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Abstract. The classical phase retrieval problem arises in contexts ranging from speech recog-4
nition to x-ray crystallography and quantum state tomography. The generalization to U(r) phase5
retrieval of matrix frames is natural in the sense that it corresponds to quantum tomography of6
impure states. We provide computable global stability bounds for the quasi-linear analysis map β7
and a path forward for understanding related problems in terms of the differential geometry of key8
spaces. In particular, we manifest a Whitney stratification of the positive semidefinite matrices of9
low rank which allows us to “stratify” the computation of the global stability bound. We show that10
for the impure state case no such global stability bounds can be obtained for the non-linear analy-11
sis map α with respect to certain natural distance metrics. Finally, our computation of the global12
lower Lipschitz constant for the β analysis map provides novel conditions for a matrix frame to be13
generalized phase retrievable when r > 1.14
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1. Introduction. Let H = Cn×r with n ≥ r be the Hilbert space of tall matrices17

with complex entries, equipped with the real inner product 〈z, w〉R = <tr{z∗w}, where18

z∗ denotes the transpose complex conjugate of z (the hermitian conjugate). We denote19

by 〈z, w〉C = tr{z∗w} the complex inner product and by Ran(z) = {zu|u ∈ Cr} the20

range of z as an operator z : Cr → Cn. Let Cn×r∗ be the open subset of Cn×r consisting21

of full rank tall matrices. For p ≥ 1 we denote by ||z||p the pth Schatten norm of z,22

that is to say the lp norm of the singular values of z. The pseudo-inverse of z will be23

denoted z†. Let U(r) be the Lie group of r × r matrices with entries in C satisfying24

U∗U = I. We denote by Cn×r/U(r) and Cn×r∗ /U(r) the set of equivalence classes in25

Cn×r and Cn×r∗ respectively under the equivalence relation z ∼ w if and only if there26

exists U ∈ U(r) such that z = wU . Let Sp,q(Cn) denote the set of symmetric operators27

(hermitian matrices) on Cn having at most p positive and q negative eigenvalues, and28

S̊p,q(Cn) the set of symmetric operators (hermitian matrices) on Cn having exactly p29

positive and q negative eigenvalues. The set Cn×r/U(r) may then be identified with30

Sr,0(Cn) and Cn×r∗ /U(r) with S̊r,0(Cn) via Cholesky decomposition. Being a finite31

dimensional space, a frame for Cn×r is a collection {fj}mj=1 ⊂ Cn×r that spans Cn×r.32

In particular, {fj}mj=1 is frame if and only if there exist A,B > 0 (called frame bounds)33

satisfying A||z||22 ≤
∑m
j=1 |〈fj , z〉R|2 ≤ B||z||22 for all z ∈ Cn×r. This condition may34

also be written A||z||22 ≤
∑m
j=1〈Aj , zz∗〉R ≤ B||z||22 for all z ∈ Cn×r where Aj = fjf

∗
j .35

Using this fact, we may extend the concept of a frame for Cn×r to collections of36

symmetric matrices {Aj}mj=1 ⊂ Sym(Cn). Fix a frame for Cn×r, then that frame is37

called generalized phase retrievable if the following map is injective:38

β : Cn×r/U(r)→ Rm

βj(z) = 〈Aj , zz∗〉R, j = 1, . . . ,m
(1.1)39

40

This definition is in agreement with the generalized phase retrieval problem laid out41

in [27] for the case r = 1. Note that if Aj = fjf
∗
j then βj(z) = ||f∗j z||22. A breadth of42
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2 R. BALAN, C. DOCK

literature exists on the classical phase retrieval problem where r = 1 and H = Cn or43

H = Rn, see for example [4] for an explicit construction of Parseval phase retrievable44

frames and [1] for a proof of the stability of finite dimensional phase retrievability45

under perturbation of the frame vectors (in contrast to the finite dimensional case, it46

is shown in [10] that infinite dimensional phase retrieval is never stable). Probabilistic47

error bounds for the case of noisy phase retrieval may be found in [14] for frames48

sampled from a subgaussian distribution satisfying a so called “small ball” assumption.49

Efficient algorithms exist for doing classical phase retrieval (for example via Wirtinger50

flow as in [12]), as well for constructing frames with desirable properties (nearly tight51

with low coherence) as in [13]. See for example [25] for an analysis of the stability52

statistics for random frames and [21] for the interesting result that a large class of53

“non-peaky” vectors (so called µ-flat vectors) are recoverable even when frame vectors54

are chosen as Bernoulli random vectors, a case in which phase retrieval is well known to55

fail for arbitrary signals. Recently several advances have been made in understanding56

natural generalizations of the problem to arbitrary symmetric measurement matrices57

[27], unifying the problem of phase retrieval with that of fusion frame reconstruction.58

Lipschitz stability questions for the generalized phase retrieval are analyzed in [31].59

The generalized phase retrieval problem in the case r = 1 has proven amenable to60

efficient implementations of gradient descent [22] and a probabilistic guarantee of61

global convergence of first order methods like gradient descent has been obtained in62

[23] for O(n log3(n)) frame vectors. In accordance with the classical phase retrieval63

we also define the α map as the entry-wise square root of the beta map (here we64

require that each Aj ≥ 0):65

α : Cn×r/U(r)→ Rm

αj(z) = 〈Aj , zz∗〉
1
2

R , j = 1, . . . ,m
(1.2)66

67

Note that if we write Aj = fjf
∗
j using Cholesky decomposition then αj(z) = ||f∗j z||2.68

In this paper we will study the global and local Lipschitz properties of these two maps69

in the case that the frame is generalized phase retrievable. In particular, we analyze70

the following (squared) global Lipschitz constants:71

a0 := inf
x,y∈Cn×r
x 6=y

||β(x)− β(y)||22
||xx∗ − yy∗||22

, b0 := sup
x,y∈Cn×r
x 6=y

||β(x)− β(y)||22
||xx∗ − yy∗||22

(1.3)72

A0 := inf
x,y∈Cn×r
x 6=y

||α(x)− α(y)||22
||(xx∗) 1

2 − (yy∗)
1
2 ||22

, B0 := sup
x,y∈Cn×r
x 6=y

||α(x)− α(y)||22
||(xx∗) 1

2 − (yy∗)
1
2 ||22

(1.4)73

74

In doing so we will employ several distance metrics on Cn×r/U(r) (equivalently75

on Sr,0(Cn)), the relationships between which are contained in Theorem 3.7. The76

Lipschitz properties of α and β are intimately related to the geometry of Sr,0(Cn),77

which is the subject of Theorem 4.5. Theorem 4.5 continues the results in [8] on the78

geometry of the n× n positive definite matrices P(n). The main contributions of this79

work are thus:80

• In Section 3 we introduce the novel distance81

d(x, y) :=
√

(||x||22 + ||y||22)2 − 4||x∗y||21(1.5)82
83

on Cn×r/U(r) and in Theorem 3.7 provide optimal Lipschitz constants with84

respect to natural embeddings of (Cn×r/U(r), d) into the Euclidean space85
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LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 3

(Sym(Cn), || · ||2). This new distance metric allows us in 5.6 to compute local86

lower Lipschitz constants for the β map generalizing those in Theorem 2.5 of87

[6]. 3.7 also provides optimal Lipschitz constants with respect to natural em-88

beddings of (Cn×r/U(r), D) into (Sym(Cn), || · ||2) for the Bures-Wasserstein89

distance D(x, y) :=
√
||x||22 + ||y||22 − 2||x∗y||1.90

• In Section 4 Theorem 4.5 generalizes Theorem 5 in [8] by providing the geom-91

etry not just of manifold of positive definite matrices P(n) but of the algebraic92

semi-variety Sr,0(Cn). In particular we manifest a Whitney stratification of93

Sr,0(Cn), obtain the Riemannian metrics of the stratifying manifolds, and94

show that this family of metrics is compatible across the strata in the sense95

that geodesics of lower strata are limiting curves of geodesics in higher strata.96

In particular this proves that the geodesic in Sr,0(Cn) connecting two matri-97

ces of rank k < r is completely contained in S̊k,0(Cn). This stratification of98

the low rank positive-semidefinite matrices is crucial in simplifying the com-99

putation of the global lower Lipschitz bounds for β and α in Theorems 5.6100

and 5.9 respectively.101

• In Section 5 Theorem 5.6 provides an explicit formula for the global lower102

bound a0 as the minimization over U(n) of the (2nr − r2)th eigenvalue of a103

family of matrices parametrized by U(n). Theorem 5.6 also uses the distance104

d to provide a generalization of Theorem 2.5 in [6] to the case r > 1 and105

shows that the analog Q̂z of R(ξ) can be used to control a0 to within a factor106

of 2. We also show in Theorem 5.9 that the corresponding generalization of107

Theorem 2.2 in [6] to the case r > 1 is false, namely that A0 = 0 when r > 1.108

Thus in the case r > 1 the more recently introduced β map (the entry-wise109

square of the α map) is a more natural and well behaved analysis map for110

generalized phase retrieval, owing primarily to the fact that it lifts to a linear111

map on the low rank positive semi-definite matrices. It should be noted that112

Theorem 5.9 does not rule out the possibility of a better distance metric with113

respect to which α is globally lower Lipschitz. Finally, in Theorem 5.14 we114

provide novel conditions for a frame {Aj}mj=1 for Cn×r to be generalized phase115

retrievable.116

A motivating example for the Lipschitz analysis of α and β is quantum tomography117

of impure states. A noisy quantum system is modeled as a statistical ensemble over118

pure quantum states. The standard example is unpolarized light. In such cases, all119

of the measurable information in the system is contained in a density matrix which,120

using bra-ket notation, has the form121

ρ =
∑
j∈I

pj |ψj〉〈ψj |(1.6)122

123

where pj is the ensemble probability that the system is in the pure quantum state124

|ψj〉 belonging to a Hilbert space H. If we assume the cardinality of I is finite and125

equal to r and that the state vectors themselves live in the Hilbert space Cn then126

ρ ∈ Sr,0(Cn) ∩ {x ∈ Sym(Cn)|tr{x} = 1}. The expectation of a given observable A127

(a symmetric operator on Cn) is therefore128

Eρ[A] =
∑
j∈I

pj〈ψj |A|ψj〉 =
∑
j∈I

pjtr{|ψj〉〈ψj |A} = tr{ρA} = <tr{ρA}(1.7)129

130

By repeatedly measuring the observable A and then allowing the quantum system to131

relax one may estimate tr{ρA} (and perhaps higher moments) but the aim is to infer ρ132
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4 R. BALAN, C. DOCK

itself. It was shown in [16] that sufficiently many randomly sampled Pauli observables133

can be used along with methods from compressed sensing (trace minimization, matrix134

Lasso) to reconstruct a low rank density matrix with high fidelity. In general, if a135

suite of observables is well-chosen (constitutes a generalized phase-retrievable frame)136

then the problem of inferring ρ from the expectation values of said observables is137

subordinate to the problem of phase retrieval on Cn×r. Asking if, for a collection of138

observables {Aj}mj=1, the density matrix ρ is recoverable is equivalent to asking if the139

map140

β̃ : Sr,0(Cn) ∩ {x ∈ Sym(Cn)|tr{x} = 1} → Rm

β̃(ρ) =

 〈ρ,A1〉R
...

