## AMSC/CMSC 666

## NUMERICAL ANALYSIS I

HOMEWORK # 2 (Pbs 1-5 due Th 10/3)

1 (10 pts). Bidiagonalization. This problem shows how to reduce a square matrix  $\mathbf{A}$  of order n to an upper bidiagonal matrix  $\mathbf{B}$ ; this is useful to compute the SVD. Consider the following basic step

$$(\mathbf{P}_1 \cdot \mathbf{A}) \cdot \mathbf{Q}_1 = \begin{bmatrix} x & x & 0 & \cdots & 0 \\ 0 & x & x & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & x & x & \cdots & x \end{bmatrix}$$

where  $\mathbf{P}_1$  and  $\mathbf{Q}_1$  are both Householder matrices.

- (a) Explain how to construct  $\mathbf{P}_1$  and  $\mathbf{Q}_1$  and perform an operation count. To do so, exploit the structure of  $\mathbf{P}_1$  and  $\mathbf{Q}_1$  to avoid matrix-matrix multiplication.
- (b) Explain how to construct a sequence of orthogonal matrices  $\{\mathbf P_i\}_{i=1}^{n-1}$  and  $\{\mathbf Q_i\}_{i=1}^{n-2}$  such that

$$\mathbf{P}_{n-1}\cdots\mathbf{P}_1\cdot\mathbf{A}\cdot\mathbf{Q}_1\cdots\mathbf{Q}_{n-2}=\mathbf{B},$$

and perform an operation count for the entire process.

2 (10 pts). Roots of Orthogonal Polynomials. Let  $\{p_i\}$  denote the set of monic polynomials (leading coefficient equal to 1) which are orthogonal with respect to a weight  $\omega$ . They satisfy the three term recursion

$$p_j(x) = (x - \delta_j)p_{j-1}(x) - \gamma_j^2 p_{j-2}(x), \qquad \delta_j = \frac{\langle xp_{j-1}, p_{j-1} \rangle}{\langle p_{j-1}, p_{j-1} \rangle}, \quad \gamma_j^2 = \frac{\langle p_{j-1}, p_{j-1} \rangle}{\langle p_{j-2}, p_{j-2} \rangle},$$

for  $1 \le j \le n$  where  $p_0(x) = 1, p_{-1}(x) = 0$  and  $\gamma_1^2 = \langle p_0, p_0 \rangle$ . Show that the normalized polynomials

$$q_0 = \frac{p_0}{\gamma_1}, \quad q_1 = \frac{p_1}{\gamma_1 \gamma_2}, \quad q_2 = \frac{p_2}{\gamma_1 \gamma_2 \gamma_3}, \cdots, q_n = \frac{p_n}{\gamma_1 \gamma_2 \gamma_3 \cdots \gamma_{n+1}}$$

satisfy the recursion

$$\gamma_i q_{i-2}(x) + \delta_i q_{i-1}(x) + \gamma_{i+1} q_i(x) = x q_{i-1}(x) \quad 1 \le i \le n.$$

Write this expression in matrix form using the following tridiagonal matrix  $T_n$  and vector  $\mathbf{q}_n(x)$ 

$$T_{n} = \begin{bmatrix} \delta_{1} & \gamma_{2} & & & & \\ \gamma_{2} & \delta_{2} & \gamma_{3} & & & \\ & \ddots & \ddots & \ddots & \\ & & \gamma_{n-1} & \delta_{n-1} & \gamma_{n} \\ & & & & \gamma_{n} & \delta_{n} \end{bmatrix}, \qquad \mathbf{q}_{n}(x) = \begin{bmatrix} q_{0}(x) \\ q_{1}(x) \\ \vdots \\ q_{n-2}(x) \\ q_{n-1}(x) \end{bmatrix}.$$

Let now  $x=x_j$  be any root of  $q_n$  for  $1 \le j \le n$ . Show that  $x_j$  is an eigenvalue of  $T_n$  with eigenvector  $\mathbf{q}_n(x_j)$ . Computing the eigenvalues of  $T_n$  is a stable process to find the nodes of Gaussian quadrature rules. It turns out that the corresponding weights  $\omega_j$  can be computed as well. If  $\mathbf{v}_j \in \mathbb{R}^n$  is an eigenvector corresponding to  $x_j$ , i.e.  $\mathbf{v}_j$  is proportional to  $\mathbf{q}_n(x_j)$ , then  $\omega_j = \frac{(v_j^1)^2}{\|\mathbf{v}_j\|_2^2} \int_a^b \omega(x) dx$  where  $v_j^1$  is the first component of  $\mathbf{v}_j$  and  $\omega$  is the weight of the desirable integral.

