
Top Math Summer School on

Adaptive Finite Elements: Analysis and Implementation
Organized by: Kunibert G. Siebert

Pedro Morin

Instituto de Matemática Aplicada del Litoral
Universidad Nacional del Litoral

Santa Fe - Argentina

July 28 – August 2, 2008
Frauenchiemsee, Germany

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Outline

Implementation of Linear Finite Elements on a Fixed Mesh

Implementation of Non-Homogeneous Boundary Conditions

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Weak Formulation

Let us consider the problem

− div(a∇u) + b · ∇u+ c u = f in Ω,

u = gD on ΓD,

a
∂u

∂n
= gN on ΓN ,

Γ

Ω
ΓN

D

Its weak form reads: Find u ∈ H1
ΓD,gD

(Ω) such thatZ
Ω

a∇u ·∇v+ b ·∇u v+ c u v dx =

Z
Ω

f v dx+

Z
ΓN

gN v ds, ∀v ∈ H1
ΓD,0(Ω).

Here H1
ΓD,gD

(Ω) = {v ∈ H1(Ω) | v|ΓD
= gD}.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Weak Formulation

Let us consider the problem

− div(a∇u) + b · ∇u+ c u = f in Ω,

u = gD on ΓD,

a
∂u

∂n
= gN on ΓN ,

Γ

Ω
ΓN

D

Its weak form reads: Find u ∈ H1
ΓD,gD

(Ω) such thatZ
Ω

a∇u ·∇v+ b ·∇u v+ c u v dx =

Z
Ω

f v dx+

Z
ΓN

gN v ds, ∀v ∈ H1
ΓD,0(Ω).

Here H1
ΓD,gD

(Ω) = {v ∈ H1(Ω) | v|ΓD
= gD}.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Weak Formulation

Defining

B : H1(Ω)×H1(Ω)→ R

B[v, w] =

Z
Ω

a∇v · ∇w + b · ∇v w + c v w dx

and

F : H1(Ω)→ R

F (v) =

Z
Ω

f v dx+

Z
ΓN

gN v ds

The weak form reads:

Find u ∈ H1
ΓD,gD

(Ω) such that B[u, v] = F (v), ∀v ∈ H1
ΓD,0(Ω).

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Weak Formulation

Defining

B : H1(Ω)×H1(Ω)→ R

B[v, w] =

Z
Ω

a∇v · ∇w + b · ∇v w + c v w dx

and

F : H1(Ω)→ R

F (v) =

Z
Ω

f v dx+

Z
ΓN

gN v ds

The weak form reads:

Find u ∈ H1
ΓD,gD

(Ω) such that B[u, v] = F (v), ∀v ∈ H1
ΓD,0(Ω).

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Finite Element Formulation:

Consider a triangulation T of Omega, as for example in the figure, and let

VT = {v ∈ C(Ω) : v|T is linear, ∀T ∈ T }

Thus each function v ∈ VT is determined by its value at all the vertices.

The finite element formulation is thus

Find uT ∈ VTΓD,gD

B[uT , vT] = F (vT), ∀vT ∈ VTΓD,0.

Γ

Ω
ΓN

D

Here

VTΓD,gD
= {v ∈ VT : v(x) = gD(x) for every vertex x on ΓD}

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Finite Element Formulation:

Consider a triangulation T of Omega, as for example in the figure, and let

VT = {v ∈ C(Ω) : v|T is linear, ∀T ∈ T }

Thus each function v ∈ VT is determined by its value at all the vertices.

The finite element formulation is thus

Find uT ∈ VTΓD,gD

B[uT , vT] = F (vT), ∀vT ∈ VTΓD,0.

Γ

Ω
ΓN

D

Here

VTΓD,gD
= {v ∈ VT : v(x) = gD(x) for every vertex x on ΓD}

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Finite Element Formulation:

Consider a triangulation T of Omega, as for example in the figure, and let

VT = {v ∈ C(Ω) : v|T is linear, ∀T ∈ T }

Thus each function v ∈ VT is determined by its value at all the vertices.

The finite element formulation is thus

Find uT ∈ VTΓD,gD

B[uT , vT] = F (vT), ∀vT ∈ VTΓD,0.

Γ

Ω
ΓN

D

Here

VTΓD,gD
= {v ∈ VT : v(x) = gD(x) for every vertex x on ΓD}

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Towards the implementation:

Consider the nodal basis {φj}NTj=1 of VT of functions

φj ∈ VT : φj(xi) = δij , i, j = 1, 2, . . . , N

where xi, i = 1, 2, . . . , N denote the vertices of the triangulation.