〈ρ,Am〉R

(1.8)141

142

is injective. In fact, given that we can only approximate the expectations using143

finitely many measurements, we should hope that it is lower Lipschitz with respect144

to the Frobenius distance. Such stability questions for phase retrievable frames for145

Cn (the pure state case) are investigated in [1]. Given that ρ is positive semidefinite146

and rank at most r there exists a Cholesky factor z ∈ Cn×r such that ρ = zz∗.147

Indeed we may take z ∈ Cn×r/U(r) since ρ is invariant under z → zU , in which148

case tr{ρ} = 1 if and only if ||z||2 = 1. We may therefore concern ourselves with149

the Lipschitz properties of β restricted to z ∈ Cn×r/U(r) with ||z||2 = 1, rather than150

β̃. For the time being we consider a Lipschitz analysis of β : Cn×r/U(r) → Rm,151

deferring discussion of a possible Lipschitz retract onto the unit sphere. Thus we152

seek information on the optimal global lower Lipschitz constant of the β map, namely153 √
a0. In the above example if a0 > 0 this means that if we can measure each Eρ[Aj ]154

to within error ε > 0 then we can obtain an approximation ρ̂ to ρ that satisfies155

||ρ− ρ̂||2 ≤
ε
√
m

√
a0

(1.9)156

157

In addition to quantum state tomography, Lipschitz analysis of spaces of low-rank158

matrices is central in a significant number of problems in science and engineering such159

as: the phase retrieval problem [4, 28], source separation and inverse problems [15],160

as well as the low-rank matrix completion problem [11].161

We caution the reader that throughout the paper the scalar product 〈·, ·〉R is a real162

inner product, however z∗ denotes the conjugate with respect to the complex inner163

product 〈·, ·〉C. We also note that the norm ||z||p for p ≥ 1 is the pth Schatten norm164

of z ∈ Cn×r seen as a C-linear operator from Cr to Cn. Hence the norm || · ||2, while it165

refers to the Schatten 2 norm, is equivalently given as ||z||2 =
√
〈z, z〉R =

√
〈z, z〉C. If166

z were instead seen as an R-linear operator from Cr to Cn then the resulting Schatten167

p norm would be amplified by a factor 2
1
p since the multiplicity of each singular value168

would double.169

2. A review of quantitative phase retrievability. The question of phase170

retrievability criteria for frames for Rn was addressed in [4], in which it was shown that171

a frame F is phase retrievable if and only if it satisfies the “complementing property,”172

that is if and only if for every subset I ⊂ F either I or F\I spans Rn. It was moreover173

shown in [4] that if m < 2n−1 then a frame for Rn of cardinality m will not be phase174

retrievable and also that a generic frame for Rn of size m ≥ 2n − 1 will be phase175
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LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 5

retrievable – that is to say the set {F = {f1, . . . , fm} ⊂ Rn|F is phase retrievable}176

will be dense in the Zariski topology when m ≥ 2n − 1. The question of phase177

retrievability criteria can be made quantitative by asking for which frames the analysis178

maps α and β are lower Lipschitz with respect to some natural distance metrics, and179

computing their lower Lipschitz constants. Intuitively, a frame is phase retrievable if180

and only if α (resp. β) is injective, thus it is natural to analyze (for a given frame)181

the lower Lipschitz constant of α (resp. β), which measures“how” injective α (resp.182

β) is. In answer to this refinement it was shown in [5] that for the α map and the183

distance ρ(x, y) = min{||x− y||2, ||x+ y||2} we have:184

Theorem 2.1. (See [5] Theorem 4.3.) For any index set I ⊂ {1, . . . ,m} let185

F [I] = {fk|k ∈ I} and let σ2
1 [I] = λmax

(∑
k∈I fkf

∗
k

)
and σ2

n[I] = λmin

(∑
k∈I fkf

∗
k

)
.186

Then187

A0 := inf
x,y∈Rn
x�y

||α(x)− α(y)||22
ρ(x, y)2

= min
I⊂{1,...,m}

σ2
n[I] + σ2

n[IC ](2.1)188

189

This result implies in particular that for a phase retrievable frame for Rn the α map190

is globally lower Lipschitz. An analogous result was given in [5] for the β map and191

the distance ||xxT − yyT ||1:192

Theorem 2.2. (See [5] Theorem 2.1.) Let {fj}mj=1 be a phase retrievable frame193

for Rn and let R : Rn → Sym(Rn) be given by R(x) =
∑m
j=1 |〈x, fj〉|2fjfTj . Then194

a0 := inf
x,y∈Rn
x�y

||β(x)− β(y)||22
||xxT − yyT ||21

= min
x∈Rn
||x||2=1

λn(R(x)) > 0(2.2)195

196

Regarding the complex case the following phase retrievability criterion was ob-197

tained in [7]:198

Theorem 2.3. (See [7] Theorem 4.) Let {fj}mj=1 be a frame for Cn. For u ∈ Cn199

denote S(u) = spanR{fjf∗j u}mj=1. Then the following are equivalent:200

(i) The frame {fj}mj=1 ⊂ Cn is phase retrievable.201

(ii) dimR S(u) ≥ 2n− 1 for every u ∈ Cn \ {0}.202

(iii) S(u) = spanR{iu}⊥ for every u ∈ Cn ∈ \{0}.203

In connection to this paper we note that the above result is extended to the case of204

generalized retrievability of frames for Cn×r by Theorem 5.14. The quantitative lower205

Lipschitz variant of Theorem 2.3 was obtained for the β analysis map in [6], in which206

it was proved that for the beta map:207

Theorem 2.4. (See [6] Theorem 2.3 and Theorem 2.5.) Let {fj}mj=1 be a phase208

retrievable frame for Cn. Define R : R2n → Sym(R2n) via R(ξ) =
∑m
j=1 Φjξξ

TΦj209

where Φj = φjφ
T
j + Jφjφ

T
j J

T , φj =

[
<fj
=fj

]
and J is the symplectic form

[
0 −I
I 0

]
.210

Then211

a0 := inf
x,y∈Cn
x�y

||β(x)− β(y)||22
||xx∗ − yy∗||21

= min
ξ∈R2n

||ξ||2=1

λ2n−1(R(ξ)) > 0(2.3)212

213

The connection of the above to Theorem 2.3 is that the null space of R(ξ) includes214

the realification of spanR{iξ} for every ξ. Theorem 2.4 is extended to the case of215

generalized phase retrievability of frames for Cn×r by Theorem 5.6.216
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6 R. BALAN, C. DOCK

3. Relevant distances and Lipschitz embeddings.217

Definition 3.1. We define the equivalence relation ∼ on Cn×r via218

x ∼ y ⇐⇒ ∃U ∈ U(r)|x = yU(3.1)219220

and denote by [x] the equivalence class of x ∈ Cn×r, and by Cn×r/U(r) the collection221

of equivalence classes {[x]|x ∈ Cn×r}.222

The stability analysis that follows for β and α in Theorems 5.6 and 5.9 will rely223

heavily on the following natural metrics on Cn×r/U(r).224

Definition 3.2. We define D, d : Cn×r × Cn×r → R.225

D(x, y) = min
U∈U(r)

||x− yU ||2

=
√
||x||22 + ||y||22 − 2||x∗y||1

d(x, y) = min
U∈U(r)

||x− yU ||2||x+ yU ||2

=
√

(||x||22 + ||y||22)2 − 4||x∗y||21

(3.2)226

227

We note that another distance on Cn×r/U(r) given by228

D′(x, y) = max
U∈U(r)

||x− yU ||2

=
√
||x||22 + ||y||22 + 2||x∗y||1

(3.3)229

230

and is introduced and analyzed for the r = 1 case in [19]. We note merely that231

d = D ·D′. This does not imply d is a metric, however in fact we have the following232

proposition.233

Proposition 3.3. Both D and d are metrics in the usual sense on Cn×r/U(r).234

Proof. See A.1.235

The proof of Proposition 3.3 relies on Lemma A.1, an apparently simple result about236

the analytic geometry of parallelepipeds in R3 which may be of independent interest.237

The minimizer U can be chosen to be the same for both d and D, and is charac-238

terized by the following:239

Proposition 3.4. The unitary minimizer in both d and D is given by the polar240

factor in x∗yU = |x∗y|. The minimizer will be unique so long as x∗y is full rank.241

Otherwise, the minimizer will be of the form U = U0 + U1 where U0 = V0W
∗
0 with242

V0,W0 ∈ Cr×rank(x∗y) the matrices whose columns are the right and left singular243

vectors respectively of the non-zero singular values of x∗y and U1 ∈ Cr×r any matrix244

such that U1U
∗
1 = Pker(x∗y) and U∗1U1 = PRan(x∗y)⊥ .245

Proof. See A.2246

The metrics d and D can be compared to the usual Euclidean distance on Sym(Cn)247

modulo certain embeddings.248

Definition 3.5. We define θ, π, ψ : Cn×r → Sr,0(Cn) as249

θ(x) = (xx∗)
1
2

π(x) = xx∗ = θ(x)2

ψ(x) = ||x||2(xx∗)
1
2 = ||θ(x)||2θ(x)

(3.4)250

251
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Proposition 3.6. The embeddings π, θ, and ψ are rank-preserving, surjective,252

and injective modulo ∼, thus we write θ, π, ψ : Cn×r/U(r) ↪→ Sym(Cn).253

Proof. See A.3254

Theorem 3.7. Let x, y ∈ Cn×r/U(r). Then255

(i) θ : (Cn×r/U(r), D)→ (Sr,0(Cn), || · ||2) is a bi-Lipschitz map. In particular,256

Cn||θ(x)− θ(y)||2 ≤ D(x, y) ≤ ||θ(x)− θ(y)||2(3.5)257258

where Cn = 1 if n = 1 and Cn = 1√
2

for n > 1. The constants Cn and 1 are259

optimal.260

(ii) π : (Cn×r/U(r), d) → (Sr,0(Cn), || · ||1) is 1-Lipschitz and ψ−1 : (Sr,0(Cn), || ·261

||2) → (Cn×r/U(r), d) is 2-Lipschitz for r > 2 and
√

2-Lipschitz for r = 1. In262

particular,263

||π(x)− π(y)||2 ≤ ||π(x)− π(y)||1 ≤ d(x, y) ≤ cr||ψ(x)− ψ(y)||2(3.6)264265

where cr =
√

2 if r = 1 and cr = 2 if r > 1. The constants 1 and cr are optimal.266

(iii) For r = 1267

ψ(x) = π(x)(3.7)268

d(x, y) = ||π(x)− π(y)||1(3.8)269270

The identity (3.8) was noticed and used in [6], its proof is included here for the271

benefit of the reader.272

(iv) For r > 1, there is no constant C satisfying C||π(x)− π(y)||2 ≥ d(x, y) for each273

x, y ∈ Cn×r (hence the use of the alternate embedding ψ).274

Proof. See A.4275

Remark 3.8. While d and D are evidently not Lipschitz equivalent (they scale dif-276

ferently), they do generate the same topology on Cn×r/U(r) since d(x, y) ≤ D(x, y)2277

and given sufficiently small ε > 0 we have d(x, y) < ||x||
√
ε =⇒ D(x, y) < ε.278

4. Geometry of the matrix phase retrieval. It will be essential in the analy-279

sis and computation of (1.3) to understand the geometry of the spaces Sr,0(Cn). In280

order to do so, we will demonstrate that Sr,0(Cn) has a Whitney stratification over281

the smooth Riemannian manifolds S̊i,0(Cn) for i = 0, . . . , r of real dimension 2ni− i2.282

We recall the following definitions, due to John Mather and sourced from [20]:283

Definition 4.1. Let Vi, Vj be disjoint real manifolds embedded in Rd such that284

dimVj > dimVi and Vi ∩ Vj non-empty. Let x ∈ Vi ∩ Vj. Then a triple (Vj , Vi, x) is285

called a− (resp. b−) regular if286

(a) If a sequence (yn)n≥1 ⊂ Vj converges to x in Rd and Tyn(Vj) converges in the287