3 (15 pts). Lobatto quadrature. This is a gaussian rule for integrating  $I(f) = \int_{-1}^{1} f(x)dx$  except that it includes  $\pm 1$  as two preassigned abscissas. It has the form

$$I[f] \approx Q_n[f] = \omega_0 f(-1) + \omega_1 f(x_1) + \dots + \omega_n f(x_n) + \omega_{n+1} f(1),$$

with nodes  $x_i$  and weights  $w_i$  chosen so as to maximize the order of the integration method. Counting degrees of freedom we expect the formula to be exact for polynomials of degree  $\leq 2n + 1$ . This problem explains how to determine the nodes and weights for any n and find these quantities for n = 2.

(a) Show that any polynomial  $p \in \mathbb{P}_{2n+1}$  can be written as  $p(x) = \ell(x) + (1-x^2)q(x)$  where  $q \in \mathbb{P}_{2n-1}$  and  $\ell \in \mathbb{P}_1$  is the linear interpolant of p at the nodes  $\pm 1$ .

- (b) Let  $p_n \in \mathbb{P}_n$  be an orthogonal polynomial to  $\mathbb{P}_{n-1}$  with the scalar product  $\langle f, g \rangle = \int_{-1}^1 f(x)g(x)(1-x^2)dx$ . Determine the nodes  $\{x_i\}_{i=1}^n$  and weights  $\{w_i\}_{i=1}^n$  for a Gauss quadrature  $\widehat{Q}_n[f] = \sum_{i=1}^n w_i f(x_i)$  that approximates the integral  $\widehat{I}[f] = \int_{-1}^1 f(x)(1-x^2)dx$  and is exact for  $f \in \mathbb{P}_{2n-1}$ .
- (c) Exploit the relation

$$I[p-\ell] = \widehat{I}[q] = \widehat{Q}[q] = \sum_{i=1}^{n} w_i \frac{p(x_i) - \ell(x_i)}{1 - x_i^2} = Q[p] - Q[\ell]$$

to determine the weights  $\{\omega_i\}_{i=1}^n$  and impose the condition  $Q[\ell] = I[\ell]$  to find the weights  $\omega_0, \omega_{n+1}$ .

(d) Let  $f \in C^{2n+2}[-1,1]$ . Show the error estimate

$$\left| I[f] - Q_n[f] \right| \le \frac{C}{(2n+2)!} \|f^{2n+2}\|_{\infty}.$$

(e) Take n = 2, compute explicitly  $p_0, p_1, p_2$  and show that

$$x_1 = -\frac{1}{\sqrt{5}}, x_2 = \frac{1}{\sqrt{5}}, \quad \omega_0 = \omega_3 = \frac{1}{6}, \quad \omega_1 = \omega_2 = \frac{5}{6}.$$

4 (15 pts). Fast Fourier Transform and Denoising. This problem shows how a noisy signal can be transformed to the frequency domain via the Fast Fourier Transform (FFT), clean via thresholding of the smallest coefficients, and transform back to obtain a signal with less noise.

(a) Given the equally spaced  $2^8$  sampling points x = [1:256]\*2\*pi/256 in the interval  $[0, 2\pi]$ , consider the function values  $y = \sin(5*x)$  and the *noisy* function values  $z = \sin(5*x) + 0.1*randn(256,1)$ . The command randn(256,1) generates a normal distribution of 256 random numbers with zero mean and variance one. Use plot(x,y,x,z) to plot both functions.

(b) Compute f = fft(z). Write a MATLAB function t = thresh(f,a) which computes the modulus of each component of f using the commands conj and sqrt, and then zeros all entries with values < a.

(c) Compute s = ifft(t), the inverse FFT of t, for a = 2, 3, 4. Plot the three cases using plot(x,s) and draw conclusions.

5 (10 pts). Discrete convolution. Let  $\Pi_N = \{(a_i)_{i=-\infty}^{\infty} : a_i \in \mathbb{C}, a_{i+N} = a_i\}$  denote the space of bi-infinite N-periodic complex sequences. If  $\mathbf{a}, \mathbf{b} \in \Pi_N$ , let the convolution  $\mathbf{c} = \mathbf{a} \star \mathbf{b}$  be defined by

$$c_k = \sum_{j=0}^{N-1} a_j b_{k-j} \quad 0 \le k \le N-1.$$

- (a) Perform an operation count (multiplication only) to show that this process takes  $O(N^2)$  flops.
- (b) Prove that the discrete Fourier transform converts convolution into multiplication, namely  $(\mathcal{F}_N \mathbf{c})_k = (\mathcal{F}_N \mathbf{a})_k (\mathcal{F}_N \mathbf{b})_k$  for all  $0 \le k \le N 1$ . Perform an operation count for the procedure that first computes  $\mathcal{F}_N \mathbf{c}$  and next finds  $\mathbf{c}$  upon inverting  $\mathcal{F}_N$ . Draw conclusions.