Then, if v ∈ VT ,

v(x) =
NX
i=1

viφi(x) =
NX
i=1

v(xi)φi(x)

only three terms are added at each x

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Towards the implementation:

Consider the nodal basis {φj}NTj=1 of VT of functions

φj ∈ VT : φj(xi) = δij , i, j = 1, 2, . . . , N

where xi, i = 1, 2, . . . , N denote the vertices of the triangulation.

Then, if v ∈ VT ,

v(x) =
NX
i=1

viφi(x) =
NX
i=1

v(xi)φi(x) only three terms are added at each x

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementable FE formulation:

The finite element formulation:

Find uT ∈ VTΓD,gD

B[uT , vT] = F (vT), ∀vT ∈ VTΓD,0.

Writing uT =
PN
j=1 ujφj .

Equivalent formulation: Find uj , j = 1, 2, . . . , N , such that

= F (φi), i = 1, 2, . . . , N and xi /∈ ΓD

ui = gD(xi), i = 1, 2, . . . , N and xi ∈ ΓD

 a square N ×N linear system

Au = f

with
Aij = B[φj , φi] if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementable FE formulation:

The finite element formulation:

Find uT ∈ VTΓD,gD

B[uT , vT] = F (vT), ∀vT ∈ VTΓD,0.

Writing uT =
PN
j=1 ujφj .

Equivalent formulation: Find uj , j = 1, 2, . . . , N , such that

B

"
NX
j=1

ujφj , φi

#
= F (φi), i = 1, 2, . . . , N and xi /∈ ΓD

ui = gD(xi), i = 1, 2, . . . , N and xi ∈ ΓD

 a square N ×N linear system

Au = f

with
Aij = B[φj , φi] if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementable FE formulation:

The finite element formulation:

Find uT ∈ VTΓD,gD

B[uT , vT] = F (vT), ∀vT ∈ VTΓD,0.

Writing uT =
PN
j=1 ujφj .

Equivalent formulation: Find uj , j = 1, 2, . . . , N , such that

NX
j=1

ujB [φj , φi] = F (φi), i = 1, 2, . . . , N and xi /∈ ΓD

ui = gD(xi), i = 1, 2, . . . , N and xi ∈ ΓD

 a square N ×N linear system

Au = f

with
Aij = B[φj , φi] if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementable FE formulation:

The finite element formulation:

Find uT ∈ VTΓD,gD

B[uT , vT] = F (vT), ∀vT ∈ VTΓD,0.

Writing uT =
PN
j=1 ujφj .

Equivalent formulation: Find uj , j = 1, 2, . . . , N , such that

NX
j=1

ujB [φj , φi] = F (φi), i = 1, 2, . . . , N and xi /∈ ΓD

ui = gD(xi), i = 1, 2, . . . , N and xi ∈ ΓD

 a square N ×N linear system

Au = f

with
Aij = B[φj , φi] if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementable FE formulation:

Find uj , j = 1, 2, . . . , N , such that

NX
j=1

ujB [φj , φi] = F (φi), i = 1, 2, . . . , N and xi /∈ ΓD

ui = gD(xi), i = 1, 2, . . . , N and xi ∈ ΓD

 a square N ×N linear system

Au = f

with
Aij = B[φj , φi] if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementable FE formulation:

Find uj , j = 1, 2, . . . , N , such that

NX
j=1

ujB [φj , φi] = F (φi), i = 1, 2, . . . , N and xi /∈ ΓD

ui = gD(xi), i = 1, 2, . . . , N and xi ∈ ΓD

 a square N ×N linear system

Au = f

with

Aij = B[φj , φi] =

Z
Ω

a∇φj · ∇φi + b · ∇φjφi + c φjφi dx if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) =

Z
Ω

fφi dx+

Z
ΓN

gNφi ds if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementation:

We want a computer program that:

I Reads a triangulation defining the domain and the boundary regions

I Sets the equation parameters a, b, c, and data f , gD, gN

I Assembles the system matrix and right-hand side

I Solves the system and outputs the solution

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementation:

Observe that:Z
Ω

fφi dx =
X
T∈T

T⊂supp(φi)

Z
T

fφi dx

Z
ΓN

gNφi ds =
X
T∈T

T⊂supp(φi)

Z
∂T∩ΓN

gNφi ds =
X
S⊂ΓN

S⊂supp(φi)

Z
S

gNφi ds

Z
Ω

a∇φj · ∇φi dx =
X
T∈T

T⊂supp(φi)∩supp(φj)

Z
T

a∇φj · ∇φi

Z
Ω

b · ∇φj φi =
X
T∈T

T⊂supp(φi)∩supp(φj)

Z
T

b · ∇φj φi

Z
Ω

c φjφi dx =
X
T∈T

T⊂supp(φi)∩supp(φj)

Z
T

c φjφi dx

just a few!