Grassmannian GrdimVj (Rd) to a subspace τx of Rd then Tx(Vi) ⊂ τx.288

(b) If sequences (yn)n≥1 ⊂ Vj and (xn)n≥1 ⊂ Vi converge to x in Rd, the unit vector289

(xn− yn)/||xn− yn||2 converges to a vector v ∈ Rd, and Tyn(Vj) converges in the290

Grassmannian GrdimVj (Rd) to a subspace τx of Rd then v ∈ τx.291

Definition 4.2. Let V be a real semi-algebraic variety. A disjoint decomposition292

V =
⊔
i∈I

Vi, Vi ∩ Vj = ∅ for i 6= j(4.1)293

294

into smooth manifolds {Vi}i∈I , termed strata, is a Whitney stratification if295
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(a) Each point has a neighborhood intersecting only finitely many strata296

(b) The boundary sets Vj \ Vj of each stratum Vj are unions of other strata.297

(c) Every triple (Vj , Vi, x) such that x ∈ Vi ⊂ Vj is a-regular and b-regular as in298

Definition 4.1.299

A simple example of a semi-algebraic variety that is not a manifold but admits a300

Whitney stratification is the cone C = {(x, y)|xy ≥ 0} ⊂ R2 consisting off the first and301

third quadrant of the coordinate plane. A possible Whitney stratification of this set302

is given by V0 = {0}, V1 = {(x, 0)|x 6= 0}, V2 = {(0, y)|y 6= 0}, and V3 = {(x, y)|x 6=303

0, y 6= 0}. In this case note that condition (a) is trivially satisfied since there are only304

finitely many strata, and moreover that (b) is satisfied since V3 \ V3 = V0 ∪ V1 ∪ V2,305

V2 \V2 = V0, V1 \V1 = V0, and that V0 \V0 = φ (an empty union of the other strata).306

That this stratification is both (a) and (b) regular may be readily observed. For307

example the tangent space at any point of V3 is simply R2, and thus the Grassmanian308

limit of a convergent sequence of such tangent spaces is also R2 and certainly contains309

the one dimensional tangent space at any point of V2 (identified with the y axis), the310

one dimensional tangent space at any point of V1 (identified with the x axis), and the311

zero dimensional tangent space associated with V0 (identified with the origin).312

We will also need the following:313

Definition 4.3. Let M and N be smooth manifolds and let π : M → N be a314

smooth map. For each x ∈M let315

Tx(M) := {γ′(0)|γ : [−1, 1]→M is a smooth curve with γ(0) = x}(4.2)316317

be the tangent space of M at x. Similarly for Tπ(x)(N ). Let Dπ(x) : Tx(M) →318

Tπ(x)(N ) be the differential of π at x, that is to say Dπ(x)(v) := α′(0) where α = π◦γ,319

γ(0) = x, and γ′(0) = v (that Dπ(x) does not depend on the exact choice of curve γ320

is an elementary result of differential geometry). Then321

(a) For each x ∈M define the vertical space at x as:322

Vπ,x(M) ⊂ Tx(M) := kerDπ(x) = {w ∈ Tx(M)|Dπ(x)(w) = 0}(4.3)323324

(b) IfM is equipped with a Riemannian metric g :M×Tx(M)×Tx(M)→ R then we325

may define the horizontal space at each x via the canonical orthogonal complement326

of the vertical space:327

Hπ,x(M) ⊂ Tx(M) := Vπ,x(M)⊥ = {v ∈ Tx(M)|g(x, v, w) = 0∀w ∈ Vπ,x(Cn×r∗ )}
(4.4)

328329

The following proposition will be essential both in proving the geometric results330

in Theorem 4.5 and in the analysis of the Lipschitz constants for β and α set out in331

Theorems 5.6, 5.9, and 5.13:332

Proposition 4.4. Let π : Cn×r∗ → S̊r,0(Cn) be as in Definition 3.5 and let333

Vπ,x(Cn×r∗ ) and Hπ,x(Cn×r∗ ) denote the vertical and horizontal spaces as in Defi-334

nition 4.3 of the manifold Cn×r∗ at x with respect to the embedding π. Here the335

Riemmanian metric on Cn×r∗ is of course g : Cn×r∗ × Cn×r × Cn×r → R given by336

g(x, v, w) = <tr{z∗w}. Let Tπ(x)(S̊
r,0(Cn)) denote the tangent space of S̊r,0(Cn) at337
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π(x). Then338

Vπ,x(Cn×r∗ ) = {xK|K ∈ Cr×r,K∗ = −K}(4.5)339

Hπ,x(Cn×r∗ ) = {Hx+X|H ∈ Cn×n, H∗ = H = PRan(x)H,(4.6)340

X ∈ Cn×r,PRan(x)X = 0}341

Tπ(x)(S̊
r,0(Cn)) = {W ∈ Sym(Cn)|PRan(x)⊥WPRan(x)⊥ = 0}(4.7)342

= Dπ(x)(Hπ,x(Cn×r∗ ))343344

Proof. See B.1345

Employing similar techniques to [8], but generalizing from the manifold of posi-346

tive definite matrices to the semi-algebraic variety Sr,0(Cn) semidefinite matrices, we347

prove:348

Theorem 4.5. Let π be as in Definition 3.5 and the distance D be as in (3.2).349

Then350

(i) S̊p,q(Cn) is a real analytic manifold for each p, q > 0 of real dimension 2n(p +351

q)− (p+ q)2.352

(ii) π : Cn×r∗ → S̊r,0(Cn) can be made into a Riemannian submersion by choosing353

the following unique Riemannian metric on S̊r,0(Cn):354

h(Z1, Z2) = tr{Z‖2
∫ ∞

0

e−uxx
∗
Z
‖
1e
−uxx∗du}+ <tr{Z⊥∗1 Z⊥2 (xx∗)†}(4.8)355

356

Where Z1, Z2 ∈ Tπ(x)(S̊
r,0(Cn)), (xx∗)† denotes the pseudo-inverse of xx∗, and357

Z
‖
i = PRan(x)ZiPRan(x) Z⊥i = PRan(x)⊥ZiPRan(x)(4.9)358

359

(iii) S̊r,0(Cn) equipped with the metric h is a Riemannian manifold with D as its360

geodesic distance.361

(iv) The semi-algebraic variety Sr,0(Cn) admits as an explicit Whitney stratification362

(S̊i,0)ri=0.363

(v) The geometry associated to h is compatible with the Whitney stratification in the364

following sense: If (Ai)i≥1, (Bi)i≥1 ⊂ S̊p,0 have limits A and B respectively in365

S̊q,0 for q < p and if γi : [0, 1]→ S̊p,0 are geodesics in S̊p,0 connecting Ai to Bi366

chosen in such a way that the limiting curve δ : [0, 1]→ S̊p,0 given by367

δ(t) = lim
i→∞

γi(t)(4.10)368
369

exists, then the image of δ lies in S̊q,0 and is a geodesic curve in S̊q,0 connecting370

A to B.371

Proof. See B.2372

5. Computation of Lipschitz bounds. We are primarily interested in com-373

puting a0 and A0, the squared global lower Lipschitz constants for the β and α analysis374

maps respectively. Owing to the linearity of the β analysis map when interpreted as in375

(1.8), we will be able to show in Theorem 5.6 that the optimal global lower Lipschitz376

bound a0 can be obtained via local considerations. For the α analysis map we will377

be able to show in Theorem 5.9 that the optimal global lower Lipschitz bound A0 is378
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actually zero for r > 1. Since the global lower Lipschitz bound for the α analysis map379

is trivial we emphasize the analysis of the local lower Lipschitz bounds. Recall that380

a0 = inf
x,y∈Cn×r

[x] 6=[y]

||β(x)− β(y)||22
||π(x)− π(y)||22

= inf
x,y∈Cn×r

[x]6=[y]

∑m
j=1(〈xx∗, Aj〉R − 〈yy∗, Aj〉R)2

||xx∗ − yy∗||22
(5.1)381

382

From purely topological considerations, we may obtain383

Proposition 5.1. The constant a0 is strictly positive whenever the map β is384

injective, equivalently whenever {Aj}mj=1 is a generalized phase retrievable frame of385

symmetric matrices.386

Proof. See C.1387

Definition 5.2. Let z ∈ Cn×r have rank k. We will analyze the following four388

types of local lower Lipschitz bounds for β, the first two with respect to the norm389

induced metric and the second two with respect to the metric d:390

a1(z) = lim
R→0

inf
x∈Cn×r

||π(x)−π(z)||2<R

||β(x)− β(z)||22
||π(x)− π(z)||22

a2(z) = lim
R→0

inf
x,y∈Cn×r

||π(x)−π(z)||2<R
||π(y)−π(z)||2<R

(||β(x)− β(y)||22
||π(x)− π(y)||22

â1(z) = lim
R→0

inf
x∈Cn×r
d(x,z)<R

rank(x)≤k

||β(x)− β(z)||22
d(x, z)2

â2(z) = lim
R→0

inf
x,y∈Cn×r
d(x,z)<R
d(y,z)<R

rank(x)≤k
rank(y)≤k

||β(x)− β(y)||22
d(x, y)2

(5.2)391

392

Note that in the definition of â1(z) and â2(z) we do not allow the ranks of x and y393

to exceed that of z. As we shall prove, without the rank constraints these local lower394

bounds would be zero.395

The following two “geometric” local lower bounds will prove helpful in our analysis.396

Definition 5.3. Let z ∈ Cn×r have rank k and let ẑ ∈ Cn×k∗ be such that there397

exists U ∈ U(r) with [ẑ|0]U = z. Let Tπ(ẑ)(S̊
k,0(Cn)) and Hπ,ẑ(Cn×k∗ ) be as 4.7 and398

4.6. We define:399

a(z) := min
W∈Tπ(ẑ)(S̊

k,0(Cn))

||W ||2=1

m∑
j=1

|〈W,Aj〉R|2(5.3)400

â(z) := min
w∈Hπ,ẑ(Cn×k∗ )
||w||2=1

m∑
j=1

|〈Dπ(ẑ)(w), Aj〉R|2(5.4)401

402

The following two families of matrices, Qz and Q̂z, indexed by Cn×r, will allow us to403

write the local lower Lipschitz bounds with respect to ||xx∗ − yy∗||2 and d(x, y) as404

eigenvalue problems.405
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Definition 5.4. Given z ∈ Cn×r having rank k > 0 we define a matrix Qz ∈406

R(2nk−k2)×(2nk−k2) in the following way. Let U1 ∈ Cn×k be a matrix whose columns407

are left singular vectors of z corresponding to non-zero singular values of z, so that408

U1U
∗
1 = PRan(z). Let U2 ∈ Cn×(n−k) be a matrix whose columns are left singular409

vectors of z corresponding to the zero singular values of z, so that U2U
∗
2 = PRanz⊥ .410

Then411

Qz :=

m∑
j=1

[
τ(U∗1AjU1)
µ(U∗2AjU1)

] [
τ(U∗1AjU1)
µ(U∗2AjU1)

]T
(5.5)412

413

where the isometric isomorphisms τ and µ are given by414

τ : Sym(Ck)→ Rk
2

µ : Cp×q → R2pq(5.6)415

τ(X) =

 D(X)√
2T (<X)√
2T (=X)

 µ(X) = vec(

[
<X
=X

]
)416

417

where418

D : Sym(Ck)→ Rk T : Sym(Rk)→ R
1
2k(k−1)(5.7)419

D(W ) =

X11

...
Xkk

 T (X) =


X12

X13

X23

...
Xk−1k

420

421

and422

vec : Rp×q → Rpq vec(X) = vec([X1| · · · |Xq]) =

X1

...
Xq

(5.8)423

424

We note that Qz depends only on Ran(z), in particular it is invariant under (U1, U2)→425

