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NUMERICAL ANALYSIS I
HOMEWORK # 2 (Pbs 1-5 due Th 10/3)

1 (10 pts). Bidiagonalization. This problem shows how to reduce a square matrix A of order n to an upper
bidiagonal matrix B; this is useful to compute the SVD. Consider the following basic step

z x 0 --- 0

0 = =z T
(Pl'A)'Q1: :

0 » =z T

where P; and Q; are both Householder matrices.

a) Explain how to construct P; and Q; and perform an operation count. To do so, exploit the structure
Explain how t truct P dQ d perf ti t. To d loit the struct
of Py and Q; to avoid matrix-matrix multiplication.

(b) Explain how to construct a sequence of orthogonal matrices {P;}7=' and {Q,}7- such that
P,1P1-A-Q - -Q, =B,

and perform an operation count for the entire process.

2 (10 pts). Roots of Orthogonal Polynomials. Let {p;} denote the set of monic polynomials (leading coefficient
equal to 1) which are orthogonal with respect to a weight w. They satisfy the three term recursion

5 — (xpj—1,pj-1) 2 (Pj-1,pj-1)
=L ALk A

pi(@) = (@ = 8)ps-1(2) = 1pj-ala). LA, o =

(pj-2,pj-2)
for 1 < j < n where po(x) = 1,p_1(x) = 0 and v = (po, po). Show that the normalized polynomials
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satisfy the recursion
Vj@j—2(®) +0;q5-1() + Vi+195(x) = xzgj—1(z) 1<j<n.

Write this expression in matrix form using the following tridiagonal matrix T, and vector q,(x)

01 e qo(x)
Y2 02 3 qi(z)
Yn—1 577,71 Tn anz(x)
Tn On, anl(l’)

Let now xz = z; be any root of ¢, for 1 < j < n. Show that z; is an eigenvalue of T}, with eigenvector q, (z;).
Computing the eigenvalues of T}, is a stable process to find the nodes of Gaussian quadrature rules. It turns
out that the corresponding weights w; can be computed as well. If v; € R™ is an eigenvector corresponding

1y2
to z;, i.e. v; is proportional to q,(x;), then w; = % f;w(a:)d:c where vjl- is the first component of v; and
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w is the weight of the desirable integral.

3 (15 pts). Lobatto quadrature. This is a gaussian rule for integrating I(f) = f_ll f(z)dx except that it
includes +1 as two preassigned abscissas. It has the form

I[f] = Qu[f] = wo f(=1) + wif(x1) + -+ + wn f(@n) + wnr1 f(1),

with nodes z; and weights w; chosen so as to maximize the order of the integration method. Counting
degrees of freedom we expect the formula to be exact for polynomials of degree < 2n + 1. This problem
explains how to determine the nodes and weights for any n and find these quantities for n = 2.

(a) Show that any polynomial p € Py,1 can be written as p(x) = £(z) + (1 — 2%)q(z) where g € Pa,,_1 and
£ € Py is the linear interpolant of p at the nodes +1.



(b) Let p,, € P,, be an orthogonal polynomial to P,,_; with the scalar product (f, g) = fil f(@)g(z)(1—2?)dz.
Determine the nodes {z;}; and weights {w;}?_; for a Gauss quadrature Q,[f] = Y., w;f(z;) that
approximates the integral f[f] = f_ll f(2)(1 — 2?)dx and is exact for f € Py, _1.

(c) Exploit the relation

Ip 0= Tld) = Q) = Y. w0 =550 — g1 - qi

to determine the weights {w;} ; and impose the condition Q[¢] = I¢] to find the weights wg,wp41.

(d) Let f € C*"*2[—1,1]. Show the error estimate

C
I _ n < 2n+2 co-
1= Qulfl| < g1
(e) Take n = 2, compute explicitly pg,p1,p2 and show that
1 1 1 )
1 = — y Lo = —= Wp =ws = =, W1 =Wz = ~.
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4 (15 pts). Fast Fourier Transform and Denoising. This problem shows how a noisy signal can be transformed
to the frequency domain via the Fast Fourier Transform (FFT), clean via thresholding of the smallest
coefficients, and transform back to obtain a signal with less noise.

(a) Given the equally spaced 2% sampling points x = [1:256]*2%pi/256 in the interval [0,27], consider
the function values y = sin(5*x) and the noisy function values z = sin(5%x) + 0.1*randn(256,1)’.
The command randn(256,1) generates a normal distribution of 256 random numbers with zero mean and
variance one. Use plot(x,y,x,z) to plot both functions.

(b) Compute £ = fft(z). Write a MATLAB function t = thresh(f,a) which computes the modulus of
each component of £ using the commands conj and sqrt, and then zeros all entries with values < a.

(c) Compute s = ifft(t), the inverse FFT of t, for a = 2, 3, 4. Plot the three cases using plot(x,s)
and draw conclusions.

5 (10 pts). Discrete convolution. Let Iy = {(a;)52 :a; € C,a;4n = a;} denote the space of bi-infinite

N-periodic complex sequences. If a,b € Iy, let thgiconvolution c = ax* b be defined by
N—-1
o= ajbp_; 0<k<N-1
j=0

(a) Perform an operation count (multiplication only) to show that this process takes O(N?) flops.

(b) Prove that the discrete Fourier transform converts convolution into multiplication, namely (Fyc); =
(Fna)p(Fnb)g for all 0 < k < N —1. Perform an operation count for the procedure that first computes
Fnc and next finds ¢ upon inverting Fy. Draw conclusions.