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Implementation:

Observe that:Z
Ω

fφi dx =
X
T∈T

T⊂supp(φi)

Z
T

fφi dx

Z
ΓN

gNφi ds =
X
T∈T

T⊂supp(φi)

Z
∂T∩ΓN

gNφi ds =
X
S⊂ΓN

S⊂supp(φi)

Z
S

gNφi ds

Z
Ω

a∇φj · ∇φi dx =
X
T∈T

T⊂supp(φi)∩supp(φj)

Z
T

a∇φj · ∇φi

Z
Ω

b · ∇φj φi =
X
T∈T

T⊂supp(φi)∩supp(φj)

Z
T

b · ∇φj φi

Z
Ω

c φjφi dx =
X
T∈T

T⊂supp(φi)∩supp(φj)

Z
T

c φjφi dx just a few!

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Assembly of the right-hand side

Consider the part

Z
Ω

fφi dx =
X
T∈T

T⊂supp(φi)

Z
T

fφi dx

Idea: Loop over the elements, for each element do:
I compute all the integrals that are nonzero at the element;
I add the computed integrals at the proper positions of the right-hand side

vector f .

1

2

3

48

57

6
global numbering

local numbering

6

48

57

1

2

3

f_el

fh

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Assembly of the right-hand side

Consider the part

Z
Ω

fφi dx =
X
T∈T

T⊂supp(φi)

Z
T

fφi dx

Idea: Loop over the elements, for each element do:
I compute all the integrals that are nonzero at the element;
I add the computed integrals at the proper positions of the right-hand side

vector f .

1

2

3

48

57

6
global numbering

local numbering

6

48

57

1

2

3

f_el

fh

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Assembly of the right-hand side

Consider the part

Z
Ω

fφi dx =
X
T∈T

T⊂supp(φi)

Z
T

fφi dx

Idea: Loop over the elements, for each element do:
I compute all the integrals that are nonzero at the element;
I add the computed integrals at the proper positions of the right-hand side

vector f .

1

2

3

48

57

6
global numbering

local numbering

6

48

57

1

2

3

f_el

fh

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Local basis functions

Observe that

φ48|T = ϕ1
T

φ57|T = ϕ2
T

φ6|T = ϕ3
T

Where ϕjT is the linear function on T
that equals one at the j-th local vertex
and zero at the others.

1

2

3

48

57

6
global numbering

local numbering

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Quadrature

We will use the quadrature formulaZ
T

g dx ≈ |T |
3

h
g(m12) + g(m23) + g(m31)

i
←− midpoint rule

which is exact for quadratic polynomials.

fel(1) =
|T |
3

»
f(m12)

1

2
+ f(m23) 0 + f(m31)

1

2

–
fel(2) =

|T |
3

»
f(m12)

1

2
+ f(m23)

1

2
+ f(m31) 0

–
fel(3) =

|T |
3

»
f(m12) 0 + f(m23)

1

2
+ f(m31)

1

2

–

1

2

3

T

m12

m23
m31

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Quadrature

We will use the quadrature formulaZ
T

g dx ≈ |T |
3

h
g(m12) + g(m23) + g(m31)

i
←− midpoint rule

which is exact for quadratic polynomials.

fel(1) =
|T |
3

»
f(m12)

1

2
+ f(m23) 0 + f(m31)

1

2

–
fel(2) =

|T |
3

»
f(m12)

1

2
+ f(m23)

1

2
+ f(m31) 0

–
fel(3) =

|T |
3

»
f(m12) 0 + f(m23)

1

2
+ f(m31)

1

2

–
1

2

3

T

m12

m23
m31

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Mesh representation

We will assume the existence of four files:

I vertex coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment.

1 2

34

5

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Mesh representation

We will assume the existence of four files:

I vertex coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment.

vertex coordinates.txt

0.0 0.0

1.0 0.0

1.0 1.0

0.0 1.0

0.5 0.5

1 2

34

5

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Mesh representation

We will assume the existence of four files:

I vertex coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment.

elem vertices.txt

1 2 5

2 3 5

3 4 5

4 1 5

1 2

34

5

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Mesh representation

We will assume the existence of four files:

I vertex coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment.

dirichlet.txt

1

2

3

1 2

34

5

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Mesh representation

We will assume the existence of four files:

I vertex coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment.

neumann.txt

3 4

4 1

1 2

34

5

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Mesh representation

We will assume the existence of four files:

I vertex coordinates.txt: containing the coordinates of the vertices of
the mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three
vertices of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment.