(U1P,U2Q) for P ∈ U(k), Q ∈ U(n − k). We will also refer to Qz as Q[U1|U2] where426

[U1|U2] ∈ U(n).427

Definition 5.5. Given z ∈ Cn×r having rank k > 0 we define a matrix Q̂z ∈428

R2nk×2nk in the following way. Let Fj = Ik×k ⊗ j(Aj) ∈ R2nk×2nk where429

j : Cm×n → R2m×2n

j(X) =

[
<X −=X
=X <X

]
(5.9)430

431

is an injective homomorphism. Then432

Q̂z := 4

m∑
j=1

Fjµ(ẑ)µ(ẑ)TFj(5.10)433

434

With these definitions in mind, we will prove the following:435

Theorem 5.6. Let z ∈ Cn×r have rank k > 0. Then436
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(i) The global lower bound a0 is given as437

a0 = inf
z∈Cn×r\{0}

a(z)(5.11)438
439

(ii) The local lower bounds a1(z) and a2(z) are squeezed between a0 and a(z)440

a0 ≤ a2(z) ≤ a1(z) ≤ a(z)(5.12)441442

So that in particular443

a0 = inf
z∈Cn×r\{0}

ai(z)(5.13)444
445

(iii) The infimization problem in a(z) may be reformulated as an eigenvalue problem.446

Let Qz be the 2nk − k2 × 2nk − k2 matrix given in Definition 5.4. Then447

a(z) = λ2nk−k2(Qz)(5.14)448449

(iv) For r = 1, â(z) differs from a(z) by a constant factor, hence for r = 1 the450

infimum infz∈Cn×r\{0} â(z) is non-zero. For r > 1 this infimum is zero and hence451

there is no non-trivial global lower bound â0 analogous to a0 for the alternate452

metric d.453

(v) The local lower bounds with respect to the alternate metric d satisfy454

â1(z) = â2(z) =
1

4||z||22
â(z)(5.15)455

456

(vi) The infimization problem in â(z) may be reformulated as an eigenvalue problem.457

Let Q̂z be the 2nk × 2nk matrix given in Definition 5.5. Then â(z) is directly458

computable as459

â(z) = λ2nk−k2(Q̂z)(5.16)460461

(vii) We have the following local inequality relating a(z) and â(z).462

1

4||z||22
â(z) ≤ a(z) ≤ 1

2σk(z)2
â(z)(5.17)463

464

(viii) Computation of the global lower bound a0 may be reformulated as the minimiza-465

tion of a continuous quantity over the compact Lie group U(n).466

a0 = min
U∈U(n)
U=[U1|U2]

U1∈Cn×r
U2∈Cn×(n−r)

λ2nr−r2(Q[U1|U2])(5.18)467

468

(ix) While (iv) makes clear that a0 cannot be upper bounded by infz∈Cn×r\{0} â(z),469

we can achieve a similar end by constraining z to have orthonormal columns.470

Namely471

1

4
inf

z∈Cn×r∗
z∗z=Ir×r

â(z) ≤ a0 ≤
1

2
inf

z∈Cn×r∗
z∗z=Ir×r

â(z)(5.19)472

473

Proof. See C.2474
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We now move on to analyzing the local lower Lipschitz bounds for the α map x 7→475

〈xx∗, Aj〉
1
2

R . This was done for the case r = 1 in [6]. Recall that θ(x) = (xx∗)
1
2 and476

that477

A0 = inf
x,y∈Cn×r

[x] 6=[y]

||α(x)− α(y)||22
||θ(x)− θ(y)||22

= inf
x,y∈Cn×r

[x]6=[y]

∑m
j=1(〈xx∗, Aj〉

1
2

R − 〈yy∗, Aj〉
1
2

R )2

||(xx∗) 1
2 − (yy∗)

1
2 ||22

(5.20)478

479

In analogy with Definition 5.2, we consider the local lower Lipschitz bounds for480

the α map.481

Definition 5.7. Let z ∈ Cn×r have rank k. We define482

A1(z) = lim
R→0

inf
x∈Cn×r

||θ(x)−θ(z)||2≤R
rank(x)≤k

||α(x)− α(z)||22
||θ(x)− θ(z)||22

A2(z) = lim
R→0

inf
x,y∈Cn×r

||θ(x)−θ(z)||2≤R
||θ(y)−θ(z)||2≤R

rank(x)≤k
rank(y)≤k

||α(x)− α(y)||22
||θ(x)− θ(y)||22

Â1(z) = lim
R→0

inf
x∈Cn×r
D(x,z)≤R
rank(x)≤k

||α(x)− α(z)||22
D(x, z)2

Â2(z) = lim
R→0

inf
x,y∈Cn×r
D(x,z)≤R
D(y,z)≤R
rank(x)≤k
rank(y)≤k

||α(x)− α(y)||22
D(x, y)2

(5.21)483

484

Definition 5.8. Given z ∈ Cn×r having rank k > 0 we define two matrices485

T̂z, R̂z ∈ R2nk×2nk. Let I0(z) ⊂ {1, . . . ,m} be the indices such that αj(z) = 0 (or486

equivalently such that αj is not differentiable) for j ∈ I0(z), and let I(z) = {1, . . . ,m}\487

I0(z). Once again let Fj = Ik×k ⊗ j(Aj) ∈ R2nk×2nk, then define T̂z and R̂z via488

T̂z =
∑
j∈I(z)

1

µ(ẑ)TFjµ(ẑ)
Fjµ(ẑ)µ(ẑ)TFj(5.22)489

R̂z =
∑

j∈I0(z)

Fj(5.23)490

491

With these definitions in mind we prove:492

Theorem 5.9. Let z ∈ Cn×r have rank k > 0. Then493

(i) For r > 1 it is the case that infz∈Cn×r\{0}Ai(z) = 0 for i = 1, 2, as such A0 = 0.494

(ii) Let T̂z and R̂z be as in Definition 5.8. Then Â1(z) and Â2(z) are directly495

computable as496

Â1(z) = λ2nk−k2(T̂z + R̂z)(5.24)497

Â2(z) = λ2nk−k2(T̂z)(5.25)498499
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(iii) We have the following inequality between Ai(z) and Âi(z) for i = 1, 2, which500

justifies not treating them separately.501

Âi(z) ≤ Ai(z) ≤
√

2Âi(z)(5.26)502503

Proof. See C.3504

For the sake of completeness we also include the following theorem on the global upper505

Lipschitz bounds for the α and β analysis maps.506

Definition 5.10. We define the following (squared) upper Lipschitz constants for507

β and α respectively:508

b0 := sup
x,y∈Cn×r

[x]6=[y]

||β(x)− β(y)||22
||xx∗ − yy∗||22

(5.27)509

B0 := sup
x,y∈Cn×r

[x] 6=[y]

||α(x)− α(y)||22
||(xx∗) 1

2 − (yy∗)
1
2 ||22

(5.28)510

511

A somewhat simplifying alternate upper Lipschitz constant for β is512

b0,1 := sup
x,y∈Cn×r

[x]6=[y]

||β(x)− β(y)||22
||xx∗ − yy∗||21

(5.29)513

514

Definition 5.11. The β map is the pullback of a linear operator acting on sym-515

metric matrices which we refer to as A. Specifically,516

A : Sym(Cn)→ Rm

Aj(X) = 〈X,Aj〉R
(5.30)517

518

Definition 5.12. When Aj ≥ 0 for each j, we define the operator Tr.519

Tr : Cn×r → (Cn×r)m

Tr(x) = (A
1
2
j x)mj=1

(5.31)520

521

In a slight abuse of notation we write for r = 1522

T1 : Cn → Cn×m

T1(x) = [A
1
2
1 x| · · · |A

1
2
mx]

(5.32)523

524

We compute explicitly b0, b0,1, and B0 via different norms of the operators A and Tr,525

as well as providing formulas for b0 and B0 analogous to (5.18) and (5.25). Specifically,526

we prove:527

Theorem 5.13. Let b0, b0,1, B0, A, and Tr be as above. Then528

(i) The global upper bound b0 is given by529

b0 = max
U∈U(n)
U=[U1|U2]

U1∈Cn×r,U2∈Cn×n−r

λ1(Q[U1|U2])(5.33)530

531

Where QU is as in Definition 5.4.532
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(ii) The global upper bound b0,1 is given by533

b0,1 = ||A||21→2(5.34)534535

Additionally if Aj ≥ 0 for all j then536

b0,1 = ||Tr||42→(2,4) = ||T1||42→(2,4)(5.35)537
538

Where the || · ||2,4 norm of a matrix is the l4 norm of the vector of l2 norms of539

its columns.540

(iii) The global upper bound B0 is given by541

B0 = sup
z∈Cn×r
z 6=0

λ1(T̂z) = B(5.36)542

543

Where T̂z is as in Definition 5.8 and B is the optimal upper frame bound for544

{Aj}mj=1.545

Proof. See C.4.546

It turns out that Theorem 5.6 allows us to find novel algebraic conditions for a frame547

for Cn×r to be generalized phase retrievable, generalizing Theorem 4 in [7]. The548

benefit of condition (vi) over the definition of phase retrievability is that they involve549

checking a quantity over all n× r matrices with orthonormal columns, that is to say550

over the Stiefel manifold of dimension 2nr − r2, as opposed to over all pairs of n× r551

matrices.552

Theorem 5.14. Let {Aj}mj=1 be a frame for Cn×r. Then the following are equiv-553

alent:554

(i) {Aj}mj=1 is generalized phase retrievable.555

(ii) For all U1 ∈ Cn×r, U2 ∈ Cn×(n−r) such that [U1|U2] ∈ U(n) the 2nr − r2 ×556

2nr − r2 matrix557

Q[U1|U2] =

m∑
j=1

[
τ(U∗1AjU1)
µ(U∗2AjU1)

] [
τ(U∗1AjU1)
µ(U∗2AjU1)

]T
(5.37)558

559

is invertible.560

(iii) For all z ∈ Cn×r such that z has orthonormal columns, the 2nr × 2nr matrix561

Q̂z = 4

m∑
j=1

(Ik×k ⊗ j(Aj))µ(z)µ(z)T (Ik×k ⊗ j(Aj))(5.38)562

563

has as its null space precisely the r2 dimensional Vz = {µ(u)|u ∈ Vπ,z(Cn×r∗ )}.564

(iv) For all U1 ∈ Cn×r, U2 ∈ Cn×(n−r) such that [U1|U2] ∈ U(n), H ∈ Sym(Cr),565

B ∈ C(n−r)×r there exist c1, . . . cm ∈ R such that566

(5.39a) U∗1 (

m∑
j=1

cjAj)U1 = H567

568

(5.39b) U∗2 (

m∑
j=1

cjAj)U1 = B569
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(v) For all U1 ∈ Cn×r with orthonormal columns570

spanR{AjU1}mj=1 = {U1K|K ∈ Cr×r,K∗ = −K}⊥(5.40)571572

(vi) For all U1 ∈ Cn×r with orthonormal columns573

dimR{AjU1}mj=1 ≥ 2nr − r2(5.41)574575

Proof. See C.5576

6. Numerical experiments. The main benefit of lower Lipschitz results like577

Theorem 5.1 is that they provide quantitative control over reconstruction error in the578

generalized phase retrieval problem, as opposed to the topological result in Propo-579

sition 5.1 that the error is bounded whenever the matrix frame is generalized phase580

retrievable (i.e. that a0 > 0). This is only true, however, if for a given frame one can581

make headway in computing the lower Lipschitz constant a0. Unfortunately (5.18)582

yields a0 as a non-convex optimization problem, so for the time being we content our-583

selves with examining the statistics of the local lower Lipschitz constants â2(z) and584

a(z). We also verify numerically the result in Theorem 5.9 that α is not globally lower585

