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LIPSCHITZ ANALYSIS OF GENERALIZED PHASE RETRIEVABLE
MATRIX FRAMES*

RADU BALANT AND CHRIS B. DOCK#

Abstract. The classical phase retrieval problem arises in contexts ranging from speech recog-
nition to x-ray crystallography and quantum state tomography. The generalization to U(r) phase
retrieval of matrix frames is natural in the sense that it corresponds to quantum tomography of
impure states. We provide computable global stability bounds for the quasi-linear analysis map S
and a path forward for understanding related problems in terms of the differential geometry of key
spaces. In particular, we manifest a Whitney stratification of the positive semidefinite matrices of
low rank which allows us to “stratify” the computation of the global stability bound. We show that
for the impure state case no such global stability bounds can be obtained for the non-linear analy-
sis map a with respect to certain natural distance metrics. Finally, our computation of the global
lower Lipschitz constant for the 8 analysis map provides novel conditions for a matrix frame to be
generalized phase retrievable when r > 1.
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1. Introduction. Let H = C™*" with n > r be the Hilbert space of tall matrices
with complex entries, equipped with the real inner product (z, w)g = Rtr{z*w}, where
z* denotes the transpose complex conjugate of z (the hermitian conjugate). We denote
by (z,w)c = tr{z*w} the complex inner product and by Ran(z) = {zu|u € C"} the
range of z as an operator z : C" — C". Let C?*" be the open subset of C"*" consisting
of full rank tall matrices. For p > 1 we denote by ||z||, the pth Schatten norm of z,
that is to say the I, norm of the singular values of z. The pseudo-inverse of z will be
denoted z'. Let U(r) be the Lie group of r x r matrices with entries in C satisfying
U*U = 1. We denote by C"*"/U(r) and C?*"/U(r) the set of equivalence classes in
C™*" and C*" respectively under the equivalence relation z ~ w if and only if there
exists U € U(r) such that z = wU. Let SP2(C™) denote the set of symmetric operators
(hermitian matrices) on C™ having at most p positive and ¢ negative eigenvalues, and
gp’q((C”) the set of symmetric operators (hermitian matrices) on C™ having exactly p
positive and ¢ negative eigenvalues. The set C"*" /U(r) may then be identified with
Sm0(C™) and C™ 7 /U(r) with S™°(C™) via Cholesky decomposition. Being a finite
dimensional space, a frame for C**" is a collection {f; 7ty C C™" that spans C"*".
In particular, {f;}}2, is frame if and only if there exist A, B > 0 (called frame bounds)
satisfying Al|z|[3 < > |(fj,2)r|* < B||z]|3 for all 2 € C"*". This condition may
also be written A||z]|3 < YA, 22 )R < Bl|z]|3 for all z € C"*" where A; = f; f7.
Using this fact, we may extend the concept of a frame for C™*" to collections of
symmetric matrices {A;}7., C Sym(C"). Fix a frame for C"*", then that frame is
called generalized phase retrievable if the following map is injective:

B:C™/U(r) — R™
Bj(z):<Ajsz*>Ra jil,...,m

This definition is in agreement with the generalized phase retrieval problem laid out
in [27] for the case 7 = 1. Note that if A; = f;f7 then §;(z) = ||} 2[|5. A breadth of
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2 R. BALAN, C. DOCK

literature exists on the classical phase retrieval problem where r = 1 and H = C" or
H = R", see for example [4] for an explicit construction of Parseval phase retrievable
frames and [1] for a proof of the stability of finite dimensional phase retrievability
under perturbation of the frame vectors (in contrast to the finite dimensional case, it
is shown in [10] that infinite dimensional phase retrieval is never stable). Probabilistic
error bounds for the case of noisy phase retrieval may be found in [14] for frames
sampled from a subgaussian distribution satisfying a so called “small ball” assumption.
Efficient algorithms exist for doing classical phase retrieval (for example via Wirtinger
flow as in [12]), as well for constructing frames with desirable properties (nearly tight
with low coherence) as in [13]. See for example [25] for an analysis of the stability
statistics for random frames and [21] for the interesting result that a large class of
“non-peaky” vectors (so called p-flat vectors) are recoverable even when frame vectors
are chosen as Bernoulli random vectors, a case in which phase retrieval is well known to
fail for arbitrary signals. Recently several advances have been made in understanding
natural generalizations of the problem to arbitrary symmetric measurement matrices
[27], unifying the problem of phase retrieval with that of fusion frame reconstruction.
Lipschitz stability questions for the generalized phase retrieval are analyzed in [31].
The generalized phase retrieval problem in the case = 1 has proven amenable to
efficient implementations of gradient descent [22] and a probabilistic guarantee of
global convergence of first order methods like gradient descent has been obtained in
23] for O(nlog®(n)) frame vectors. In accordance with the classical phase retrieval
we also define the o map as the entry-wise square root of the beta map (here we
require that each A; > 0):

a:C™"/U(r) — R™
(1.2) N .
aj(z) = (Aj, 222, j=1,....m

Note that if we write A; = f; f; using Cholesky decomposition then a;(z) = [[f; z||2.
In this paper we will study the global and local Lipschitz properties of these two maps
in the case that the frame is generalized phase retrievable. In particular, we analyze
the following (squared) global Lipschitz constants:

(1.3)  ap:= 1@ =Wl . o 1@ = BWII
syec [lzz* —yy*|[3 wpecncr 8Tt — yy*]3
z#yY aty
18 Ay e J@—e@B o lla@) - o
: T 1 1 5 = 1 1
eyeC™ < ||(za*)2 — (yy*)2|)3 eyecm<r ||(xa*)z — (yy*)2||3
zFyY ooty

In doing so we will employ several distance metrics on C"*" /U(r) (equivalently
on S™9(C™)), the relationships between which are contained in Theorem 3.7. The
Lipschitz properties of a and 3 are intimately related to the geometry of S™°(C"),
which is the subject of Theorem 4.5. Theorem 4.5 continues the results in [8] on the
geometry of the n x n positive definite matrices P(n). The main contributions of this
work are thus:

e In Section 3 we introduce the novel distance

(1.5) d(z,y) == /[l + [[yl13)? — alla*yl[?

on C™"*"/U(r) and in Theorem 3.7 provide optimal Lipschitz constants with
respect to natural embeddings of (C"*"/U(r),d) into the Euclidean space

This manuscript is for review purposes only.



124

126

LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 3

(Sym(C™), || -1|2). This new distance metric allows us in 5.6 to compute local
lower Lipschitz constants for the 5 map generalizing those in Theorem 2.5 of
[6]. 3.7 also provides optimal Lipschitz constants with respect to natural em-
beddings of (C™**"/U(r), D) into (Sym(C™),|| - ||2) for the Bures-Wasserstein
distance D(z,y) := /[2[[3 + [lyl[3 — 2l[z*y]]:.

e In Section 4 Theorem 4.5 generalizes Theorem 5 in [8] by providing the geom-
etry not just of manifold of positive definite matrices P(n) but of the algebraic
semi-variety S™0(C"). In particular we manifest a Whitney stratification of
S™0(C"), obtain the Riemannian metrics of the stratifying manifolds, and
show that this family of metrics is compatible across the strata in the sense
that geodesics of lower strata are limiting curves of geodesics in higher strata.
In particular this proves that the geodesic in S™°(C™) connecting two matri-
ces of rank k£ < r is completely contained in ,ch'k’o((C”). This stratification of
the low rank positive-semidefinite matrices is crucial in simplifying the com-
putation of the global lower Lipschitz bounds for 8 and « in Theorems 5.6
and 5.9 respectively.

e In Section 5 Theorem 5.6 provides an explicit formula for the global lower
bound ag as the minimization over U(n) of the (2nr — r?)th eigenvalue of a
family of matrices parametrized by U(n). Theorem 5.6 also uses the distance
d to provide a generalization of Theorem 2.5 in [6] to the case r > 1 and
shows that the analog Q. of R (&) can be used to control ag to within a factor
of 2. We also show in Theorem 5.9 that the corresponding generalization of
Theorem 2.2 in [6] to the case r > 1 is false, namely that Ag = 0 when r > 1.
Thus in the case r > 1 the more recently introduced § map (the entry-wise
square of the a map) is a more natural and well behaved analysis map for
generalized phase retrieval, owing primarily to the fact that it lifts to a linear
map on the low rank positive semi-definite matrices. It should be noted that
Theorem 5.9 does not rule out the possibility of a better distance metric with
respect to which « is globally lower Lipschitz. Finally, in Theorem 5.14 we
provide novel conditions for a frame {A;}7., for C"*" to be generalized phase
retrievable.

A motivating example for the Lipschitz analysis of o and § is quantum tomography
of impure states. A noisy quantum system is modeled as a statistical ensemble over
pure quantum states. The standard example is unpolarized light. In such cases, all
of the measurable information in the system is contained in a density matrix which,
using bra-ket notation, has the form

(1.6) p=> pjlt) (]

JjE€ET

where p; is the ensemble probability that the system is in the pure quantum state
|1;) belonging to a Hilbert space H. If we assume the cardinality of Z is finite and
equal to r and that the state vectors themselves live in the Hilbert space C™ then
p € S"0(C") N{z € Sym(C")|tr{z} = 1}. The expectation of a given observable A
(a symmetric operator on C") is therefore

(L.7) EplA] = > pi(wslAley) = 3 pitr{lus) (05| A} = tr{pA} = Rix{pA}

jez jET

By repeatedly measuring the observable A and then allowing the quantum system to
relax one may estimate tr{pA} (and perhaps higher moments) but the aim is to infer p

This manuscript is for review purposes only.



133
134
135
136
137
138
139
140

141

4 R. BALAN, C. DOCK

itself. It was shown in [16] that sufficiently many randomly sampled Pauli observables
can be used along with methods from compressed sensing (trace minimization, matrix
Lasso) to reconstruct a low rank density matrix with high fidelity. In general, if a
suite of observables is well-chosen (constitutes a generalized phase-retrievable frame)
then the problem of inferring p from the expectation values of said observables is
subordinate to the problem of phase retrieval on C™"*". Asking if, for a collection of
observables {A; };.”:1, the density matrix p is recoverable is equivalent to asking if the
map

B:8™0(C™) N {z € Sym(C")|tr{z} = 1} - R™
(1.8) ~ (p, A1)r
Blp) = :

<p7 Am>]R

is injective. In fact, given that we can only approximate the expectations using
finitely many measurements, we should hope that it is lower Lipschitz with respect
to the Frobenius distance. Such stability questions for phase retrievable frames for
C™ (the pure state case) are investigated in [1]. Given that p is positive semidefinite
and rank at most r there exists a Cholesky factor z € C"*" such that p = zz*.
Indeed we may take z € C"*"/U(r) since p is invariant under z — zU, in which
case tr{p} = 1 if and only if ||z]]2 = 1. We may therefore concern ourselves with
the Lipschitz properties of § restricted to z € C"*" /U (r) with ||z||2 = 1, rather than
B. For the time being we consider a Lipschitz analysis of 3 : C*rJU(r) — R™,
deferring discussion of a possible Lipschitz retract onto the unit sphere. Thus we
seek information on the optimal global lower Lipschitz constant of the 8 map, namely
V/ao- In the above example if ag > 0 this means that if we can measure each E,[A;]
to within error € > 0 then we can obtain an approximation p to p that satisfies

(1.9) lp— pllz < ﬁ

In addition to quantum state tomography, Lipschitz analysis of spaces of low-rank
matrices is central in a significant number of problems in science and engineering such
as: the phase retrieval problem [4, 28], source separation and inverse problems [15],
as well as the low-rank matrix completion problem [11].

We caution the reader that throughout the paper the scalar product (-, -)g is a real
inner product, however z* denotes the conjugate with respect to the complex inner
product (-,-)c. We also note that the norm ||z||, for p > 1 is the pth Schatten norm
of z € C"*" seen as a C-linear operator from C” to C". Hence the norm ||-||2, while it
refers to the Schatten 2 norm, is equivalently given as ||z||2 = \/(z, 2)r = \/(z, 2)c. If
z were instead seen as an R-linear operator from C” to C™ then the resulting Schatten

p norm would be amplified by a factor 27 since the multiplicity of each singular value
would double.

2. A review of quantitative phase retrievability. The question of phase
retrievability criteria for frames for R™ was addressed in [4], in which it was shown that
a frame F is phase retrievable if and only if it satisfies the “complementing property,”
that is if and only if for every subset Z C F either Z or F\Z spans R". It was moreover
shown in [4] that if m < 2n —1 then a frame for R™ of cardinality m will not be phase
retrievable and also that a generic frame for R™ of size m > 2n — 1 will be phase

This manuscript is for review purposes only.



LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 5

176 retrievable — that is to say the set {F = {f1,..., fm} C R"™|F is phase retrievable}
177 will be dense in the Zariski topology when m > 2n — 1. The question of phase
178 retrievability criteria can be made quantitative by asking for which frames the analysis
179 maps « and 3 are lower Lipschitz with respect to some natural distance metrics, and
180 computing their lower Lipschitz constants. Intuitively, a frame is phase retrievable if
181 and only if « (resp. §) is injective, thus it is natural to analyze (for a given frame)
182 the lower Lipschitz constant of « (resp. (), which measures“how” injective « (resp.
183 @) is. In answer to this refinement it was shown in [5] that for the & map and the
184 distance p(z,y) = min{||z — y||2, ||z + y||]2} we have:

185 THEOREM 2.1. (See [5] Theorem 4.3.) For any index set I C {1,...,m} let
156 FI) = {fulk € I} and let o2[T] = Amw(ZkeI fkf,;"> and o2 (1] = Amm<zka fkf,j) I
187 Then

la(z) — a)II3

188 (2.1 Ap:= inf "2 2 i 211 2r7¢
s (21) 0 m,i,%w p(x,y)? Ic{rﬂfm}an[ JHonll]
189 Ty

190 This result implies in particular that for a phase retrievable frame for R™ the o map
191 is globally lower Lipschitz. An analogous result was given in [5] for the 8 map and

192 the distance ||zaT — yyT||1:
193 THEOREM 2.2. (See [5] Theorem 2.1.) Let {f;}]L, be a phase retrievable frame
194 for R™ and let R : R™ — Sym(R™) be given by R(z) = 377", (=, IV fif]. Then
_ 2

195 (2.2) ag := inf M = min A, (R(z)) >0

zyer™ |lxaT — yyT||3 z€R™
196 Ty [|z||2=1
197 Regarding the complex case the following phase retrievability criterion was ob-
198 tained in [7]:
199 THEOREM 2.3. (See [7] Theorem 4.) Let {f;}72, be a frame for C*. For u € C"

200 denote S(u) = spang{f;f;ju}iL,. Then the following are equivalent:

201 (i) The frame {f;}]2; C C" is phase retrievable.

202 (#) dimg S(u) > 2n — 1 for every u € C™\ {0}.

203 (i) S(u) = spang{iu}t for every u € C™ € \{0}.

204 In connection to this paper we note that the above result is extended to the case of
5 generalized retrievability of frames for C"*" by Theorem 5.14. The quantitative lower

206 Lipschitz variant of Theorem 2.3 was obtained for the 8 analysis map in [6], in which

207 it was proved that for the beta map:

208 THEOREM 2.4. (See [6] Theorem 2.3 and Theorem 2.5.) Let {f;}]L, be a phase
209 retrievable frame for C*. Define R : R*" — Sym(R?") via R(§) = Z;nzl ;6T

210 where &, = ¢j¢f + J¢J.¢]TJT7 b; = {gjﬁ]] and J is the symplectic form E OH}
j
211 Then

18(z) —BWIE _

212 (2.3 ag = = min Ao, 1(R(&)) >0
(2.3) 0 yecn ||zz* — yy*||2 £cR3™ 20-1(R(8))
213 et [1€]]2=1

214 The connection of the above to Theorem 2.3 is that the null space of R(&) includes
215 the realification of spang{i¢} for every . Theorem 2.4 is extended to the case of
216 generalized phase retrievability of frames for C**" by Theorem 5.6.
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3. Relevant distances and Lipschitz embeddings.