Mesh Generation

In the folder fixed mesh there are two
OCTAVE functions that generate meshes:

I gen mesh rectangle.m

I gen mesh L shape.m

1 2

34

5

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Back to the assembly

Let us see some parts of the code fem.m

Initialization

coef_a = 1.0;

coef_c = 1.0;

fc_f = inline(’sin(pi*x(1))*sin(pi*x(2))’, ’x’);

fc_gD = inline(’1’, ’x’);

fc_gN = inline(’0’, ’x’);

vertex_coordinates = load(’vertex_coordinates.txt’);

elem_vertices = load(’elem_vertices.txt’);

dirichlet = load(’dirichlet.txt’);

neumann = load(’neumann.txt’);

n_vertices = size(vertex_coordinates, 1);

n_elem = size(elem_vertices, 1);

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Back to the assembly

Let us see some parts of the code fem.m

Loop over elements

fh = zeros(n_vertices, 1);

for el = 1 : n_elem

v_elem = elem_vertices(el, :);

v1 = vertex_coordinates(v_elem(1), :)’ ; % coords. of 1st vertex of elem.

v2 = vertex_coordinates(v_elem(2), :)’ ; % coords. of 2nd vertex of elem.

v3 = vertex_coordinates(v_elem(3), :)’ ; % coords. of 3rd vertex of elem.

m12 = (v1 + v2) / 2; % midpoint of side 1-2

m23 = (v2 + v3) / 2; % midpoint of side 2-3

m31 = (v3 + v1) / 2; % midpoint of side 3-1

% evaluation of f at the quadrature points

f12 = fc_f(m12); f23 = fc_f(m23); f31 = fc_f(m31);

% element area

el_area = ...

% computation of the element load vector

f_el = [(f12+f31)*0.5 ; (f12+f23)*0.5 ; (f23+f31)*0.5] * (el_area/3);

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Back to the assembly

Let us see some parts of the code fem.m

Loop over elements

fh = zeros(n_vertices, 1);

for el = 1 : n_elem

v_elem = elem_vertices(el, :);

[...]

% computation of the element load vector

f_el = [(f12+f31)*0.5 ; (f12+f23)*0.5 ; (f23+f31)*0.5] ...

* (el_area/3);

% contributions added to the global load vector

fh(v_elem) = fh(v_elem) + f_el;

end

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Reference element and mapping

We let viT , i = 1, 2, 3 denote the vertex
coordinates of the element T .
In our example

v1
T = x48

v2
T = x57

v3
T = x6.

Then FT : T̂ → T

FT (x̂) = v1
T + x̂1(v2

T − v1
T) + x̂2(v3

T − v1
T)

= v1
T +

ˆ
v2
T − v1

T | v3
T − v1

T

˜| {z }
B

»
x̂1

x̂2

–

maps T̂ onto T , and

B = DFT

|T |
|T̂ |

= 2 |T | = det(B).

1

2

3

48

57

6

T

1 2

3 F

T

(1,0)(0,0)

(0,1)

T

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Reference element and mapping

We let viT , i = 1, 2, 3 denote the vertex
coordinates of the element T .

Then FT : T̂ → T

FT (x̂) = v1
T + x̂1(v2

T − v1
T) + x̂2(v3

T − v1
T)

= v1
T +

ˆ
v2
T − v1

T | v3
T − v1

T

˜| {z }
B

»
x̂1

x̂2

–

maps T̂ onto T , and

B = DFT

|T |
|T̂ |

= 2 |T | = det(B).

1

2

3

48

57

6

T

1 2

3 F

T

(1,0)(0,0)

(0,1)

T

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Reference element and mapping

If we define the basis functions on the reference ele-
ment φ̂i : T̂ → R as

φ̂1(x̂1, x̂2) = 1− x̂1 − x̂2

φ̂2(x̂1, x̂2) = x̂1

φ̂3(x̂1, x̂2) = x̂2

Then ϕiT = φ̂i ◦ F−1
T and φ̂i = ϕi ◦ FT .

And by the chain rule

∂φ̂i
∂x̂k

=
X
`

∂ϕi
∂x`

∂FT,`
∂xk

=
X
`

∂ϕi
∂x`

B`k = col
k

(B)·∇ϕi

Thus (if gradients are columns)

∇̂φ̂i = BT∇ϕi or ∇ϕi = B−T ∇̂φ̂i

1

2

3

48

57

6

T

1 2

3 F

T

(1,0)(0,0)

(0,1)

T

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Reference element and mapping

If we define the basis functions on the reference ele-
ment φ̂i : T̂ → R as

φ̂1(x̂1, x̂2) = 1− x̂1 − x̂2

φ̂2(x̂1, x̂2) = x̂1

φ̂3(x̂1, x̂2) = x̂2

Then ϕiT = φ̂i ◦ F−1
T and φ̂i = ϕi ◦ FT .

