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Implementation of Linear Finite Elements on a Fixed Mesh

Weak Formulation

Let us consider the problem
I—D

—div(aVu) +b-Vu+cu=f in Q,

= r
a’u, gD onlp, o
a—u =gNn on I'y, My
on

Pedro Morin
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Weak Formulation

Let us consider the problem

rD
—div(aVu) +b-Vu+cu=f in Q,
au:gD on I'p, o
aﬁ =gNn on I'y, Mn
on

Its weak form reads: Find u € H%D’QD () such that

/aVu-Vv+b~Vuv+cuvdx:/fvdm—i—/ gn vds, VUEH%D,O(Q).
Q Q r

N

Here Hlln,gD (Q)={ve H(Q)|vr, =gp}
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Implementation of Linear Finite Elements on a Fixed Mesh

Weak Formulation

Defining
B:H'(Q)x H'(Q) - R
Blv,w] = / aVv-Vw+b-Vow+ cvwde
Q
and

F:H' (Q) —R

F(v):/ﬂfvdac—l—/FNngds
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Implementation of Linear Finite Elements on a Fixed Mesh

Weak Formulation

Defining
B:H'(Q)x H'(Q) - R

Blv, w] :/aVv«Vw—i—b-va—i—cvwdx
Q

and

F:H' (Q) —R

F(v):/ﬂfvdac—l—/FNngds

The weak form reads:

Find w € Ht, ,,(Q) suchthat Blu,v] = F(v), Yv€ H%D,O(Q).
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundar

Finite Element Formulation:

Consider a triangulation 7 of Omega, as for example in the figure, and let
V7 ={v € C(Q) : vy is linear,vT € T}

Thus each function v € V7 is determined by its value at all the vertices.
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Finite Element Formulation:

Consider a triangulation 7 of Omega, as for example in the figure, and let
V7 ={v € C(Q) : vy is linear,vT € T}

Thus each function v € V7 is determined by its value at all the vertices.

The finite element formulation is thus Mo
Find ur € VL

Blur,vr] = F(vr), Yor € VL. i

N
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homc

Finite Element Formulation:

Consider a triangulation 7 of Omega, as for example in the figure, and let
V7 = {v € C@Q) : vy is linear, VT € T}

Thus each function v € V7 is determined by its value at all the vertices.

The finite element formulation is thus 00000 oD
P s
. T 4 Y
Find ur € VFD,QD & ——e——0
T [ b—0—0—0—9

Blur,vr] = F(vr), Yor € Vr, 0. po .

N

Here

Vi, .ep = {v € V7 1 u(z) = gp(z) for every vertex = on T'p}
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Towards the implementation:

Consider the nodal basis {d)j}jv:Tl of V7 of functions
¢; €V ¢j(wi) =65,  4,5=1,2,...,N

where z;, i = 1,2,..., N denote the vertices of the triangulation.
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Towards the implementation:

Consider the nodal basis {d)j}jv:Tl of V7 of functions
¢; €V ¢j(wi) =65,  4,5=1,2,...,N

where z;, i = 1,2,..., N denote the vertices of the triangulation.

N
v(z) = Zvidn(w) = Zv(ml)qﬁl(w) only three terms are added at each x
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Implementation of Linear Finite Elements on a Fixed Mesh

Implementable FE formulation:

The finite element formulation:

: T
Find ur € Vi o0

B[uT,’UT] = F(’UT), Yo € VIT:D,O.

Writing ur = E;\le Uj¢j.
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Implementation of Linear Finite Elements on a Fixed Mesh

Implementable FE formulation:

The finite element formulation:

Find ur € V%’D}QD
B[uT,’UT] = F(’UT), Yo € VIT:D,O.
Writi _ N
riting ur = 375, u;¢;.

Equivalent formulation: Find u;, j =1,2,..., N, such that

N
Z uj¢j7 ®i
j=1

ui:gD(:ci), i:1,2,...,Nandxi€FD

B :F((ﬁz), i:1,2,...,Nandxi¢I‘D
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Implementation of Linear Finite Elements on a Fixed Mesh

Implementable FE formulation:

The finite element formulation:
. T
Find ur € Vi o0

B[uT,’UT] = F(’UT), Yur € VIT:D,O.
Writi _ N
riting ur = 375, u;¢;.
Equivalent formulation: Find u;, j =1,2,..., N, such that
Zuj [6j, ] = F(¢i), i=1,2,...,Nandx; ¢ 'p

ui:gD(;z:i)7 i:1,2,...,NandxieFD
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Implementation of Linear Finite Elements on a Fixed Mesh

Implementable FE formulation:

The finite element formulation:

Find ur € V?D,gp
B[uT,’UT] = F(’UT), Yo € VIT:D,O.
Writi _ N
riting ur = 375, u;¢;.