DEFINITION 3.1. We define the equivalence relation ~ on C™*" wvia
(3.1) x~y <<= U eU(r)|z=yU

and denote by [z] the equivalence class of x € C"*", and by C"*" /U(r) the collection
of equivalence classes {[z]|xz € C"*"}.

The stability analysis that follows for § and « in Theorems 5.6 and 5.9 will rely
heavily on the following natural metrics on C**" /U (r).

DEeFINITION 3.2. We define D,d : C"*" x C"*" — R.

D(z,y) = Uré%) ||z — yUl|2

VIlzll3 + llyl13 — 2lleyll,

i —yU U
U?&?T)Hx yUl|l2||z + yU||2

VU2l 3+ 11y113)2 — 4llz=y

We note that another distance on C™*" /U(r) given by

(3.2)

d(z,y)

D’ — —yU
(z,y) Urél%)llx yU]|2

VIl2l3 4 11yl13 + 2l[2y] s

and is introduced and analyzed for the r = 1 case in [19]. We note merely that
d = D - D’. This does not imply d is a metric, however in fact we have the following
proposition.

(3.3)

PROPOSITION 3.3. Both D and d are metrics in the usual sense on C"*" JU(r).
Proof. See A.1. ]

The proof of Proposition 3.3 relies on Lemma A.1, an apparently simple result about
the analytic geometry of parallelepipeds in R? which may be of independent interest.

The minimizer U can be chosen to be the same for both d and D, and is charac-
terized by the following:

PROPOSITION 3.4. The unitary minimizer in both d and D 1is given by the polar
factor in x*yU = |z*y|. The minimizer will be unique so long as x*y is full rank.
Otherwise, the minimizer will be of the form U = Uy + Uy where Uy = VoW with
Vo, Wy € CrxTank@="y) the matrices whose columns are the right and left singular
vectors respectively of the non-zero singular values of x*y and Uy € C™" any matriz
such that UyUY = Pyer(z=y) and UfU; = ]P)Ran(x*y)r

Proof. See A.2 ]

The metrics d and D can be compared to the usual Euclidean distance on Sym(C")
modulo certain embeddings.

DEFINITION 3.5. We define 6, 7,1 : C"*" — S™0(C") as
O(x) = zx*)%
(3.4) m(z) = xa* = 0(x)?

This manuscript is for review purposes only.



LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 7

252 PROPOSITION 3.6. The embeddings w, 8, and v are rank-preserving, surjective,
253 and injective modulo ~, thus we write 0,7, ¢ : C**" /U(r) < Sym(C").

254 Proof. See A.3 |
255 THEOREM 3.7. Let z,y € C"*"/U(r). Then

256 (i) 0: (C™"JU(r), D) — (S™°(C™),|| - ||2) 4s a bi-Lipschitz map. In particular,
353 (3.5) Cullf(z) = 6(y)ll2 < D(z,y) < [|0(x) — 0(y)]l2

259 where C, =1 ifn =1 and C, = % for n > 1. The constants Cp, and 1 are
260 optimal.

261 (i) ™ (C™7/U(r),d) — (S™°(C™),|| - ||1) is 1-Lipschitz and =1 : (S™°(C"),|| -
262 2) = (C"*7JU(r),d) is 2-Lipschitz for r > 2 and \/2-Lipschitz for r = 1. In
263 particular,

364 (3.6) llm(z) = 7(y)ll2 < |[7(z) = 7Yl < d(z,y) < e ll(@) — DY)l

266 where ¢, = /2 ifr =1 and ¢, = 2 if r > 1. The constants 1 and ¢, are optimal.
267 (i11) Forr =1

268 (3.7) Y(z) = n(z)

399 (3:8) d(z,y) = |lr(x) = 7 (y)llx

271 The identity (3.8) was noticed and used in [6], its proof is included here for the
27 benefit of the reader.

273 () Forr > 1, there is no constant C satisfying C||m(z) — w(y)||2 > d(z,y) for each
274 x,y € C"*" (hence the use of the alternate embedding ).

275 Proof. See A.4 ]
276 Remark 3.8. While d and D are evidently not Lipschitz equivalent (they scale dif-

277 ferently), they do generate the same topology on C"*" /U(r) since d(z,y) < D(z,y)?
278 and given sufficiently small € > 0 we have d(z,y) < ||z||v/e = D(z,y) <e.

279 4. Geometry of the matrix phase retrieval. It will be essential in the analy-
280 sis and computation of (1.3) to understand the geometry of the spaces S™°(C"). In
281 order to do so, we will demonstrate that S™°(C") has a Whitney stratification over
252 the smooth Riemannian manifolds $%0(C™) for i = 0, ..., r of real dimension 2ni — 2.

283 We recall the following definitions, due to John Mather and sourced from [20]:

284 DEFINITION 4.1. Let V;,V; be disjoint real manifolds embedded in R? such that
285 dimV; > dimV; and V; N'V; non-empty. Let x € V;N'V;. Then a triple (V;,V;, x) is
286 called a— (resp. b—) regular if

287 (a) If a sequence (yn)n>1 C V; converges to x in R and T, (V;) converges in the

288 Grassmannian Graim v, (RY) to a subspace 7, of R? then Ty (V) C 7.

289 (b) If sequences (Yn)n>1 C Vj and (xn)n>1 C V; converge to x in R4, the unit vector
290 (Zr, — Yn)/||Tn — Ynl|2 converges to a vector v € R, and T,, (V;) converges in the
291 Grassmannian Graim v, (R?) to a subspace T, of RY then v € 7.

292 DEFINITION 4.2. Let V be a real semi-algebraic variety. A disjoint decomposition
203 (4.1) vV=||v VinV; =0 fori#j

294 iel

295 into smooth manifolds {V;}icr, termed strata, is a Whitney stratification if
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8 R. BALAN, C. DOCK

(a) Each point has a neighborhood intersecting only finitely many strata

(b) The boundary sets V; \ V; of each stratum V; are unions of other strata.

(c) Every triple (V;,V;,x) such that x € V; C V; is a-reqular and b-regular as in
Definition 4.1.

A simple example of a semi-algebraic variety that is not a manifold but admits a
Whitney stratification is the cone C = {(x,y)|zy > 0} C R? consisting off the first and
third quadrant of the coordinate plane. A possible Whitney stratification of this set
is given by Vo = {0}, Vi = {(z,0)[z # 0}, Va = {(0,)ly # 0}, and V = {(z,y)|z
0,y # 0}. In this case note that condition (a) is trivially satisfied since there are only
finitely many strata, and moreover that (b) is satisfied since V3 \ V3 = Vo U Vi U Vs,
Vo \ Vo = Vy, V1 \ Vi =V, and that V5 \ Vo = ¢ (an empty union of the other strata).
That this stratification is both (a) and (b) regular may be readily observed. For
example the tangent space at any point of V3 is simply R?, and thus the Grassmanian
limit of a convergent sequence of such tangent spaces is also R? and certainly contains
the one dimensional tangent space at any point of Vo (identified with the y axis), the
one dimensional tangent space at any point of V; (identified with the x axis), and the
zero dimensional tangent space associated with Vg (identified with the origin).
We will also need the following:

DEFINITION 4.3. Let M and N be smooth manifolds and let m1 : M — N be a
smooth map. For each x € M let

(4.2) Tp(M) :={¥'(0)|]y : [-1,1] = M is a smooth curve with v(0) = z}

be the tangent space of M at x. Similarly for Tryy(N). Let Dr(z) : Tp(M) —
Tr(2)(N) be the differential of w at x, that is to say Dr(x)(v) := o/(0) where o = oy,
~v(0) =z, and ~+'(0) = v (that Dm(x) does not depend on the exact choice of curve y
is an elementary result of differential geometry). Then

(a) For each x € M define the vertical space at x as:

(4.3) Vi z(M) C Tp(M) :=ker Drr(z) = {w € T,(M)|Dn(z)(w) = 0}

(b) If M is equipped with a Riemannian metric g : M X Tp(M)xTp(M) — R then we
may define the horizontal space at each x via the canonical orthogonal complement
of the vertical space:

(4.4)
Hy y(M)CT,(M) := Vw,gg(./\/l)L ={v e T,(M)|g(z,v,w) = OVw € V, ,(C}*")}

The following proposition will be essential both in proving the geometric results
in Theorem 4.5 and in the analysis of the Lipschitz constants for § and « set out in
Theorems 5.6, 5.9, and 5.13:

PROPOSITION 4.4. Let 7 : C™" — §™9(C") be as in Definition 5.5 and let
Vo (CP*™) and Hy ,(C?*7") denote the vertical and horizontal spaces as in Defi-
nition 4.3 of the manifold CI*" at x with respect to the embedding w. Here the
Riemmanian metric on C*" is of course g : CI*" x C"*" x C"*" — R given by
g(z,v,w) = Rir{z*w}. Let Tﬂ(x)(é"“*o((:”)) denote the tangent space of S™(C") at

This manuscript is for review purposes only.
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338 7(xz). Then

339 (4.5) Vi 2 (CHXT) ={zK|K e C"*" K" = —-K}

310 (4.6) H, .(C7) ={Hz+ X|H e C""", H" = H = PRy H,

341 X € C""PRapmX =0}

343 = Dr(z)(Hyr,o(CF*7))

345 Proof. See B.1 |
346 Employing similar techniques to [8], but generalizing from the manifold of posi-
347  tive definite matrices to the semi-algebraic variety S™(C") semidefinite matrices, we
348  prove:

349 THEOREM 4.5. Let w be as in Definition 3.5 and the distance D be as in (3.2).
350 Then

351 (i) SP1(C™) is a real analytic manifold for each p,q > 0 of real dimension 2n(p +
352 q) —(p+ Q)Q-D

353 (i) m: CP*" — S™O(C™) can be made into a Riemannian submersion by choosing
354 the following unique Riemannian metric on S™°(C™):

(4.8)  WZy,Zy) = tr{Z) / emwor” gle—van® gy 4 Rer{ 71 7 (xa*) T}

5
356 0
357 Where Z1,Zs € Tw(x)(,SO'T’O((C")), (zz*)T denotes the pseudo-inverse of xa*, and
. I _ 1 _
3p8 (4.9) Zi = P Ran)ZiP Ran() Zi- = PRan()+ Zif Ran(a)

360 (#44) gT’O(C") equipped with the metric h is a Riemannian manifold with D as its
361 geodesic distance.
362 (iv) The semi-algebraic variety S™(C™) admits as an explicit Whitney stratification

363 (SHO)r_,.

364 (v) The geometry associated to h is compatible with the Whitney stratification in the
365 following sense: If (Ai)i>1, (Bi)i>1 C SP° have limits A and B respectively in
366 S0 for q < p and if v; : [0,1] — SPO are geodesics in SP° connecting A; to B;
367 chosen in such a way that the limiting curve 6 : [0,1] — PO given by

368 (4.10) 0(t) = lim ~;(t)

369 i—00

370 exists, then the image of § lies in 590 and is a geodesic curve in §4:0 connecting
371 A to B.

372 Proof. See B.2 0

3 5. Computation of Lipschitz bounds. We are primarily interested in com-
74 puting ag and Ay, the squared global lower Lipschitz constants for the 8 and « analysis
5 maps respectively. Owing to the linearity of the 5 analysis map when interpreted as in
6 (1.8), we will be able to show in Theorem 5.6 that the optimal global lower Lipschitz
7 bound ap can be obtained via local considerations. For the a analysis map we will
'8 be able to show in Theorem 5.9 that the optimal global lower Lipschitz bound Aj is
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actually zero for » > 1. Since the global lower Lipschitz bound for the o analysis map
is trivial we emphasize the analysis of the local lower Lipschitz bounds. Recall that

(51)  ag= 18() = BB _p Eimaller® e - (s, Aj)w)?
zyecmr ||m(z) — 7T(y)H% z,yeCm " |[zz* — yy*”%
[z]#[y] [z]#[y]

From purely topological considerations, we may obtain

PROPOSITION 5.1. The constant ag s strictly positive whenever the map 3 is
injective, equivalently whenever {Aj}gnzl is a genmeralized phase retrievable frame of

symmetric matrices.
Proof. See C.1 ]

DEFINITION 5.2. Let z € C™*" have rank k. We will analyze the following four
types of local lower Lipschitz bounds for [, the first two with respect to the norm
induced metric and the second two with respect to the metric d:

18(x) = B(2)II3

= li inf
aE =g B @) =B
[|7(z)—m(2)||2<R
B 2
oot UBD =503
RS0 pyeCnxr [|7(z) — m(y)|l5

|7 (z)—m(2)||2<R
[Im(y)—m(2)l|l2<R

L . 18(z) — B(=)|13
(5.2) a1(z) = }1%1310 xel(rjlfxr (2
d(z,z)<R
rank(z)<k

2
R=0 gyecnxr  d(z,y)?
d(z,z)<R
d(y,z)<R
rank(z)<k
rank(y)<k

Note that in the definition of a1(z) and as(z) we do not allow the ranks of x and y
to exceed that of z. As we shall prove, without the rank constraints these local lower
bounds would be zero.

The following two “geometric” local lower bounds will prove helpful in our analysis.

DEFINITION 5.3. Let z € C"™" have rank k and let 2 € C"*F be such that there
exists U € U(r) with [2|0]U = z. Let Tyr(z)(S¥°(C™)) and Hy :(CT**) be as 4.7 and
4.6. We define:

5.3 a(z) == min W, A:\r|?

(5.3) (2) WETW(E)(SV,C,O(CH));|< )R]
[[W]|2=1

5.4 a(z) = min Dr(2)(w), A;)g|?

(5.4 SR W SIS
[lw|[2=1

The following two families of matrices, @, and QZ, indexed by C™*" will allow us to
write the local lower Lipschitz bounds with respect to ||xzz* — yy*||2 and d(x,y) as
eigenvalue problems.
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DEFINITION 5.4. Given z € C™"*" having rank k > 0 we define a matriz Q, €
R(2nk—k*)x(2nk—k*) ) the following way. Let Uy € C™** be a matriz whose columns
are left singular vectors of z corresponding to non-zero singular values of z, so that
Uuy = PRan(z)' Let Uy € C"("=F) be o matriz whose columns are left singular

vectors of z corresponding to the zero singular values of z, so that UyUy = Ppp . .
Then

(5.5) (%:EHTW&MqFWTWﬂT

where the isometric isomorphisms T and p are given by

(5.6) 71 Sym(CF) — R [ CPXa _y 2P
D(X) o
V2T(3X)
where
(57) D: Sym((ck) — Rk T - Sym(Rk) - R%k(k—l)
X2
X1 X3
DW) = : T(X)= | Xos
Xk :
Xr—1k
and
X1
(5.8) vec : RP*?4 — RPY vec(X) = vec([X1]---|Xg]) = | :
X,

q

We note that ), depends only on Ran(z), in particular it is invariant under (Uy, Us) —
(U1 P,U2Q) for P € U(k),Q € U(n — k). We will also refer to Q. as Qu,|u,] where
[U1|U2] S U(n)

DEFINITION 5.5. Given z € C™*" having rank k > 0 we define a matrix Qz €
R2EX2nk in the following way. Let Fj = Ly ® j(A;) € R2EX20E yhere
j . men N RQmXZn
(5.9) . RX  —3X
1X) = {SX RX }
is an injective homomorphism. Then

m

(5.10) Q. :=4Y  Fiu(@)u(2)"F,

j=1
With these definitions in mind, we will prove the following:

THEOREM 5.6. Let z € C"*" have rank k > 0. Then
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The global lower bound ag is given as

(5.11) ap = nf  a(z)

zE(CTi‘XT\{O}

The local lower bounds a1(z) and as(z) are squeezed between ag and a(z)
(5.12) ag < az(z) < a1(z) < a(z)

So that in particular

(5.13) 90 = it 1y )

The infimization problem in a(z) may be reformulated as an eigenvalue problem.
Let Q, be the 2nk — k2 x 2nk — k% matriz given in Definition 5.4. Then

(514) a(z) = )‘anka(Qz)

For r = 1, a(z) differs from a(z) by a constant factor, hence for r = 1 the
infimum inf ,ecnxm (0} @(2) is non-zero. Forr > 1 this infimum is zero and hence
there is no non-trivial global lower bound ag analogous to ag for the alternate
metric d.

