1 (15 pts). Lax-Wendroff Scheme: (a) Problem 12.2 of Larsson and Thomée.
(b) Show that the scheme in p.191 of Larsson and Thomée can be written as
\[\frac{U_j^{n+1} - U_j^n}{k} - \frac{U_{j+1}^n - U_{j-1}^n}{2h} = \frac{ka^2 U_{j+1}^n - 2U_j^n + U_{j-1}^n}{h^2} = 0. \]
(c) Prove that the method is of second order by direct use of Taylor expansion.

2 (20 pts). MATLAB. (a) Consider the linear 1st order hyperbolic PDE
\[u_t + u_x = 0 \]
in the space interval \(\Omega = (-1, 1) \) and time interval \((0, 0.5) \). Let the initial conditions be either
\[v(x) = \max(1 - 4|x + 0.25|, 0), \quad v(x) = \begin{cases} 1 & x \leq -0.25 \\ 0 & x > -0.25 \end{cases} \]
and boundary conditions \(U_0 = v(-1) \) at \(x_0 = -1 \) (inflow) and \(U^n_J = U_{j-1}^n \) at \(x_j = 1 \) (outflow).
Implement the following schemes for arbitrary \(k, h \): (i) Upwind, (ii) Lax-Friedrichs, (iii) Lax-Wendroff.
(b) Run the programs with \(\frac{k}{h} = 0.8 \) and \(h = 0.01, 0.005, 0.0025 \), and plot both the computed and true solutions at \(t = 0.5 \).
(c) Compare the methods in terms of the smearing effect around corners and jumps and the presence of oscillations.

3 (15 pts) Convex flux. Consider the Cauchy problem for Burgers’ equation \(u_t + uu_x = 0 \) with initial condition
\[u_0(x) = \begin{cases} 1 & \text{for } |x| > 1; \\ |x| & \text{for } |x| < 1. \end{cases} \]
(a) Sketch the characteristics in the (x,t) plane. Find a classical solution (continuous and piecewise \(C^1 \)). Determine the time of breakdown (shock formation).
(b) Find a weak solution globally for \(t > 0 \), containing a shock curve. Note that the shock does not move with constant speed. Therefore, find first the solution away from the shock. Then, use the Rankine-Hugoniot condition to find a differential equation for the position of the shock given by \((x = s(t), t) \) in the \((x, t)\)-plane.

4 (15 pts) Nonconvex flux. The Buckley-Leverett equation is a simple model for two-phase fluid flow in a porous medium with flux
\[f(u) = \frac{u^2}{u^2 + \frac{1}{2}(1 - u)^2}. \]
In secondary oil recovery, water is pumped into some wells to displace the oil remaining in the underground rocks. Therefore \(u \) represents the saturation of water, namely the percentage of water in the water-oil fluid, and varies between 0 and 1. Find the entropy solution to the Riemann problem with initial states
\[u_0(x) = 1 \quad \text{for } x < 0; \quad u_0(x) = 0 \quad \text{for } x > 0. \]
Hint: The line through the origin that is tangent to the graph of \(f \) on the interval \([0, 1]\) has slope \(1/(\sqrt{3} - 1) \) and touches the curve at \(u = 1/\sqrt{3} \).

5 (10 pts) Engquist-Osher Scheme. Let \(f(0) = 0 \) and consider the numerical flux
\[F(u_L, u_R) = \int_0^{u_L} \max(f'(s), 0) ds + \int_0^{u_R} \min(f'(s), 0) ds \]
(a) Show that the resulting method is consistent and monotone.
(b) Show that $F(u_L, u_R)$ can be equivalently written as
$$F(u_L, u_R) = \frac{1}{2} (f(u_L) + f(u_R) - \int_{u_L}^{u_R} |f'(s)| ds).$$
(c) If $f(u) = u^2/2$ show that $F(u_L, u_R)$ can be equivalently written as
$$F(u_L, u_R) = \frac{1}{2} \left(\max(u_L, 0)^2 + \min(u_R, 0)^2 \right).$$

6 (10 pts). **Lax-Friedrichs Scheme.** This method reads
$$U_{j+1}^k - U_{j+1}^{k-1} + \frac{f(U_{j+1}^k) - f(U_{j-1}^k)}{2h} = 0.$$
(a) Show that the corresponding numerical flux reads
$$F(u_L, u_R) = \frac{1}{2} (f(u_L) + f(u_R)) + \frac{h}{2\Delta t} (u_L - u_R).$$
(b) Show that this method is consistent and monotone.

7 (15 pts). **Godunov Scheme.** This method comes from solving exactly 1d Riemann problems with piecewise constant data (see Lucier’s notes).
(a) Assume that the flux f is convex. Show that the corresponding numerical flux can be written as
$$F(u_L, u_R) = \begin{cases}
\min_{u_L \leq u \leq u_R} f(u) & u_L \leq u_R \\
\max_{u_R \leq u \leq u_L} f(u) & u_R < u_L.
\end{cases}$$
This formula is still valid for any Lipschitz flux regardless of convexity.
(b) Show that this method is consistent and monotone.