Equivalent formulation: Find u;, j =1,2,..., N, such that
N
ZUJB[¢J5¢’L]:F(¢Z)7 i:l,Q,...,Nand(Ei¢FD
j=1

ui:gD(;z:i)7 i:1,2,...,NandxieFD

~~ a square N X N linear system
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Implementation of Linear Finite Elements on a Fixed Mesh

Implementable FE formulation:

Find u;, 5 =1,2,..., N, such that

Zuj (D5, di] = F(s), i=1,2,...,N and z; ¢ T'p

w; = gp(xi), i=1,2,...,Nandz;, € I'p

~~ a square N X N linear system

Au="f
with
Aij = Blgj, ¢l ifxi¢Tp
Ay = b3 if 2 € Tp
f; = F(¢:) if 2 ¢ Tp
fi = gp (i), ifz; €Tp
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Implementation of Linear Finite Elements on a Fixed Mesh

Implementable FE formulation:
Find u;, 7 =1,2,..., N, such that

Zu] [pj,di] = F(¢i), i=1,2,...,Nandz; ¢Tp

w; = gp(x;), 1=1,2,...,Nandz;, € I'p

~» a square N X N linear system
Au="f

with

Ai; = Blgj, ¢i] = /Qavqﬁj Vi +b-Voidi + chdjp; dx if z; ¢ T'p

Aij = 6ij ifx; €e'p

fi = F(qﬁ,) = / f(Z)Z dzx +/ gN Gi ds if z; ¢ I'p
Q T'n

fi = gp (i), ifz; €T'p
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundar

Implementation:

We want a computer program that:

v

Reads a triangulation defining the domain and the boundary regions

\4

Sets the equation parameters a, b, ¢, and data f, gp, g~

v

Assembles the system matrix and right-hand side

v

Solves the system and outputs the solution
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Implementation of Linear Finite Elements on a Fixed Mesh

Implementation:

Observe that:

[ roiaa= >

TeT

!
(]

/ gN @i ds =
'n

/ qubj . Vd)z dx
Q

TeT

RS

/chsmdx:

/T féida

gN @i ds = / gn @i ds
/¢9TDFN Z s

>

TeT

>

TeT

>

TeT

SCTy

/Tqubj -V

/Tb.wj@

/Tc¢j¢i dx
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Implementation of Linear Finite Elements on a Fixed Mesh

Implementation:

Observe that:

/fqzﬂzdx— > /fqﬁzdx

TeT
T Csupp(é;)
/ gNQids = / gN @i ds = Z / gN @i ds
Ty TGT oTNr'N SCry
T Csupp(¢;) SCsupp(¢;)
/qubj-Vd)idx: > /qubj-qui
Q TET T
T Csupp(¢;)Nsupp(¢;)
[v:v00= X [vvee
Q TeT T

T Csupp(;)Nsupp(¢;)

/chz&jqﬁi dr = Z /Tc¢j¢i dx just a few!

TeT
T Csupp(¢i)Nsupp(¢;)
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Implementation of Linear Finite Elements on a Fixed Mesh

Assembly of the right-hand side

Consider the part / foide= > / féida
Q T

TeT
T Csupp(¢;)
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Col

Assembly of the right-hand side

Consider the part / foide= > / féida
Q T

TeT
T Csupp(¢;)

Idea: Loop over the elements, for each element do:
» compute all the integrals that are nonzero at the element;
> add the computed integrals at the proper positions of the right-hand side
vector f.
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Implementation of Non-Homogeneous Boundary Conditions

Implementation of Linear Finite Elements on a Fixed Mesh

Assembly of the right-hand side

Consider the part / foide= > / féida
Q T

TeT
T Csupp(¢;)

Idea: Loop over the elements, for each element do:
» compute all the integrals that are nonzero at the element;
> add the computed integrals at the proper positions of the right-hand side
vector f.