The local lower bounds with respect to the alternate metric d satisfy

(5.15) in(2) = n(2) = maw

The infimization problem in a(z) may be reformulated as an eigenvalue problem.
Let Q. be the 2nk x 2nk matriz given in Definition 5.5. Then a(z) is directly
computable as

(5.16) a(2) = Aonp—k2(Q>)
We have the following local inequality relating a(z) and a(z).

1 1

(5.17) < o

a(z)
Computation of the global lower bound ag may be reformulated as the minimiza-
tion of a continuous quantity over the compact Lie group U(n).

5.18 ag = min Ao r2
(5.18) 0 pmin - Ao (Qun|v2))
U=[U1|Uz]
U, ecnxr
UQE(CWX (n—r)

While (iv) makes clear that ag cannot be upper bounded by inf.ccnxr\ oy 4(2),
we can achieve a similar end by constraining z to have orthonormal columns.
Namely

1 1
(5.19) — inf a(z)<ap< - inf a(z)
2€CH*" 2 z€CP*"
z*z=lpxr 2*z=lrxr
Proof. See C.2 O
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175 We now move on to analyzing the local lower Lipschitz bounds for the o map x —

476 <xx*,Aj>]§. This was done for the case r = 1 in [6]. Recall that (z) = (zz*)2 and
477 that

- 2 m mx*7A-%— *714-%2
i (520) Ag— g M@ ZoWIE o 2 Ak -y )

n
vgec [|0(z) — 0|3 cyecmr zx*)r — (yy*)?|[3
- b e i)}~ () VR

180 In analogy with Definition 5.2, we consider the local lower Lipschitz bounds for
481  the a map.

482 DEFINITION 5.7. Let z € C™*" have rank k. We define

L le@—aCR
Ai(z) =1 f LS A e A 1P
@=im e e
[10(z)—0(2)|]2<R
rank(z)<k

: : |ev(z) — a(y)l]3
As(z) = lim inf _— o
=l e @ = e
[10(z)=0(2)|]2<R
[10(y)—0(2)||2<R
rank(z)<k
rank(y)<k
483 (5.21
o oot G oG
! R—0 geCnxr D(x, z)?
D(z,2)<R
rank(z)<k
A : - lla(z) — a(y)]]3
A =1 A L et C- A 1 )
2(2’) Rlino a;,yle%"” D(x,y)2
D(z,z)<R
D(y,z2)<R
rank(z)<k
484 rank(y)<k

485 DEFINITION 5.8. Given z € C"*" having rank k > 0 we define two matrices
186 Ty, R, € REXInk - Let [(2) C {1,...,m} be the indices such that a;(z) = 0 (or
187 equivalently such that a; is not differentiable) for j € Iy(z), and let I(z) = {1,...,m}\

488 Io(2). Once again let F; =Ty, @ j(Aj) € R2kx2nk then define T, and R, via

. : 1 V()T

0 (5.22) .= Y WFM(Z)H(Z) F;
Jel(2)

490 (5.23) R, = Z F

491 jEI()(z)

492 With these definitions in mind we prove:

493 THEOREM 5.9. Let z € C"*" have rank k > 0. Then

194 (i) Forr > 1t is the case that inf conxr (o} Ai(2) =0 fori=1,2, as such Ag = 0.
195 (i) Let T, and R, be as in Definition 5.8. Then Ai(z) and Ay(z) are directly
496 computable as

197 (5.24) Ay (2) = Aani—i2 (T, + R.)
Wﬁ (525) AQ(Z) = /\2nk—k2 (Tz)
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(iii) We have the following inequality between A;(z) and A;(z) for i = 1,2, which
justifies not treating them separately.

(5.26) Ai(2) < Ai(2) < V24,(2)

Proof. See C.3 ]

For the sake of completeness we also include the following theorem on the global upper
Lipschitz bounds for the « and 8 analysis maps.

DEFINITION 5.10. We define the following (squared) upper Lipschitz constants for
B and a respectively:

(5.27) b= sup  NP@ = BOIE
sgecmr ||zt —yy*l3
[x]#[y]
lla(z) — a(y)]]3

(5.28) By:= sup
(ea*)7 — (yy*)? I3

x,yeC™ "
[«]#[y]

A somewhat simplifying alternate upper Lipschitz constant for B is

1B(z) — B3

(5.29) bp1:= sup . ~
syecnxr ot —yy*[|?
[z]#[y]

DEFINITION 5.11. The 8 map is the pullback of a linear operator acting on sym-
metric matrices which we refer to as A. Specifically,

A Sym(C") - R™
(5.30) Aj(X) = (X, Aj)r

DEFINITION 5.12. When A; > 0 for each j, we define the operator T.
T . CnXT — ((CTLXT')TI’L

5.31 ,
o1 Tp(x) = (Af2)j2,

In a slight abuse of notation we write for r =1
T, :C* —» Crxm

(5.32) 1 1
Ti(x) = [Af |- - [Adz]

We compute explicitly by, bg,1, and By via different norms of the operators A and 75,
as well as providing formulas for by and By analogous to (5.18) and (5.25). Specifically,
we prove:

THEOREM 5.13. Let by, bo.1, Bo, A, and T, be as above. Then
(i) The global upper bound by is given by

5.33 bo = A
(5.33) 0 pax 1(Quyva))
U=[U1|U2]
U1 ECTLXT’UZECTLXTL—T

Where Qu is as in Definition 5.4.
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(ii) The global upper bound by 1 is given by
(5.34) o = ILAIZ
Additionally if A; > 0 for all j then
(5~35) bo1 = ||Tr||421a(2,4) = ||T1||421e(2,4)

Where the || - ||2,4 norm of a matriz is the I* norm of the vector of I norms of
its columns.
(iii) The global upper bound By is given by

(5.36) By= sup M\(T.)=B
ZEC’I’LX’V‘
2#0
Where T. is as in Definition 5.8 and B is the optimal upper frame bound for
{Aj};‘n:r
Proof. See C.4. 0

It turns out that Theorem 5.6 allows us to find novel algebraic conditions for a frame
for C™*" to be generalized phase retrievable, generalizing Theorem 4 in [7]. The
benefit of condition (vi) over the definition of phase retrievability is that they involve
checking a quantity over all n x r matrices with orthonormal columns, that is to say
over the Stiefel manifold of dimension 2nr — 12, as opposed to over all pairs of n x r
matrices.

THEOREM 5.14. Let {A;}72 be a frame for C"*". Then the following are equiv-
alent:
(i) {A;}jL, is generalized phase retrievable.
(ii) For all Uy € C™*", Uy € C*™ (=7 such that [U,|Us] € U(n) the 2nr — r? x

2nr — r? matric
m T
T(UFA;Uy) | [7(UsA;Uy)
5.37 = J 1
(5.37) Qrii ; [ (U3 A;Uh) (U3 A;Uh)
is invertible.
(iii) For all z € C™*" such that z has orthonormal columns, the 2nr X 2nr matriz

m

(5.38) Q- =4 (Tixr @ j(A))u(2)n(2)" (Tuxi ® j(4;))

j=1

has as its null space precisely the r* dimensional V, = {u(u)|u € Vy (C2*")}.
(iv) For all Uy € C™*7, Uy € C™ (=7 such that [U,|Us] € U(n), H € Sym(C"),
B e C"=")%" there exist cq,...cm € R such that

(5.39a) Ur (Y cjAj)Uh = H
j=1

(5.39Db) U3 (> ¢jA;)Uy = B
j=1

This manuscript is for review purposes only.
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(v) For all Uy € C™*" with orthonormal columns

(5.40) spang {A;U1})L) = {U1K|K € ™" K* = —K}*-

(vi) For all Uy € C™*" with orthonormal columns

(5.41) dimg{A;U1}7"y > 2nr — r?

Proof. See C.5 ]

6. Numerical experiments. The main benefit of lower Lipschitz results like
Theorem 5.1 is that they provide quantitative control over reconstruction error in the
generalized phase retrieval problem, as opposed to the topological result in Propo-
sition 5.1 that the error is bounded whenever the matrix frame is generalized phase
retrievable (i.e. that ag > 0). This is only true, however, if for a given frame one can
make headway in computing the lower Lipschitz constant ag. Unfortunately (5.18)
yields ag as a non-convex optimization problem, so for the time being we content our-
selves with examining the statistics of the local lower Lipschitz constants ds(z) and
a(z). We also verify numerically the result in Theorem 5.9 that « is not globally lower
Lipschitz (i.e. that Ap = 0) by examining the statistics of the local lower Lipschitz
constant Ay(z).

For each experiment we use a fixed frame set of cardinality m = 4nk — 4k2, not-
ing that Theorem 2.1 in [30] implies that a generic frame for C"** with cardinality
m > 4nk — 4k? will be generalized phase retrievable when 2k < n. The experiment
shown in Figure 1 supports the result in Theorem 5.9 that inf,ccnxr oy Ay(z) =0
for r > 1, thus that the o analysis map is not globally lower Lipschitz with re-
spect to either D(z,y) or ||(zz*)2 — (yy*)2||s when # > 1. This experiment also
supports the earlier result in [6] that when 7 = 1 inf.ccnxr {0 As(z) > 0. The exper-
iment shown in Figure 2 supports the result noted in the proof of Theorem 5.6 that
inf,conxr (o} G2(2) = 0 for r > 1, thus that the § analysis map is not globally lower
Lipschitz with respect to d(x,y) when r > 1. That this quantity is non-zero when
r = 1 follows from the fact that for » = 1 we have d(x,y) = ||zz* — yy*||1 (see Theo-
rem 3.7). Finally, the experiment shown in Figure 3 supports the result in Theorem
5.6 that ag = inf,ccnxr\ (o} a(2) > 0 even when r > 1, thus that the 8 analysis map
is globally lower Lipschitz with respect to ||za* — yy*||2 whenever the frame (A4;);>1
is generalized phase retrievable. Code for all numerical experiments can be found at
github.com/cbartondock/LipschtizAnalysisofGenPR.

This manuscript is for review purposes only.
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Ay(z) for n =8, 7 = 4, and I = 10000 random z

400

W rank(z) =1
300 B rank(z) =
300 B rank(z) =3
M rank(z) =
e 200 200
100 100
% 0.1 % 0.002 0004 0006
300
200
g
100
0 - 0 e
0 00005  0.001 0.0015 0 200 a00p
Az(z) AZ(Z)

FIG. 1. In all experiments As(z) is computed for a fived frame of 4nk — 4k2 matrices in C>F
for 1 = 10% samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complexr Gaussian with unit variance and zero mean. As can clearly be seen only the k =1
case has a clear separation from zero.

d2(z) forn = 8,7 =4, and [ = 10000 random z

400

MW rank(z) =1

o B rank(z) =2

200 B rank(z) =3
B rank(z) =4

200

100
100

% % 0004 0006
300
o 200
100
0 e 0 -~
0 00005  0.001 0.0015 0 200p 400 600
ay(2) a2(z)

FIG. 2. In all experiments ao(z) is computed for a fized frame of 4nk — 4k? matrices in C**F
for 1 = 10% samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the k =1
case has a clear separation from zero.
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a(z) forn = 8, r = 4, and | = 10000 random z

B rank(z) =
200 M rank(z) =
B rank(z) =3
W rank(z) =4
IS
100
0 o
0 0.05 0.1 0.15
200
S
100
- 0 -
[o] 0.02 0.04 0.06
a(z)
log(1 + a(z)) for n = 8, r = 4, and [ = 10000 random =z
B rank(z) =1
400 W rank(z) =2
W rank(z) =3
B rank(z) =4
350
300
250
=
200
150
100
50
DO 0.1 A . A 0.18
log(1 + a(2))
Fic. 3. 7 In all ezperiments a(z) = Ag,p_p2(Qu,|uy)) s computed for a fized frame of

Ank — 4k2 matrices in C"*F for | = 104 samples of U € U(n) distributed according to the uniform
Haar distribution on U(n). Uy € C*** is composed of the first k columns of U so that Qu,|Us) €

2 2 . . . .
C2nk—k*x2nk—k” = The entries of the frame matrices are sampled from a complex Gaussian with

unit variance and zero mean. In this case an overlapping log-plot is also included, in which clear
separation from zero can be seen for k=1,...,4.

7. Conclusion. This paper extends known results about the stability of gener-
alized phase retrieval to the “impure state” case where the phase no longer comes
from U(1) but instead the non-abelian groups U(r) where r > 1. We showed that
the situation changes drastically in this case, both because U(r) is non-abelian and
because for r > 1 a sequence in C?*"/U(r) with ||z,||]2 = 1 can come arbitrarily
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close to dropping in rank. In particular, we showed that while the 5 analysis map
remains lower Lipschitz with respect to the norm induced distance on Sym(C™) (The-
orem 5.6), the a analysis map does not (Theorem 5.9). Our analysis relies on several
Lipschitz embeddings of C"*" /U (r) into the Euclidean space Sym(C™) (Theorem 3.7)
and a Whitney stratification of the positive semidefinite matrices into positive semi-
definite matrices of fixed rank (Theorem 4.5). This investigation of the geometry of
positive semidefinite matrices incidentally provided the interesting and (to the best
of our knowledge) previously unknown result that the Riemannian geometry of the
stratifying manifolds given by the Bures-Wasserstein metric is compatible with the
stratification. In particular geodesics of positive semi-definite matrices with respect
to the Bures-Wasserstein metric are rank preserving and may be approximated by
geodesics of higher rank. We note that the fact that ap > 0 and can be explic-
itly computed as in (5.18) suggests that known convergent algorithms for generalized
phase retrieval may be extended to the case r > 1. Finally, the explicit computation
of the lower Lipschitz bound for the 8 map allowed for a novel characterization of
generalized phase retrievable frames in the impure state case r > 1 (Theorem 5.14).

Appendix A. Proofs for Section 3.

A.1. Proof of Proposition 3.3.

Proof. Both d(z,y) and D(x,y) are obviously positive and symmetry follows from
the fact that that U(r) is a group. Moreover, owing to the compactness of U(r),
both D(z,y) and d(z,y) are zero if and only if there exists Uy such that z = yUy,
that is if and only if [#] = [y]. It remains to prove the triangle inequality. For
D(z,y) the computation is straightforward and follows from the unitary invariance
of the Frobenius norm. If U; and Uy are unitary minimizers for D(x, z) and D(z,y)
respectively then

D(z,2) + D(y, 2) = ||z — 2U[|2 + ||z — yU2||2
(A1) = ||z — 2Uil|2 + [|zU1 — yUsUn ]2
2 ||z = yUsUrl|2 = D(z,y)

We note that the above argument also holds for any unitarily invariant norm ||| - ||| so
that each D). (2,y) := mingey( |||z — yU||| is a metric on C"*"/U(r). A similar
trick can be employed regarding d(z,y), but it requires the following lemma which
does not readily generalize to arbitrary unitarily invariant norms or even p # 2:

LEMMA A.1. The following triangle inequality holds for all x,y,z € C™*"

(A.2) |z = yll2llz + yll2 < [lz = 2llallz + 2ll2 + (|2 — yll2llz + yll2

Proof. This is essentially a statement about the geometry of parallelepipeds in
R3, namely that the sum of the product of face diagonals from any two sides sharing
a vertex will always exceed the product of the two on the remaining side sharing the
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vertex. The lemma follows from the observation that for x,y € R™
|z = yll2llz +yll2 = \/(HmH% +Iyl13)? — 4l{z, y)r|?

(||x||§ 113 + /(13 + 1s113)2 4|<x,y>R|2)

A3
(4-3) - ;(mn% 1113 = /(113 + 1sl3)2 ~ 4|<x,y>R|2)

= A (zz —yy") = A_(z2” —yyT)
ik

N | =

= |lza” — yy

See the proof of Theorem 3.7 for a direct computation of the eigenvalues of zaT —yyT
(the theorem deals with the complex case but the real case is identical). This identity
proves the lemma immediately since the latter obeys the triangle inequality and

|z —yllollz + yll2 = [|p(z) — p)ll2l|p(@) + w2

(A4) = [|p(@)p(@)” = py)u)" L
< lu(@)u(@)” = u(2)u(2) |l + [p()p()" = uly)uly)
= [l = 2ll2llz + 2[l2 + ||z = yll2llz + yl]2

Where p : C"*7 — R?™ is complex matrix vectorization. O

The proposition then follows via a similar argument to (A.1), namely if Uy, Us are the
minimizers in d(z, z) and d(z,y) respectively then

(A.5) 0
d(z,2) +d(z,y) = ||z — 2U||2]|z + 2Uil|2 + ||z — yUs||2]|2 + yUs|2
= [|lz = 2Uill2]|z + 2Un||2 + [|2Ur — yUaUs||2]|2Ur + yUsUi|[2
> ||z — yUsUn||2||x + yUs2Ui||2 > d(z,y)

A.2. Proof of Proposition 3.4.

