
AMSC 715 Spring 2019
NUMERICAL METHODS FOR EVOLUTION PDE

HOMEWORK # 4

Pbs 1-2 due Th May 2, Pbs 3-4 due Th May 9, Pbs 5-7 due Tu May 21

1 (15 pts). Lax-Wendroff Scheme: (a) Problem 12.2 of Larsson and Thomée.
(b) Show that the scheme in p.191 of Larsson and Thomée can be written as
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(c) Prove that the method is of second order by direct use of Taylor expansion.

2 (20 pts). MATLAB. (a) Consider the linear 1st order hyperbolic PDE ut +ux = 0. in the space interval
Ω = (−1, 1) and time interval (0, 0.5). Let the initial conditions be either

v(x) = max(1− 4|x + 0.25|, 0), v(x) =

{
1 x ≤ −0.25

0 x > −0.25

and boundary conditions U0 = v(−1) at x0 = −1 (inflow) and Un
J = Un

J−1 at xJ = 1 (outflow).
Implement the following schemes for arbitrary k, h: (i) Upwind, (ii) Lax-Friedrichs, (iii) Lax-Wendroff.
(b) Run the programs with k

h = 0.8 and h = 0.01, 0.005, 0.0025, and plot both the computed and true
solutions at t = 0.5.
(c) Compare the methods in terms of the smearing effect around corners and jumps and the presence of
oscillations.

3 (15 pts) Convex flux. Consider the Cauchy problem for Burgers’ equation ut + uux = 0 with initial
condition

u0(x) = 1 for |x| > 1; u0(x) = |x| for |x| < 1.

(a) Sketch the characteristics in the (x,t) plane. Find a classical solution (continuous and piecewise C1).
Determine the time of breakdown (shock formation).
(b) Find a weak solution globally for t > 0, containing a shock curve. Note that the shock does not move
with constant speed. Therefore, find first the solution away from the shock. Then, use the Rankine-
Hugoniot condition to find a differential equation for the position of the shock given by (x = s(t), t) in
the (x, t)-plane.

4 (15 pts). Nonconvex flux. The Buckley-Leverett equation is a simple model for two-phase fluid flow in
a porous medium with flux

f(u) =
u2

u2 + 1
2 (1− u)2

.

In secondary oil recovery, water is pumped into some wells to displace the oil remaining in the under-
ground rocks. Therefore u represents the saturation of water, namely the percentage of water in the
water-oil fluid, and varies between 0 and 1. Find the entropy solution to the Riemann problem with
initial states

u0(x) = 1 for x < 0; u0(x) = 0 for x > 0.

Hint: The line through the origin that is tangent to the graph of f on the interval [0, 1] has slope
1/(
√

3− 1) and touches the curve at u = 1/
√

3.

5 (10 pts). Engquist-Osher Scheme. Let f(0) = 0 and consider the numerical flux

F (uL, uR) =

∫ uL

0

max(f ′(s), 0)ds +

∫ uR

0

min(f ′(s), 0)ds



(a) Show that the resulting method is consistent and monotone.
(b) Show that F (uL, uR) can be equivalently written as
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(c) If f(u) = u2/2 show that F (uL, uR) can be equivalently written as
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.

6 (10 pts). Lax-Friedrichs Scheme. This method reads
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(a) Show that the corresponding numerical flux reads

F (uL, uR) =
1

2
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f(uL) + f(uR)

)
+

h

2∆t
(uL − uR).

(b) Show that this method is consistent and monotone.

7 (15 pts). Godunov Scheme. This method comes from solving exactly 1d Riemann problems with
piecewise constant data (see Lucier’s notes).
(a) Assume that the flux f is convex. Show that the corresponding numerical flux can be written as

F (uL, uR) =

{
minuL≤u≤uR

f(u) uL ≤ uR

maxuR≤u≤uL
f(u) uR < uL.

This formula is still valid for any Lipschitz flux regardless of convexity.
(b) Show that this method is consistent and monotone.