global numbering B

1 - 7] 6

2
local numberir)g"/ 3 fh

Implementation of Adaptive Finite Elements Pedro Morin




Implementation of Linear Finite Elements on a Fixed Mesh

Local basis functions

Observe that

global numbering '

1

bas|r = r
2 s

¢57|T = T local numba'lr]g'

3
¢6|T =$r

Where <p2"p is the linear function on T ; .

that equals one at the j-th local vertex ®

and zero at the others. i - :
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Implementation of Linear Finite Elements on a Fixed Mesh

Quadrature

We will use the quadrature formula
T A
/ gdx ~ % [g(mlg) + g(mas) + g(mgl)] «—— midpoint rule
T

which is exact for quadratic polynomials.

m31
e Y m23

P

ml2
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Quadrature

We will use the quadrature formula

T Sy
/ gdx ~ |3‘ [g(mlg) + g(mas) + g(mgl)] «—— midpoint rule
T

which is exact for quadratic polynomials.

fel(]-) = @ :f(mIQ)% + f(ng,) 0+ f(m3l)%_ a1
fe(2) = % f(m12)% + f(mgg)% + f(ms1)0 Z b» M23
fel(3) = % f(m12)0+f(m23)% +f(m31)% .

] ’ mi12

Implementation of Adaptive Finite Elements Pedro Morin



Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homc

Mesh representation

We will assume the existence of four files:

> vertex_coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

» elem_vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

> dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary I'p; one line per vertex.

> neumann.txt: containing a list of segments that lie on I'x, one line per
segment.
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Implementation of Linear Finite Elements on a Fixed Mesh entation of Non-H.

Mesh representation

We will assume the existence of four files:

> vertex_coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

» elem_vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

> dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary I'p; one line per vertex.

> neumann.txt: containing a list of segments that lie on I'x, one line per

segment.
4 3
vertex_coordinates.txt
0.0 0.0
1.0 0.0 5
1.0 1.0
0.0 1.0
0.5 0.5
1 2
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Implementation of Linear Finite Elements on a Fixed Mesh entation of Non-H.

Mesh representation

We will assume the existence of four files:

> vertex_coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

» elem vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

> dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary I'p; one line per vertex.

> neumann.txt: containing a list of segments that lie on I'x, one line per

segment.
4 3
elem_vertices.txt
1 2 5
2 3 5 5
3 4 5
4 1 5
1 2
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Col

Mesh representation

We will assume the existence of four files:

> vertex_coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

» elem_vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

> dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary I'p; one line per vertex.

> neumann.txt: containing a list of segments that lie on I'x, one line per

segment.
4 3
dirichlet.txt
1
2 5
3
1 2
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Col

Mesh representation

We will assume the existence of four files:

> vertex_coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

» elem_vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

> dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary I'p; one line per vertex.

> neumann.txt: containing a list of segments that lie on I'x, one line per

segment.
4 3
neumann.txt
3 4
4 1 S
1 2
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Implementation of Linear Finite Elements on a Fixed Mesh entation of Non-H.

Mesh representation

We will assume the existence of four files:

> vertex_coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

» elem_vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

> dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary I'p; one line per vertex.

> neumann.txt: containing a list of segments that lie on I'x, one line per
segment.

4 3

Mesh Generation

In the folder fixed_mesh there are two
OCTAVE functions that generate meshes: 5

> gen_mesh rectangle.m

> gen mesh_L_shape.m
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Col

Back to the assembly

Let us see some parts of the code fem.m

Initialization

coef_a =
coef_c

[}
= e
o O

fc_f = inline(’sin(pi*x(1))*sin(pi*x(2))°’, ’x’);
fc_gD = inline(’1’, ’x’);
fc_gN = inline(’°0’, ’x’);

load(’vertex_coordinates.txt’);
load(’elem_vertices.txt’);
load(’dirichlet.txt’);
load(’neumann.txt’);

vertex_coordinates
elem_vertices
dirichlet

neumann

n_vertices = size(vertex_coordinates, 1);
n_elem size(elem_vertices, 1);
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Back to the assembly

Let us see some parts of the code fem.m

Loop over elements

fh = zeros(n_vertices, 1);

for el =1 : n_elem
v_elem = elem_vertices( el, : );

vl = vertex_coordinates( v_elem(1), :)’ ; % coords. of 1st vertex o
v2 = vertex_coordinates( v_elem(2), :)’ ; % coords. of 2nd vertex o
v3 = vertex_coordinates( v_elem(3), :)’ ; % coords. of 3rd vertex o
mi2 = (vl + v2) / 2; % midpoint of side 1-2
m23 = (v2 + v3) / 2; ) midpoint of side 2-3
m31 = (v3 + v1) / 2; % midpoint of side 3-1