Proof. Both the trace tr{z*yU} in that appears in D and its square as it appears
in d will be maximized when z*yU is positive semidefinite, thus we may take the
minimizer to be the polar factor for x*y, the polar factor of course being the unique
unitary for which 2*yU is non-negative only when z*y is full rank. The non-uniqueness
of the minimizer arises precisely from the non-uniqueness in choice of polar factor when
x*y does not have full rank. Note that even if y is full rank, x*y will have rank less
than r whenever Ran(y) N Ran(x)* # 0. ad

A.3. Proof of Proposition 3.6.

Proof. Note that the non-zero eigenvalues of 7(x) are precisely the squares of
the singular values of x, the non-zero eigenvalues of 6(x) agree with the non-zero
singular values of z, and the non-zero eigenvalues values of ¢ (x) differ from the non-
zero singular values of x only by a factor of ||z||2. This proves that the embeddings
preserve rank. It is readily checked that the embeddings are surjective and injective
modulo ~. In particular for A € S™%(C"), we have

(A.6) 771 (A) = [Cholesky(A)]
(A.7) 6~ (A) = [Cholesky(A?)]
(A.8) ¥~ (A) = [Cholesky(A?/[|A]|2)]
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where Cholesky(A) is a Cholesky decomposition of A in C"*" (note that the Cholesky
decomposition is unique up to equivalence class). 0

A.4. Proof of Theorem 3.7.

Proof. To prove (3.5) we analyze the following quantity:

__ D(y? [lz[13 + [lyl13 — 2[lz*yllx
16(z) =0 [[2]3 + [19l3 — 26r{(w2*)? (yy*)?}

We first note that |[z*y||; = ||(z2*)2 (yy*)?||1 since (z2*)? (yy*)? and z*y have the
same non-zero singular values. Hence if we define A = 6(z) = (z2*)? and B = 0(y) =

(A.9) Qz,y)

*)3 we can abuse notation slightly and write
(yy™) ghtly
|A[l5 + [|B]13 — 2||AB|l
A.10 A B) =
(810 O B) = (415 +1BIE —2u{AB)

Now tr{AB} < ||AB]||1, so we conclude that Q(z,y) < 1. On the other hand this
bound is achievable by any x and y for having the same left singular vectors, since in
this case A and B commute hence AB > 0 and ||AB||; = tr{ AB}. We conclude that
the upper Lipschitz constant is 1, and in particular

(A1) sip Qo) =  max  Qay) =1
x,yeC™*" /U (r) z,y€C™ " /U(r)
Ty zFY
We now turn our attention to the lower bound. It is shown in [9] that for any
unitarily invariant norm |||-||| and positive semidefinite matrices A and B the following
generalization of the arithmetic-geometric mean inequality holds:
(A.12) 4|llABIII* < llicA + B)*l|

We apply this inequality to the nuclear norm and conclude that
4||AB|l: < [|(A+ B)?|h
(A.13) = tr{(A + B)*}
= ||AlI3 +|BII3 + 2tr{AB}
We employ this fact in the analysis of Q(z,y):

1 2[|All3 +2[|BII3 — 4/|AB|lx
Q(A’ B) e
(A.14) 2 ||A|2 +]|B|]3 — 2tr{AB}
o 120413 + 21| B3 — (IA[3 +[1B][3 + 2tr{AB}) _ 1
2 A3 +11BII3 - 2tr{AB} 5

This implies a lower Lipschitz constant of at least % For the trivial case n =r =1
the ratio is 1. To prove the constant of % is optimal for n > 1, let e; and es
be any two orthogonal unit vectors in C™ and let z = e; and (y;);>1 be given by
y; = 4/1— j%el + %62. Define A = 0(x) and B; = 0(y;), then both A and each B;

have unit norm and are rank 1 hence are idempotent, so that
1 1
AB;j = (z2)? (y;y;)? = z2"y;y;
= (2, y;)rTY;
(A.15) T .
0Dt + YT
= — = 616 T 616
g2 j 2
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Thus tr{AB;} = 1 — 5. On the other hand, ||[AB;||; = ||[z*y;|1 = |(z,y;)r| =

]2
1—].12. We find
. 1 ||AB;]x
1 A, Bj) =1 J
o Jm QA By) = lim = gy
| = lim j%(1 - 1—i)—1
_j—><>o‘7 j2 _2

Thus we conclude

(A.17)

1

inf T ==

rvyech( ) =5
T#yY

We now concern ourselves with proving (3.6). To prove the lower bound, let Uy be
the minimizer in d(x,y). Then

Ir(z) = 7(y)lh = llzz” —yy*|h

(A.18)

1 w1 -
5 = yUo) (@ + yUo)” + 5z + yUs) (& — yUo) |

A

L « 1 x
< SlI(z = yUo)(z + yUo)"[[1 + SlI(z = yUo)(z +yUo)"[x

IN

|z — yUoll2|lz + yUoll2 = d(z,y)

This implies a lower Lipschitz constant of at least 1, but in fact this constant is optimal
since the two are equal for » = 1. Turning our attention to the upper bound, we will
in fact prove the following stronger inequality:

(A.19)
[¥(z) — ()2

1 1 . 1
> o0+ 1)+ (el = ol (vl -+ kel + 1)) g

We prove (A.19) by direct computation:

(A.20)
() — ()l

1
- *d(l', y)2

4

= ol + 111 ~ 2lellalltrea)? (7)) - 1 (el + 112 - 4l

3 3 . 1 Ll
= 3 ll2liz + Jllwllz + eyl = Sl2lBlylE = 2llla/lyllatr{(z27) (yy7)?}

Y

3 3 . 1 Lol
etz + g lwllz + ll27yl[} = S (31115 = 2ll2lallylla]l @)= (yy™) 2 |1

1 1 1 . .
= U213 = lyl5)* + 5 ll=llz + Sllwllz + ll="ylIT = 2ll2ll2llyll2ll="ylh

We then note that

(A.21)
D)=

1 *
2P+ [lyl1* = 2ll2"yll1)?

1 1 1 i i
= Z\lel‘% + leyll‘z1 + §|I$II§HQII§ + |z ylIE = (3 + [yl yllx
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So that if we add and subtract 1 D(z,y)* from (A.20) we obtain the result

(A.22)
k() — w)l ~ ey’

Y

1 1 .
5 l2ll3 = 19113)* + 7D, ) + (llzll2 = [lyll2)*[l2"yl1

= 106"+ el = Il ("l + 5ol + 1ll)?)

This immediately proves that 2||[¢(x) — ¥ (y)||2 > d(z,y) and hence that the upper
Lipschitz constant in (3.6) is at most 2. For » = 1, we will prove shortly claim (éi),
implying that d(z,y) = ||7(x) — 7(y)|l1 = ||¥(z) — ¥(y)||]1, hence in this case the
optimal constant is v/2, owing to the fact that 1 (x) — ¥ (y) will have rank at most 2
and in that case d(z,y) = ||v(x) — ¥ ()|l1 < V2| (x) —p(y)||2. For r > 1, however,
we show that the upper Lipschitz constant of 2 is optimal by considering a sequence
of matrices in C™*2. As before let e; and ey be any unit orthonormal vectors in C”.

Let z = [e1]0], (y;)j>1 be given by y; = [/1 — j%el\%eg]. As before let A = 0(x),
B, = 6(y;). We first note that A and each B; commute and are positive semidefinite,
so that ABj is also positive semidefinite and we have tr{AB;} = ||AB,||; and the
inequality in (A.20) is actually an equality. This makes clear the impediment to a
rank 1 sequence achieving the upper Lipschitz constant of 2: A and B; could not be
made to commute without x and y; lying in the same equivalence class. Finally, we

observe that ||z[|2 = ||y;j||2 = 1 so the remainder term in (A.19) disappears and we
obtain

2 1 2 1 4
(A23) W) ~ ()| = 2, )? + 1D(ay)

We note moreover that d(z,y)? = D(x,y)(||z||3 + ||y||3 + 2||z*y||1) so that

(@) —oy)ll3 1 D(z,y;)*
d(mvyj)Q B 4 (1 * d(x’yj)Q )

(a4 il
AT T eyl

e} 1-% 0
Now flo*351h =11 |-G [ 7 ] exles] [ = /T % so that

(A.24)

S

_ 12 1—4/1—-=
am o BEVGE 1 o
j—o0 d(.%‘,yj) j—o0 1+ 1+ji2 4

Thus we have proven claims (i) and (i¢). To prove the first claim of (iii) note that
forr =1, (za*)z = ﬁ The second part of (ii¢) follows from direct computation of
||zz* — yy*||1 via the method of moments. Clearly xa* — yy* will have one positive
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and one negative eigenvalue, which we denote Ay and A_. In this case
A+ Ao =tr{zz” —yy*}

1113 = Ilyll3

% (tr{m* —yy*}? — tr{(zz” — yy*)2}>

P llyll* = [z, y)=l”

A.26
(4.26) ApA_

A little bit of algebra then yields

(a2 =g (1B - 1B + TTTE+ ToFP = Ao )

Thus we find [|zz* —yy* |l = Ay = Ao = V/([[2]]2 + [[y[[?)? — 4(z, y)r[* = d(z,y). It
strikes the authors that this is a minor miracle. Finally, to prove claim (iv) consider
2 and y having a common basis of singular vectors with singular values (¢;)7_; and
(1i)7—, respectively. Then

T

(A.28) ||m(x) = 7 (y)ll3 = Z(U? —ui)?
(A.29) d(z,y)” = > (05 + p:)* (05 — p1j)°
ij=1

The latter is obviously larger, consistent with (3.6). If it were additionally the case
that d(z,y) < C||w(z) — 7(y)||2 we would have

T

(A.30) D (o0t i) (o — py)* < (C=1) > (07 — pi})?

i#j i=1

In the case r = 1 the left hand side is zero and so we may take C' = 1. For r > 1, in
contradiction of the above take 01 = uy = §, 02 # uo and all other singular values
zero. We then would obtain

(A.31) 46% (02 — p2)* < (C = 1)(03 — p3)°

There is evidently no such C since § may be chosen arbitrarily large. Thus claim (v)
is proved, justifying the use of the alternate embedding « in (3.6). This concludes
the proof of Theorem 3.7. 0

Appendix B. Proofs for Section 4.

B.1. Proof of Proposition 4.4.

Proof. The proof of (4.5) is by direct computation. Namely
(B.1) Vo (CP*") = ker Dr(z) = {w € C"*"|zw* + wx™ = 0}

We would like to obtain a direct parametrization, however, and note that

W € Vi o(CPT) = wr* =K K e C"" K* = —KPRan(x)f( =K
— wr*=zKz* KecC* K*'=-K
(B.2) —= w=2aK KeC™ K*=-K
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799 In the first line note that w is recoverable from such a K viaw = Kz(z*z)~!. In the
800 second note that K = (zz*)'z* Kz(xz*)t. The third “if and only if” is obtained by

801 right multiplying x(xz*z)~1. The horizontal space is then computable as V. ,(C2*")+:

802 w € Hy z(CP*") <= Rtr{fw'zK} =0 VKeC"" K*'=-K

803 — 2*w=H HeC* H =H
804 — rw=zx"Hzx HeCY™ H*=H, PRan@H = H
805 < PRanmyw=Hz He Ccr*" H* = H, PRan@H = H
(B.3)
806 — w=Hzx+ X HeC™™ H* :H:PRan(w)HXeC"”,IE”Ran(I)Xzol

808 The second line follows from the fact that C"*™ decomposes orthogonally into Hermit-
809 ian and skew-Hermitian matrices. In the second note that H = (z*z) "'z Ha* (z*z) L.
810 The third follows from left multiplying by (zz*)z. Finally, the tangent space can be
811 parametrized via the horizontal space as its image through Dr(x) as

812 T,r(x)(sw’o(@")) = Dr(z)(Hr (C}*"))
813 ={Hzx" +xo"H + 2 X" + X2"|H € C"*", H" = H, PR,y
(B.4)

813 I

816 This provides a direct parametrization, but for our purposes the simpler indirect de-

817 scription given by (4.7) will be more useful. It is clear from (B.4) that T}, (S™%(C™)) CI
s1s {W e Sym((cn”]pRan(z)iWPRan(z)i = 0}. To prove the reverse, note that if W €

819 Sym(C™) and PRan(x)LWPRan(z)L then W = Wy +Wy+WJ5 where PRan(x)WlﬁbRan(:c) :I
820 Wi and PRan(z)WQPRan(x) . = Ws. Any such W5 is representable as x X™* where X is

(m)H =H, I[DRan(gc)X =0}

821 as in the description of the horizontal space. Indeed, take X = Wiz (z*x)~!. Finally,
822 the Sylvester equation zax*H + Hxx* = W; has the unique solution

823 (B.5) H= / et W et gt 0
824 0

825 B.2. Proof of Theorem 4.5.

826 Proof. To prove (i) in relatively short order we employ the following theorem:
827 THEOREM B.1 (see [26] and [18] Appendix B). Let ¢ : G x M — M be a smooth

828 action of a Lie group G on a smooth manifold M. If the action is semi-algebraic,
829  then orbits of ¢ are smooth submanifolds of M.

830 We apply this theorem in the case of SP7(C"). Sylvester’s Inertia Theorem says
531 that A € SP4(C") if and only if A = KI, ,K* for some K € GL(C") where I, , =
832 diag(l,...,1,—1,...,—1,0,...,0) is the matrix of inertia indices. Thus gp’q((C") is
833 precisely the orbit of I, ; under the smooth Lie group action:

¥ : GL(C") x C™" — Cx»

834 (B.6) V(K. L) = KLK"

835
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Noting that (K J,L) = ¢(K,¢(J, L)) for K,J € GL(C™). We need to check that
the action is semi-algebraic. For a fixed L € C"*™ the action has as its graph

{(K, Y)’K € GL(C"),Y = KLK*}
o :{ (kij» vig)

i,j €1,...,n,Det(ki;) # 0,yi; — Qij (ki) = 0}

where each @);; is a quadratic polynomial in (kij)ﬁjzl determined by L. This set is
manifestly semi-algebraic, so by Theorem B.1 each é’p’q((C”) is a smooth submanifold
of C™*™. To prove that the dimension of SP4(C") is given by 2n(p + ¢) — (p + ¢)*
note that the dim SP4(C") = dim SP*49 since matrix absolute value

|-|:§Pa(Cn) — §rHa0

(B.8)
Al = (A4%)2

is surjective and injective of up to permutation of eigenvalues. The dimension of Sp+a.0

can be computed from Ty (,)(S™"(C™)) as found in Lemma 4.4. Taking r = p+ ¢ then

(B.9) dimTw(m)(gr’O(C")) =n?—(n— r)2 =2nr —r?=2n(p+ q)— (p+ q)*

It remains to prove analyticity of gr’o(C"). It is proved in Lemma 3.11 of [3] that
S1O(C") is real analytic. The proof in the general case is analagous. First note
that owing to Sylvester’s inertia theorem GL(C") acts transitively on SP?(C") via
conjugation, since if X, Y € SP4(C"™) then we may obtain G, Gs € GL(C™) so that
G1XGf =I,, = G2YG3, hence (G5 'G1)X (G5 G1)* = Y. Tt remains to obtain that
the stabilizer group is closed in GL(C"™) so that we can invoke the homogeneous space
. A
construction theorem. If Z € SP4(C") then Z = 21, ,z* for some z = U, OZ} Ve
C7*". The stabilizer group at Z is given by T' € GL(C™) such that Tz € {zU|U €
U(p,q)}. In a basis ej,...e, for C" where ej,...e, span Ran(z) and e,11,...,e,

span Ran(z)* the stabilizer is therefore given by

(B.10)

r,0 _ AZUAQI Ml
m = M

U € Ulp,q), My € C™¥"" My € C™", det(My) # o}

It is easy to see that H3’ is a (relatively) closed subset of GL(C™), hence by the
homogeneous space construction theorem éT’O(C”) is diffeomorphic to the analytic
manifold GL(C™)/H;°. This concludes the proof of (7). Claims (47) and (iii) represent
slight generalizations over the analogous results in [8] for positive definite matrices,
but the same key theorems apply. Namely, we employ the following:

THEOREM B.2 (see [17] Proposition 2.28). Let (M, g) be a Riemannian manifold
and let G be a compact Lie group of isometries acting freely on M. Thenlet N = M/G
and m: M — N be the quotient map. Then there exists a unique Riemannian metric
h on N so that w: (M,g) — (N,h) is a Riemannian submersion; and in particular
that Drt(z) : Hy . — Tr()(N) is isometric for each z € M.