Lipschitz (i.e. that A0 = 0) by examining the statistics of the local lower Lipschitz586

constant Â2(z).587

For each experiment we use a fixed frame set of cardinality m = 4nk − 4k2, not-588

ing that Theorem 2.1 in [30] implies that a generic frame for Cn×k with cardinality589

m ≥ 4nk − 4k2 will be generalized phase retrievable when 2k ≤ n. The experiment590

shown in Figure 1 supports the result in Theorem 5.9 that infz∈Cn×r\{0} Â2(z) = 0591

for r > 1, thus that the α analysis map is not globally lower Lipschitz with re-592

spect to either D(x, y) or ||(xx∗) 1
2 − (yy∗)

1
2 ||2 when r > 1. This experiment also593

supports the earlier result in [6] that when r = 1 infz∈Cn×r\{0} Â2(z) > 0. The exper-594

iment shown in Figure 2 supports the result noted in the proof of Theorem 5.6 that595

infz∈Cn×r\{0} â2(z) = 0 for r > 1, thus that the β analysis map is not globally lower596

Lipschitz with respect to d(x, y) when r > 1. That this quantity is non-zero when597

r = 1 follows from the fact that for r = 1 we have d(x, y) = ||xx∗ − yy∗||1 (see Theo-598

rem 3.7). Finally, the experiment shown in Figure 3 supports the result in Theorem599

5.6 that a0 = infz∈Cn×r\{0} a(z) > 0 even when r > 1, thus that the β analysis map600

is globally lower Lipschitz with respect to ||xx∗ − yy∗||2 whenever the frame (Aj)j≥1601

is generalized phase retrievable. Code for all numerical experiments can be found at602

github.com/cbartondock/LipschtizAnalysisofGenPR.603
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Fig. 1. In all experiments Â2(z) is computed for a fixed frame of 4nk − 4k2 matrices in Cn×k

for l = 104 samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the k = 1
case has a clear separation from zero.

Fig. 2. In all experiments â2(z) is computed for a fixed frame of 4nk − 4k2 matrices in Cn×k

for l = 104 samples of z having rank k. The entries of both z and the frame matrices are sampled
from a complex Gaussian with unit variance and zero mean. As can clearly be seen only the k = 1
case has a clear separation from zero.
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Fig. 3. ’ In all experiments a(z) = λ2nk−k2 (Q[U1|U2]) is computed for a fixed frame of

4nk − 4k2 matrices in Cn×k for l = 104 samples of U ∈ U(n) distributed according to the uniform
Haar distribution on U(n). U1 ∈ Cn×k is composed of the first k columns of U so that Q[U1|U2] ∈
C2nk−k2×2nk−k2

. The entries of the frame matrices are sampled from a complex Gaussian with
unit variance and zero mean. In this case an overlapping log-plot is also included, in which clear
separation from zero can be seen for k = 1, . . . , 4.

7. Conclusion. This paper extends known results about the stability of gener-604

alized phase retrieval to the “impure state” case where the phase no longer comes605

from U(1) but instead the non-abelian groups U(r) where r > 1. We showed that606

the situation changes drastically in this case, both because U(r) is non-abelian and607

because for r > 1 a sequence in Cn×r∗ /U(r) with ||xn||2 = 1 can come arbitrarily608
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close to dropping in rank. In particular, we showed that while the β analysis map609

remains lower Lipschitz with respect to the norm induced distance on Sym(Cn) (The-610

orem 5.6), the α analysis map does not (Theorem 5.9). Our analysis relies on several611

Lipschitz embeddings of Cn×r/U(r) into the Euclidean space Sym(Cn) (Theorem 3.7)612

and a Whitney stratification of the positive semidefinite matrices into positive semi-613

definite matrices of fixed rank (Theorem 4.5). This investigation of the geometry of614

positive semidefinite matrices incidentally provided the interesting and (to the best615

of our knowledge) previously unknown result that the Riemannian geometry of the616

stratifying manifolds given by the Bures-Wasserstein metric is compatible with the617

stratification. In particular geodesics of positive semi-definite matrices with respect618

to the Bures-Wasserstein metric are rank preserving and may be approximated by619

geodesics of higher rank. We note that the fact that a0 > 0 and can be explic-620

itly computed as in (5.18) suggests that known convergent algorithms for generalized621

phase retrieval may be extended to the case r > 1. Finally, the explicit computation622

of the lower Lipschitz bound for the β map allowed for a novel characterization of623

generalized phase retrievable frames in the impure state case r > 1 (Theorem 5.14).624

Appendix A. Proofs for Section 3.625

A.1. Proof of Proposition 3.3.626

Proof. Both d(x, y) and D(x, y) are obviously positive and symmetry follows from627

the fact that that U(r) is a group. Moreover, owing to the compactness of U(r),628

both D(x, y) and d(x, y) are zero if and only if there exists U0 such that x = yU0,629

that is if and only if [x] = [y]. It remains to prove the triangle inequality. For630

D(x, y) the computation is straightforward and follows from the unitary invariance631

of the Frobenius norm. If U1 and U2 are unitary minimizers for D(x, z) and D(z, y)632

respectively then633

D(x, z) +D(y, z) = ||x− zU1||2 + ||z − yU2||2
= ||x− zU1||2 + ||zU1 − yU2U1||2
≥ ||x− yU2U1||2 ≥ D(x, y)

(A.1)634

635

We note that the above argument also holds for any unitarily invariant norm ||| · ||| so636

that each D|||·|||(x, y) := minU∈U(r) |||x − yU ||| is a metric on Cn×r/U(r). A similar637

trick can be employed regarding d(x, y), but it requires the following lemma which638

does not readily generalize to arbitrary unitarily invariant norms or even p 6= 2:639

Lemma A.1. The following triangle inequality holds for all x, y, z ∈ Cn×r640

||x− y||2||x+ y||2 ≤ ||x− z||2||x+ z||2 + ||z − y||2||z + y||2(A.2)641642

Proof. This is essentially a statement about the geometry of parallelepipeds in643

R3, namely that the sum of the product of face diagonals from any two sides sharing644

a vertex will always exceed the product of the two on the remaining side sharing the645
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vertex. The lemma follows from the observation that for x, y ∈ Rn646

||x− y||2||x+ y||2 =
√

(||x||22 + ||y||22)2 − 4|〈x, y〉R|2

=
1

2

(
||x||22 − ||y||22 +

√
(||x||22 + ||y||22)2 − 4|〈x, y〉R|2

)
− 1

2

(
||x||22 − ||y||22 −

√
(||x||22 + ||y||22)2 − 4|〈x, y〉R|2

)
= λ+(xxT − yyT )− λ−(xxT − yyT )

= ||xxT − yyT ||1

(A.3)647

648

See the proof of Theorem 3.7 for a direct computation of the eigenvalues of xxT −yyT649

(the theorem deals with the complex case but the real case is identical). This identity650

proves the lemma immediately since the latter obeys the triangle inequality and651

||x− y||2||x+ y||2 = ||µ(x)− µ(y)||2||µ(x) + µ(y)||2
= ||µ(x)µ(x)T − µ(y)µ(y)T ||1
≤ ||µ(x)µ(x)T − µ(z)µ(z)T ||1 + ||µ(z)µ(z)T − µ(y)µ(y)T ||1
= ||x− z||2||x+ z||2 + ||z − y||2||z + y||2

(A.4)652

653

Where µ : Cn×r → R2nr is complex matrix vectorization.654

The proposition then follows via a similar argument to (A.1), namely if U1, U2 are the655

minimizers in d(x, z) and d(z, y) respectively then656

d(x, z) + d(z, y) = ||x− zU1||2||x+ zU1||2 + ||z − yU2||2||z + yU2||2
= ||x− zU1||2||x+ zU1||2 + ||zU1 − yU2U1||2||zU1 + yU2U1||2
≥ ||x− yU2U1||2||x+ yU2U1||2 ≥ d(x, y)

(A.5)

657

658

A.2. Proof of Proposition 3.4.659

Proof. Both the trace tr{x∗yU} in that appears in D and its square as it appears660

in d will be maximized when x∗yU is positive semidefinite, thus we may take the661

minimizer to be the polar factor for x∗y, the polar factor of course being the unique662

unitary for which x∗yU is non-negative only when x∗y is full rank. The non-uniqueness663

of the minimizer arises precisely from the non-uniqueness in choice of polar factor when664

x∗y does not have full rank. Note that even if y is full rank, x∗y will have rank less665

than r whenever Ran(y) ∩ Ran(x)⊥ 6= 0.666

A.3. Proof of Proposition 3.6.667

Proof. Note that the non-zero eigenvalues of π(x) are precisely the squares of668

the singular values of x, the non-zero eigenvalues of θ(x) agree with the non-zero669

singular values of x, and the non-zero eigenvalues values of ψ(x) differ from the non-670

zero singular values of x only by a factor of ||x||2. This proves that the embeddings671

preserve rank. It is readily checked that the embeddings are surjective and injective672

modulo ∼. In particular for A ∈ Sr,0(Cn), we have673

π−1(A) = [Cholesky(A)](A.6)674

θ−1(A) = [Cholesky(A2)](A.7)675

ψ−1(A) = [Cholesky(A2/||A||2)](A.8)676677
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where Cholesky(A) is a Cholesky decomposition of A in Cn×r (note that the Cholesky678

decomposition is unique up to equivalence class).679

A.4. Proof of Theorem 3.7.680

Proof. To prove (3.5) we analyze the following quantity:681

Q(x, y) =
D(x, y)2

||θ(x)− θ(y)||22
=

||x||22 + ||y||22 − 2||x∗y||1
||x||22 + ||y||22 − 2tr{(xx∗) 1

2 (yy∗)
1
2 }

(A.9)682

683

We first note that ||x∗y||1 = ||(xx∗) 1
2 (yy∗)

1
2 ||1 since (xx∗)

1
2 (yy∗)

1
2 and x∗y have the684

same non-zero singular values. Hence if we define A = θ(x) = (xx∗)
1
2 and B = θ(y) =685

(yy∗)
1
2 we can abuse notation slightly and write686

Q(A,B) =
||A||22 + ||B||22 − 2||AB||1
||A||22 + ||B||22 − 2tr{AB}

(A.10)687
688

Now tr{AB} ≤ ||AB||1, so we conclude that Q(x, y) ≤ 1. On the other hand this689

bound is achievable by any x and y for having the same left singular vectors, since in690

this case A and B commute hence AB ≥ 0 and ||AB||1 = tr{AB}. We conclude that691

the upper Lipschitz constant is 1, and in particular692

sup
x,y∈Cn×r/U(r)

x 6=y

Q(x, y) = max
x,y∈Cn×r/U(r)

x 6=y

Q(x, y) = 1(A.11)693

694

We now turn our attention to the lower bound. It is shown in [9] that for any695

unitarily invariant norm |||·||| and positive semidefinite matrices A and B the following696

generalization of the arithmetic-geometric mean inequality holds:697

4|||AB|||2 ≤ |||(A+B)2|||(A.12)698699

We apply this inequality to the nuclear norm and conclude that700

4||AB||1 ≤ ||(A+B)2||1
= tr{(A+B)2}
= ||A||22 + ||B||22 + 2tr{AB}

(A.13)701

702

We employ this fact in the analysis of Q(x, y):703

Q(A,B) =
1

2
· 2||A||22 + 2||B||22 − 4||AB||1
||A||22 + ||B||22 − 2tr{AB}

≥ 1

2
· 2||A||22 + 2||B||22 − (||A||22 + ||B||22 + 2tr{AB})

||A||22 + ||B||22 − 2tr{AB}
=

1

2

(A.14)704

705

This implies a lower Lipschitz constant of at least 1√
2
. For the trivial case n = r = 1706

the ratio is 1. To prove the constant of 1√
2

is optimal for n > 1, let e1 and e2707

be any two orthogonal unit vectors in Cn and let x = e1 and (yj)j≥1 be given by708

yj =
√

1− 1
j2 e1 + 1

j e2. Define A = θ(x) and Bj = θ(yj), then both A and each Bj709

have unit norm and are rank 1 hence are idempotent, so that710

ABj = (xx)
1
2 (yjy

∗
j )

