section 9) for a discussion ofAs and to
Binev et al. (2004, 2002); Stevenson (2007) for a connection with Besov classes for the Laplacian. We
stress thatAs is not a typical linear approximation class for functions because of the nonlinear interaction
between dataD = (A,b,c) andU through oscT (U,KT ).

6.3 Cardinality ofM j

We now assume that(u, f ,D) ∈As for some 0< s6 n/d, and prove that the approximationU j generated
by AFEM converges tou with the same rate(#T j −#T0)

−s as the best approximation described byAs

up to a multiplicative constant. The proof follows Cascónet al. (2008), and is inspired in Stevenson’s
insight for the Laplacian with vanishing oscillation (Stevenson, 2007):

Any conforming refinementT∗ of T which reduces the total error by a suitable percentage
verifies a D̈orfler marking (Lemma 6.3). This allows comparison with the best mesh because
our Dörfler marking is minimal (Lemma 6.4).

This clever observation is not enough though to examine (1.1) with variable coefficients, and so with
non-vanishing oscillation, which is our main objective below. We reiterate that Lemma 6.3 below estab-
lishes a fundamental relation between total error reduction and Dörfler marking.

LEMMA 6.3 (Optimal Marking) Let AFEM satisfy Assumptions 4.1 (b,c), 4.2 (a,b), and 4.3 (d), and set
µ := 1

2(1− θ2

θ2
∗
) > 0. LetT ∈ T andU ∈ V(T ) be the discrete solution of (2.2), and letT∗ ∈ T be any

refinement ofT , i. e. T 6 T∗, such that the discrete solutionU∗ ∈ V(T∗) satisfies

|||u−U∗|||
2
Ω +osc2T∗

(U∗,KT∗) 6 µ
(
|||u−U|||2Ω +osc2T (U,KT )

)
. (6.5)

Then the refined setR1 := R1
T →T∗

⊂ KT of order 1 satisfies the Dörfler property

ζT (U,R1) > θ ζT (U,KT ). (6.6)

Proof. The proof hinges on the following key ingredients: the following consequence of the global
lower bound (4.2)

C2

1+C2
ζ 2

T (U,KT ) 6 |||u−U|||2Ω +osc2T (U,KT ),

the localized upper bound (4.3), the dominance oscT (U,K) 6 ζT (U,K), the perturbation of oscillation
(4.8), and the following consequence of Young’s inequality

|||u−U|||2Ω 6 2|||u−U∗|||
2
Ω +2|||U∗−U|||2Ω .

It is otherwise identical to (Cascónet al., 2008, Lemma 5.9) and so omitted. �

To estimate the cardinality ofM j we need to invoke optimal meshes, which are in principle unrelated
to T j . The key to unravel the relation between AFEM and the classAs is the fact thatMARK selects a
minimalsetM j (Assumption 4.3 (e)).
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LEMMA 6.4 (Cardinality of M j) Let AFEM satisfy Assumptions 4.1 (b,c), 4.2 (a,b), and 4.3 (d,e). Let
u be the solution of (1.1), and let{T j ,V j ,U j} j>0 be the sequence of meshes, finite element spaces, and
discrete solutions produced by AFEM. If(u, f ,D) ∈ As, then the following estimate is valid

#M j 4
(
1−

θ 2

θ 2
∗

)− 1
2s |u, f ,D|

1
s
s Λ

1
2s

2

(
|||u−U j |||

2
Ω +osc2T j

(U j ,K j)
)− 1

2s
, (6.7)

whereΛ2 is the constant in Lemma 6.1.

Proof. We proceed along the lines of (Cascónet al., 2008, Lemma 5.10). Letε2 := µΛ−1
2

(
|||u−U j |||

2
Ω +

osc2
T j

(U j ,T j)
)

and letTε ∈ T andVε ∈ V(Tε) satisfy

#Tε −#T0 4 |u, f ,D|
1/s
s ε−1/s, |||u−Vε |||

2
Ω +osc2Tε (Vε ,Tε) 6 ε2.