% evaluation of f at the quadrature points
£f12 = fc_f(m12); £23 = fc_f(m23); £31 = fc_f(m31);
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Back to the assembly

Let us see some parts of the code fem.m

Loop over elements
fh = zeros(n_vertices, 1);
for el =1 : n_elem

v_elem = elem_vertices( el, : );

% computation of the element load vector
f_el = [ (£f12+£31)*0.5 ; (£12+£23)%0.5 ; (£23+£31)*0.5 ]
* (el_area/3);

% contributions added to the global load vector
fh( v_elem ) = fh( v_elem ) + f_el;
end
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Implementation of Linear Finite Elements on a Fixed Mesh

Reference element and mapping

We let v¥, i = 1,2,3 denote the vertex
coordinates of the element 7.
In our example

1

VU = T48
2 p—

VT = T57
3

VU = Te.

(0.2)

—>

0,0 (1,0

Pedro Morin
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Col

Reference element and mapping

We let v¥, i = 1,2,3 denote the vertex
coordinates of the element T'.

Then Fr:T — T

FPr(2) = vr 4 21 (v — o) + £2(vF — v})
& ®
— ob + [v3 — vk | v} — v}] H "
B 3 FT
maps T onto T, and
B = DFr “
2
T
u = 2|T| = det(B).
7] 1 \
©0) w0

Pedro Morin
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Implementation of Linear Finite Elements on a Fixed Mesh

Reference element and mapping

If we define the basis functions on the reference ele-

mentéi:T—ﬂRas

Then @l = bi o qul and

d/;i :QOiOFT-

©.1),

=

00

10

Pedro Morin
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Implementation of

Implementation of Linear Finite Elements on a Fixed Mesh

Reference element and mapping

If we define the basis functions on the reference ele-
ment ¢; : T — R as

Then g =dioFy'  and  Gi=gioFr. ®©
1) E
And by the chain rule ’ !
8@31 aﬁpi 8FT Y4 8(/%
D Zz: dre Oxy, L= x, "R (B)-Ve ?
1 2
(00) (1,0
Implementation of Adaptive Finite Elements Pedro Morin




Implementation of Non-Homogeneous Bound

Implementation of Linear Finite Elements on a Fixed Mesh

Reference element and mapping

If we define the basis functions on the reference ele-
ment ¢; : T — R as

R ®
¢2(21,32) = 21
P3(@1,22) = &2
Then g =dioFy'  and  Gi=gioFr. ®©
1) ) E
And by the chain rule !
8@31 aﬁpi aFTg 8(/%
D Zz: dre Oxy, L= x, "R (B)-Ve ?
(;U) - 10

Thus (if gradients are columns)

ﬁ(lg-b = BTV(/Ji

or

V(/Ji = B_Tﬁ(&i

Pedro Morin
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Implementation of Linear Finite Elements on a Fixed Mesh

Computing / Vo, - Vo;dr
T

Recall . .
Vi =BTV, o V=B TV
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Implementation of Linear Elements on a Fixed Mesh

Computing / Vo, - Vo;dr
T

Recall . .
Véi =BV, or Ve, =B 'V,

Then . .
Vi - Vi =V Vi =Vé, BT' BTV,
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Implementation of Linear Finite Elements on a Fixed Mesh

Computing / Vo, - Vo;dr
T

Recall . .
Vé:i =BTV, or Vg, =B TV

Then L .
Vi Vi =V, Vi =V¢, B-' B~ "V,

On the other hand, B is constant, and thus

/wj.wi dx = / V¢! BB~ V| det(B)| di = MLQ(E'%}’B*B—T%,-
T T
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Computing / Vo, - Vo;dr
T

On the other hand, B is constant, and thus

/wj-wi dz = / V¢! B~ B~ V| det(B)| di = MLZ(W%}“B*B—T%Z-
T T

Also

Q*)
5
Il
-
|
2
=
|
2
(V)