1
2 = xx∗yjy

∗
j

= 〈x, yj〉Rxy∗j

= (1− 1

j2
)e1e

∗
1 +

√
1− 1

j2

j
e1e
∗
2

(A.15)711

712
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Thus tr{ABj} = 1 − 1
j2 . On the other hand, ||ABj ||1 = ||x∗yj ||1 = |〈x, yj〉R| =713 √

1− 1
j2 . We find714

lim
j→∞

Q(A,Bj) = lim
j→∞

1− ||ABj ||1
1− tr{ABj}

= lim
j→∞

j2(1−
√

1− 1

j2
) =

1

2

(A.16)715

716

Thus we conclude717

inf
x,y∈Cn×r
x 6=y

Q(x, y) =
1

2
(A.17)718

719

We now concern ourselves with proving (3.6). To prove the lower bound, let U0 be720

the minimizer in d(x, y). Then721

||π(x)− π(y)||1 = ||xx∗ − yy∗||1

= ||1
2

(x− yU0)(x+ yU0)∗ +
1

2
(x+ yU0)(x− yU0)∗||2

≤ 1

2
||(x− yU0)(x+ yU0)∗||1 +

1

2
||(x− yU0)(x+ yU0)∗||1

≤ ||x− yU0||2||x+ yU0||2 = d(x, y)

(A.18)722

723

This implies a lower Lipschitz constant of at least 1, but in fact this constant is optimal724

since the two are equal for r = 1. Turning our attention to the upper bound, we will725

in fact prove the following stronger inequality:726

||ψ(x)− ψ(y)||2 ≥
1

4
d(x, y)2 +

1

4
D(x, y)4 + (||x||2 − ||y||2)2

(
||x∗y||1 +

1

2
(||x||2 + ||y||2)2

)(A.19)

727
728

We prove (A.19) by direct computation:729

||ψ(x)− ψ(y)||22 −
1

4
d(x, y)2

= ||x||42 + ||y||42 − 2||x||2||y||2tr{(xx∗) 1
2 (yy∗)

1
2 } − 1

4

(
(||x||22 + ||y||22)2 − 4||x∗y||21

)
=

3

4
||x||42 +

3

4
||y||42 + ||x∗y||21 −

1

2
||x||22||y||22 − 2||x||2||y||2tr{(xx∗) 1

2 (yy∗)
1
2 }

≥ 3

4
||x||42 +

3

4
||y||42 + ||x∗y||21 −

1

2
||x||22||y||22 − 2||x||2||y||2||(xx∗)

1
2 (yy∗)

1
2 ||1

=
1

4
(||x||22 − ||y||22)2 +

1

2
||x||42 +

1

2
||y||42 + ||x∗y||21 − 2||x||2||y||2||x∗y||1

(A.20)

730

731

We then note that732

1

4
D(x, y)4 =

1

4
(||x||2 + ||y||2 − 2||x∗y||1)2

=
1

4
||x||42 +

1

4
||y||42 +

1

2
||x||22||y||22 + ||x∗y||21 − (||x||22 + ||y||22)||x∗y||1

(A.21)

733

734
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So that if we add and subtract 1
4D(x, y)4 from (A.20) we obtain the result735

||ψ(x)− ψ(y)||22 −
1

4
d(x, y)2

≥ 1

2
(||x||22 − ||y||22)2 +

1

4
D(x, y)4 + (||x||2 − ||y||2)2||x∗y||1

=
1

4
D(x, y)4 + (||x||2 − ||y||2)2

(
(||x∗y||1 +

1

2
(||x||2 + ||y||2)2

)

(A.22)

736

737

This immediately proves that 2||ψ(x) − ψ(y)||2 ≥ d(x, y) and hence that the upper738

Lipschitz constant in (3.6) is at most 2. For r = 1, we will prove shortly claim (iii),739

implying that d(x, y) = ||π(x) − π(y)||1 = ||ψ(x) − ψ(y)||1, hence in this case the740

optimal constant is
√

2, owing to the fact that ψ(x)− ψ(y) will have rank at most 2741

and in that case d(x, y) = ||ψ(x)− ψ(y)||1 ≤
√

2||ψ(x)− ψ(y)||2. For r > 1, however,742

we show that the upper Lipschitz constant of 2 is optimal by considering a sequence743

of matrices in Cn×2. As before let e1 and e2 be any unit orthonormal vectors in Cn.744

Let x = [e1|0], (yj)j≥1 be given by yj = [
√

1− 1
j2 e1| 1j e2]. As before let A = θ(x),745

Bn = θ(yj). We first note that A and each Bj commute and are positive semidefinite,746

so that ABj is also positive semidefinite and we have tr{ABj} = ||ABj ||1 and the747

inequality in (A.20) is actually an equality. This makes clear the impediment to a748

rank 1 sequence achieving the upper Lipschitz constant of 2: A and Bj could not be749

made to commute without x and yj lying in the same equivalence class. Finally, we750

observe that ||x||2 = ||yj ||2 = 1 so the remainder term in (A.19) disappears and we751

obtain752

||ψ(x)− ψ(yj)||22 =
1

4
d(x, y)2 +

1

4
D(x, y)4(A.23)753

754

We note moreover that d(x, y)2 = D(x, y)2(||x||22 + ||y||22 + 2||x∗y||1) so that755

||ψ(x)− ψ(yj)||22
d(x, yj)2

=
1

4

(
1 +

D(x, yj)
4

d(x, yj)2

)
=

1

4

(
1 +

1− ||x∗yj ||1
1 + ||x∗yj ||1

)(A.24)756

757

Now ||x∗yj ||1 = ||
[
e∗1
0

] [√
1− 1

j2 0

0 1
j

] [
e1|e2

]
||1 =

√
1− 1

j2 so that758

lim
j→∞

||ψ(x)− ψ(yj)||22
d(x, yj)2

= lim
j→∞

1

4

(
1 +

1−
√

1− 1
j2

1 +
√

1 + 1
j2

)
=

1

4
(A.25)759

760

Thus we have proven claims (i) and (ii). To prove the first claim of (iii) note that761

for r = 1, (xx∗)
1
2 = xx∗

||x||2 . The second part of (iii) follows from direct computation of762

||xx∗ − yy∗||1 via the method of moments. Clearly xx∗ − yy∗ will have one positive763
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and one negative eigenvalue, which we denote λ+ and λ−. In this case764

λ+ + λ− = tr{xx∗ − yy∗}
= ||x||22 − ||y||22

λ+λ− =
1

2

(
tr{xx∗ − yy∗}2 − tr{(xx∗ − yy∗)2}

)
= ||x||2||y||2 − |〈x, y〉R|2

(A.26)765

766

A little bit of algebra then yields767

λ± =
1

2

(
||x||22 − ||y||22 ±

√
(||x||2 + ||y||2)2 − 4|〈x, y〉R|2

)
(A.27)768

769

Thus we find ||xx∗ − yy∗||1 = λ+ − λ− =
√

(||x||2 + ||y||2)2 − 4|〈x, y〉R|2 = d(x, y). It770

strikes the authors that this is a minor miracle. Finally, to prove claim (iv) consider771

x and y having a common basis of singular vectors with singular values (σi)
r
i=1 and772

(µi)
r
i=1 respectively. Then773

||π(x)− π(y)||22 =

r∑
i=1

(σ2
i − µ2

i )
2(A.28)774

d(x, y)2 =

r∑
i,j=1

(σi + µi)
2(σj − µj)2(A.29)775

776

The latter is obviously larger, consistent with (3.6). If it were additionally the case777

that d(x, y) ≤ C||π(x)− π(y)||2 we would have778 ∑
i6=j

(σi + µi)
2(σj − µj)2 ≤ (C − 1)

r∑
i=1

(σ2
i − µ2

i )
2

(A.30)779

780

In the case r = 1 the left hand side is zero and so we may take C = 1. For r > 1, in781

contradiction of the above take σ1 = µ1 = δ, σ2 6= µ2 and all other singular values782

zero. We then would obtain783

4δ2(σ2 − µ2)2 ≤ (C − 1)(σ2
2 − µ2

2)2(A.31)784785

There is evidently no such C since δ may be chosen arbitrarily large. Thus claim (v)786

is proved, justifying the use of the alternate embedding ψ in (3.6). This concludes787

the proof of Theorem 3.7.788

Appendix B. Proofs for Section 4.789

B.1. Proof of Proposition 4.4.790

Proof. The proof of (4.5) is by direct computation. Namely791

Vπ,x(Cn×r∗ ) = kerDπ(x) = {w ∈ Cn×r|xw∗ + wx∗ = 0}(B.1)792793

We would like to obtain a direct parametrization, however, and note that794

w ∈ Vπ,x(Cn×r∗ ) ⇐⇒ wx∗ = K̃ K̃ ∈ Cn×n, K̃∗ = −K̃,PRan(x)K̃ = K̃795

⇐⇒ wx∗ = xKx∗ K ∈ Cr×r,K∗ = −K796

⇐⇒ w = xK K ∈ Cr×r,K∗ = −K(B.2)797798
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In the first line note that w is recoverable from such a K̃ via w = K̃x(x∗x)−1. In the799

second note that K = (xx∗)†x∗K̃x(xx∗)†. The third “if and only if” is obtained by800

right multiplying x(x∗x)−1. The horizontal space is then computable as Vπ,x(Cn×r∗ )⊥:801

w ∈ Hπ,x(Cn×r∗ ) ⇐⇒ <tr{w∗xK} = 0 ∀K ∈ Cn×n,K∗ = −K802

⇐⇒ x∗w = H̃ H̃ ∈ Cr×r, H̃∗ = H̃803

⇐⇒ x∗w = x∗Hx H ∈ Cn×n, H∗ = H,PRan(x)H = H804

⇐⇒ PRan(x)w = Hx H ∈ Cn×n, H∗ = H,PRan(x)H = H805

⇐⇒ w = Hx+X H ∈ Cn×n, H∗ = H = PRan(x)H,X ∈ Cn×r,PRan(x)X = 0

(B.3)

806807

The second line follows from the fact that Cn×n decomposes orthogonally into Hermit-808

ian and skew-Hermitian matrices. In the second note that H = (x∗x)−1xH̃x∗(x∗x)−1.809

The third follows from left multiplying by (xx∗)†x. Finally, the tangent space can be810

parametrized via the horizontal space as its image through Dπ(x) as811

Tπ(x)(S̊
r,0(Cn)) = Dπ(x)(Hπ,x(Cn×r∗ ))812

= {Hxx∗ + xx∗H + xX∗ +Xx∗|H ∈ Cn×n, H∗ = H,PRan(x)H = H,PRan(x)X = 0}813

(B.4)
814815

This provides a direct parametrization, but for our purposes the simpler indirect de-816

scription given by (4.7) will be more useful. It is clear from (B.4) that Tπ(x)(S̊
r,0(Cn)) ⊂817

