1 (25 pts). Show an energy identity for the heat equation with convection and Dirichlet boundary condition along the lines of page 44 of Strauss:

\[u_t - k u_{xx} + V u_x = 0 \quad 0 < x < 1, \ t > 0 \]
\[u(0, t) = u(1, t) = 0 \quad t > 0 \]
\[u(x, 0) = \phi(x) \quad 0 < x < 1. \]

2 (25 pts). Let \(Q = (0, L) \times (0, T) \) be a parabolic cylinder. Let \(u = u(x, t) \) be a continuous function in the closure of \(\overline{Q} = [0, L] \times [0, T] \) of \(Q \), and have two continuous derivatives in space and one derivative in time in \(Q \). Let \(f = f(x, t) \) be continuous \(\overline{Q} \) and \(g \) be continuous in the parabolic boundary \(\partial_p Q \) of \(Q \). Let \(u \) be the solution of

\[\partial_t u - k \partial_{xx} u = f \quad \text{in} \ Q \]
\[u = g \quad \text{on} \ \partial_p Q. \]

Show that

\[f \geq 0, \ g \geq 0 \quad \Rightarrow \quad u \geq 0. \]

Interpret this result in physical terms, for instance assuming that \(u \) stands for temperature.

3 (25 pts). Problem 7 in §2.3 of Strauss.

4 (25 pts). Problem 8 in §2.3 of Strauss.