And by the chain rule

∂φ̂i
∂x̂k

=
X
`

∂ϕi
∂x`

∂FT,`
∂xk

=
X
`

∂ϕi
∂x`

B`k = col
k

(B)·∇ϕi

Thus (if gradients are columns)

∇̂φ̂i = BT∇ϕi or ∇ϕi = B−T ∇̂φ̂i

1

2

3

48

57

6

T

1 2

3 F

T

(1,0)(0,0)

(0,1)

T

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Reference element and mapping

If we define the basis functions on the reference ele-
ment φ̂i : T̂ → R as

φ̂1(x̂1, x̂2) = 1− x̂1 − x̂2

φ̂2(x̂1, x̂2) = x̂1

φ̂3(x̂1, x̂2) = x̂2

Then ϕiT = φ̂i ◦ F−1
T and φ̂i = ϕi ◦ FT .

And by the chain rule

∂φ̂i
∂x̂k

=
X
`

∂ϕi
∂x`

∂FT,`
∂xk

=
X
`

∂ϕi
∂x`

B`k = col
k

(B)·∇ϕi

Thus (if gradients are columns)

∇̂φ̂i = BT∇ϕi or ∇ϕi = B−T ∇̂φ̂i

1

2

3

48

57

6

T

1 2

3 F

T

(1,0)(0,0)

(0,1)

T

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

∇ϕj · ∇ϕi dx

Recall
∇̂φ̂i = BT∇ϕi or ∇ϕi = B−T ∇̂φ̂i

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

∇ϕj · ∇ϕi dx

Recall
∇̂φ̂i = BT∇ϕi or ∇ϕi = B−T ∇̂φ̂i

Then
∇ϕj · ∇ϕi = ∇ϕTj ∇ϕi = ∇̂φ̂Tj B−1B−T ∇̂φ̂i

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

∇ϕj · ∇ϕi dx

Recall
∇̂φ̂i = BT∇ϕi or ∇ϕi = B−T ∇̂φ̂i

Then
∇ϕj · ∇ϕi = ∇ϕTj ∇ϕi = ∇̂φ̂Tj B−1B−T ∇̂φ̂i

On the other hand, B is constant, and thusZ
T

∇ϕj · ∇ϕi dx =

Z
T̂

∇̂φ̂Tj B−1B−T ∇̂φ̂i| det(B)| dx̂ =
| det(B)|

2
∇̂φ̂Tj B−1B−T ∇̂φ̂i

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

∇ϕj · ∇ϕi dx

On the other hand, B is constant, and thusZ
T

∇ϕj · ∇ϕi dx =

Z
T̂

∇̂φ̂Tj B−1B−T ∇̂φ̂i| det(B)| dx̂ =
| det(B)|

2
∇̂φ̂Tj B−1B−T ∇̂φ̂i

Also

φ̂1 = 1− x̂1 − x̂2

φ̂2 = x̂1

φ̂3 = x̂2

=⇒ ∇̂φ̂1 =

»
−1
−1

–
∇̂φ̂2 =

»
1
0

–
∇̂φ̂3 =

»
0
1

–

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

∇ϕj · ∇ϕi dx

On the other hand, B is constant, and thusZ
T

∇ϕj · ∇ϕi dx =

Z
T̂

∇̂φ̂Tj B−1B−T ∇̂φ̂i| det(B)| dx̂ =
| det(B)|

2
∇̂φ̂Tj B−1B−T ∇̂φ̂i

Also

φ̂1 = 1− x̂1 − x̂2

φ̂2 = x̂1

φ̂3 = x̂2

=⇒ ∇̂φ̂1 =

»
−1
−1

–
∇̂φ̂2 =

»
1
0

–
∇̂φ̂3 =

»
0
1

–

Defining grd bas fcts =

»
−1 1 0
−1 0 1

–
we have that

el mat a =
| det(B)|

2
grd bas fcts

T (B−1B−T) grd bas fcts

is a 3× 3 matrix satisfying

mat elij =

Z
T

∇ϕj · ∇ϕi

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Back to the assembly

Let us see some parts of the code fem.m

Loop over elements

A = sparse(n_vertices, n_vertices);

for el = 1 : n_elem

v_elem = elem_vertices(el, :);

v1 = vertex_coordinates(v_elem(1), :)’ ; % coords. of 1st vertex of elem.

v2 = vertex_coordinates(v_elem(2), :)’ ; % coords. of 2nd vertex of elem.

v3 = vertex_coordinates(v_elem(3), :)’ ; % coords. of 3rd vertex of elem.

