AMSC/CMSC 666
NUMERICAL ANALYSIS I
FINAL TAKEHOME EXAM (due 12/14/19 noon)

1 (20 pts) Basic 1-step methods. Counsider the following second order initial value problem modeling a
spring-dashpot system:
y" + 101y’ + 100y = sint, y(0) =2,4'(0) = 0. (1)

(a) Solve this problem by hand. To this end find first the solution to the homogeneous equation (natural
modes), and next a particular solution using the method of undetermined coefficients; note that the
eigenvalues of the characteristic equation are integers. Explain whether the problem is stiff or not.

(b) Convert (1) into a first order system, and write the forward Euler (FE), backward Euler (BE) and
Trapezoidal methods (TM).

(c) Write MATLAB programs that implement FE, BE, and TM with step-sizes h = 107* for k = 1,2,3 on
the interval (0, 10).

(d) Find the error between computed solutions of (c) and exact solution of (a) at ¢, = nh and plot the
results. Explain the results in terms of absolute stability, and draw conclusions.

2 (15 pts) Runge-Kutta method. Let f(t,y) be a C? function with bounded second derivatives. Let y(t) be
the solution of the initial value problem

y' = f(t,y), y(0)=yo. (2)

Consider the following implicit Runge-Kutta method with constant stepsize h:

h 1
Ynt+1 = Yn + hf (tn + 57 §(yn+1 + yn)) (3)

(a) Show that (3) has a unique solution for h sufficiently small.

(b) Define the truncation error 7,41 and show that 7,41 = O(h?). Hint: obtain an expression for y”(¢) by
differentiation of (2) and use Taylor expansion around (t,,y(tn))-

(c) Perform an error analysis and find the order of convergence.

(d) Consider the test equation f(¢,y) = Ay with A < 0. Prove that (3) is absolutely stable for all A > 0. Is
this method suitable for stiff problems? Justify your answer.

3 (20 pts) Nystrom method. Consider the following multistep method with constant stepsize h for (2):

h 2h Th
Yn+1 = Yn—1 + gf(tn727yn72> - ?f(tnfh ynfl) + ?f(tna yn) (4)

(a) Derive (4) by writing (3) in the integral form
tn+1
Wt =yt + [ S O)
tn—1
and approximating the integrand with a quadratic polynomial interpolating at t = t,_o,t,_1,tn.
(b) Define truncation error for (4) and determine its order directly using Taylor expansion.

(c) Give a direct proof of convergence, thereby establishing the global rate of convergence of (4).

4 (15 pts) Gear’s Formula (BDF(2)). Let the stepsize h be uniform. Interpolate (¢;,v;) (i =n—1,n,n+1)
with a polynomial p(t) of degree 2 and next set p'(tp41) = f(tnt1, Ynt1)-



(a) Deduce the following multistep backward differentiation formula (BDF)

4 1

2
n = 3Yn — SYn— =h tn sy Yn .
Yn+1 = g¥n ~ 3Un-1t 3 f(tnt1, Ynt1)

(b) Define truncation error 7,1 and use Taylor’s formula to prove that 7,.; is O(h?). Even though this
implies consistency, verify the consistency conditions directly.

(c¢) Study stability and convergence using the root condition. Conclude that this linear multistep method
is of 2nd order, namely max,, |y(t,) — y.| = O(h?).

(d) Verify absolute stability for all A < 0. Explain whether or not BDF(2) is well-suited for stiff problems.

5 (15 pts). Eztra credit. Solve Pb 1 with the following MATLAB built-in solvers:

odel5s: this is similar to the Gear’s multistep method or BDF;

ode113: this is the multistep method which combines Adams-Bashforth and Adams-Moulton formulas;

ode23: this is the single step method of Bogacki and Shampine of order 2-3.

ode45: this is a single step method of Dormand and Prince similar to Runge-Kutta-Fehlberg (4-5).

The basic syntax is

[T,Y]=solver(@function, [tO tf],y0,options),
where solver is any of the above solvers, function is an m file with the system of ODEs, t0 is the initial
condition, tf is the final condition, yO0 is the vector of initial values, T is a column vector of time points and
Y is a solution array (see handout for details). The argument options sets, among other things, the relative
and absolute accuracy, tells the solver if the Jacobian is constant in case of linear systems, and provides
statistics of the computation useful to determine the computational cost.

Note that multistep methods are selfstarting, namely they do not need starting values; this is achieved by
combining different methods of increasing order and adaptively selecting the mesh-size. Run the programs
with relative accuracy RelTol=10"2 and 10~*, JConstant=on and Stats=on. The syntax could be

options = odeset(’RelTol’,le-4,’JConstant’,on,’Stats’,on)

Compare the results and computational costs. Draw pictures of the computed and true solutions, and draw
conclusions.