Q*)
M
I
IS
l
<>
RS
~
Il
(.
—_
[
<>
&)
N
Il
L |
—_
(B
4)
Q)
w
I
|
[an]
[

<
w

Il
IS
V)
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing / V; - V;dr
T

On the other hand, B is constant, and thus

/ij-wi dx = /CﬁﬁqéfB—lB—T%i|det(B)|d@= MLZ(W%}”B*B—T%Z-
Also

¢r=1—i1 — i

. . 1] - 17 - 0

s ] s e

¢3 = @2

. -1 1 0
Defining grd_bas_fcts = 1 0 1| Ve have that

el mat_a = ‘degﬂgrd_bas_fctsT(BlefT) grd bas_fcts

is @ 3 X 3 matrix satisfying
mat_el;; = / V; -V
T
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Col

Back to the assembly

Let us see some parts of the code fem.m

Loop over elements

A = sparse(n_vertices, n_vertices);

for el =1 : n_elem
v_elem = elem_vertices( el, : );
vl = vertex_coordinates( v_elem(1), :)’ ; % coords. of 1st vertex o
v2 = vertex_coordinates( v_elem(2), :)’ ; % coords. of 2nd vertex o
v3 = vertex_coordinates( v_elem(3), :)’ ; % coords. of 3rd vertex o

% derivative of the affine transformation from the reference
% element onto the current element

B=[v2-vl v3-vl ];

% element area

el_area = abs(det(B)) * 0.5;

% gradients of the basis functions in the reference element
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Col

Back to the assembly

Let us see some parts of the code fem.m

Loop over elements

A = sparse(n_vertices, n_vertices);
for el = 1 : n_elem
v_elem = elem_vertices( el, : );

% gradients of the basis functions in the reference element
grd_bas_fcts = [ -1 -1 ;10 ;011 ;

el_mat = coef_a * grd_bas_fcts’ * (Binv*Binv’) * grd_bas_fcts
* el_area;

% contributions added to the global matrix
A( v_elem, v_elem ) = A( v_elem, v_elem ) + el_mat;
end
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Implementation of Linear Finite Elements on a Fixed Mesh

Computing / pipidx
T

Here we just use the midpoint rule:

T 11 1
/%sozda:_ |3| ( +~+00> =ITIZ

and if i # j
m31
s 1T 1rr 1 _ L Z
/Tsozsojdx— 3 22—|— 0+O —|T|12 % m23

D

ml2
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Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing / wipidx
T

Here we just use the midpoint rule:

T 11 1
/%%d:c_ |3| ( +~+00> =ITIZ

and if i # j
m31
s (i 1 _ L Z
/Tsozsojdx— 3 22—|— 0+O —|T|12 % m23
Therefore
mi2

el mat_c = el_area

E"_‘ 5‘)—‘ o=
E"_‘ ol E"“‘
ol L= -
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Implementation of Linear Finite Elements on a Fixed Mesh

Computing / wipidx
T

Here we just use the midpoint rule:

T 11 1
/golcpld:c—l |( +77+00>=|T|6

3
and if i # j
m31
o (i 1 _ L Z
/Tsoz%dx— D (ai+s0407) =17l \ m23
Therefore
mi2

el mat_c = el_area

E"_‘ 5‘)—‘ o=
E"_‘ ol E"“‘
ol L= -

In the code

el_mat = coef_a*el_area * grd_bas_fcts’*(Binv*Binv’)*grd_bas_fcts ...
+ coef_c*el_area * [1/6 1/12 1/12; 1/12 1/6 1/12; 1/12 1/12 1/6]
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Implementation of Linear Elements on a Fixed Mesh

Computing / b-V;pide
T

The computation of
/ b-Vj;pide
T

is left as exercise.

Do the computations and include the corresponding modifications into the
code.
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Implementation of Non-Homogeneous Boundary Col

Outline

Implementation of Non-Homogeneous Boundary Conditions

Implementation of Adaptive Finite Elements Pedro Morin



Implementation of Non-Homogeneous Boundary Col

Boundary conditions

Recall that we need to solve
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Boundary conditions

Recall that we need to solve
Au="f

with

A :B[@-,@]:/Qaw]--V¢i+b-wj¢i+c¢j¢idx if 2: ¢ T

Aij = 5ij ifx; €'p

f, = F(¢z) = / f(;Sl dl’-i—/ gN(ﬁi ds if z; ¢ I'p
Q Tn

fi = gp (i), ifz; €Tp
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Boundary conditions