% derivative of the affine transformation from the reference

% element onto the current element

B = [v2-v1 v3-v1];

% element area

el_area = abs(det(B)) * 0.5;

% gradients of the basis functions in the reference element

grd_bas_fcts = [-1 -1 ; 1 0 ; 0 1]’ ;

Binv = inv(B);

% computation of the element matrix

el_mat = coef_a * grd_bas_fcts’ * (Binv*Binv’) * grd_bas_fcts * el_area;

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Back to the assembly

Let us see some parts of the code fem.m

Loop over elements

A = sparse(n_vertices, n_vertices);

for el = 1 : n_elem

v_elem = elem_vertices(el, :);

[...]

% gradients of the basis functions in the reference element

grd_bas_fcts = [-1 -1 ; 1 0 ; 0 1]’ ;

el_mat = coef_a * grd_bas_fcts’ * (Binv*Binv’) * grd_bas_fcts ...

* el_area;

% contributions added to the global matrix

A(v_elem, v_elem) = A(v_elem, v_elem) + el_mat;

end

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

ϕjϕi dx

Here we just use the midpoint rule:Z
T

ϕiϕi dx =
|T |
3

„
1

2

1

2
+

1

2

1

2
+ 0 0

«
= |T |1

6

and if i 6= jZ
T

ϕiϕj dx =
|T |
3

„
1

2

1

2
+

1

2
0 + 0

1

2

«
= |T | 1

12

Therefore

el mat c = el area

2664
1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6

3775

1

2

3

T

m12

m23
m31

In the code

el_mat = coef_a*el_area * grd_bas_fcts’*(Binv*Binv’)*grd_bas_fcts ...

+ coef_c*el_area * [1/6 1/12 1/12; 1/12 1/6 1/12; 1/12 1/12 1/6];

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

ϕjϕi dx

Here we just use the midpoint rule:Z
T

ϕiϕi dx =
|T |
3

„
1

2

1

2
+

1

2

1

2
+ 0 0

«
= |T |1

6

and if i 6= jZ
T

ϕiϕj dx =
|T |
3

„
1

2

1

2
+

1

2
0 + 0

1

2

«
= |T | 1

12

Therefore

el mat c = el area

2664
1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6

3775
1

2

3

T

m12

m23
m31

In the code

el_mat = coef_a*el_area * grd_bas_fcts’*(Binv*Binv’)*grd_bas_fcts ...

+ coef_c*el_area * [1/6 1/12 1/12; 1/12 1/6 1/12; 1/12 1/12 1/6];

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

ϕjϕi dx

Here we just use the midpoint rule:Z
T

ϕiϕi dx =
|T |
3

„
1

2

1

2
+

1

2

1

2
+ 0 0

«
= |T |1

6

and if i 6= jZ
T

ϕiϕj dx =
|T |
3

„
1

2

1

2
+

1

2
0 + 0

1

2

«
= |T | 1

12

Therefore

el mat c = el area

2664
1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6

3775
1

2

3

T

m12

m23
m31

In the code

el_mat = coef_a*el_area * grd_bas_fcts’*(Binv*Binv’)*grd_bas_fcts ...

+ coef_c*el_area * [1/6 1/12 1/12; 1/12 1/6 1/12; 1/12 1/12 1/6];

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Computing

Z
T

b · ∇ϕj ϕi dx

The computation of Z
T

b · ∇ϕj ϕi dx

is left as exercise.

Do the computations and include the corresponding modifications into the
code.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Outline

Implementation of Linear Finite Elements on a Fixed Mesh

Implementation of Non-Homogeneous Boundary Conditions

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Boundary conditions

Recall that we need to solve
Au = f

with

Aij = B[φj , φi] =

Z
Ω

a∇φj · ∇φi + b · ∇φjφi + c φjφi dx if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) =

Z
Ω

fφi dx+

Z
ΓN

gNφi ds if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

But so far, for i, j = 1, 2, . . . , N

Aij = B[φj , φi], and fi =

Z
Ω

fφi dx.

This is ok if xi is not on ΓD, and the Neumann contribution is missing.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Boundary conditions

Recall that we need to solve
Au = f

with

Aij = B[φj , φi] =

Z
Ω

a∇φj · ∇φi + b · ∇φjφi + c φjφi dx if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) =

Z
Ω

fφi dx+

Z
ΓN

gNφi ds if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

But so far, for i, j = 1, 2, . . . , N

Aij = B[φj , φi], and fi =

Z
Ω

fφi dx.