{W ∈ Sym(Cn)|PRan(x)⊥WPRan(x)⊥ = 0}. To prove the reverse, note that if W ∈818

Sym(Cn) and PRan(x)⊥WPRan(x)⊥ thenW = W1+W2+W ∗2 where PRan(x)W1PRan(x) =819

W1 and PRan(x)W2PRan(x)⊥ = W2. Any such W2 is representable as xX∗ where X is820

as in the description of the horizontal space. Indeed, take X = W ∗2 x(x∗x)−1. Finally,821

the Sylvester equation xx∗H +Hxx∗ = W1 has the unique solution822

H =

∫ ∞
0

e−txx
∗
W1e

−txx∗dt(B.5)823
824

B.2. Proof of Theorem 4.5.825

Proof. To prove (i) in relatively short order we employ the following theorem:826

Theorem B.1 (see [26] and [18] Appendix B). Let φ : G×M →M be a smooth827

action of a Lie group G on a smooth manifold M . If the action is semi-algebraic,828

then orbits of φ are smooth submanifolds of M .829

We apply this theorem in the case of S̊p,q(Cn). Sylvester’s Inertia Theorem says830

that A ∈ S̊p,q(Cn) if and only if A = KIp,qK
∗ for some K ∈ GL(Cn) where Ip,q =831

diag(1, . . . , 1,−1, . . . ,−1, 0, . . . , 0) is the matrix of inertia indices. Thus S̊p,q(Cn) is832

precisely the orbit of Ip,q under the smooth Lie group action:833

ψ : GL(Cn)× Cn×n → Cn×n

ψ(K,L) = KLK∗
(B.6)834

835
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Noting that ψ(KJ,L) = ψ(K,ψ(J, L)) for K,J ∈ GL(Cn). We need to check that836

the action is semi-algebraic. For a fixed L ∈ Cn×n the action has as its graph837 {
(K,Y )

∣∣∣∣K ∈ GL(Cn), Y = KLK∗
}

=

{
(kij , yij)

∣∣∣∣i, j ∈ 1, . . . , n,Det(kij) 6= 0, yij −Qij(kij) = 0

}(B.7)838

839

where each Qij is a quadratic polynomial in (kij)
n
i,j=1 determined by L. This set is840

manifestly semi-algebraic, so by Theorem B.1 each S̊p,q(Cn) is a smooth submanifold841

of Cn×n. To prove that the dimension of S̊p,q(Cn) is given by 2n(p + q) − (p + q)2842

note that the dim S̊p,q(Cn) = dim S̊p+q,0 since matrix absolute value843

| · | : S̊p,q(Cn)→ S̊p+q,0

|A| = (AA∗)
1
2

(B.8)844

845

is surjective and injective of up to permutation of eigenvalues. The dimension of S̊p+q,0846

can be computed from Tπ(x)(S̊
r,0(Cn)) as found in Lemma 4.4. Taking r = p+ q then847

dimTπ(x)(S̊
r,0(Cn)) = n2 − (n− r)2 = 2nr − r2 = 2n(p+ q)− (p+ q)2(B.9)848849

It remains to prove analyticity of S̊r,0(Cn). It is proved in Lemma 3.11 of [3] that850

S̊1,0(Cn) is real analytic. The proof in the general case is analagous. First note851

that owing to Sylvester’s inertia theorem GL(Cn) acts transitively on S̊p,q(Cn) via852

conjugation, since if X,Y ∈ S̊p,q(Cn) then we may obtain G1, G2 ∈ GL(Cn) so that853

G1XG
∗
1 = Ip,q = G2Y G

∗
2, hence (G−1

2 G1)X(G−1
2 G1)∗ = Y . It remains to obtain that854

the stabilizer group is closed in GL(Cn) so that we can invoke the homogeneous space855

construction theorem. If Z ∈ S̊p,q(Cn) then Z = zIp,qz
∗ for some z = Uz

[
Λz
0

]
V ∗z ∈856

Cn×r∗ . The stabilizer group at Z is given by T ∈ GL(Cn) such that Tz ∈ {zU |U ∈857

U(p, q)}. In a basis e1, . . . en for Cn where e1, . . . er span Ran(z) and er+1, . . . , en858

span Ran(z)⊥ the stabilizer is therefore given by859

Hr,0Z =

{[
ΛzUΛ−1

z M1

0 M2

]∣∣∣∣ U ∈ U(p, q),M1 ∈ Cr×n−r,M2 ∈ Cr×r,det(M2) 6= 0

}(B.10)

860
861

It is easy to see that Hr,0Z is a (relatively) closed subset of GL(Cn), hence by the862

homogeneous space construction theorem S̊r,0(Cn) is diffeomorphic to the analytic863

manifold GL(Cn)/Hr,0Z . This concludes the proof of (i). Claims (ii) and (iii) represent864

slight generalizations over the analogous results in [8] for positive definite matrices,865

but the same key theorems apply. Namely, we employ the following:866

Theorem B.2 (see [17] Proposition 2.28). Let (M, g) be a Riemannian manifold867

and let G be a compact Lie group of isometries acting freely on M . Then let N = M/G868

and π : M → N be the quotient map. Then there exists a unique Riemannian metric869

h on N so that π : (M, g) → (N,h) is a Riemannian submersion; and in particular870

that Dπ(z) : Hπ,z → Tπ(z)(N) is isometric for each z ∈M .871

Theorem B.3 (see [17] Proposition 2.109). If π : (M, g) → (N,h) is a Rie-872

mannian submersion and γ is a geodesic in (M, g) such that γ̇(0) is horizontal (i.e.873

γ̇(0) ∈ Hπ,γ(0)) then874
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(i) γ̇(t) is horizontal for all t875

(ii) π ◦ γ is a geodesic in (N,h) of the same length as γ876

In our case we are interested in the geometry of Cn×r∗ /U(r), where Cn×r∗ is an open877

subset of Cn×r and is therefore a smooth Riemannian manifold of constant metric878

when equipped with the standard real inner product on Cn×r879

〈A,B〉R = <tr{A∗B}(B.11)880881

The relevant compact Lie group of isometries will be U(r), acting by matrix multipli-882

cation on the right. We note that while U(r) does not act freely on Cn×r, it does act883

freely on Cn×r∗ since for x ∈ Cn×r∗ and W ∈ U(r)884

x = xW ⇐⇒ x∗x = x∗xW ⇐⇒ (x∗x)−1(x∗x) = W ⇐⇒ Ir×r = W(B.12)885886

Therefore by Theorem B.2 there exists a metric h on Cn×r∗ /U(r) such that the differ-887

ential of π at x888

Dπ(x) : (Hπ,x(Cn×r∗ ), 〈·, ·〉R)→ (Tπ(x)(S
r,0(Cn)), h)

Dπ(x)(w) = xw∗ + wx∗
(B.13)889

890

is an isometric isomorphism. Indeed891

h(Z1, Z2) = 〈Dπ(x)†Z1, Dπ(x)†Z2〉R(B.14)892893

Where Dπ(x)† is the pseudo-inverse of the linear operator Dπ(x). In this case, for894

w1, w2 ∈ Hπ,x(Cn×r∗ )895

h(Dπ(w1), Dπ(w2)) = 〈Dπ(x)†Dπ(w1), Dπ(x)†Dπ(w2)〉R = 〈w1, w2〉R(B.15)896897

We now determine h explicitly. Namely, if Z1, Z2 ∈ Tπ(x)(S̊
r,0(Cn)) = Dπ(Hπ,x(Cn×r∗ ))898

then Zi = Dπ(x)(Hix+Xi) where Hi, Xi are as in (4.6). We must have899

h(Z1, Z2) = <tr[(H1x+X1)∗(H2x+X2)]

= <tr[x∗H1H2x] + <tr[X∗1X2]
(B.16)900

901

We define Z
‖
i := PRan(x)ZiPRan(x) = xx∗Hi+Hixx

∗ and Z⊥i := PRan(x)⊥ZiPRan(x) =902

Xix
∗. Then903

Hi =

∫ ∞
0

e−txx
∗
Z
‖
i e
−txx∗dt

Xi = Z⊥i x(x∗x)−1

(B.17)904

905

Plugging these expressions into (B.16) yields the expression906

h(Z1, Z2) = <tr{xx∗
∫ ∞

0

e−txx
∗
Z
‖
1e
−txx∗dt

∫ ∞
0

e−sxx
∗
Z
‖
2e
−sxx∗ds}+ <tr{Z⊥∗1 Z⊥2 (xx∗)†}

:= h0(Z1, Z2) + h1(Z1, Z2)

(B.18)

907

908
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The first term in (B.18) h0(Z1, Z2) can be simplified via the change of coordinates909

u = t+ s and v = t− s as910

h0(Z1, Z2) =

∫ ∞
0

∫ ∞
0

<tr{e−xx
∗(t+s)Z

‖
1e
−xx∗(t+s)xx∗Z

‖
2}dsdt

=
1

2

∫ ∞
0

∫ u

−u
<tr{e−uxx

∗
Z
‖
1e
−uxx∗xx∗Z

‖
2}dvdu

=

∫ ∞
0

u<tr{e−uxx
∗
Z
‖
1e
−uxx∗xx∗Z

‖
2}du

=

∫ ∞
0

utr{e−uxx
∗
Z
‖
1e
−uxx∗xx∗Z

‖
2 + Z

‖
2xx

∗e−uxx
∗
Z
‖
1e
−uxx∗}du

= −tr{Z‖2
∫ ∞

0

u
∂

∂u
e−uxx

∗
Z
‖
1e
−uxx∗du}

= tr{Z‖2
∫ ∞

0

e−uxx
∗
Z
‖
1e
−uxx∗du}

= 〈H1, Z2〉R = 〈Z1, H2〉R

(B.19)911

912

Where the last equality follows from cycling under the trace immediately and then913

repeating the same calculation. With this metric in hand we have shown (ii), namely914

that the map915

π : (Cn×r∗ , 〈·, ·〉R)→ (S̊r,0(Cn), h)(B.20)916917

is a Riemannian submersion. To prove (iii), let A,B ∈ S̊r,0(Cn) and let xx∗ and918

yy∗ be their respective Cholesky decompositions, so that x, y ∈ Cn×r∗ . Consider the919

following straight line curve in Cn×r:920

σx,y : [0, 1]→ Cn×r

σx,y(t) = (1− t)x+ tyU
(B.21)921

922

Where U is a polar factor such that x∗yU = |x∗y| (equivalently U is a minimizer of923

the distance D, as in Proposition 3.4). The claim is that we will be able to apply924

Theorem B.3 to the pushforward of σx,y, proving that it is a geodesic connecting925

A = π(x) to B = π(yU). Specifically, we would like to prove926

σx,y(t) ∈ Cn×r∗ ∀t ∈ [0, 1](B.22)927

σ̇x,y(0) ∈ Hπ,x(Cn×r∗ )(B.23)928929

We first prove (B.22), namely that σx,y(t) does not drop rank as t varies from 0 to 1930

even though Cn×r∗ is not convex. The endpoints σx,y(0) = x and σx,y(1) = yU are of931

course full rank, so it is enough to prove it for t ∈ (0, 1). Consider x∗σx,y(t):932

x∗σx,y(t) = (1− t) x∗x︸︷︷︸
∈ P(r)

+ t x∗yU︸ ︷︷ ︸
|x∗y| ∈ PSD(r)

