AMSC 612 Spring 2015

NUMERICAL METHODS FOR EVOLUTION PDE

HOMEWORK # 2

Pbs 1-3 due Fr Mar 13, Pbs 4-6 due Fr Mar 27

1 (15 pts). Neumann condition and discrete maximum principle. Given $\alpha, \beta \in \mathbb{R}$ and $f \in C^1[0,1]$, consider the heat equation with mixed boundary conditions:

$$\partial_t u - \partial_x^2 u = f(x) \quad x \in (0, 1), \qquad u(0) = \alpha, \quad u'(1) = \beta.$$

(a) Finite difference method (FDM). Write an implicit FDM on a uniform partition $\mathcal{T} = \{x_j\}_{j=0}^M$ with $0 = x_0 < x_1 < \cdots x_M = 1$ and meshsize h and time step k with approximate Neumann condition

$$\frac{U_M - U_{M-1}}{h} = \beta.$$

Show that the truncation error $\mathbf{T}^n = (\tau_j^n)_{j=1}^M$ satisfies $\|\mathbf{T}^n\|_{\infty} \leq C_1(u)h + C_2(u)k$. Explain the regularity of u involved in the constants $C_1(u)$ and $C_2(u)$.

(b) Maximum principle. Write the discrete problem for the vector $\mathbf{U}^{n+1} = (U^{n+1})_{i=1}^{M}$ as

$$\mathbf{K}\mathbf{U}^{n+1} = \widehat{\mathbf{U}}^n + k\mathbf{F},$$

where $\widehat{U}_j^n = U_j^n$ if j < M and $\widehat{U}_M^n = 0$. Both the matrix \mathbf{K} and right-hand side \mathbf{F} are obtained by multiplying all the equations by k. Deduce the ℓ^{∞} -stability bounds $\max_{1 \le j \le M} U_j^{n+1} \le \|\mathbf{U}^n\|_{\infty}$ provided $\mathbf{F} \le 0$ and $\min_{1 \le j \le M} U_j^{n+1} \ge -\|\mathbf{U}^n\|_{\infty}$ provided $\mathbf{F} \ge 0$. Conclude that the matrix \mathbf{K} is nonsingular.

(c) Discrete barrier. Let w = w(x) be the solution of the 2-point boundary value problem:

$$w'' = 1$$
 $x \in (0,1)$, $w(0) = 0$, $w'(1) = -1$.

Show that $\mathbf{W} = (w(x_j))_{j=1}^M$ satisfies $(\mathbf{K}\mathbf{W})_j \leq W_j - \frac{k}{2}$ for $1 \leq j < M$ and $(\mathbf{K}\mathbf{W})_M \leq -\frac{k}{2}$ provided h, k are sufficiently small.

(d) Error estimate. Let $\mathbf{E}^n = (u(x_j, t^n) - U_j^n)_{j=1}^M$ be the finite difference error. Show that the auxiliary vector $\mathbf{V}^{n+1} = \mathbf{E}^{n+1} + \gamma \mathbf{W}$ satisfies componentwise

$$\mathbf{K}\mathbf{V}^{n+1} \leq \widehat{\mathbf{V}}^n + k\mathbf{T}^n - \frac{\gamma k}{2} \leq \widehat{\mathbf{V}}^n$$

provided $\gamma > 0$ is suitably chosen: how does it relate to k and h?. Deduce the ℓ^{∞} upper estimate $\max_{1 \leq j \leq M} E_j^n \leq \widehat{C}_1(u)h + \widehat{C}_2(u)k$ where the constants $\widehat{C}_1(u), \widehat{C}_2(u)$ are
proportional to $C_1(u), C_2(u)$. Modify the definition of \mathbf{V}^{n+1} to derive a lower bound for $\min_{1 \leq j \leq M} E_j^n$ and finally the estimate $\|\mathbf{E}^n\|_{\infty} \leq \widehat{C}_1(u)h + \widehat{C}_2(u)k$.