This is ok if xi is not on ΓD, and the Neumann contribution is missing.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Boundary conditions

Recall that we need to solve
Au = f

with

Aij = B[φj , φi] =

Z
Ω

a∇φj · ∇φi + b · ∇φjφi + c φjφi dx if xi /∈ ΓD

Aij = δij if xi ∈ ΓD

fi = F (φi) =

Z
Ω

fφi dx+

Z
ΓN

gNφi ds if xi /∈ ΓD

fi = gD(xi), if xi ∈ ΓD

But so far, for i, j = 1, 2, . . . , N

Aij = B[φj , φi], and fi =

Z
Ω

fφi dx.

This is ok if xi is not on ΓD, and the Neumann contribution is missing.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Neumann boundary conditions

We now loop over the Neumann edges and add the contributionsZ
S

gN ϕi ds

to the corresponding entries on the right-hand side vector.
The integrals on the edges are approximated with Simpson’s ruleZ b

a

g dx ≈ b− a
6

h
g(a) + 4g(

a+ b

2
) + g(b)

i
which is exact for cubic polynomials.

Then Z
S

gN ϕ1 ds =
|S|
6

h
gN (v1

S) 1 + 4gN (m)
1

2
+ gN (v2

S) 0
i

Z
S

gN ϕ2 ds =
|S|
6

h
gN (v1

S) 0 + 4gN (m)
1

2
+ gN (v2

S) 1
i

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Neumann boundary conditions

We now loop over the Neumann edges and add the contributionsZ
S

gN ϕi ds

to the corresponding entries on the right-hand side vector.
The integrals on the edges are approximated with Simpson’s ruleZ b

a

g dx ≈ b− a
6

h
g(a) + 4g(

a+ b

2
) + g(b)

i
which is exact for cubic polynomials.
Then Z

S

gN ϕ1 ds =
|S|
6

h
gN (v1

S) 1 + 4gN (m)
1

2
+ gN (v2

S) 0
i

Z
S

gN ϕ2 ds =
|S|
6

h
gN (v1

S) 0 + 4gN (m)
1

2
+ gN (v2

S) 1
i

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Neumann boundary conditions (code)

Z
S

gN ϕ1 ds =
|S|
6

h
gN (v1

S) + 2gN (m)
i

Z
S

gN ϕ2 ds =
|S|
6

h
2gN (m) + gN (v2

S)
i

n_neumann_segments = size(neumann, 1);

for i = 1:n_neuman_segments

v_seg = neumann(i, :);

v1 = vertex_coordinates(v_seg(1) , :); % coords. of 1st vertex of segment

v2 = vertex_coordinates(v_seg(2) , :); % coords. of 2nd vertex of segment

segment_length = norm(v2-v1);

m = (v1 + v2) / 2;

g1 = fc_gN(v1); g2 = fc_gN(v2); gm = fc_gN(m);

f_seg = [g1 + 2 * gm ; 2 * gm + g2] * segment_length / 6;

fh(v_seg) = fh(v_seg) + f_seg;

end

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Dirichlet boundary conditions

If xi ∈ ΓD we have to change the i-th equation of the system:

I we have to set the i-th row of A to eTi ,

I the right-hand side fi should be g(xi).

This is done as follows in the code

for i = 1:length(dirichlet)

diri = dirichlet(i);

A(diri,:) = zeros(1, n_vertices);

A(diri,diri) = 1;

fh(diri) = fc_gD(vertex_coordinates(diri, :));

end

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Dirichlet boundary conditions

If xi ∈ ΓD we have to change the i-th equation of the system:

I we have to set the i-th row of A to eTi ,

I the right-hand side fi should be g(xi).

This is done as follows in the code

for i = 1:length(dirichlet)

diri = dirichlet(i);

A(diri,:) = zeros(1, n_vertices);

A(diri,diri) = 1;

fh(diri) = fc_gD(vertex_coordinates(diri, :));

end

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Use of provided scripts and functions

To solve a problem using fem, we must:
I Generate the files describing the mesh:

I vertex coordinates.txt: containing the coordinates of the vertices of the
mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three vertices
of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment. This file should not exist if all the boundary is Dirichlet.

I Set the following parameters and data inside fem.m
I Equation coefficients coef a, coef b and coef c corresponding to a, b, c,

respectively. They are assumed constant in this version, but feel free to
generalize the code. (remember that the convective term b · ∇u is not
implemented)

I Functions fc f, fc gD and fc gN, corresponding to f , gD, gN , respectively.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Use of provided scripts and functions

To solve a problem using fem, we must:
I Generate the files describing the mesh:

I vertex coordinates.txt: containing the coordinates of the vertices of the
mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three vertices
of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment. This file should not exist if all the boundary is Dirichlet.

