MATH/AMSC 673 (Fall 2015)

PARTIAL DIFFERENTIAL EQUATIONS I

HOMEWORK # 4 (Pbs 1-3 due Nov 5, Pbs 4-6 due Nov 12)

1 (15 pts) Regularizing effect. Let u be the solution of the homogeneous heat equation in the cylinder $\Omega \times (0, \infty)$ with vanishing Dirichlet data and initial condition g. Prove that

$$\int_{\Omega} |\nabla u(x,t)|^2 dx \le \frac{1}{t} \int_{\Omega} |g(x)|^2 dx.$$

This shows that an initial datum merely in $L^2(\Omega)$ leads to a solution with gradient in $L^2(\Omega)$ for all t > 0. Hint: To this end multiply the PDE by tu_t and use the energy method.

2 (10 pts). Backward heat equation. Consider the equation

$$\begin{cases} u_t + u_{xx} = 0, & 0 < x < 1, \quad t > 0 \\ u(0, t) = u(1, t) = 0. \end{cases}$$
 (1)

- (a) Show that solutions of the form u(x,t) = X(x)T(t) exist provided X(x) is proportional to $\sin(n\pi x)$ and T(t) to $e^{\pi^2 n^2 t}$ where n is any positive integer (separation of variables).
- (b) Show that an initial value problem for (1) is *ill-posed*: given $\epsilon > 0$ and M > 0 there exists an initial condition $g = u(\cdot, 0)$ such that

$$||g||_{C(\mathbf{R})} \le 1$$
 $||u(\cdot,t)||_{C(\mathbf{R})} \ge M \quad \forall \ t \ge \epsilon.$

3 (15 pts) Method of Reflection. (a) Find a representation formula for the solution of

$$\begin{cases} u_{tt} - u_{xx} = 0 & (|x| < 1, \ t > 0), \\ u(-1, t) = u(1, t) = 0 & (t > 0), \qquad u(x, 0) = g(x), \quad u_t(x, 0) = h(x) & (|x| < 1). \end{cases}$$

using d'Alembert's formula and the method of reflection (Hint: consider intervals of the form (2k-1, 2k+1) and (2k+1, 2k+3) with k integer and find suitable extensions of g, h to them).

(b) Consider the initial condition

$$u(x,0) = \max(0, 1-2|x|), \qquad u_t(x,0) = 0.$$

Solve and plot the solution for t = 0, 1/2, 3/4, 1, 5/4, 3/2, 7/4, 2. This shows the reflection effect of the end points $x = \pm 1$ in the resulting wave.

4 (20 pts) Equipartition of Energy (Evans 2.5.17). Let $u \in C^2$ solve the 1D wave equation

$$\begin{cases} u_{tt} - c^2 u_{xx} = 0 & (-\infty < x < \infty, \ t > 0), \\ u(x,0) = g(x), & u_t(x,0) = h(x) & (-\infty < x < \infty), \end{cases}$$

where g and h are smooth with compact support. The kinetic energy is $k(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x,t) dx$, and the potential energy is $p(t) = \frac{c^2}{2} \int_{-\infty}^{\infty} u_x^2(x,t) dx$. Prove

- (a) k(t) + p(t) is constant in time t;
- (b) k(t) = p(t) if t is sufficiently large. Can you quantify how big t should be? Hint: By d'Alembert's formula, for $F' = \frac{1}{2}(cg' + h)$ and $G' = \frac{1}{2}(cg' h)$,

$$u_t(x,t) = F'(x+ct) - G'(x-ct), \quad u_x(x,t) = c^{-1}F'(x+ct) + c^{-1}G'(x-ct).$$

5 (15 pts) Long time behavior (Evans 2.5.18). Let u solve the wave equation

$$\begin{cases} u_{tt} = \Delta u & \text{in } \mathbf{R}^3 \times (0, \infty) \\ u = g, \quad u_t = h & \text{on } \mathbf{R}^3 \times \{t = 0\}, \end{cases}$$

where g and h are smooth with compact support. Show that there exists a constant C such that

$$\max_{x \in \mathbf{R}^3} |u(x,t)| \le \frac{C}{\max(1,t)} \quad \forall \ t > 0.$$

Can you make the constant C explicit in terms of g and h?

6 (25 pts). Non-homogeneous wave equation. Let $f \in C(\mathbf{R} \times [0, \infty))$ and $u(x, t) = \frac{1}{2} \int_{C(x,t)} f(y,s) dy ds$ be the solution to

$$\begin{cases} u_{tt} - u_{xx} = f(x,t) & (-\infty < x < \infty, \ t > 0), \\ u(x,0) = 0, \quad u_t(x,0) = 0 & (-\infty < x < \infty). \end{cases}$$

(a) Show that $u \in C^1(\mathbf{R} \times [0, \infty))$ and

$$u_t(x,t) = \frac{1}{2} \int_0^t \left(f(x+t-s,s) + f(x-t+s,s) \right) ds$$
$$u_x(x,t) = \frac{1}{2} \int_0^t \left(f(x+t-s,s) - f(x-t+s,s) \right) ds$$

Hint: Write an integral representation for $h^{-1}(u(x+h,t)-u(x,t))$, decompose the domain C(x+h,t)-C(x,t) in three appropriate regions, and then estimate the integral $\int_{C(x+h,t)-C(x,t)} f(y,s) dy ds$.

- (b) Suppose now that $f \in C^1(\mathbf{R} \times [0, \infty))$. Show that $u \in C^2(\mathbf{R} \times [0, \infty))$ and u satisfies the PDE.
- (c) Conclude that $f \in C^k(\mathbf{R} \times [0, \infty))$ implies $u \in C^{k+1}(\mathbf{R} \times [0, \infty))$