THEOREM B.3 (see [17] Proposition 2.109). If = : (M,g) — (N,h) is a Rie-
mannian submersion and v is a geodesic in (M, g) such that 4(0) is horizontal (i.e.
’)’(0) S Hﬂ',’y(O)) then
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875 (i) 4(t) is horizontal for all t
876 (i) wo~y is a geodesic in (N, h) of the same length as ~

877 In our case we are interested in the geometry of C**"/U(r), where C'*" is an open
878 subset of C™*" and is therefore a smooth Riemannian manifold of constant metric
879 when equipped with the standard real inner product on C™**"

giy (B.11) (A, B)g = Rtr{A*B}

882 The relevant compact Lie group of isometries will be U(r), acting by matrix multipli-
883 cation on the right. We note that while U(r) does not act freely on C™*", it does act
884 freely on C?*" since for € CI*" and W € U(r)

(B.12) 2 =2W <= afz=a"2W < (@*z) '(z"2)=W <= Ly, =W

887 Therefore by Theorem B.2 there exists a metric h on C?*" /U (r) such that the differ-
888 ential of T at

Dr(x) : (Hr2(CL¥), (+)r) = (Tr(a) (S™°(C™)), b
o (Ba13) 7(@) 5 (Hea(C), (1 )8) = (oo (S70(C), 1)
Dr(z)(w) = zw* + wz™
891 is an isometric isomorphism. Indeed

g9z (B.14) W2y, Z3) = (Dr(x) 2y, Dr(2) Z5)g

894 Where Dr(z)! is the pseudo-inverse of the linear operator Dr(z). In this case, for
895 wi,wq € Hy ,(CPXT)

896 (B.15) h(Dm(wy), Dm(ws)) = <D7r(x)TD7r(w1),Dw(x)TDw(wQDR = (w1, wa)Rr

898 We now determine h explicitly. Namely, if Z1, Z> € Ty (a) (§m0(Cm)) = D7r(H,r7w(wa))l
899 then Z; = Dm(x)(H;x + X;) where H;, X; are as in (4.6). We must have

h(Zl, ZQ) = %tr[(Hlx + Xl)*(HQSL' + XQ)]

900 (B.16
( ) = Rtr[a™ Hy Hyzx] + Rtr[ X7 X

o Ih._ . — ek T - — ) _
902 We define Z; := PRan(x)ZZPRan(z) = zx*H;+H;xz* and Zil = PRan(z)LZZ]P)Ran(z) —I
903  X;x*. Then

h= [ e
904 (B.17) 0

X; = Zra(z*z)™!

906 Plugging these expressions into (B.16) yields the expression

(B.18)
o0 * * o0 * *
hZy,Z5) = %tr{xx*/ et Z‘lle_t” dt/ e~ Zye_s” ds} + Rtr{Z{* Z3 (xx)T}
907 0 0
908 = ho(Zl, Z2) + hl(Zl, ZQ) I
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The first term in (B.18) ho(Z1, Z2) can be simplified via the change of coordinates
u=t+sandv=1t—sas

(oo} oo
ho(Z1, Z2) = / / Rer{e " (45) Zllg=va™ (t49) o 711 gt
o Jo

1 o0 u . .
= 5/ Rtr{e “*® Zl‘e*“” xx*Zy}dvdu
0

:/ uéRtr{e_“m*lee_““*xx*Zgl}du
0
o0
(B.19) :/ utr{e_“”*Zile_“”*mx*Zgl+Z£|xx*e_“”*Zl|e_“”*}du
0

9 . .
- Zu/ 9 uza® yll —uazt
r{Z, ; Ugy € e u}

:tr{ZQ/ e*“”*Zﬂe*“m*du}
0

= (Hy, Zo)r = (Z1, Ho)r

Where the last equality follows from cycling under the trace immediately and then
repeating the same calculation. With this metric in hand we have shown (i7), namely
that the map

(B.20) 71 (CPX7, () YR) — (S70(C™), h)

is a Riemannian submersion. To prove (iii), let A,B € $™(C") and let zz* and
yy* be their respective Cholesky decompositions, so that x,y € CI'*". Consider the
following straight line curve in C™*":

Ozy:[0,1] = C™*7

(B.21) opy(t) = (1 —t)z +tyU

Where U is a polar factor such that x*yU = |z*y| (equivalently U is a minimizer of
the distance D, as in Proposition 3.4). The claim is that we will be able to apply
Theorem B.3 to the pushforward of o, ,, proving that it is a geodesic connecting
A =m(z) to B =m(yU). Specifically, we would like to prove

(B.22) 0z.y(t) € CZXT vt € [0,1]

(B.23) Oa,y(0) € Hy 5 (CLT)

We first prove (B.22), namely that o, ,(t) does not drop rank as ¢ varies from 0 to 1
even though C}*" is not convex. The endpoints o, ,(0) = z and 0, (1) = yU are of

course full rank, so it is enough to prove it for ¢t € (0,1). Consider z*o, ,(t):

(B.24) oL, (t) =1 —t)a"z + ta*yU eP(r) fort e (0,1)

N——
€ P(r) |#*y| € PSD(r)

This implies that o, ,(t) € CZ*" for t € (0,1), so (B.22) is proved. Let v =6, ,(0) =
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yU — x. Then

v = —x*x 4+ 2*yU = —z*x + (x*yy*x)%
PRan(? = —(@") 22"z + (wa") 2 (2 yy"2)>

(B.25) PRane)? = (~PRan() + (zz*) z(c yy*z) ot (za) ) o

H
v=Hr+X, PRayo,X =0 H =PpayH=H

Hence (B.23) is proved and so by Theorem B.3 we have that v4, 5 := m0o 0., is a
geodesic on (S™0(C™), h) connecting A and B. We find specifically that this geodesic
is given by

va,5(t) =7w((1 —t)x + tyU)
(1= )+ tyU) (1 — 1)z + tyU)"
= (1 —t)%z2* + yy* + t(1 — t)(aU*y* + yUz™)

(B.26)

Clearly A = zz* and B = yy*, but what about xU*y* and yUx*? Fortunately, a
minor miracle occurs. Namely,

(B.27)
(yUac*)2 = yUz*yUzx™ = yUlz"y|z™ = y(|a"y|U") 2" = y(a™y) 2™ = yy za®

Thus in fact 2U*y* and yUz* are matrix square roots (not necessarily symmetric,
but having positive non-zero eigenvalues) for BA and AB respectively. We obtain the
following expression for the family of geodesics on S™%(C") connecting A and B

(B.28)
vaB(t)=(1- t)2:mc* + yy* + t(1—)(2Ujy* + yUpz™) + t(1 — t)(aUj y* + yUrz™)

Where Uy and U are as in Proposition 3.4. The fact that the form of this expression is
independent of r is somewhat surprising, and motivates claims (iv) and (v). In order
to prove (iv) we must first check that the collection of smooth manifolds (S“°(C"))7_,
provide a stratification of the cone S™%(C™") (conditions (a) and (b) of Definition 4.2).
Condition (a) is satisfied trivially and for (b) we note that

(B-29) SHO(Cm)\ §PO(CM) = {0} U MO U U gITLO

It remains to check that whenever p > ¢ the triple (S7(C™), §90(C"), A) is a-regular

and b-regular for A € 40 §p.0. Tt was noted by John Mather in Proposition 2.4
of [24] that b-regularity implies a-regularity, but we will use a-regularity in our proof
of b-regularity so we need to prove a-regularity first. Specifically, a-regularity in this
case states that if (4;);>1 C SP2(C") converges to A € S20(C™) and if T4, (50(C™))
converges in Grassmannian sense to the vector space 74 then Ty (S%0(C")) C 74.
Upon examining the form of the tangent space as given by (4.7) it becomes clear
that convergence of the tangent spaces T4, (SPY(C")) is equivalent to convergence of
RanA; to a space we denote L, so that the Grassmannian limit of the tangent spaces
is given by

(B.30) Ta = {W € Sym(C")|P,. WP, =0}
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It is evident that L should contain as a subspace RanA, and that this would prove
that the stratification given is a-regular. Indeed, if A; = U;A;U; is the low rank
diagonalization of A; so that A; = diag(\1,..., ) is the diagonal matrix of non-zero
eigenvalues of A; and U;U] = PRryp,,, UU; = Ipxp then by compactness we can
obtain a subsequence of (U;);>1 that converges to a matrix U such that the columns
of U are precisely an orthonormal basis for L. In this case, we may write A = UAU*
since A = lim;_, o U;A;U} and the sequences of eigenvalues converge (some to zero),
so that if U = [uq] - - - |up] then

(B.31) RanA = span{u;|A;; # 0} C span{u;}Y_;, =L

Thus, owing to (B.30) and the description of the tangent space in (4.7) we conclude
that T4(S%°(C")) C 74 and our stratification is a-regular. As for b-regularity, let
(A;)i>1 C SPO(C™), A € §99(C™), and 74 be as before (specifically we assume the
Grassmannian limit defining 74 converges) and let (B;);>1 C §2:0(C™) be convergent
also to A such that the following limit exists

. . A; — B;
(B.32) @ = fim Q= lm e
We claim that Q € 74. Specifically, let ©;, = A; — PRan(Ai)BiPRan(Ai) and ¥; =
IPRan(Ai)BiPRan(Ai) — B;. Then either ¥; = 0, in which case Q; = ©;/]|0;||2, or
¥, # 0, so that

11©:l[2 O; Wi v,
[Ai = Bill2 ||©ill2  [[Ai = Bill2 |[W]]2

(B.33) Qi =

We will obtain convergent subsequences for the sequences of unit norm matrices
0,/]|0:]|2 and ¥;/||¥;||2, but first note that

19ill2 _ IPRancay(Ai = B)PRanayllz _
||[A; — Bill2 [[A; — Bil|2 B

(B.34)

Hence ||U;]|2/]|Ai — B;||2 is also a bounded sequence (if it were not @); would fail to
converge). Next note that for ¢ sufficiently large ¥; = PRan( Ai,)BiPRan( Ay~ B; is

the difference of two matrices in S9°(C™), both converging to A. Therefore, owing
to the fact that 50"1’0(((:") is an analytic manifold, any convergent subsequence of
W, /|| ;|2 will have its limit lying in T4 (S7°(C")) (see for example Lemma 4.12
in [29]). Owing to the already proved a-regularity we conclude that the limit of
any convergent subsequence of W; /|||l lies in 74. Similarly, ©; = PRap a,)(Ai —
Bi)PRan( A,y hence any convergent subsequence of ©; /116:]|2 must lie in 74. Thus we
may obtain a subsequence such that the sequences of real numbers || ||o/[|Ai; —
By, |l2 and ||Wy,[|2/[|A;; — By,|l2 converge to some o, € R and the sequences of
unit norm matrices ©;,/||©;,[|2 and W;, /||¥; [|2 converge to some O,¥ € 74. Since
(Q:)i>1 converges, we find that

(B.35) Q=0a0+pV ey

Thus the stratification ($%°(C"))7_, is b-regular and in particular is a Whitney strat-
ification of S™0(C").
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In order to prove (v), let A; = z;27 and B; = y;y} be Cholesky decompositions
of A; and B; such that z;,y; € C™*P and note that we are told the following limit
exists at each ¢

(B.36) (1) = lim (1~ 0)%miaf + Pyig? + 11— )@ U7} + i)

Where U; € Ul(p) is such that zfy;U; > 0. We note that since (4;);>1 and (B;)i>1
converge we may obtain convergent subsequences for their Cholesky factors z; and y;
(I|zi]]l2 and ||y;||2 must both be bounded or else A; and B; would not converge). We
may also obtain a convergent subsequence for (U;);>1 owing to the compactness of
U(p). Denote these subsequential limits by x, y, and U respectively and consider a
combined subsequential indexing such that each occurs. Let V,; and V,, be the matrices
of right singular vectors for z and y so that x = [#|0]V, and y = [§|0]V, for some
#,9 € C¥*9. Then clearly

(B.37) 5(t) = (1 —t)%82" 4 295" + t(1 — t)(@U*§* + gUz*)
Where U is the upper left g x g block of V,,UV;*. We will prove that in fact

Ulo

(B.38) VUV = =

In particular, this will imply that U € U(q) since V,UV;* € U(p) hence the upper left
q X g blocks of (V,UV)(V,UV)* and (V,UV;)*(V,UV;*) must both be equal to the
g X q identity matrix. In order to prove (B.38), note that U = VW* where

_— X 0] s
(B.39) xy—W[O O]V

is a singular value decomposition of x*y. On the other hand if

(B.40) #g=P B 8} %

is a singular value decomposition for Z*y then

plol 200 olo

(B.41) 'y =V} = 0 | Vy
ol p| |~ 00

Of — ——
W Ve

Where P,Q € U(p — q) are in general arbitrary, but may of course be chosen in
accordance with W and V. Thus

* * _ })C2 0
(B.42) VOV =V, VWV, = { 0 PO ]
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is as in (B.38). The question remains whether Z*§U > 0, but we note that

ey =ve %0 olvu
_ e B0 0]y ey
- Y 0 0 Y

(B.43) SRR

x| TY
=V lo o [o U]V”C
e E U o
=Va | o 0] Ve

Thus x*yU will be positive semidefinite only if i‘*;&f] is positive semidefinite, and since
*yU = lim; o0 7y U; = im0 |27y:| > 0 we conclude that i*g)U > 0. A nearly
identical proof shows that Uz*y > 0. We conclude that § is a geodesic in S’Q’O(C”)
connecting A and B. O

Appendix C. Proofs for Section 5.

C.1. Proof of Proposition 5.1.

Proof. We may first note that (zz*, A;)r — (yy*, A;)r = (zz* — yy*, A;)r. The
expression (1.3) then becomes

C.1 = inf L,A;)?
(C.1) a0 LESITI’IT(C")Z< A7)

lILlla=1 7=
The claim follows by contradiction if S™" is closed. Explicitly, if S™" is closed then
ST N {x € CY*™ : ||z||s = 1} is compact. Assume ag = 0, then there exists Lo €
ST N {x € C"*™ ¢ ||z||]2 = 1} so that
(02) L07

Jj=1

This implies that the map [ is not injective since, in particular, if zz* = (Lg)+
and yy* = (Lo)— then za* # yy* since ||Lo|l2 = 1 but S(z) = B(y). It remains
to show that the spaces SP°? and in particular S™" are closed. Consider the map
n: C™" — {0,...,n}? with n(A) = (rank(A, ),rank(A_)) taking A to its Sylvester
indices (p,q). Then 7 is continuous with respect to the usual topology on C™**™ and
with respect to the “upper box” topology 7}, on {0, . .,n}? generated by the base

(C.3) By = {{z,...,n} x{y,....n}(z,y) €{0,...,n+1}}

The maps A — Ay are continuous and it is well known that rank(A 4+ B) > rank(A)
whenever ||B||a—2 < 0p44(A), hence 7 is continuous. Moreover {0,...,p} x{0,...,q}

is closed in 7., hence SP-9; its pullback through the continuous map 7, is closed in
(Cnxn' D

C.2. Proof of Theorem 5.6.
Proof. We first prove that ag = inf,ccnx» a(z). We note that

|2 Z| yy*aAj>]R|2

(C.4) ap = in
zyecr ||za — yy*|
za* Fyy~
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1081 We may change coordinates to z = 1(z +y) and w = z — y so that

1 m
182 (C.5 ag = inf —§ 20 + w2, A2
( ) 0 - weCn T ||zw* +wz*||§ .71|< 3 ]>]R|

1083 zw*+wz*#£0 J=

1034 Recall that z has rank k, and therefore we may take z = [2|0]U for 2 € C?** and
1085 U € U(r). We then define 1 € C"** via the first k columns of wU* then zw* +wz* =
1086 20* +w2* = Dm(2)(), so that in fact we may take @ € H, :(C?*¥)\ {0}. We obtain

2
0= B e e o TR 2 PRI A

2eCnir\(0) WeH,, z(c””)\{o} [|D7(2)

= inf Z| Aj)g)?

