MATH/AMSC 673 (Fall 2015)
PARTIAL DIFFERENTIAL EQUATIONS 1
HOMEWORK # 2 (Pbs 1-3 due Sep 29; Pbs 4-6 due Oct 8)

1 (15 pts). Mean value formula (Evans 2.5.3).

2 (20 pts). C? Regularity. This problem shows that the solution of Au = f with f
continuous may not be C?. However if f is Holder continuous, then so is D?u.

(a) Let £ > 0 be an integer, and consider the following Poisson equation in R? with polar
coordinates (r, ) (here i = /—1):

Au = e*g(r).
If g : [0,00) — R is continuous, we seek a solution u of the form
u(z,y) = re™u(r) = (z +iy)*o(r). (1)

Find a solution formula for v in terms of g.

Now suppose that g is smooth on (0,00) and continuous on [0, 00) with ¢g(0) = 0, and
that k = 2.

(b) Use (a) to show that rv’(r) and 72v”(r) are also continuous at r = 0 and vanish there.
(¢) Compute uy, u, and u,, directly from (1) in terms of v and its derivatives. Show that
Uge — 20(r) is necessarily continuous in R?.

(d) Prove that is it possible that u is C' in R?, but u,, does not remain bounded as
r — 0 (examine v(r)).

3 (15 pts). (Extension of Evans 2.5.5) Let © be a bounded domain in R". Let u €

C%(Q) N C(Q) satisfy
{—Au_f in 0 )

u=g on 0f2.
Show that there is a constant depending only on n and €2 such that

max |u(z)] < C(Iggg\f(wﬂ + max|g(x)).

Hint: Construct a supersolution of (2) (that is a function u™ € C%(Q) N C(Q) satisfying
—Aut > fin Q and ut > g on 99Q), and use the maximum principle.

4 (20 pts) Elliptic PDE. The following is a generalization of the Poisson’s equation and
corresponding methods.

(a) Energy Method. Let A(x) € R™"™ be a smooth, bounded, uniformly positive definite
matrix, and let ¢(x) > 0 and f(x) be smooth functions. Let v € C?(Q) N C°(Q) be a
minimizer of the functional

Tu] = /U (%Vu - A(z)Vu + %c(x)u2 — f(x)u)dx,

subject to the Dirichlet condition u = g on OU, with g continuous. Proceed as with the
Laplace’s equation to derive the weak formulation

/ Vu-A(z)Vo + c(x)uv = / fo, Vv € V := {v Lipschitz : v = 0 on U },
U U



and the PDE satisfied by u.

(b) Weak Mazimum Principle. Suppose f,g > 0. Show that w > 0. Hint: Show that
v = min(u, 0) is an admissible test function, and use it to conclude that u > 0. Use the
nontrivial fact that Vv = xp,<01Vu a.e.

(c) Uniqueness. Show that there can be only one minimizer of I[u| or, equivalently, only

one solution u € C%(U) N C°(U) of the corresponding PDE.

5 (15 pts) Lack of Regularity. This problem shows that a harmonic function may not
always be smooth up to the boundary. Let z = x 4 1y be a complex number. Consider
the analytic function f(z) = z* with 0 < @ = 7/w < 1. It is known that both the real
and imaginary parts of f are harmonic functions.

(a) Determine the imaginary part u of f in polar coordinates (r, #) and show that it solves
the homogeneous Dirichlet problem in the sector S = {0 < 6 < w}, that is u vanishes on
the boundary of S. Show that Vu is not bounded as r — 0 provided w > 7. This shows
the effect of reentrant corners in the regularity of w.

(b) Consider aw = 1/2. Show that u is harmonic in the semispace {y > 0} and satisfies
the mixed boundary conditions:

ou_

u=0 on{zr>0y=0} 5

0 on{z<0,y=0}.
Examine the regularity of u as » — 0. This illustrates the effect of changing boundary
conditions.

6 (20 pts) Poisson’s formula (Evans 2.5.8). Let w be harmonic in Q@ = R, and given
by Poisson’s formula. Assume the Dirichlet condition g is bounded and g(z) = |z|
for r € R" ! |z| < 1. Show that Vu is not bounded near z = 0. This shows that the
solution of Laplace’s equation with Lipschitz Dirichlet datum may not be Lipschitz. Hint:
Estimate M as A J 0.



