
AMSC 614
NUMERICAL METHODS FOR STATIONARY PDEs
HOMEWORK # 4 (Pbs 1-3 due Nov 13, Pbs 4-5 due Nov 18)

1. Bogner-Fox-Schmit rectangle: Let R be a rectangle with vertices {xi}4
i=1 in R2.

(a) Show that the following nodal variables determine Q3(R), i.e. that the corresponding set N is
unisolvent:

p(xi), ∂1p(xi), ∂2p(xi), ∂2
12p(xi) ∀ 1 ≤ i ≤ 4.

(b) Show that the corresponding finite element space Vh satisfies Vh ⊂ C1(Ω̄) ∩H2(Ω).

2. Raviart-Thomas element (of lowest order): This problem illustrates how to design finite elements for
the space H(div ; Ω) where Ω is a polygonal domain in R2.

(a) H(div ; Ω) is the space of vector fields p in Ω such that p ∈ [L2(Ω)]2 and weak divergence div p ∈
L2(Ω). Show that H(div ; Ω) is a Hilbert space with the inner product 〈p,q〉 :=

∫
Ω

p q+div p div q.

(b) Consider the following space P of vector-valued polynomials over a triangle T in Ω:

P = P0(T )2 + xP0(T ).

Hence a function p ∈ P is of the form p(x) = a + bx with a ∈ R2 and b ∈ R constants. Consider
the following nodal variables for each side S of T :

NS(p) =
∫

S

p · νS

where νS is the unit normal to S. Prove that the set N of nodal variables is unisolvent. To this end
show that the product p · νS is constant for all sides S of T .

(c) Prove that all functions p in the finite element space resulting from pasting together affine equivalent
triangles are in H(div ; Ω). Note however that p is discontinuous across interelement boundaries.
Hint: show that the normal components of discrete vector fields are continuous across interelement
boundaries and that this implies the assertion.

3. Dual basis: Consider a simplex T in Rd and let N1(T ) = {Ni}d
i=0 ⊂ P∗1(T ) be the Lagrange nodal

variables (or nodal evaluation). By the Riesz representation theorem, there exist functions λ∗i ∈ P1(T )
for each 0 ≤ i ≤ d such that

Nj(φi) =
∫

T

λiλ
∗
j = δij .

Show that

λ∗i =
(1 + d)2

|T |
λi −

1 + d

|T |
∑
j 6=i

λj ∀ 0 ≤ i ≤ d.

4. Use the MATLAB code fem to solve the following two problems on the L-shaped domain Ω =
[−1, 1]2\[0, 1]× [0,−1] of R2 with exact solutions:

• Smooth solution: u(x, y) = cos(πx) sin(πy), in cartesian coordinates;

• Nonsmooth Solution: u(x, y) = r2/3 sin(2θ/3), in polar coordinates (r, θ).

Assume Dirichlet condition gD = u on the entire boundary ∂Ω and f = −∆u.

(a) Read the tutorial by P. Morin about the implementation of the FEM for P1 Lagrange elements (see
the website).
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(b) Generate the data files vertex−coordinates.txt, elem−vertices.txt, and dirichlet.txt using
gen−mesh−L−shape.m for uniform refinement with meshsize h = 1

N = 2−k and k = 2, 3, 4, 5, 6, 7.
Find the corresponding solutions UT = uh.

(c) Show that the stiffness matrices for these meshes and those for finite differences with a 5-point stencil
coincide. To this end consider a generic interior star.

(d) Find the errors |u−uh|H1
0 (Ω) and ‖u−uh‖L2(Ω), and plot them vs the number of degrees of freedom

N in a log-log plot. Explain the behavior ‖u − uh‖ ≈ CN−α that you observe and find α. Relate
this to the regularity of u and HW#3-Pb#2 about polynomial interpolation.

5. The MINI element (of Arnold and Brezzi): This is an element for the Stokes problem. Let Qh be the
space of continuous piecewise linear elements with zero mean; this is the space for pressure. Let Vh be
the space of vector-valued continuous piecewise polynomials vh of the form

wT + bT cT ∀T ∈ T ,

where wT is linear in T , cT is constant, and bT is the cubic bubble in T ; this is the space for velocity.
Show that the pair (Vh, Qh) satisfies the discrete inf-sup property

β‖qh‖L2(Ω) ≤ inf
vh∈Vh

∫
Ω

qhdiv vh

‖vh‖H1
0 (Ω)

∀ qh ∈ Qh

with β > 0 independent of h. Hint: Let v ∈ H1
0 (Ω) be a function that satisfies the continuous inf-sup

property for qh. To discretize v proceed as follows. First let wh = Ihv be an interpolant of v with values
in the space of continuous piecewise linears which is stable in H1

0 (Ω), namely

‖wh‖H1
0 (Ω) ≤ α‖v‖H1

0 (Ω);

we will see two such interpolants. Choose the constant cT for each T ∈ T upon imposing the condition∫
Ω

qhdiv (v − vh) = 0.

To this end, integrate by parts
∑

T∈T
∫

T
qhdiv vh elementwise and note that the boundary terms vanish.
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