ZG(Can\{o} WET.,‘—(Z) (Sk O((Cn))

1
1087 (C.6) Wil2=
= inf min E (W, Aj)r
2EC™XT W €T (5)(S%0(C™))
lellz=1 jwja=1
= inf a(z)
ZGC’HXT‘
1088 [1z]]l2=1

1089 This proves (5.11). The first two inequalities of (5.12) are clear from the definitions
1090 of the quantities involved, namely ag < as(z) < a1(2). It remains to prove that
1091 a1(z) < a(z). We will need the following families of real-linear subspaces of C™"*"
1092 indexed by z € C™*7.

(C.7)

093 H, = {Hz+ X|H € C"" H* = H =Py, H, X € C™" , Ppoy X =0, XPyy(s) = 0}
(C.8)

1094 A, ={weC™"| Fp>0 V|e<p z'(z+ew) >0}
(C.9)

1008 D ={y € C""PRany¥ =0, YPrer(z) =y}

1097

1098 LEMMA C.1. The space A, is alternately characterized as
1998 (C.10) A, ={weC™z"w =w"z}

1101 And is thus manifestly a real-linear subspace. Moreover, A, decomposes orthogonally
1102 into

gy (C.11) A,=H,aT,

1105 Finally, if z = [2|0]U for 2 € C?*F then

1106 (C.12) H, Z{Hmé((cfx}c)

ofw
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Proof. Clearly a necessary and sufficient condition for w € A, is that z*w =
w*z, for in this case take |¢| < or(z)/[|w||2. We can use this condition to obtain a
parametrization for A,:

weAN, < z'w=w*z
— w=H HeC™ H* :H:Pker(zyﬁ
— Fw=2"H: HeC"'" H =H= PRan() H
(C.13)
= w=H:+X HeC™" H =H=Ppy HXeC" Pg X =0]

This proves (C.11), with orthogonality easily verified. To prove (C.12) note that if
z = [2|0]U for 2 € C**, U € U(r), and w = Hz 4+ X € H. then the condition
XPyer(z) = 0 implies X = [X|0)U for X € C"** and PR,y X = 0 if and only if

]PRan(z)X = 0. Thus
(C.14) O
H, = {H[2|0]U + [X|0]U|H € C"", H* = H = PR, H,X € C"*" ,Ppan . X = 0}
= {[Hz + X|0JU|H € C"",H* = H = PRy :), X € C"" PRap ;)X = 0}
= [Hr:(C2F) U |

With this lemma in mind, we may transform a;(z) into a linear minimization
problem over A,. Namely

S aa — 2%, Aj)r|?

a1(z) = lim inf =1

1( ) R0 ceCnxT ||.’L'3f* _ ZZ*H%

[|zz™ —zz"||2<R

(C-15) S w227, Aj)al?

= lim inf J 5
RS0 gecnxr [|zx* — 22|35

[|zz™ —zz"||2<R

2¥x>0

We can add the z*z > 0 constraint without altering the infimimum since doing so
amounts to a choice of representative for z, but « only appears as 7(z) = za*. We now
show the following lemma, implying that we may instead minimize over ||z —z||2 < R.

LEMMA C.2. For all z € C™*" and € > 0 there exists § > 0 such that if z*x > 0
and ||zz* — xx*||2 < 6 then ||z — z||2 < e.

Proof. We begin with the fact that the operation
¢: PSD(n) —» PSD(n)
C(A) = VirAvVA

is continuous with respect to the topology induced by the Frobenius norm. Note that
1

C(xz*) = ||z||2(zz*)2 = ¥(z) (the embedding v as given in Definition 3.5). Therefore,

given any z € C"*" and €; there exists § such that

(C.16)

(C.17) lea® — 222 <& = [[[|alla(wa”)? = ||2ll2(22")2]2 < &1

The latter expression here is of course ||¢(z)—(z)||2, which satisfies || ()= (2)]]2 >
1D(z,2)? by (A.19). If z*z > 0 then D(z,z) = ||z — 2|2, so if we take e; = % then
the above § satisfies the lemma. |
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With this lemma in hand we may freely replace ||za* — zz*||2 by ||z — z||2 in the
infimization constraint for a;(z) (note that the converse of the lemma is immediate
since 7 is continuous with respect to the topology induced by the Frobenius norm).
After doing so, we change variables from z to w = x — z so that

St wa — z2%, Ajrf?

ai(z) = lim  inf

R0 IIIEC\TX;R [|za* — 22*||3
r—z
z*ncZzO
i " Z;”:l [(zw* +wz* + ww*, A;)r|?
= lim in
R0 \I\U€|(|C”<X;c [|zw* + wz* + ww*||3
w
z*(z+2w)20
N e b, Ayl
= lim in
R—0 weA, [|zw* + wz* + ww*||3
(C.18) llwll2<R

S [(zw + w2t + ww*, Aj)rl|?

< lim inf 7=1 5
R—0 weH, [|zw* + wz* + ww*||3
[lwll2<R
_ _ Sy [{pw* + w2 + ww*, A;)r|?
= lim inf 5 5
R—0 HwﬁHzR ||zw* +wz*||5 + |[Jlww*||3 + 4Rtr{ zw*ww* }
wi|2<

“lm it St [(pw* +wzt + ww*, Aj el
~ R—0 H, 2 RET{zw* ww*}
0 R llew +wze | B+ 4R

We need to show that the ratio

_Rtr{zw*ww* }|

1 —gqvm 7
(C.19) Bl) = T w2

is O(||w||) when w € H,. We employ the parametrization of H, given in (C.7) and
note that for w = Hz + X

(C.20) llzw* +wz*||3 = 2(][z" Hz|l3 + []z2"H]||3 + ||2X"|I3)
(C.21) Rer{zw*ww*} = Rtr{z* H?22* Hz} + Rtr{ X* X 2*Hz}
Thus we find
R(w) < 2|?Rtr{z:H2z§*Hz}| j— 2|§)2“Etr{X*)iz;Hz}|
|lz*Hz|[5 + [|z2* H|[5 + [|2X*|[5
* 2 * * *

(C.22) < 2|§Rtr{z *H zzsz}| 492 \?Rti{)g Xz *Hz}\z

||lz*Hz|l3 l2X*|I5 + [|2* H =I5

I H?2ll2 | [IX*X|2
T lzrHzlle ]2 X2

Up until this point we have not used the fact that H]PRan(z) =H = PRan(z)H and

XPyerzy = 0. We do so now by noting that if z = U;AV* for U € C™** such
that U1U7 = PRy, A = diag(o1(2),...,0k(2)) is the diagonal matrix of ordered
singular values o1(z) > -+ > op(2) > 0, and V; € C™** such that V| = Pyer(z)r
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1163  then
(C.23)
12" H22|| = |AUF HUrAls < 01 (2 [|UF H2Uil 2 = 01.(2)? f6r{PRm o) H*PRan ) H?} = 01 (2)?][H?

ot ||t HE| = AU HU A 2 032 PIIUT HUL2 = 0(2)2 /0 PRy ) HP Ry = 0 (2) 12

1165 12X 2 = [[AVI X2 = ||AX VL) [[2 = 0w (2)[|[ X Vi ]2 = Gk(Z)\/tr{XPker(z)LX*} = ok (2)[|X]|2

1166 Thus if k(2) = 1(2)/ok(z) is the condition number of z we find

12l XX,
R <2 2” —1
(w) < 26", + oG TR,

< 26(2)?|[H |2 + o ()1 X ]2
< 26(2)%0k(2) || Hzll2 + o (2)1X ]2

1167 (C.24 2
(C.24) < VEmax@ele 1) e e
or(2)

_ WHWH
 ow(2) 2

1168 c(z)
1169 Thus returning to a;(z) we obtain

Yty |(zw” + wa”, Aj)ef®

< lim inf == 142
al(z)*RILno wléle sz*—l—wz*”% (L4 20(=)ll2)
[lw]l2<R

S e+ we AP

= in
weH, [|zw* + wz*||3
w#0

1170 (C.25) — it D gy [(2d* + w2, Aj)el?

N P
WAD

WET.A.(E) (S’«k,O((Cn

m
= min > KW, Ajel?
)=
IW[la=1

1171 = a(z)
1172 This proves (5.12). In order to prove (5.14) we will employ an explicit parametrization

1173 of Tﬂ(é)(gk’o(cn)) implied by (4.7). The condition on W € Sym(C") in (4.7) that
1174 ]P)Ran(z)iWPRan(z)i = 0 implies that

. 1
1175 (C.26) W € T3 (SM(CM) <= W =W, + 5 (W2 +7773)

1177  For Wl, W2 € C™*" where PRan(z)Wl = Wl = Wl*’ PRan(z)Wg = 0, and WQPRan(Z) ZI
1178 Wa. In other words, if U; € C™** and Uy € C™*"~% are as in Definition 5.4 then

. 1
o (C.27) Tr(5)(S™0) = {U1 AUT + 5 (U2BUL + U1 B*U5)|A € Sym(C*), B € Cn—kxky
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We will now employ the fact that the maps 7 and p in (5.6) are isometries. Specifically,
if A,B € Sym(C") then (A, B)gr = 7(A)T7(B) and if X,Y € C™*" then (X,Y)r =
w(X)Tp(Y). With this in mind, we obtain that for W € T (;)(S*?)

m m 1
D IWApel® = Y [(U1AUT + 5 (U2 BUT + UrB*U3), Ayl

Jj=1 Jj=1

= (U1 AU}, Aj)n + (U2BUT, A )|

(C.28) j=1

Where W = [;Eg%] € RF’+2k(n—k) — R2nk—k> ©Meanwhile, again owing to the fact

that 7 and p are isometries, we find that for W € Tw(g)(ékyo) we have ||WW||2 = ||[W]|2.
Thus returning to our computation of a(z)

a(z) = min WA 2
) WETr(2)( SM(C”))Z:| )=l
[[W]l2=1

= min  WT'Q.w

eRan—k2
[IW]l2=1

= Aonk—k2 (Qz)
This concludes the proof of (i) — (iii). As for (iv) and (v) note that when rank(z) < k

then we may find P € U(r) such that = [£|0]P for & € C™** and moreover
d(z,z) = d(Z, 2) and xa* — zz* = £&* — 22*. Thus

(C.29)

R . . it Wwa — z2%, Ajrl?
G1(z) = lim  inf
RS0 gecnxr d(x, z)?
d(z,z)<R

(C.30) rank(z)<k
m e L |@2 722 Al

RS0 gegnxk d(,%)?
d(#,2)<R

The constraint rank(z) < k is therefore equivalent to the assumption that z € C?*¥.
Hence, in order to avoid a plethora of hats we will assume z € C?**. This assumption
simplifies the situation considerably since in this case A, = H, .. As we shall see,
if the T, component of A, were to be non-trivial, the local lower bounds a;(z) and
a2(z) would be zero. We next note that d(z,z) = ||z — z||2||z + z||2 precisely when

This manuscript is for review purposes only.



1201
1202

1203

1211

1212

1213
1214
1215

1216

38 R. BALAN, C. DOCK

x*z = z*x > 0, which may be achieved without loss of generality in a;(z) via choice
of representative for 2. Thus, keeping in mind that z € C"**, we find

(C.31)
. . St wa® — z2%, Ajrl?
a1(2) = ll%lino me%lfm d(z, 2)?

d(z,z)<R
. . Sy e = 2) 4 (z = 2)2* + (z = 2)(z — 2)%, Aj)r|?
= lim inf

R—0  gecnx* llw = 2113 - [lz + 2113
[lz—zl2-||z+z[|l2<R
¥ 2=2"2>0

In analogy with our analysis of a;(z) we change variables from = to w = = — z and
are thus able to linearize the infimization constraint, since for ||w|la < ox(z) we
have that z*(z + w) > 0 if and only if z*w = w*z, or in other words if and only
it z€ A, <= z € H, . (the vertical component of A,, namely T',, is trivial for
z € C?*k). We also exploit the fact that D and d generate the same topology and
therefore instead of ||wl|2]|2z + w||2 < R we may simply take ||w]||z < R.

ST Hzw* 4wzt + ww*,Aj>R|2

N — 1 inf 7j=1
=)= iy B I3z + i
[lw|l2<R
lim inf 2w +wz*, A >R\ (1+O(||w|| )
= AR A Wl T ||§g
(C.32) llwlla<R !

Z|zw + wz*, Aj)r|?

4 z 2w€H 2
II2[12 3 wellrs

LIV

I

We now consider az(z). In a manner precisely analogous to (C.30) the constraint
in as(z) that rank(z) < k and rank(y) < k is equivalent to the assumption that
z € C*F. We first employ the unitary freedom of = and y to note that

o Hxx* —yy*, A)r|?
d2(z) = lim  inf Z]_1 K yy J>R|

R—0 4 yecnxk d(.’L‘, y)2
d(xz,z)<R
d(y,z)<R

e Sl - Al

R=0 z,yeCmxk d(z,y)?
[lz—z]|2||z+z2||2<R
(C.33) lly—=z|l2lly+2ll2<R
¥ z=2%2>0
Yy 2=2"y>0
m * * 2
. . > @ —yy*, Ayl
= lim inf 5
R—=0 g yecnxk d(z,y)
[lz—z||2<R
[ly—zll2<R
c¥z=z%x
Yy z=z"y

We now weaken the infimization constraints and obtain a lower bound. We note that
x*z = z*x and y*z = z*y taken together imply that (z — y)*z = 2*(z — y), and
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also that the denominator d(z,y)? < ||z — y||3||z + y||3. Thus, changing variables to

£ =2 —zand n =y — z we obtain

(C.34)

S K€ =)+ (E—m)zt + 6 —mm*, Ajr/?

do(z) > lim inf
R0 g pecnxh
[1€]l2<R
lInlla<R

25 (E=m)=(§—n)"=

1 . Z;nzl I

1€ —nlI2l122 + €+ 12

Z2(E =)+ (€ —n)z*, Aj)r|?

—— lim inf

4)|2]]3 B—0 g pecnx
[€ll2<R
lInll2<R

2" (E—n)=(6—n)"z

1 2l

1€ —nlf3

2(E =)+ (E—n)z", Aj)r]?

— lim inf

4l[2[|5 B=0 ¢ pecnxr
l|€]l2<R
lInlla<R

2*(—m)=(€—n)"=

i I

1€ = nlf3

2(E—n)* + (E—n)z*, Aj)r|?