I Set the following parameters and data inside fem.m
I Equation coefficients coef a, coef b and coef c corresponding to a, b, c,

respectively. They are assumed constant in this version, but feel free to
generalize the code. (remember that the convective term b · ∇u is not
implemented)

I Functions fc f, fc gD and fc gN, corresponding to f , gD, gN , respectively.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Use of provided scripts and functions

To solve a problem using fem, we must:
I Generate the files describing the mesh:

I vertex coordinates.txt: containing the coordinates of the vertices of the
mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three vertices
of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment. This file should not exist if all the boundary is Dirichlet.

I Set the following parameters and data inside fem.m
I Equation coefficients coef a, coef b and coef c corresponding to a, b, c,

respectively. They are assumed constant in this version, but feel free to
generalize the code. (remember that the convective term b · ∇u is not
implemented)

I Functions fc f, fc gD and fc gN, corresponding to f , gD, gN , respectively.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Use of provided scripts and functions

To solve a problem using fem, we must:
I Generate the files describing the mesh:

I vertex coordinates.txt: containing the coordinates of the vertices of the
mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three vertices
of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment. This file should not exist if all the boundary is Dirichlet.

I Set the following parameters and data inside fem.m
I Equation coefficients coef a, coef b and coef c corresponding to a, b, c,

respectively. They are assumed constant in this version, but feel free to
generalize the code. (remember that the convective term b · ∇u is not
implemented)

I Functions fc f, fc gD and fc gN, corresponding to f , gD, gN , respectively.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Use of provided scripts and functions

To solve a problem using fem, we must:
I Generate the files describing the mesh:

I vertex coordinates.txt: containing the coordinates of the vertices of the
mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three vertices
of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment. This file should not exist if all the boundary is Dirichlet.

I Set the following parameters and data inside fem.m
I Equation coefficients coef a, coef b and coef c corresponding to a, b, c,

respectively. They are assumed constant in this version, but feel free to
generalize the code. (remember that the convective term b · ∇u is not
implemented)

I Functions fc f, fc gD and fc gN, corresponding to f , gD, gN , respectively.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Use of provided scripts and functions

To solve a problem using fem, we must:
I Generate the files describing the mesh:

I vertex coordinates.txt: containing the coordinates of the vertices of the
mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three vertices
of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment. This file should not exist if all the boundary is Dirichlet.

I Set the following parameters and data inside fem.m
I Equation coefficients coef a, coef b and coef c corresponding to a, b, c,

respectively. They are assumed constant in this version, but feel free to
generalize the code. (remember that the convective term b · ∇u is not
implemented)

I Functions fc f, fc gD and fc gN, corresponding to f , gD, gN , respectively.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Use of provided scripts and functions

To solve a problem using fem, we must:
I Generate the files describing the mesh:

I vertex coordinates.txt: containing the coordinates of the vertices of the
mesh; one line per vertex.

I elem vertices.txt: containing the numbers (indices) of the three vertices
of each element; one line per element.

I dirichlet.txt: containing a list with the numbers of the vertices that lie
on the Dirichtlet part of the boundary ΓD; one line per vertex.

I neumann.txt: containing a list of segments that lie on ΓN , one line per
segment. This file should not exist if all the boundary is Dirichlet.

I Set the following parameters and data inside fem.m
I Equation coefficients coef a, coef b and coef c corresponding to a, b, c,

respectively. They are assumed constant in this version, but feel free to
generalize the code. (remember that the convective term b · ∇u is not
implemented)

I Functions fc f, fc gD and fc gN, corresponding to f , gD, gN , respectively.

Implementation of Adaptive Finite Elements Pedro Morin

Implementation of Linear Finite Elements on a Fixed Mesh Implementation of Non-Homogeneous Boundary Conditions

Exercises:

1. Solve Poisson equation with pure Dirichlet boundary conditions:

−∆u = f in Ω = (−1, 1)× (−1, 1)

u = gD on Γ = ∂Ω

Choose f and gD so that the exact solution u(x) = e−10|x|2 .
I Create the meshes using gen mesh rectangle with

N = M = 4, 8, 16, 32, 64.
I Solve the equations and compute the L2 and H1 errors using the provided

functions L2 err and H1 err. Compute the experimental orders of
convergence for both norms.

2. Repeat the previous exercise with Ω the L-shaped domain
(−1, 1)× (−1, 1) \ [0, 1]× [0, 1], and the exact solution given in polar
coordinates by

u(r, θ) = r2/3 sin
`2θ

3

´
.

Hints: f ≡ 0 and the meshes can be generated with gen mesh L shape.

Implementation of Adaptive Finite Elements Pedro Morin

	Implementation of Linear Finite Elements on a Fixed Mesh
	Implementation of Non-Homogeneous Boundary Conditions

