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NUMERICAL ANALYSIS I

HOMEWORK # 2 (Pbs 1-5 due Th 10/3)

1 (10 pts). Bidiagonalization. This problem shows how to reduce a square matrix A of order n to an upper
bidiagonal matrix B; this is useful to compute the SVD. Consider the following basic step

(P1 ·A) ·Q1 =


x x 0 · · · 0
0 x x · · · x
...

...
...

. . .
...

0 x x · · · x


where P1 and Q1 are both Householder matrices.

(a) Explain how to construct P1 and Q1 and perform an operation count. To do so, exploit the structure
of P1 and Q1 to avoid matrix-matrix multiplication.

(b) Explain how to construct a sequence of orthogonal matrices {Pi}n−1i=1 and {Qi}n−2i=1 such that

Pn−1 · · ·P1 ·A ·Q1 · · ·Qn−2 = B,

and perform an operation count for the entire process.

2 (10 pts). Roots of Orthogonal Polynomials. Let {pi} denote the set of monic polynomials (leading coefficient
equal to 1) which are orthogonal with respect to a weight ω. They satisfy the three term recursion

pj(x) = (x− δj)pj−1(x)− γ2j pj−2(x), δj =
〈xpj−1, pj−1〉
〈pj−1, pj−1〉

, γ2j =
〈pj−1, pj−1〉
〈pj−2, pj−2〉

,

for 1 ≤ j ≤ n where p0(x) = 1, p−1(x) = 0 and γ21 = 〈p0, p0〉. Show that the normalized polynomials

q0 =
p0
γ1
, q1 =

p1
γ1γ2

, q2 =
p2

γ1γ2γ3
, · · · , qn =

pn
γ1γ2γ3 · · · γn+1

satisfy the recursion

γjqj−2(x) + δjqj−1(x) + γj+1qj(x) = xqj−1(x) 1 ≤ j ≤ n.

Write this expression in matrix form using the following tridiagonal matrix Tn and vector qn(x)

Tn =


δ1 γ2
γ2 δ2 γ3

. . .
. . .

. . .

γn−1 δn−1 γn
γn δn

 , qn(x) =


q0(x)
q1(x)

...
qn−2(x)
qn−1(x)

 .

Let now x = xj be any root of qn for 1 ≤ j ≤ n. Show that xj is an eigenvalue of Tn with eigenvector qn(xj).
Computing the eigenvalues of Tn is a stable process to find the nodes of Gaussian quadrature rules. It turns
out that the corresponding weights ωj can be computed as well. If vj ∈ Rn is an eigenvector corresponding

to xj , i.e. vj is proportional to qn(xj), then ωj =
(v1

j )
2

‖vj‖22

∫ b

a
ω(x)dx where v1j is the first component of vj and

ω is the weight of the desirable integral.

3 (15 pts). Lobatto quadrature. This is a gaussian rule for integrating I(f) =
∫ 1

−1 f(x)dx except that it
includes ±1 as two preassigned abscissas. It has the form

I[f ] ≈ Qn[f ] = ω0f(−1) + ω1f(x1) + · · ·+ ωnf(xn) + ωn+1f(1),

with nodes xi and weights wi chosen so as to maximize the order of the integration method. Counting
degrees of freedom we expect the formula to be exact for polynomials of degree ≤ 2n + 1. This problem
explains how to determine the nodes and weights for any n and find these quantities for n = 2.

(a) Show that any polynomial p ∈ P2n+1 can be written as p(x) = `(x) + (1− x2)q(x) where q ∈ P2n−1 and
` ∈ P1 is the linear interpolant of p at the nodes ±1.



(b) Let pn ∈ Pn be an orthogonal polynomial to Pn−1 with the scalar product 〈f, g〉 =
∫ 1

−1 f(x)g(x)(1−x2)dx.

Determine the nodes {xi}ni=1 and weights {wi}ni=1 for a Gauss quadrature Q̂n[f ] =
∑n

i=1 wif(xi) that

approximates the integral Î[f ] =
∫ 1

−1 f(x)(1− x2)dx and is exact for f ∈ P2n−1.

(c) Exploit the relation

I[p− `] = Î[q] = Q̂[q] =

n∑
i=1

wi
p(xi)− `(xi)

1− x2i
= Q[p]−Q[`]

to determine the weights {ωi}ni=1 and impose the condition Q[`] = I[`] to find the weights ω0, ωn+1.

(d) Let f ∈ C2n+2[−1, 1]. Show the error estimate∣∣∣I[f ]−Qn[f ]
∣∣∣ ≤ C

(2n+ 2)!
‖f2n+2‖∞.

(e) Take n = 2, compute explicitly p0, p1, p2 and show that

x1 = − 1√
5
, x2 =

1√
5
, ω0 = ω3 =

1

6
, ω1 = ω2 =

5

6
.

4 (15 pts). Fast Fourier Transform and Denoising. This problem shows how a noisy signal can be transformed
to the frequency domain via the Fast Fourier Transform (FFT), clean via thresholding of the smallest
coefficients, and transform back to obtain a signal with less noise.

(a) Given the equally spaced 28 sampling points x = [1:256]*2*pi/256 in the interval [0, 2π], consider
the function values y = sin(5*x) and the noisy function values z = sin(5*x) + 0.1*randn(256,1)’.
The command randn(256,1) generates a normal distribution of 256 random numbers with zero mean and
variance one. Use plot(x,y,x,z) to plot both functions.

(b) Compute f = fft(z). Write a MATLAB function t = thresh(f,a) which computes the modulus of
each component of f using the commands conj and sqrt, and then zeros all entries with values < a.

(c) Compute s = ifft(t), the inverse FFT of t, for a = 2, 3, 4. Plot the three cases using plot(x,s)

and draw conclusions.

5 (10 pts). Discrete convolution. Let ΠN =
{

(ai)
∞
i=−∞ : ai ∈ C, ai+N = ai

}
denote the space of bi-infinite

N -periodic complex sequences. If a,b ∈ ΠN , let the convolution c = a ? b be defined by

ck =

N−1∑
j=0

ajbk−j 0 ≤ k ≤ N − 1.

(a) Perform an operation count (multiplication only) to show that this process takes O(N2) flops.

(b) Prove that the discrete Fourier transform converts convolution into multiplication, namely (FNc)k =
(FNa)k(FNb)k for all 0 ≤ k ≤ N − 1. Perform an operation count for the procedure that first computes
FNc and next finds c upon inverting FN . Draw conclusions.