= —— lim inf
4)[2][3 B=0 ¢ pecnxk
[lE—nll2<2R

2" (E—m)=(§—n)"=

1€ = nll3

(L + O([¢l13 + [Inl13))

The last line is an equality rather than an inequality owing to homogeneity in £ — 7.
Changing variables once more to w = £ — n and using the fact that for z € CP**
Zw=wz = weA, & we H, (CF) gives

1
as(z) > lim inf

4|2]|3 R=0weH, . (crx*)

i

[{zw* +wz*,Aj>R|2

[Jwl[3

[lwlla<2R

(C.35) 1 .
= inf
4)|2||3 wen, . (crx*)
[lwll2=1

(2) = a1 (2)

Q>

Z |(zw* +w2*, Aj)g|?

j=1

The reverse inequality as(z) < d1(z) is immediate from the definitions of a;(z) and
as(z), thus (5.15) is proved. We now turn to explicit computation of a(z) as the
smallest non-zero eigenvalue of (),. As with the computation of a(z) we rely on

several embeddings. Specifically we define

- (CnXk N R2n><k

RX
(C.36) I(X)= [%X}
Note that j is an injective homomorphism
(C.37) J(X) =

where J € R?"%2" ig the symplectic form

0

(C.38) J= [Hnm

This manuscript is for

j . (Cnxkr N R2n><2k

| RX —3X
J(X):{%X m}]

and moreover that

[1(X) JI(X)]

_ann:|
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Note that Jj(X) = j(X)J for all X € C"*™.The embedding ! is isometric, and

the embedding j is isometric up to a constant since for X, Y € C"** we have

(X,V)r = ((X),1(Y))r = 3(j(X),j(Y))r. The embedding j is furthermore a

structure preserving homomorphism since for p € C*"** ¢ € CF*! we have that
i)(q) = l(pq), j(pq) = 7(p)j(q), and j(p*) = j(p)T. We will also employ the

isometric embedding vec defined in the obvious way in (5.8). We will need the fact
that if A € R"** and B € R**! then

(C.39) vec(AB) = (I;x; ® A)vec(B)

Note that this further implies that for z,y € R™**¥ and F' € R"*™ we have that
(C.40) vee(z)T (Tyxr ® F)vec(y) = vec(z) vec(Fy) = (x, Fy)g = tr{z? Fy}

With this in mind we find that for z € C?"** and w € H, ,(CP*F)

(Dr(2)(w), Aj)r|* = 4/{wz", A;)r[”

(C.41) :< 2
_ vecg(w»T(an@j(Aj»vec(j(z)))

2
=4 (VGC(l(w))T(Hkxk ® j(Aj))VeC(l(z)))
= AWTF; 22" ;W

where W = p(w), Z = p(z) and Fj =[x, ®j(A;). This should not be too surprising
since in fact

Bi(z) = (22", Aj)r
= <Z, AjZ>R

S(,3(4)5(:)
_ %Vecg(z»Tvec(j(A]—)j(z))

= el (akcan @ (A vee(j(2)
= vec(1(2))T (Txxr @ j(A;))vec(l(z)) = ZTF; Z

(C.42)

Thus when j3; is viewed as map from R?"* to R we find that |[Dg;(Z2)(W)]* =
AWTF; ZZT F;W. Returning to a(z) we first note that the constraint w € H, ,(C1**)
precisely avoids the “trivial” kernel of dimension k2 common to each FjZZTFj.
Specifically, we note that ZTFjV =0 for V €V, C R* where

(C.43) V, = {vec(JI(2)S +1(2)A)|S € Sym(R*), A € Asym(R")}
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1267 Namely if V € V, and n = JI(2)S + 1(2)A € R>™*" for A € Asym(R*) and S €
1268 Sym(R¥) so that V = vec(n) then
ZTEV = vee(l(2))T (e © j(A;))vee(n)
= tr{l(2)"5(4;)n}
1269 (C.44) =tr{l(2)7j(A;)(JI(2)S + 1(2)A)}
= tr{l(2)"(4;)J1(2)S} + tr{l(2)" j(A4;)i(2) A}
=0

A
A

1271 The last line follows from the fact that j(A;) is symmetric and j(A;)J is anti-
1272 symmetric since (j(A4;)J)* = —Jj(A;) = —j(A;)J. The reason that w € H, ,(C**)
1273 avoids this common kernel is that in fact V, = u(Vy .(C?*F)). Recall that

1374 (C.45) Vi o (CF) = {2 K|K € Asym(C")}
1276 We may decompose K € Asym(C") as K = A + iS where A € Asym(R") and

1277 S € Sym(R™). Hence if u € V; ,(C?**) then on the one hand j(u) = [I(u)|JI(u)] and
1278 on the other

(C.46)
1279 j(u) = j(zK) = j(2)j(K) = [I(2)|J1(2)] [g _AS] =[l(z)A+ Jl(2)S| —(2)S + Jl(z)A]I
1281 From which we may clearly identify I(u) = I(2)A + Ji(z)S, thus
1353 (CAT) V. = {u(u)lu € Ve o (CF)}

1284 The map g is an isometry, so if w € H, ,(C?*¥) then the image W = pu(w) lies
1285 precisely in the orthogonal complement of V,. Thus

m

a(z)=  min > [(Dr(2)(w), 4))=[

weHw,é((CI}Xk)

lwlle=1 ="
1286 (C.48) = min WT(4ZFjZZTFj)W
W eR2n* —
WLV, I=
[[W]l2=1
1287 = )\an—kQ (QZ)

1288 Note that at this point the hats return and Z = p(2). Eigenvalues are continuous
1280 with respect to matrix entries, and Q. is manifestly continuous with respect to z. As
1290  a result of this and the fact that k — 2nk — k? is monotone increasing for k£ < n we
1291 conclude that a(z) approaches zero whenever z approaches a drop in rank. Indeed,
1202 a(z) jumps discontinuously to a non-zero value once the surface of lower rank is
1203 actually reached, but this cannot prevent inf,ccnx- @(z) from being zero, thus there
1294 is no hope of defining a non-zero global lower bound ag. This concludes the proof of
1295 claims (iv)-(vi).

1296 Claim (vit) gives local control of a(z) in terms of a(z). We first prove that the
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the inequality (5.17) holds. To do so we consider the following operators:

(C.49)

(C.50)

Note that a(z) and a(z), defined respectively in (5.3) and (5.4), are expressible in
terms of the operator norms of the pseudo-inverses of II; (2) and II5(2).

(C.51)

a(z) = |y ()|,
a(z) = |2 (%))

We may therefore obtain operator-theoretic inequalities relating a(z) and a(z), namely

(C.52)

Hence

(C.53)

IM2(2)] = ||D7(2) "M 0 (2) ] < [[Da(2) [T (2) 1]
I (2)1]]. = [[D7 ()12 (2)1]]. < [|D(2)]].]12(2) 1]

1D (2)[-2a(2) < a(2) < ||Dm(2)7"[[Za(2)

It remains only to compute appropriate bounds for ||D7(2)||;2 and ||[Dm(2)71||? in
order to prove (5.17). First note that

(C.54)

1D (2)7H|3 = sup

|| Dre(2)~H(W)][3 :<
WET, (s) ($50(C)\ {0} W13 weH, s Ny ||w][3

Next note that for w = HZ + X € H, :(C"**) we have ||w||3 = ||[HZ||3 + || X||3 and
2w + w3 = 2(||&"HE|3 + ||22"H|[3 + ||2X]]3) thus

(C.55)

[|2w* + wz*|[3

D7 (2)~ 2% = n
T weH 0oy w3
_ o ||2*HE|3 + ||22* H|5 + ||2X*]13
HESYm(C™) PR . H=H [HZ]15 + || X3

XEC”XEPR&H@)X:O

> inf |12*HE]3 + 12X*|13

T HESym(C) PRy, . H-H [[HZ[|5 + [1X][3
XECnXk’PRan<s)X:O

Hz||2 X||2
> 204 (5)2 inf [[HZ]|5 + [1 X115

meSymen) by, | a- 1H2(E 4 [1XT3
Xe(C"X’“,IP’Ran(E)X:O

= 20%(2)?
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1319 Hence || D7(2) 7!} < gz

For the opposing bound note that

[[2w* +wz*][3

|D(2)|12 = sup >
wEH 5 (CP**)\ {0} |w|[3
S sup w
1320 (C.56) weH, - (CF)\ {0} |Jwl[3
Al w3
< sup e e 4
wEH 5 (CE**)\{0} |[w|[3
1321 < 4]|2||3

1322 Hence ||D7(2)||72 > i, proving (5.17). We note that choosing w = 2 € H, ;(C?*F
* 9

= 4][13°
1323 proves that in fact ||D7(2)||2—1 = m Finally, the claimed bounds in (5.17) are
1324 tight in the case rank(z) = 1, since in this case the inequality is equivalent to the
1325 mnorm inequality for W € C**"

1
1326 (C.57)

1327 V/rank(W)

1328  Specifically if W € Tﬂ(z)(,SD'l*O(C")) for z € C? then W = zw* 4+ wz* for some w €
1320 H, ,(C?) C C™ and has rank at most 2. Moreover we have that

Wl <{[Wll2 <[[W]x

1
330 (C.58) [IW]]1 = ||zw* + wz*||; = §||(z+w)(z+w)* —(z=—w)(z—w)"lh

1332 Recall (3.8) that for z,y € C™ we have that ||zz* —yy*||1 = d(z,y) and that d(z,y) =
1333 || — yll2||x + y||2 when x*y > 0. Let z = z + w and y = z — w, and note that in this
1334 case w € Hy ,(C7) implies 2*y = z*z + w*z — 2*w — w*w = z*z — w*w > 0 for ||w||2
1335 sufficiently small. Thus for ||w||2 or equivalently ||W||2 sufficiently small,

1
1336 (C.59) Wl = 51z +w) = (z = w)ll2]|(z + w) + (2 = w)ll2 = 2[2][2]|w]]2

1338 The condition that ||WW]|2 be sufficiently small is of no issue since the ratio in a(z) is
1339 homogeneous in |[W]|z2, hence recalling that rank(WW) < 2 (C.57) implies

{349 (C.60) V2llzllzllwllz < (W2 < 2l|z]|2]lwl]2

1342 Thus for rank(z) = 1 the inequality (C.57) is equivalent to

L_a(z) <al2) < 5 !

1343 (C.61
a5 (G6D) B

a(z)

1113

1345  which is recognizable as (5.17) since if rank(z) = 1 then ||z]|3 = 01(2)? and hence
1346 since (C.57) is tight so too is (5.17). This concludes the proof of (vii).

1348 To prove (viii) we combine (5.11) and (5.14) to obtain the following formula for
1349  computing ag:

1350 (C.62 ap = min min Aoni—k2 (Qu
(C.62) k=1,..r UEU(n) nk—#2(Qu)
U=[U1|Us]
Ule([:"Xk
1351 UpeCm "=k
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Recalling that

O [T(UF AU [r(UF AU1)] "
C.63 =3 [ 1“ A,
(C.63) Qlun|vs) ;[ﬂ(U2AjU1) p(Us A;UL)

Finally, we need to prove that the minimum over k in fact occurs at k = r. We may
write

1 m
(C.64) ap = min  inf min (W, Aj)r|?
k=1,...r 2eCT**F WeT, (. (SF0(Cn)) ||W||§ Jz::l !
Then note that if 2 € C*** and Z € Ccr*"") g such that 2% = 0 then z

[2|2] € C2*" and moreover, recalling the parametrization of the tangent space (4.7)
(or alternately that the stratification is a-regular), we find that Tr(,)(S™%(C")) D

Tﬂ(é)(é’k’o((cn)) since Ran(z)+ = Ran(2)* NRan(Z)*. Thus, in fact

C.65 ag = min Aomr—r2
(C.65) 0 pmin A (Qu)
U=[U1|Uz]
U1€(C"XT
U2€Cn><(n77‘)

We now set out to prove (ix), specifically to control ag using an infimization of a(z)
rather than of a(z) by including the additional constraint that z*z = I,.5,.. With this
constraint we may write any w € Hy .(C?*") as w = zH + X where H € Sym(C")
and X € C™*" satisfies PRan»X =0 (equivalently X satisfies z*X = 0). We note
that for z satisfying the constraint

(C.66) w3 = [1H[]5 + [1X]13
(C.67) [lzw* +wz*||3 = 4[| H|[3 + 2|1 X][3
Hence referring to (5.3) and (5.4) we find that for z*z = I,.«,
(C.68) 10(2) <) < Ja(2)

Note that a direct application of (5.17) to the case where z has orthonormal columns
would lead to the lower constant being ;- rather than 1. The form (5.18) for ag tells
us that a(z) depends only on the range of z, and that we may obtain ag via

(C.69) ag= inf a(z)
zeCPx"
2% 2=l xr

Thus
1 . 1 N
(C.70) — inf a(z) <ap < - inf a(z)
4 ecrxr 2 zecnxr
2 2=l xr z*z=lrxr
This concludes the proof of (iz) and Theorem 5.6. 0
Remark C.3. For r =1 the inequality (5.17) tells us that
(©1) ~30() <a(e) < 5 al)
: a(z) <a(z) < a(z
412113 2|l=113
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1388 But in fact, as was proved in [6], more is true. Namely if the nuclear norm is used in
1389 the definition of ag instead of the Frobenius norm so that

S (@, Aj)r — (yy*, Aj)r)?

1300 (C.72 al = inf =1
' ( ) 0 x,yeC™*" ||,’BSL‘* - yy*”%
1391 T#y

1392 And similarly in the definition of a(z) so that

1393 (C.73 al(z) = min W, A)g|?
(C.73) = e, s SOV

1394 [[W]l1=1
1395 then
1396 (C.74 ai = inf at(z

L (CT4) b= it ae)

1

1397 (C.75) al(z) = a(z)
1398 4|23
1399 Remark C.4. For r = 1, @D, is orthogonally equivalent to the restriction of Q. to

1400  the orthogonal complement of its null space, giving a correspondence between (5.14)
1401 and (3.5) in [2] when the frame is positive semidefinite (4; = f;f;). Specifically, if
1402 7 = 1 then we may take U; = ﬁ =:e; and Uy = [ea,...,e,] where ey,..., e, forms
1403 an orthonormal basis for C™ with respect to the complex inner product (-, -)c. Thus

* _ |<Z,f'>(C|2 _ 1 ) )
T(UlAle) - HZ]H% - ||Z||2<elvf]>(C<fjaZ>C
1104 (C.76) (e, fi)c(fs, 2)c
w(Us A;U) = ——I( : )
|12]2
1405 (en, fi)c{fs, 2)c

1406 Note that 7(U{ A;U1) is real, hence if we insert a single 0 in the middle of u(UsA;U7)
1407 between vec(R(Us A;Un)) and vec(3(Us A;Ur)) we obtain

(C.77)
T(UTAJUl)
. (e1, fi)clfs 2)c
1408 Vec(%(UOQAjUI)) = ||le I : )= \|Zl|| WU*Ajz) = |\Zl|| F(U)T5(A))i(=2)

1409 vee(S(Us A;Uh)) {ens fi)c(fi, 2)c

1410 Where in the last inequality the algebraic properties of [ and j are employed. Thus
1411 (up to a row and column of zeros)

;" Zj(Aj)l(Z)l(Z)Tj(Aj)}j(U)
2 =1

1412 (C.78) Q- :j(U)T{ B

j
1414 In accordance with the notation of [2] we denote & = I(2), ¢; = I(f;), and ®; =
1415 j(Aj) = @(bf + J@(Z)fJT so that the above becomes

m

1416 (C.79) Q.= j(U)T{ ||§1|§ > 0eeT e, }j(U)

1417 Jj=1
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Finally note that the column of j(U) corresponding to the the row and column of
zeros on the left hand side is Ji(z)/||z|l2 = J&/||€]|2, thus if we multiply on the left
by j(U) and on the right by j(U)T we obtain

(©80) Q)T = (1 ij{|5||22<b €70, 1~ Pug)

C.3. Proof of Theorem 5.9.

Proof. As was the case for a;(z) and as(z) the rank constraints in A;(z), Aa(2),
/All(z), and As (2) allow us to assume that z € C?** rather than C"*". As before, this
is done because without this assumption the resulting lower bounds would be zero for
every z not full rank. We begin with the analysis of Al(z), the simpler of the local
lower bounds (we will show (z) that A;(z) differ from A;(z) only by a constant factor,
and hence will not analyze them separately). As we have done several times before we
will employ the right hand unitary freedom of the variable = to require that z*x > 0,
and then make the change of variables from = to w =z — z.

