
AMSC 715 Spring 2020
NUMERICAL METHODS FOR EVOLUTION PDE

HOMEWORK # 2

Pbs 1-2 due Th Mar 5, Pbs 3-4 due Th Mar 12, Pbs 5-6 due Th Mar 26

1 (15 pts). Neumann condition and discrete maximum principle. Given α, β ∈ R and
f ∈ C1[0, 1], consider the heat equation with mixed boundary conditions:

∂tu− ∂2
xu = f(x) x ∈ (0, 1), u(0, t) = α, ∂xu(1, t) = β.

(a) Finite difference method (FDM). Write an implicit FDM on a uniform partition
T = {xj}Mj=0 with 0 = x0 < x1 < · · ·xM = 1 and meshsize h and time step k with
approximate Neumann condition

Un+1
M − Un+1

M−1

h
= β.

Show that the truncation error Tn = (τnj )Mj=1 satisfies ‖Tn‖∞ ≤ C1(u)h+C2(u)k. Explain
the regularity of u involved in the constants C1(u) and C2(u).
(b) Maximum principle. Write the discrete problem for the vector Un+1 = (Un+1)Mj=1 as

KUn+1 = Ûn + kF,

where Ûn
j = Un

j if j < M and Ûn
M = 0. Both the matrix K and right-hand side F

are obtained by multiplying all the equations by k. Deduce the `∞-stability bounds
max1≤j≤M Un+1

j ≤ ‖Un‖∞ provided F ≤ 0 and min1≤j≤M Un+1
j ≥ −‖Un‖∞ provided

F ≥ 0. Conclude that the matrix K is nonsingular.
(c) Discrete barrier. Let w = w(x) be the solution of the 2-point boundary value problem:

w′′ = 1 x ∈ (0, 1), w(0) = 0, w′(1) = −1.

Show that W = (w(xj))
M
j=1 satisfies (KW)j ≤ Wj− k

2
for 1 ≤ j < M and (KW)M ≤ −k

2

provided h, k are sufficiently small.
(d) Error estimate. Let En = (u(xj, t

n)−Un
j )Mj=1 be the finite difference error. Show that

the auxiliary vector Vn+1 = En+1 + γW satisfies componentwise

KVn+1 ≤ V̂n + kTn − γk

2
≤ V̂n

provided γ > 0 is suitably chosen: how does it relate to k and h? Deduce the `∞-
upper estimate max1≤j≤M En

j ≤ Ĉ1(u)h + Ĉ2(u)k where the constants Ĉ1(u), Ĉ2(u) are
proportional to C1(u), C2(u). Modify the definition of Vn+1 to derive a lower bound for

min1≤j≤M En
j and finally the estimate ‖En‖∞ ≤ Ĉ1(u)h+ Ĉ2(u)k.

2 (15 pts). Advection-diffusion PDE and upwinding. Consider the PDE

∂tu− a∂2
xu+ b∂xu = f(x) x ∈ R,

with constants a, b > 0. Consider a uniform lattice {xj} of size h and uniform time-step
k. Write an implicit FDM with upwinding.



(a) Find the symbol S(hξ) of the implicit discrete operator and show that |S(hξ)| ≤ 1
for all h, k > 0.
(b) Derive the `2

h-stability bound ‖Un+1‖2 ≤ ‖Un‖2 + k‖Fn+1‖2 using von Neumann
analysis; here ‖V‖2

2 = h
∑

j∈Z V
2
j .

(c) Examine the truncation error Tn = (τnj )j∈Z and show that ‖Tn‖2,h ≤ C1(u)h+C2(u)k.
Make the regularity of u entering in the constants C1(u), C2(u) explicit.
(d) Derive an error estimate in `2

h.

3 (15 pts). Second order backward difference. The so-called BDF(2) is a popular 2-step
method for stiff equations. Given U0, U1, its semidiscrete version for the heat equation
reads:

3Un+1 − 4Un + Un−1

2k
−∆Un+1 = fn+1.

(a) Derive the method upon combining two BE methods with steps k and 2k in such a
way that the truncation error is of second order.
(b) Determine the truncation error directly using Taylor expansion.
(c) Use (a) to derive the following identity of L2(Ω)-norms upon multiplying the discrete
PDE by Un+1, integrating by parts, and assuming that Un+1 has vanishing trace:

‖Un+1−Un‖2−1

4
‖Un+1−Un−1‖2+

3

4
‖Un+1‖2−‖Un‖2+

1

4
‖Un−1‖2+k‖∇Un+1‖2 = k〈fn+1, Un+1〉.

(d) Use (c) to prove the following L2-stability bound

‖UN+1‖2 + 2
N∑

n=1

k‖∇Un+1‖2 ≤ 5‖U0‖2 + 6‖U1‖2 + 2
N∑

n=1

k‖fn+1‖2
H−1(Ω).

Hint: use the triangle inequality in the form ‖φ1 + φ2‖2 ≤ (1 + δ)‖φ1‖2 + (1 + δ−1)‖φ2‖2

for any δ > 0, add over n, and look for cancellations.

4 (15 pts). Semidiscrete finite element method. Problem 10.4 in Larsson and Thomée.

5 (25 pts). MATLAB: FEM for the Heat Equation. (a) Modify the MATLAB code
fem in the website http://www.math.umd.edu/~rhn/teaching.html by adding a loop
1 ≤ n ≤ N to account for a backward Euler discretization of the time variable.
(b) Let Ω = (0, 1)2 and T = 1. Let a Neumann condition gN be imposed on the side
x = 1, and a Dirichlet condition gD on the rest of the boundary ∂Ω. Let

u(x, y, t) = sin(3πx)e−y−2t.

be the exact solution. Find gD, gN and the forcing f = ∂tu−∆u.
(c) Compute the discrete solution U at T = 1, along with the L2, H1, and L∞ errors. To
this end, use the relation k = h2 between time-step and meshsize, and find the discrete
solution for meshsizes h = 2−j with j = 3, 4, 5, 6. Plot the discrete solution at T = 1
for h = 2−4 and plot the three errors in terms of h in a log-log scale. Verify the decay
‖u(T )− U(T )‖ ≈ hs and relate s to theory.
(d) Repeat (a) and (c) for the Crank-Nicolson method, this time with a relation k = h.
Compare with (c) and draw conclusions.

6 (15 pts). Crank-Nicolson-Galerkin method. Problem 10.7 of Larsson and Thomée.


