AMSC 612  Spring 2015
NUMERICAL METHODS FOR EVOLUTION PDE
HOMEWORK # 2
Pbs 1-3 due Fr Mar 13, Pbs 4-6 due Fr Mar 27

1 (15 pts). Neumann condition and discrete mazimum principle. Given «, 5 € R and
f € C10,1], consider the heat equation with mixed boundary conditions:

o —0*u= f(z) x€(0,1), uw(0) =, u'(1)=2p4.

(a) Finite difference method (FDM). Write an implicit FDM on a uniform partition
T = {z;}}Ly with 0 = 20 < 21 < ---xpy = 1 and meshsize h and time step k with
approximate Neumann condition

Uv —Una
h
Show that the truncation error T" = (77")}L; satisfies | T"||s < C1(u)h+Ca(u)k. Explain

the regularity of u involved in the constants C(u) and C(u).
(b) Mazimum principle. Write the discrete problem for the vector U™*! = (U*1)L, as

= 3.

KU = U" + kF,

where [/J\]” = Ul if j < M and (75‘4 = 0. Both the matrix K and right-hand side F
are obtained by multiplying all the equations by k. Deduce the ¢*°-stability bounds
maxi<j<y U < [|U"|o provided F < 0 and miny<j<p UM > —[[U||« provided
F > 0. Conclude that the matrix K is nonsingular.

(¢) Discrete barrier. Let w = w(z) be the solution of the 2-point boundary value problem:

w"=1 z€(0,1), w(0) =0, w'(l)=-1.

Show that W = (w(z;))}, satisfies (KW); < W, —% for 1 <j < M and (KW),, < —5%
provided h, k are sufficiently small.

(d) Error estimate. Let E™ = (u(z;,t") — U}")}., be the finite difference error. Show that
the auxiliary vector V! = E"™! + W satisfies componentwise

. E o~
KV < V4 T = 2 <V

provided v > 0 is suitably chosen: how does it relate to k£ and h?. Deduce the -
upper estimate max;<j<y Ef < Ci(u)h + Co(u)k where the constants Cy(u), Ca(u) are
proportional to Cy(u), Cy(u). Modify the definition of V™! to derive a lower bound for
min; <j<y E} and finally the estimate [|[E"[| < C1(u)h + Ca(u)k.

2 (15 pts). Advection-diffusion PDE and upwinding. Consider the PDE
o — ad*u + bo,u = f(x) z €R,

with constants a,b > 0. Consider a uniform lattice {z;} of size h and uniform time-step
k. Write an implicit FDM with upwinding.



(a) Find the symbol S(h&) of the implicit discrete operator and show that |S(hE)| < 1
for all h, k > 0.

(b) Derive an (2-stability bound using von Neumann analysis.

(¢) Examine the truncation error T" = (77') jez and show that || T"||z,, < C1(u)h+Cy(u)k.
Make the regularity of u entering in the constants Ci(u), C2(u) explicit.

(d) Derive an error estimate in £3.

3 (15 pts). Second order backward difference. The so-called BDF(2) is a popular 2-step
method for stiff equations. Given U, U!, its semidiscrete version for the heat equation

reads:
3untt —qunr 4 gt
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(a) Derive the method upon combining two BE methods with steps & and 2k in such a
way that the truncation error is of second order.
(b) Determine the truncation error directly using Taylor expansion.
(c) Use (a) to derive the following identity of L?(2)-norms upon multiplying the discrete
PDE by U™}, integrating by parts, and assuming that U™ has vanishing trace:
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(d) Use (c) to prove the following L?-stability bound
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Hint: use the triangle inequality in the form |[¢; + @2||? < (14 8)[[o1||* + (1 + 671 ||¢2|?
for any 6 > 0, add over n, and look for cancellations.

4 (15 pts). Semidiscrete finite element methd. Problem 10.4 in Larsson and Thomée.

5 (25 pts). MATLAB: FEM for the Heat Equation. (a) Modify the MATLAB code
fem in the website http://www2.math.umd.edu/ rhn/teaching.html by adding a loop
1 <n < N to account for a backward Euler discretization of the time variable.

(b) Let © = (0,1)? and T' = 1. Let a Neumann condition gy be imposed on the side
x =1, and a Dirichlet condition gp on the rest of the boundary 0€2. Let

u(z,y,t) = sin(3rx)e ¥,

be the exact solution. Find gp, gy and the forcing f = 0, — Au.

(c) Compute the discrete solution U at T' = 1, along with the L?, H', and L> errors. To
this end, use the relation k = h? between time-step and meshsize, and find the discrete
solution for meshsizes h = 277 with j = 3,4,5,6. Plot the discrete solution at 7" = 1
for h = 2% and plot the three errors in terms of h in a log-log scale. Verify the decay
|w(T) — U(T)|| = h* and relate s to theory.

(d) Repeat (a) and (c) for the Crank-Nicolson method, this time with a relation k = h.
Compare with (c¢) and draw conclusions.

5 (15 pts). Crank-Nicolson-Galerkin method. Problem 10.7 of Larsson and Thomée.