(C.81)
3 . . 1 X 1 . 1
Ai(z) = lim  inf 7)22|<[EJL‘ JANE — (225 A2 )P

R—0 gecnxk D(;&Z
rx*#zz"
D(z,z)<R

3

= lim inf
R0 weCnxk
zw*+wz*+ww*;ﬁ0
[lw|l2<R
2" (z4w)>0

) ) 1 (zw* + wz* + ww*, Aj)r|?
= lim inf ww*, Aj)r + -
{ 2 x Z (2 +w)(z +w)*, A)E + (227, A;) B2

R—0 weCmF w3 |
zw* +wz" +ww* £0 Jj€lo(z) Jjel(z
[lw|l2<R
wWEA,

Where Iy(z) = {j € {1,...,m}|a;(z) = 0} are the indices for which «; is zero (and
hence not differentiable) and I(z) = {j € {1,...,m}|a;(z) # 0} are the indices
for which o is not zero (and hence is differentiable). Thus, since z is full rank we
know that A, = H, .(C?F) and since zw* + wz* + ww* # 0 < w # 0 for
w € Hy ,(C?*) and sufficiently small in norm, we obtain

(C.82)
! i ! * 2wt +wzt + ww*, Aj)r|?
LR SN O - (S e S o e P B ey
w§<Hwﬁz<R) 2 jel(2) jel(z) WF T W2 T W), Ay 2z, A,
i ! (zw* + wz*, Aj)r|?
" s {3 st +O(lu)
R—=0weH, . (CT*F) ||w||§ jE%% ) jezl:(z) zz*’Aj>

0<||wH2<R

. 1 |(zw* +wz*, A;)g|?

= min R <ww*,A‘>R + J
weH,,.(C1*F) |w|§{ »e;@ ! .EXI(:Z) Azz*, Aj)

[lw|l2=1 J&to J

Now recall from (C.41) and (C.42) respectively that |(zw*+wz*, A;)r|* = |(D7(2)(w), 4;)r|* =}
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AWTF; ZZTF;W and (ww*, A;) = B;(w) = WTF;W. Thus the above is

- F,ZZTF;
- m T , tjoea by
(C.83) Ai(z) = | min w { ‘Z Fj+ ‘Z JTE 7 }W
WLy, Jj€Io(2) JEI(2)
[[W]l2=1

As has already been noted in (C.44) the null space of each F;ZZT F; contains V,, but
in fact so does the null space of each F; for j € Iy(z) since in this case F,;u(zK) =
(Texk ® j(A4)))vec(l(zK)) = vec(j(A;)I(zk)) = vec(I(A;jzK)) = 0. Thus we obtain
finally that

(C84) ) =l 3 Ei 3 Lo 5

(%)
j€Io(2) JEI(=

Note that in addition to proving (5.24) this also proves (viii) as this form makes
clear that, owing to continuity of eigenvalues, infimizing Ay (z) over z will give zero
(and hence so too will infimizing A,(2) over z since Ag(z) < A1(2)). Specifically the
number of possibly non-zero eigenvalues of R. +T. is 2nk — k? and is thus monotone
increasing in rank, and thus a sequence (z;);>1 C C}*" approaching a surface of lower
rank k will have g, _,2 (R +T, ) approach zero. Somewhat more remarkably, (C.84)
actually gives us 1212( ) as an eigenvalue problem also. Specifically, we prove that the
“differentiable” terms in As(z) are equal to those in Ay (z) and that in fact these are
the only terms which contribute to Ay(z). We define

2
R op(T) — o
A= Srere @) o)
R—0 g yecmxr D(!E, y)

D(z,z)<R

D(y,z)<R

rank(z)<k

rank(y)<k

2
~ 2) 1QE(T) — Qg
A,ﬁ"(z) — lim inf Zke[o( )| () ]
R—0 gz yecn*r D(x,y)2

D(z,z)<R
D(y,z)<R
(C.85) rank(z)<k
rank(y) <k

X Dker(s lan(@) —ar(2)?
Al(z) = 1i inf
1(2) = fim - inf D(z, 2)2
D(z,x)<R
rank(z)<k

) ke (s lan(@) — ar(2)?
Io BERT . €lp(z
Ar() = Ilalino xel(r;lfxr D(:E, z)?
D(z,x)<R
rank(z)<k

So that Ay(z) > Alo(z) 4+ Al(z) > AL(2), AL(z) < Al(z), and Alr(z) < Alo(2).
Applying the mean value theorem to the functions gy : [0,1] = R, gr(c) = ax((1 —
c)x + cy) for k € I(z) we see that there exist ¢, € [0,1] so that ag(y) — ax(x)
g9(1) = g(0) = ¢'(cx) = Dag((1 —cx)x +cry)(y — ) (recall that these are precisely the
k for which said differential exists, and the differential is taken with respect to the real
vector space structure). Hence, replacing the rank constraints with the assumption
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that z € C?** and aligning both z and y with z so that z*z > 0 and z*y > 0 we
have:

(C.86) Q) = tim ket [Pl —a)e+ ay)ly — 2l
. 2 R—0 ﬁ’ye(ﬁrx; D(l‘, y)2
z—z||<
lly—z|I<R
2*z>0
25 y>0

Using the fact that D(z,y) < ||y — z||2 and writing = z+ ¢ and y = z+n we obtain
that

AT . . E:kez(a|1)ak(24*(1‘*Ck)§‘FCkU)(U‘*§)P
A5(z) > lim  inf 5

(C.87) R—0m €A, lln —€l15

1§l <R

lInll<R
The trick of linearizing the conic constraints here to £,1 € A, is crucial since it allows
us to strictly weaken the constraints in the infimum by taking w = n— ¢ so that, after
using the continuity of Doy, (o is continuously differentiable when differentiable)

— _ 2
QD) > im ke PaE+ (- et +an( - &)l

~ R—0 n, €A, H’?‘f”%
[1€ll2<R
[Inll2<R

S er |Dan(z)(n — €)1

= lim inf + O 24 2
RS0 n, €A, HU—fH% (||§||2 ||77||2)
[l€ll2<R
[Inll2<R
(C.88) ) | Do (2)(w)[?
> lim  inf kel(z) 5
R—0 weA, [lw||3
[lw]l2<2R

o] _*1 kel(z)
EunE
=A nk—k2 J ’ 1y = Al z
il 2 SR )~ )

We already had the reverse inequality AZ(z) < AI(z), hence Al(z) = Al(z). More-
over, assuming this minimum is achieved by wg € Hy .(C2**) then if we put z =
1

z+ %wo y = z — 3w we see that the fléo (z) term vanishes and A£ (z) is achieved,

hence Ay (2) < fli(z) We already had the reverse inequality, so we conclude that
Ag(2) = AL(z) = Al(2) and AP (z) = 0. In summary

. Tp.
Ay(z) = min ‘WT{ Z FJZZFJ}W

2nk VAN I
Wiy, JEI) 7
(0,89) [[W]|2=1
F.Z7ZTF;
— )\ B J J
2nk kz(. ZTFJ'Z )
J€EI(z)

Thus claims () and (i7) are proven. Claim (4i7) follows immediately from the inequal-
ity (3.6). This concludes the proof of the Theorem 5.9. d
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1490 Remark C.5. If z were not assumed full rank in (C.81) then w € A, would pos-
1491  sibly have a non-zero component wr in I', C V,Tyz((CZ}Xk). As a result, it would be
1492 possible to obtain a sequence (with the horizontal space component of w converging
1493 to zero) for which the second sum in the last line of (C.81) is eventually fourth order
1494 in |Jwl|2, thus A;(z) would be zero wherever « is differentiable (almost everywhere
1495 in measure). The rank constraint in the definition of A (z) that rank(z) < k avoids
1496  this, since it allows us to assume that z is full rank and hence that I', is trivial.

1497 C.4. Proof of Theorem 5.13.

1498 Proof. The proof of (7) is essentially identical to the proof of the analogous eigen-
1499  value formula for the lower bound a¢ in Theorem 5.6. One first changes coordinates
1500 to z = 2(z 4+ y) and w = x — y and repeats the computation (C.6) to obtain

M
1501 (C.90) bp = sup max Z (W, Aj)g|?
2ECm X WET, () (SM(C)) {4
1502 |[W]l2=1

1503 At this point we note that

IAMW)II3

50 91 by <
o (G9) o< T

B
)
1505 WeSym(cr)

= [I4][3-2

1506 As before we observe that it suffices to take z € C?*" since if 2 € C?** and % €
507 CPXUR) and 2 = [2|2] with 2*2 = 0 then Tﬂ(z)(smo(@")) D Tﬂ(é)(g’kvo). One then
1508 employs the tangent space parametrization (C.27) and repeats the computation (C.28)
509 to obtain

1510 (C.92) bop= sup M\ (Q:) = max M (Quyjva))
2ECTXT UeU(n)
* U=[U;|Uz2]
1611 U16C7LXT',U26C"L><”L7'V'

1512 This concludes the proof of (7). To prove (i) we will employ the following lemma.

1513 LEMMA C.6. Let ||| - ||| be any norm. Then

1514 (C.93) A1y = sup ([ Azz®)]|

1515 lz]la=1

1516 In other words the operator norm || Al of A : (Sym(C™)(C™),||-|l1) = ®R™, ||| - l|l)
1517 4s achieved on a matriz of rank 1.

1518 Proof. Let R € Sym(C™) be non-zero such that ||R||; = 1 and |||A(R)||| =

1519 |JAl[]|R]|1. Write R = }°7_, rjeje} and note that |[R|[; = 1 implies 37, |r;| = 1.
1520  Then

(C.94)

521 [JAlL = (ARl = 11D Aegep)lIl < QO Irl) max ([l A(e;e;)l] = jjfllaxn|\|v4(€je;)|||l
i=1 e

o 1
22 j=1 J

1523 Let g = e, where j is the index that achieves the maximum. Then ||zg|]» =1 and
1524 ||A|l« < ||| A(zox)]]|, but of course this bound is achievable by just plugging in zgx
1525 into A. Thus the operator norm of A is achieved on a matrix of rank 1 and the lemma
1526 holds. 0
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Next note that

oo e — yy*, Aj)el?
or= TRl
z,ycC™*" yy©iT
[#]#[y]
AW)||?
S ap OV
ZECTXT W ETy () (S70(CM)) [IW1[%
sup  [[A(W)][3

WeSym(c™)
[[W]l1=1

= I4l[i2

(C.95)

IN

Note that by an identical computation by < ||A|l2—2. By the Lemma [|A|[1o2 =
SUP,ecn [|afj,—1 | A(z2*)|[3, hence

A * 2

o < sup 4GB
vecr  |lzz*|y

* 2

< wp IAGIE
s |[xzr([y

_ A oxp)II3

C.96 = .
(€.96) oz 2
2
. wp A0V
UeC™ ™ ~F  weSym(c™) W12

UsUz=lpn—kxn—k UiWUs=0
k=1,..., T

= bo
Where in the second to last equality we note that it suffices to take Us such that

UUs = PRan(xo)L and in the last equality we use the implicit parametrization of the
tangent space (4.7). Thus

o @B A3

(097) b071 = ||.AH1 2 = Sup . = .
B e [

We now seek an operator T;. : C**" — (C™*")™  an integer ¢, and a norm ||| - ||| so
that for x € C"*"
(C.98) T (@)1]7 = [|A(zz*)]13
We find that if A; > 0 for all j then

m m 1
(C.99) [AGzz")|13 = Y [(za”, A)rl* = Y ||AFall3

Jj=1 j=1
So we let T, be as in Definition 5.12, ||| X]||| = |||X]||2,4 and ¢ = 4 and find by =
||TTH§H(274) = HT1H‘2LH(2’4). This concludes the proof of (i¢). To prove (iii) note that

by (3.5) [|(z2*)% = (yy*)?||2 > D(x,y) hence

la(@) — a@)l]3
(C.100) Bo< sup 10T W2
z,ycC™>" D(xay)Z
[z]#£[y]
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Thus
1 u . .
By < sup ——— |(za™, Aj)? — (yy*,A~>5|2
eyecnxr D(@,y)? Zl ’ !
(C.101) [x]#[y] Al
(xa* —yy R
sup
wyecr<r [ —y||2 Z (wa*, Aj)% + (yy*, A;)7)?
¥ y>0

We now make the change of coordinates z = %(w +y), w=2x—ysothat x = 2z + %w,
y = z — Sw. As before let In(z) be the subset of {1,...,m} for which A;z = 0
and I(z) its complement in {1,...,m}. In this case we note that if j € Iy(z) then
0(zw* + wz*, Aj)r = (zz* — yy*, A;). Thus, employing the triangle inequality via

1 | 1 1 i X
(xa*, Aj)2 + (yy*, Aj)z = ||A;m||2 + ||Ajy||2 > 2||A]?z||2 = 2(zz*, A;)2 we find that

—yy* Al
(C.102) By < sup
S T 2 T T AT
xy>0
1 |(zw* + wz*, A;)g|?
(C.103) < sup sup " 4
zeCMXT weCm <" Hw||§ jg(z) 4(zz*, Aj)

2#0 2*z—twrwt i (wrz—z*w)>0
Next note that the condition z*z — Yw*w + (w*z — z*w) > 0 holds if and only if
z*w = w*z and w*w < 4z*z. Moreover, since w only appears as w/||w||2 we may scale
w so that o1(w) < or(z) (where z has rank k), thus the latter non-linear criterion
becomes the linear criterion that wPye(;y = 0. Taken together, these these criterion
hold if and only if w € H,. Thus, with reference to the computations (C.41) and
(C.42) we find that

1 [(zw* + wz*, A;)g|?
(C.104) By < sup sup ” J
I A D D )
27#0
(2)'F
(C.105) = sup max WT( Z HJ)W
2€C™*" WeR? ™k €Iz J ( )
z#0 W1lVz
[[W]|2=1
(C.106) = sup A (T%)
ZGCTLX’V‘
z#0

Moreover note that by setting y = 0 in the definition of By and observing that
[(z2*)2 ]2 = ||2||2 and that (zz*, A;) > 0 we obtain that

(C.107) By > sup

reCnxr X 23

Meanwhile by Cauchy-Schwartz (zw*, A;) < ||A]%w||2||A]%zH2 = (ww*, Ajﬁ (z2*, Aj>%l

This manuscript is for review purposes only.



1583
1584
1585

1586

1588

1589
1590
1591
1592
1593

1594
1595

1596
1597
1598
1599

1600

1601

1602
1603

52 R. BALAN, C. DOCK
(similarly for (wz*, A;)). Hence

Bo< swp M(f)
2€C™*"
270

(zw* —|—wz A
sup sup Tw ”2 Z iR ’

nxr H ZZ A
zézggo we jel(z) >

(C.108)

1
< sup

ww*, A;
= 2B Tl 2, (w4

< sup IE
wE(C”XT 2

Thus B < By < SUp, conxr /\1(Tz) < B and hence all three are equal. This concludes
270
the proof of (ii7) and of Theorem 5.13. |
C.5. Proof of Theorem 5.14.

Proof. Tt is shown in Proposition 5.1 that the map § is injective if and only if it
is lower Lipschitz, that is if and only if ag > 0. This gives equivalence of (i) to (i%)
immediately since we proved in Theorem 5.6 that

(C109) apg = min )\Z'nrf'r2 (Q[U1 |U2])
U, eCnxr
U2€(Cn><(n77“)
[U1|U2]€U(n)

Similarly, it is evident from (C.70) that ap > 0 if and only if a(z) > 0 whenever
2*2 = I.x,. It is proved in Theorem 5.6 that a(z) = Agpp_r2 (Qz), and also that the
null space of Q. includes the 72 dimension V,. Thus the frame is generalized phase
retrievable if and only if the null space QZ does not extend beyond V, for any z of
orthonormal columns, proving equivalence of (7) to (i73). We prove equivalence of (i7)
to (iv) by noting that Q[u,|v,) is invertible if and only if

T(Ul*Ale) m  _ m2nr—r?
(C.110) spang{ [M(Uz*Ale) Vi =R

Noting that T_l(er) = Sym(C") and u‘l(R2”T_2T2) = C"=™", thus Qu,ju,) is
invertible if and only if there exist ¢1,...,¢, € R so that (5.39a) and (5.39b) are
satisfied. To prove equivalence with (v) note that (5.39a) and (5.39b) both hold if
and only if for all U = [U;|Us] we have

span 1 m(R™ (n—r)xr
(C.111) pang{4;U1} = {U{ ]|H€Sy (R"),B€C }

={U,K|K ¢ C™*",K* = —K}*

Finally note that while (v) trivially implies (vi) it is also the case that (A;Uy, U1 K)r =
(UyA;Ur, K)r = 0 for every U; and every K since U{A;U; is Hermitian and K
is skew-Hermitian, hence it is automatically true that spang{A4,;U;} C {U1K|K €
Cr*", K* = —K}*. Thus we also obtain (vi) implies (v).

ThlS concludes the proof of Theorem 5.14. 0
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