Deriving the Formula for the Sum of a Double Geometric Series

In Chapter 13, in the section entitled "The analysis", I promise to supply the formula for the sum of a double geometric series and the mathematical derivation of it. Here it is.

Consider a sum of terms each of which contains a product of two quantities, one involving a number or variable raised to successively higher powers, and the other involving a different number or variable raised to successively lower powers:

$$
y^{n}+x y^{n-1}+x^{2} y^{n-2}+\ldots+x^{n-2} y^{2}+x^{n-1} y+x^{n}
$$

The trick in adding up this double geometric series is to factor out an expression involving x in order to make it look like an ordinary geometric series. In fact, if you factor out x^{n} from every term, the double series becomes:

$$
\begin{aligned}
& x^{n}\left(\frac{y^{n}}{x^{n}}+\frac{y^{n-1}}{x^{n-1}}+\frac{y}{x}+1\right)= \\
& x^{n}\left(1+\left(\frac{y}{x}\right)+\ldots+\left(\frac{y}{x}\right)^{n}\right) .
\end{aligned}
$$

Lo and behold, the expression inside the parentheses is an ordinary geometric series in the quantity y / x. Using Formula 1 on the page "Deriving the Formula for the Sum of a Geometric Series", we now obtain the expression

$$
\begin{aligned}
& x^{n}\left(\frac{1-(y / x)^{n+1}}{1-(y / x)}\right)=\frac{x^{n+1}}{x}\left(\frac{1-(y / x)^{n+1}}{1-(y / x)}\right) \\
& =\frac{x^{n+1}-y^{n+1}}{x-y}
\end{aligned}
$$

Now the precise expression that we needed to add up in Chapter 2 was of the form

$$
x y^{n-1}+x^{2} y^{n-2}+\ldots+x^{n-2} y^{2}+x^{n-1} y+x^{n}
$$

that is, the leading term y^{n} was omitted. Therefore, to add that series up, we only need to factor out an x, and use the formula in the case that the largest power is $n-1$, namely:

$$
x\left(y^{n-1}+x y^{n-2}+\ldots+x^{n-2} y+y^{n-1}\right)=x \frac{x^{n}-y^{n}}{x-y} .
$$

This formula is then applied in Chapter 13 with $x=(1+r)$ and $y=(1+s)$, where r is an interest rate and s is an escalation rate.

