AMSC 715  Spring 2019
NUMERICAL METHODS FOR EVOLUTION PDE

HOMEWORK # 4
Pbs 1-2 due Th May 2, Pbs 3-4 due Th May 9, Pbs 5-7 due Tu May 21

1 (15 pts). Laz-Wendroff Scheme: (a) Problem 12.2 of Larsson and Thomée.
(b) Show that the scheme in p.191 of Larsson and Thomée can be written as
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(¢) Prove that the method is of second order by direct use of Taylor expansion.

2 (20 pts). MATLAB. (a) Consider the linear 1st order hyperbolic PDE w; 4+ u, = 0. in the space interval
= (—1,1) and time interval (0,0.5). Let the initial conditions be either

1 < -0.25
v(z) = max(l — 4|z +0.25[,0),  v(z)= {() z > 025

and boundary conditions Uy = v(—1) at 29 = —1 (inflow) and U} = U}_; at z; = 1 (outflow).
Implement the following schemes for arbitrary k, h: (i) Upwind, (ii) Lax-Friedrichs, (iii) Lax-Wendroff.

(b) Run the programs with % = 0.8 and h = 0.01,0.005,0.0025, and plot both the computed and true
solutions at ¢t = 0.5.

(c¢) Compare the methods in terms of the smearing effect around corners and jumps and the presence of
oscillations.

3 (15 pts) Convex flux. Consider the Cauchy problem for Burgers’ equation u; + uu, = 0 with initial
condition
up(x) =1 for |z| > 1; ug(x) = |z| for |z| < 1.

(a) Sketch the characteristics in the (x,t) plane. Find a classical solution (continuous and piecewise C'!).
Determine the time of breakdown (shock formation).

(b) Find a weak solution globally for ¢ > 0, containing a shock curve. Note that the shock does not move
with constant speed. Therefore, find first the solution away from the shock. Then, use the Rankine-
Hugoniot condition to find a differential equation for the position of the shock given by (z = s(t),t) in
the (z,t)-plane.

4 (15 pts). Nonconvez fluz. The Buckley-Leverett equation is a simple model for two-phase fluid flow in
a porous medium with flux
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In secondary oil recovery, water is pumped into some wells to displace the oil remaining in the under-
ground rocks. Therefore u represents the saturation of water, namely the percentage of water in the
water-oil fluid, and varies between 0 and 1. Find the entropy solution to the Riemann problem with
initial states

up(x) =1 for x <O0; ug(x) =0 for x > 0.

Hint: The line through the origin that is tangent to the graph of f on the interval [0,1] has slope
1/(v/3 — 1) and touches the curve at v = 1/v/3.

5 (10 pts). Engquist-Osher Scheme. Let f(0) = 0 and consider the numerical flux

F(up,ug) = /OuL max(f’(s),0)ds + /OuR min(f’(s),0)ds



(a) Show that the resulting method is consistent and monotone.
(b) Show that F(ur,ur) can be equivalently written as
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(c) If f(u) = u?/2 show that F(ur,ur) can be equivalently written as

1
F(up,ug) = §(max(uL, 0)? + min(ug, 0)2).

6 (10 pts). Laz-Friedrichs Scheme. This method reads
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(a) Show that the corresponding numerical flux reads

F(up,ug) = %(f(uL) + f(uR)) + %(UL — UR)-

(b) Show that this method is consistent and monotone.
7 (15 pts). Godunov Scheme. This method comes from solving exactly 1d Riemann problems with

piecewise constant data (see Lucier’s notes).
(a) Assume that the flux f is convex. Show that the corresponding numerical flux can be written as

F(’LLL UR) _ minuLguguR f(u) ur, S UR
’ maxy ,<u<uy Jf(U) up < ur,.

This formula is still valid for any Lipschitz flux regardless of convexity.
(b) Show that this method is consistent and monotone.



