
MATH/AMSC 673 (Fall 2015)
PARTIAL DIFFERENTIAL EQUATIONS I

HOMEWORK # 2 (Pbs 1-3 due Sep 29; Pbs 4-6 due Oct 8)

1 (15 pts). Mean value formula (Evans 2.5.3).

2 (20 pts). C2 Regularity. This problem shows that the solution of ∆u = f with f
continuous may not be C2. However if f is Hölder continuous, then so is D2u.
(a) Let k ≥ 0 be an integer, and consider the following Poisson equation in R2 with polar
coordinates (r, θ) (here i =

√
−1):

∆u = eikθg(r).

If g : [0,∞)→ R is continuous, we seek a solution u of the form

u(x, y) = rkeikθv(r) = (x+ iy)kv(r). (1)

Find a solution formula for v in terms of g.
Now suppose that g is smooth on (0,∞) and continuous on [0,∞) with g(0) = 0, and
that k = 2.
(b) Use (a) to show that rv′(r) and r2v′′(r) are also continuous at r = 0 and vanish there.
(c) Compute ux, uy and uxx directly from (1) in terms of v and its derivatives. Show that
uxx − 2v(r) is necessarily continuous in R2.
(d) Prove that is it possible that u is C1 in R2, but uxx does not remain bounded as
r → 0 (examine v(r)).

3 (15 pts). (Extension of Evans 2.5.5) Let Ω be a bounded domain in Rn. Let u ∈
C2(Ω) ∩ C(Ω̄) satisfy {

−∆u = f in Ω

u = g on ∂Ω.
(2)

Show that there is a constant depending only on n and Ω such that

max
x∈U
|u(x)| ≤ C

(
max
x∈Ω̄
|f(x)|+ max

x∈∂Ω
|g(x)|

)
.

Hint: Construct a supersolution of (2) (that is a function u+ ∈ C2(Ω) ∩ C(Ω̄) satisfying
−∆u+ ≥ f in Ω and u+ ≥ g on ∂Ω), and use the maximum principle.

4 (20 pts) Elliptic PDE. The following is a generalization of the Poisson’s equation and
corresponding methods.
(a) Energy Method. Let A(x) ∈ Rn×n be a smooth, bounded, uniformly positive definite
matrix, and let c(x) ≥ 0 and f(x) be smooth functions. Let u ∈ C2(Ω) ∩ C0(Ω̄) be a
minimizer of the functional

I[u] =

∫
U

(1

2
∇u ·A(x)∇u+

1

2
c(x)u2 − f(x)u

)
dx,

subject to the Dirichlet condition u = g on ∂U , with g continuous. Proceed as with the
Laplace’s equation to derive the weak formulation∫

U

∇u ·A(x)∇v + c(x)uv =

∫
U

fv, ∀v ∈ V := {v Lipschitz : v = 0 on ∂U},



and the PDE satisfied by u.
(b) Weak Maximum Principle. Suppose f, g ≥ 0. Show that u ≥ 0. Hint: Show that
v = min(u, 0) is an admissible test function, and use it to conclude that u ≥ 0. Use the
nontrivial fact that ∇v = χ{u<0}∇u a.e.
(c) Uniqueness. Show that there can be only one minimizer of I[u] or, equivalently, only
one solution u ∈ C2(U) ∩ C0(Ū) of the corresponding PDE.

5 (15 pts) Lack of Regularity. This problem shows that a harmonic function may not
always be smooth up to the boundary. Let z = x + iy be a complex number. Consider
the analytic function f(z) = zα with 0 < α = π/ω < 1. It is known that both the real
and imaginary parts of f are harmonic functions.
(a) Determine the imaginary part u of f in polar coordinates (r, θ) and show that it solves
the homogeneous Dirichlet problem in the sector S = {0 < θ < ω}, that is u vanishes on
the boundary of S. Show that ∇u is not bounded as r → 0 provided ω > π. This shows
the effect of reentrant corners in the regularity of u.
(b) Consider α = 1/2. Show that u is harmonic in the semispace {y > 0} and satisfies
the mixed boundary conditions:

u = 0 on {x > 0, y = 0}, ∂u

∂ν
= 0 on {x < 0, y = 0}.

Examine the regularity of u as r → 0. This illustrates the effect of changing boundary
conditions.

6 (20 pts) Poisson’s formula (Evans 2.5.8). Let u be harmonic in Ω = Rn
+ and given

by Poisson’s formula. Assume the Dirichlet condition g is bounded and g(x) = |x|
for x ∈ Rn−1, |x| ≤ 1. Show that ∇u is not bounded near x = 0. This shows that the
solution of Laplace’s equation with Lipschitz Dirichlet datum may not be Lipschitz. Hint:
Estimate u(λen)−u(0)

λ
as λ ↓ 0.