Recall that we need to solve
Au="f

with

A :B[qu,qsz-]:/Qaw]--V¢i+b-wj¢i+c¢j¢idx if 2: ¢ T

Aij = 5ij ifx; €'p

f, = F((ﬁz) = / f(;Sl dl’-i-/ gN(ﬁi ds if z; ¢ I'p
Q I'n

fi = gp (i), ifz; €Tp

But so far, fori,57=1,2,..., N
Ay = Bléj.d,  and £ = / foi da.
Q

This is ok if x; is not on I'p, and the Neumann contribution is missing.
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Neumann boundary conditions

We now loop over the Neumann edges and add the contributions

/chpids
s

to the corresponding entries on the right-hand side vector.
The integrals on the edges are approximated with Simpson's rule

a+b

[ e = 25 o) + 405 + 0]

which is exact for cubic polynomials.
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nplementation of Linear Finite Elements on a

Neumann boundary conditions

We now loop over the Neumann edges and add the contributions

/chpids
s

to the corresponding entries on the right-hand side vector.
The integrals on the edges are approximated with Simpson's rule

a+b

[ e = 25 o) + 405 + 0]

which is exact for cubic polynomials.
Then

s 1
/ gn p1ds = 5] [gN(vé) L+ 4gn (m) 5 +9N(v§)0}
S

6
s 1

/ gN p2ds = — [gN(vé) 0+ 4gn(m) = + gn (vF) 1]
s 6 2
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Neumann boundary conditions (code)

/ngv p1ds = % [gzv(vé) + 29N(m)]

[ v ods = Bl [2gm) + g (03]

n_neumann_segments = size(neumann, 1);

for i = 1:n_neuman_segments
v_seg = neumann(i, :);
vl = vertex_coordinates( v_seg(1l) , : ); % coords. of 1st vertex
v2 = vertex_coordinates( v_seg(2) , : ); % coords. of 2nd vertex
segment_length = norm(v2-vi);

m= (vl + v2) / 2;
gl = fc_gN(vl); g2 = fc_gN(v2); gm = fc_gN(m);

fseg=[gl+2%*gm; 2*gm+g2] *x segment_length / 6;

fh( v_seg ) = fh( v_seg ) + f_seg;
end
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Dirichlet boundary conditions

If z; € I'p we have to change the i-th equation of the system:
» we have to set the i-th row of A to el
» the right-hand side f; should be g(x;).
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Dirichlet boundary conditions

If z; € I'p we have to change the i-th equation of the system:
» we have to set the i-th row of A to el

» the right-hand side f; should be g(x;).

This is done as follows in the code

for i = 1:length(dirichlet)
diri = dirichlet(i);

A(diri,:) = zeros(1l, n_vertices);
A(diri,diri) = 1;
fh(diri) = fc_gD( vertex_coordinates(diri, :) );

end
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Use of provided scripts and functions

To solve a problem using fem, we must:
> Generate the files describing the mesh:

> vertex_coordinates.txt: containing the coordinates of the vertices of the
mesh; one line per vertex.

> elem_vertices.txt: containing the numbers (indices) of the three vertices
of each element; one line per element.

> dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary I'p; one line per vertex.

> neumann.txt: containing a list of segments that lie on Iy, one line per
segment. This file should not exist if all the boundary is Dirichlet.

> Set the following parameters and data inside fem.m
> Equation coefficients coef_a, coef_b and coef_c corresponding to a, b, c,
respectively. They are assumed constant in this version, but feel free to

generalize the code. (remember that the convective term b - Vu is not
implemented)

> Functions fc_f, fc_gD and fc_gN, corresponding to f, gp, gn, respectively.
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Exercises:

1. Solve Poisson equation with pure Dirichlet boundary conditions:

—Au=f in = (-1,1) x (-1,1)
U= gp onT'= 90

. _ 2
Choose f and gp so that the exact solution u(x) = e 10fe]”,
> Create the meshes using gen_mesh_rectangle with
N =M =4,8,16, 32, 64.
> Solve the equations and compute the Lo and H! errors using the provided
functions L2_err and Hi_err. Compute the experimental orders of
convergence for both norms.
2. Repeat the previous exercise with 2 the L-shaped domain
(—1,1) x (—=1,1) \ [0, 1] x [0,1], and the exact solution given in polar
coordinates by

u(r,0) = r*/*sin (%9)

Hints: f = 0 and the meshes can be generated with gen_mesh_L_shape.
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