Let T∗ = T j ⊕Tε be the overlay ofT j andTε . Apply Lemma 6.1 toT∗ > Tε to get

|||u−U∗|||
2
Ω +osc2T∗

(U∗,T∗) 6 µ
(
|||u−U j |||

2
Ω +osc2T j

(U j ,T j)
)
,

whenceR1
j = R1

T j→T∗
satisfies Dörfler property because of Lemma 6.3. Invoking Assumption 4.3 (e),

we finally deduce

#M j 6 #R
1
j 6 #T∗−#Tk 6 #Tε −#T0 64 |u, f ,D|

1
s
s ε−

1
s ,

which is the asserted estimate. �

6.4 Quasi-Optimal Decay Rates

REFINE usually refines more elements than those inM to enforce conformity ofT∗ (completion).
The cardinality of those additional elements is not controlled by that of marked ones in one single
step (Nochettoet al., 2009, Section 4.5). Binev, Dahmen, and DeVore ford = 2 (Binev et al., 2004,
Theorem 2.4) and Stevenson ford > 2 (Stevenson, 2008, Theorem 6.1) showed that thecumulative
number of elements added by conformity does not inflate the total number of marked elements provided
the initial meshT0 is suitably labeled; see the survey (Nochettoet al., 2009, Section 4) for details.

LEMMA 6.5 (Complexity of REFINE) Let Assumption 4.3 (c) be valid. Let{T j} j>0 be any sequence
of refinements ofT0 whereT j+1 is generated fromT j by REFINE. Then, there exists a constantC0

solely depending onT0, b andn such that

#T j −#T0 6 C0

j−1

∑
i=0

#Mi ∀ j > 1.

Even though the original results are written in terms of one bisection per simplex Binevet al. (2004);
Stevenson (2008), they easily extend to account forb bisections per step and a refinement depthn after
J(n,b) steps. Moreover, the cardinality is usually expressed in terms of number of simplices, but it is as
well valid for K-elements.

The following decay rate is a consequence of Lemmas 6.4 and 6.5, as well as Theorem 5.1, which
establishes a contraction property of AFEM for the total error afterJ iterates. Compared with Stevenson
(2007); Cascónet al.(2008) we now have to account forJ. We give a complete proof below for the sake
of completeness.
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THEOREM 6.1 (Quasi-Optimal Decay Rates) Let AFEM satisfy Assumptions 4.1, 4.2, and 4.3. Letu
be the solution of (1.1), and let{T j ,V j ,U j} j>0 be the sequence of meshes, finite element spaces, and
discrete solutions produced by AFEM.

Let (u, f ,D) ∈ As andΘ(α,θ ,s) := (1−α1/s)−s
(
1− θ2

θ2
∗

)−1/2 describe the asymptotics of AFEM

as α → 1, θ → θ∗ or s→ 0. Then there exists a constantC5, depending on data,J, b andT0, but
independent ofs, such that

|||u−U j |||Ω +oscj(U j ,K j) 6 C5Θ(θ ,α,s)|u, f ,D|s
(
#T j −#T0

)−s
.

Proof. Combining Lemmas 6.4 and 6.5, we deduce

#T j −#T0 4

j−1

∑
i=0

#Mi 4 M
j−1

∑
i=0

{
|||u−Ui|||

2
Ω +osc2i (Ui ,Ki)

}− 1
2s

, (6.8)

with M :=
(
1− θ2

θ2
∗

)− 1
2s |u, f ,D|

1
s
s Λ

1
2s

2 . We use Lemma 6.1 to obtain fori 6 j

|||u−U j |||
2
Ω +osc2j (U j ,K j) 6 Λ2

{
|||u−Ui|||

2
Ω +osc2i (Ui ,Ki)

}
.

We exploit this to rewrite (6.8) in groups ofJ consecutive terms as follows

#T j −#T0 4 MΛ
1
2s

2 J

[ j/J]

∑
i=0

{
|||u−U j−iJ|||

2
Ω +osc2j−iJ(U j−iJ,K j−iJ)

}− 1
2s

,

where[·] denotes the integer part function. On the other hand

|||u−Ui|||
2
Ω + γ osc2i (Ui ,Ki) 6 max{1,γ}

{
|||u−Ui|||

2
Ω +osc2i (Ui ,Ki)

}

and the contraction property of Theorem 5.1, for the sum of energy error and scaled oscillation, implies
for 0 6 i 6 [ j/J]

|||u−U j|||
2
Ω + γ osc2j (U j ,K j) 6 α2i

{
|||u−U j−iJ|||

2
Ω + γ osc2j−iJ(U j−iJ,K j−iJ)

}
.

Combining these estimates we infer that

#T j −#T0 4 MΛ
1
2s

2 Jmax{1,γ}
1
2s

{
|||u−U j |||

2
Ω + γ osc2j (U j ,K j)

}− 1
2s

[ j/J]

∑
i=0

α
i
s .

Sinceα < 1, the geometric series converges and completes the proof. �

REFERENCES

A INSWORTH, M. & ODEN, J. T. (2000) A Posteriori Error Estimation in Finite Element Analysis. New York:
John Wiley & Sons.
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