## AMSC 614

## NUMERICAL METHODS FOR STATIONARY PDE

HOMEWORK # 2 (Pbs 1-2 due Oct 7, Pbs 3-4 due Oct 9, Pbs 5-7 due Oct 14)

1 (15 pts). 2-point boundary value problem. Consider the following boundary value problem in (0,1):

$$-u'' + u = f,$$
  $u'(0) = 1, u(1) = 1.$ 

- (a) Write the variational formulation.
- (b) Let  $x_1 = 0 < x_2 < \dots < x_N < x_{N+1} = 1$  be a partition of (0,1) with  $h_i = x_{i+1} x_i$ . Let  $\{\phi_i\}_{i=1}^{N+1}$  be the corresponding basis of hat functions, and let  $f = \sum_{i=1}^{N+1} f_i \phi_i$  be piecewise linear. Let  $U = \sum_{i=1}^{N} U_i \phi_i$  be the piecewise linear finite element solution. Show that the matrix equation satisfied by  $\mathbf{U} = \{U_i\}_{i=1}^{N}$  and  $\hat{\mathbf{F}} = \{\hat{f}_i\}_{i=1}^{N+1}$  reads

$$(\mathbf{K} + \mathbf{M}) \cdot \mathbf{U} = \widehat{\mathbf{M}} \widehat{\mathbf{F}},$$

for suitable entries  $\hat{f}_i$ . Compute the entries of the  $N \times N$  stiffness matrix **K** and mass matrix **M**, as well as the  $N \times (N+1)$  mass matrix  $\widehat{\mathbf{M}}$ , by assembling the elementary contributions of each interval  $(x_i, x_{i+1})$ .

2 (15 pts).  $L^2$ -interpolation estimate. Let  $u \in H^2(0,1)$ , that is u admits two week derivatives in  $L^2(0,1)$ . Let  $u_I$  be the piecewise linear interpolant of u over a partition  $\mathcal{T} = \{T\}$  of (0,1) of size h, i.e.  $h = \max_{T \in \mathcal{T}} h_T$ . Prove that

$$||u - u_I||_{L^2(0,1)} \le C \Big( \sum_{T \in \mathcal{T}} h_T^4 ||u''||_{L^2(T)}^2 \Big)^{\frac{1}{2}} \le C h^2 ||u''||_{L^2(0,1)}.$$

Hint: Show the validity of Poincarè inequality for  $v \in W_2^1(0,1)$  with v(0) = 0:

$$||v||_{L^2(0,1)} \le ||v'||_{L^2(0,1)}.$$

Then use a scaling argument as explained in class and take  $v = u - u_I$ .

- 3 (20 pts). Write a MATLAB program 2-POINT that implements piecewise linear finite elements over a general mesh  $\mathcal{T} = \{x_i\}_{i=0}^N$  for the 2-point boundary value problem of HW#1-Pb6.
- (a) Organize the program in such a way that computations are done elementwise and then assemble to give rise to the stiffness and mass matrices **K**, **M** and right-hand side **F** of Pb#1. Compute the integrals using the midpoint rule.
- (b) Check the rate of convergence in the  $H^1$ -norm and  $L^{\infty}$ -norm over a uniform mesh with meshsize  $h = \frac{1}{5}2^{-k}$  for  $0 \le k \le 5$  and b = 0,100. Plot the  $H^1$ -error and  $L^{\infty}$ -error vs h in a log-log plot. Explain the results.
- (c) Plot the exact solution and the finite element solution for h = 1/20, 1/80 and b = 0, 100. How these plot compare with those in HW#1. Draw conclusions.
- (d) Consider a graded mesh  $\mathcal{T}$  of the form  $x_i = 1 \left(\frac{N-i}{N}\right)^{\beta}$  for some  $\beta > 1$ . Experiment with different values of  $\beta$  and see the consequences for b = 100. Try to find a suitable value of  $\beta$  using the principle of error equilibration.

4 (15 pts). Robin Problem. Let  $\Omega := (0,1)$  and  $u \in H^1(\Omega)$  be the solution of HW#1-Pb2.

- (a) Write a finite element discretization using piecewise linear elements.
- (b) Prove an error estimate for the error in  $H^1(\Omega)$ . Specify clearly the required regularity of u and that of the coefficients and forcing function.

5 (15 pts). Graded meshes. Consider  $u(x) = \sqrt{x}$  over I = [0, 1], and  $\mathcal{T} = \{x_j\}_{j=0}^J$ . The behavior  $u \approx \sqrt{x}$  corresponds to a crack in a two dimensional problem (reentrant corner with internal angle  $\omega = 2\pi$ ).

(a) Show that

$$||u - I_{\mathcal{T}}u||_{L^{\infty}(x_i, x_{i+1})} = \frac{\left(\sqrt{x_{i+1}} - \sqrt{x_i}\right)^2}{4\left(\sqrt{x_{i+1}} + \sqrt{x_i}\right)}.$$

Conclude that  $||u - I_{\mathcal{T}}u||_{L^{\infty}(I)} \geq \frac{1}{4\sqrt{N}}$  provided  $\mathcal{T}$  is uniform, i.e.  $h = h_i$  for all i.

(b) Suppose  $\mathcal{T}$  is graded so that  $x_i = (\frac{i}{N})^4$ . Show that

$$||u - I_{\mathcal{T}}u||_{L^{\infty}(x_i, x_{i+1})} = \frac{1}{4N^2} \left(2 - \frac{1}{i^2 + (i-1)^2}\right).$$

Conclude that the global maximum error is  $\leq \frac{1}{2N^2}$ , which is the best approximation possible with N+1 points. Compare with (a) and draw conclusions.

6 (10 pts). Quadrature. Let  $\mathcal{T} = \{x_i\}_{i=0}^N$  be a partition of  $\Omega = (0,1)$ . Let  $Q(w) = \sum_{i=1}^N Q_i(w)$  be the trapezoidal quadrature rule, where

$$Q_i(w) := \frac{h_i}{2} \Big( w(x_{i-1}) + w(x_i) \Big)$$

and  $h_i = x_i - x_{i-1}$  is the local meshsize. Show that for all  $w \in W_1^2(\Omega)$  the following error estimate holds

$$\left| Q(w) - \int_{\Omega} w \right| \le C \sum_{i=1}^{N} h_i^2 \int_{x_{i-1}}^{x_i} |w''|.$$

Hint: Use the fact that Q is exact for piecewise linear functions and apply the Bramble-Hilbert lemma.

7 (10 pts). Advection-diffusion equation. Consider the HW#1-Pb7, namely

$$-\epsilon u'' + u' = 0,$$
  $u(0) = u(1) = 0.$ 

- (a) Write the finite element discretization with piecewise linear elements over a uniform partition with meshsize h. Compare with the centered finite difference method of HW#1-Pb7.
- (b) Consider the *modified* equation

$$-\left(\epsilon + \frac{h}{2}\right)u'' + u' = 0.$$

Write the corresponding finite element discretization. Compare with the upwind finite difference method of HW#1-Pb7.

(c) The *streamline diffusion method* is a Petrov-Galerkin method that utilizes test functions different from the trial ones. In 1D it reads

$$U \in \mathbb{V}_h: \quad B[U,V] = \int_0^1 \epsilon U'V' + U'(V + \frac{h}{2}V') = 0 \quad \forall V \in V_h.$$

Show that this is equivalent to approximating the modified equation with a Galerkin method.