2 (15 pts). Advection-diffusion PDE and upwinding. Consider the PDE

$$\partial_t u - a \partial_x^2 u + b \partial_x u = f(x) \quad x \in \mathbb{R},$$

with constants a, b > 0. Consider a uniform lattice $\{x_j\}$ of size h and uniform time-step k. Write an implicit FDM with *upwinding*.

- (a) Find the symbol $S(h\xi)$ of the implicit discrete operator and show that $|S(h\xi)| \leq 1$ for all h, k > 0.
- (b) Derive an $\ell_h^2\text{-stability bound using von Neumann analysis.$
- (c) Examine the truncation error $\mathbf{T}^n = (\tau_j^n)_{j \in \mathbb{Z}}$ and show that $\|\mathbf{T}^n\|_{2,h} \leq C_1(u)h + C_2(u)k$. Make the regularity of u entering in the constants $C_1(u), C_2(u)$ explicit.
- (d) Derive an error estimate in ℓ_h^2 .
- 3 (15 pts). Second order backward difference. The so-called BDF(2) is a popular 2-step method for stiff equations. Given U^0, U^1 , its semidiscrete version for the heat equation reads:

$$\frac{3U^{n+1} - 4U^n + U^{n-1}}{2k} - \Delta U^{n+1} = f^{n+1}.$$

- (a) Derive the method upon combining two BE methods with steps k and 2k in such a way that the truncation error is of second order.
- (b) Determine the truncation error directly using Taylor expansion.
- (c) Use (a) to derive the following identity of $L^2(\Omega)$ -norms upon multiplying the discrete PDE by U^{n+1} , integrating by parts, and assuming that U^{n+1} has vanishing trace:

$$\|U^{n+1}-U^n\|^2-\frac{1}{4}\|U^{n+1}-U^{n-1}\|^2+\frac{3}{4}\|U^{n+1}\|^2-\|U^n\|^2+\frac{1}{4}\|U^{n-1}\|^2+k\|\nabla U^{n+1}\|^2=k\langle f^{n+1},U^{n+1}\rangle.$$

(d) Use (c) to prove the following L^2 -stability bound

$$||U^{N+1}||^2 + 2\sum_{n=1}^{N} k||\nabla U^{n+1}||^2 \le 5||U^0||^2 + 6||U^1||^2 + 2\sum_{n=1}^{N} k||f^{n+1}||_{H^{-1}(\Omega)}^2.$$

Hint: use the triangle inequality in the form $\|\phi_1 + \phi_2\|^2 \le (1+\delta)\|\phi_1\|^2 + (1+\delta^{-1})\|\phi_2\|^2$ for any $\delta > 0$, add over n, and look for cancellations.

- 4 (15 pts). Semidiscrete finite element methd. Problem 10.4 in Larsson and Thomée.
- 5 (25 pts). MATLAB: FEM for the Heat Equation. (a) Modify the MATLAB code fem in the website http://www2.math.umd.edu/ rhn/teaching.html by adding a loop $1 \le n \le N$ to account for a backward Euler discretization of the time variable.
- (b) Let $\Omega = (0,1)^2$ and T = 1. Let a Neumann condition g_N be imposed on the side x = 1, and a Dirichlet condition g_D on the rest of the boundary $\partial \Omega$. Let

$$u(x, y, t) = \sin(3\pi x)e^{-y-2t}.$$

be the exact solution. Find g_D, g_N and the forcing $f = \partial_t - \Delta u$.

- (c) Compute the discrete solution U at T=1, along with the L^2 , H^1 , and L^∞ errors. To this end, use the relation $k=h^2$ between time-step and meshsize, and find the discrete solution for meshsizes $h=2^{-j}$ with j=3,4,5,6. Plot the discrete solution at T=1 for $h=2^{-4}$ and plot the three errors in terms of h in a log-log scale. Verify the decay $||u(T)-U(T)|| \approx h^s$ and relate s to theory.
- (d) Repeat (a) and (c) for the Crank-Nicolson method, this time with a relation k = h. Compare with (c) and draw conclusions.
- 5 (15 pts). Crank-Nicolson-Galerkin method. Problem 10.7 of Larsson and Thomée.