∈ P(r) for t ∈ (0, 1)(B.24)933

934

This implies that σx,y(t) ∈ Cn×r∗ for t ∈ (0, 1), so (B.22) is proved. Let v = σ̇x,y(0) =935
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yU − x. Then936

x∗v = −x∗x+ x∗yU = −x∗x+ (x∗yy∗x)
1
2

PRan(x)v = −(xx∗)†xx∗x+ (xx∗)†x(x∗yy∗x)
1
2

PRan(x)v = (−PRan(x) + (xx∗)†x(x∗yy∗x)
1
2x∗(xx∗)†)︸ ︷︷ ︸

H

x

v = Hx+X, PRan(x)X = 0, H∗ = PRan(x)H = H

(B.25)937

938

Hence (B.23) is proved and so by Theorem B.3 we have that γA,B := π ◦ σx,y is a939

geodesic on (S̊r,0(Cn), h) connecting A and B. We find specifically that this geodesic940

is given by941

γA,B(t) = π((1− t)x+ tyU)

= ((1− t)x+ tyU)((1− t)x+ tyU)∗

= (1− t)2xx∗ + t2yy∗ + t(1− t)(xU∗y∗ + yUx∗)

(B.26)942

943

Clearly A = xx∗ and B = yy∗, but what about xU∗y∗ and yUx∗? Fortunately, a944

minor miracle occurs. Namely,945

(yUx∗)2 = yUx∗yUx∗ = yU |x∗y|x∗ = y(|x∗y|U∗)∗x∗ = y(x∗y)∗x∗ = yy∗xx∗

(xU∗y∗)2 = xU∗y∗xU∗y∗ = x(x∗yU)∗U∗y∗ = x|x∗y|U∗y∗ = xx∗yy∗

(B.27)

946

947

Thus in fact xU∗y∗ and yUx∗ are matrix square roots (not necessarily symmetric,948

but having positive non-zero eigenvalues) for BA and AB respectively. We obtain the949

following expression for the family of geodesics on S̊r,0(Cn) connecting A and B950

γA,B(t) = (1− t)2xx∗ + t2yy∗ + t(1− t)(xU∗0 y∗ + yU0x
∗) + t(1− t)(xU∗1 y∗ + yU1x

∗)

(B.28)

951952

Where U0 and U1 are as in Proposition 3.4. The fact that the form of this expression is953

independent of r is somewhat surprising, and motivates claims (iv) and (v). In order954

to prove (iv) we must first check that the collection of smooth manifolds (S̊i,0(Cn))ri=0955

provide a stratification of the cone Sr,0(Cn) (conditions (a) and (b) of Definition 4.2).956

Condition (a) is satisfied trivially and for (b) we note that957

S̊i,0(Cn) \ S̊i,0(Cn) = {0} ∪ S̊1,0 ∪ · · · ∪ Si−1,0(B.29)958959

It remains to check that whenever p > q the triple (S̊p,0(Cn), S̊q,0(Cn), A) is a-regular960

and b-regular for A ∈ S̊q,0 ⊂ S̊p,0. It was noted by John Mather in Proposition 2.4961

of [24] that b-regularity implies a-regularity, but we will use a-regularity in our proof962

of b-regularity so we need to prove a-regularity first. Specifically, a-regularity in this963

case states that if (Ai)i≥1 ⊂ S̊p,0(Cn) converges to A ∈ S̊q,0(Cn) and if TAi(S̊
p,0(Cn))964

converges in Grassmannian sense to the vector space τA then TA(S̊q,0(Cn)) ⊂ τA.965

Upon examining the form of the tangent space as given by (4.7) it becomes clear966

that convergence of the tangent spaces TAi(S̊
p,0(Cn)) is equivalent to convergence of967

RanAi to a space we denote L, so that the Grassmannian limit of the tangent spaces968

is given by969

τA = {W ∈ Sym(Cn)|PL⊥WPL⊥ = 0}(B.30)970971
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It is evident that L should contain as a subspace RanA, and that this would prove972

that the stratification given is a-regular. Indeed, if Ai = UiΛiU
∗
i is the low rank973

diagonalization of Ai so that Λi = diag(λ1, . . . , λp) is the diagonal matrix of non-zero974

eigenvalues of Ai and UiU
∗
i = PRanAi , U

∗
i Ui = Ip×p then by compactness we can975

obtain a subsequence of (Ui)i≥1 that converges to a matrix U such that the columns976

of U are precisely an orthonormal basis for L. In this case, we may write A = UΛU∗977

since A = limi→∞ UiΛiU
∗
i and the sequences of eigenvalues converge (some to zero),978

so that if U = [u1| · · · |up] then979

RanA = span{ui|Λii 6= 0} ⊂ span{ui}pi=1 = L(B.31)980981

Thus, owing to (B.30) and the description of the tangent space in (4.7) we conclude982

that TA(S̊q,0(Cn)) ⊂ τA and our stratification is a-regular. As for b-regularity, let983

(Ai)i≥1 ⊂ S̊p,0(Cn), A ∈ S̊q,0(Cn), and τA be as before (specifically we assume the984

Grassmannian limit defining τA converges) and let (Bi)i≥1 ⊂ S̊q,0(Cn) be convergent985

also to A such that the following limit exists986

Q = lim
i→∞

Qi := lim
i→∞

Ai −Bi
||Ai −Bi||2

(B.32)987
988

We claim that Q ∈ τA. Specifically, let Θi = Ai − PRan(Ai)
BiPRan(Ai)

and Ψi =989

PRan(Ai)
BiPRan(Ai)

− Bi. Then either Ψi = 0, in which case Qi = Θi/||Θi||2, or990

Ψi 6= 0, so that991

Qi =
||Θi||2

||Ai −Bi||2
Θi

||Θi||2
+

||Ψi||2
||Ai −Bi||2

Ψi

||Ψi||2
(B.33)992

993

We will obtain convergent subsequences for the sequences of unit norm matrices994

Θi/||Θi||2 and Ψi/||Ψi||2, but first note that995

||Θi||2
||Ai −Bi||2

=
||PRan(Ai)

(Ai −Bi)PRan(Ai)
||2

||Ai −Bi||2
≤ 1(B.34)996

997

Hence ||Ψi||2/||Ai − Bi||2 is also a bounded sequence (if it were not Qi would fail to998

converge). Next note that for i sufficiently large Ψi = PRan(Ai)
BiPRan(Ai)

− Bi is999

the difference of two matrices in S̊q,0(Cn), both converging to A. Therefore, owing1000

to the fact that S̊q,0(Cn) is an analytic manifold, any convergent subsequence of1001

Ψi/||Ψi||2 will have its limit lying in TA(S̊q,0(Cn)) (see for example Lemma 4.121002

in [29]). Owing to the already proved a-regularity we conclude that the limit of1003

any convergent subsequence of Ψi/||Ψi||2 lies in τA. Similarly, Θi = PRan(Ai)
(Ai −1004

Bi)PRan(Ai)
hence any convergent subsequence of Θi/||Θi||2 must lie in τA. Thus we1005

may obtain a subsequence such that the sequences of real numbers ||Θij ||2/||Aij −1006

Bij ||2 and ||Ψij ||2/||Aij − Bij ||2 converge to some α, β ∈ R and the sequences of1007

unit norm matrices Θij/||Θij ||2 and Ψij/||Ψij ||2 converge to some Θ̂, Ψ̂ ∈ τA. Since1008

(Qi)i≥1 converges, we find that1009

Q = αΘ̂ + βΨ̂ ∈ τA(B.35)10101011

Thus the stratification (S̊i,0(Cn))ri=0 is b-regular and in particular is a Whitney strat-1012

ification of Sr,0(Cn).1013
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In order to prove (v), let Ai = xix
∗
i and Bi = yiy

∗
i be Cholesky decompositions1014

of Ai and Bi such that xi, yi ∈ Cn×p and note that we are told the following limit1015

exists at each t1016

δ(t) = lim
i→∞

(1− t)2xix
∗
i + t2yiy

∗
i + t(1− t)(xiU∗i y∗i + yiUix

∗
i )(B.36)1017

1018

Where Ui ∈ U(p) is such that x∗i yiUi ≥ 0. We note that since (Ai)i≥1 and (Bi)i≥11019

converge we may obtain convergent subsequences for their Cholesky factors xi and yi1020

(||xi||2 and ||yi||2 must both be bounded or else Ai and Bi would not converge). We1021

may also obtain a convergent subsequence for (Ui)i≥1 owing to the compactness of1022

U(p). Denote these subsequential limits by x, y, and U respectively and consider a1023

combined subsequential indexing such that each occurs. Let Vx and Vy be the matrices1024

of right singular vectors for x and y so that x = [x̂|0]Vx and y = [ŷ|0]Vy for some1025

x̂, ŷ ∈ Cn×q∗ . Then clearly1026

δ(t) = (1− t)2x̂x̂∗ + t2ŷŷ∗ + t(1− t)(x̂Û∗ŷ∗ + ŷÛ x̂∗)(B.37)10271028

Where Û is the upper left q × q block of VyUV
∗
x . We will prove that in fact1029

VyUV
∗
x =

[
Û 0

0 Ũ

]
(B.38)1030

1031

In particular, this will imply that Û ∈ U(q) since VyUV
∗
x ∈ U(p) hence the upper left1032

q× q blocks of (VyUV
∗
x )(VyUV

∗
x )∗ and (VyUV

∗
x )∗(VyUV

∗
x ) must both be equal to the1033

q × q identity matrix. In order to prove (B.38), note that U = VW ∗ where1034

x∗y = W

[
Σ 0
0 0

]
V ∗(B.39)1035

1036

is a singular value decomposition of x∗y. On the other hand if1037

x̂∗ŷ = P

[
Λ 0
0 0

]
Q∗(B.40)1038

1039

is a singular value decomposition for x̂∗ŷ then1040

x∗y = V ∗x

[
P 0

0 P̃

]
︸ ︷︷ ︸

W


Λ 0

0 0
0

0 0


[
Q 0

0 Q̃

]
Vy︸ ︷︷ ︸

V ∗

(B.41)1041

1042

Where P̃ , Q̃ ∈ U(p − q) are in general arbitrary, but may of course be chosen in1043

accordance with W and V . Thus1044

VyUV
∗
x = VyVW

∗Vx =

[
PQ 0

0 P̃ Q̃

]
(B.42)1045

1046
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is as in (B.38). The question remains whether x̂∗ŷÛ ≥ 0, but we note that1047

x∗yU = V ∗x

[
x̂∗ŷ 0
0 0

]
VyU

= V ∗x

[
x̂∗ŷ 0
0 0

]
VyUV

∗
x Vx

= V ∗x

[
x̂∗ŷ 0
0 0

] [
Û 0

0 Ũ

]
Vx

= V ∗x

[
x̂∗ŷÛ 0

0 0

]
Vx

(B.43)1048

1049

Thus x∗yU will be positive semidefinite only if x̂∗ŷÛ is positive semidefinite, and since1050

x∗yU = limi→∞ x∗i yiUi = limi→∞ |x∗i yi| ≥ 0 we conclude that x̂∗ŷÛ ≥ 0. A nearly1051

identical proof shows that Ux∗y ≥ 0. We conclude that δ is a geodesic in S̊q,0(Cn)1052

connecting A and B.1053

Appendix C. Proofs for Section 5.1054

C.1. Proof of Proposition 5.1.1055

Proof. We may first note that 〈xx∗, Aj〉R − 〈yy∗, Aj〉R = 〈xx∗ − yy∗, Aj〉R. The1056

expression (1.3) then becomes1057

a0 = inf
L∈Sr,r(Cn)
||L||2=1

m∑
j=1

〈L,Aj〉2(C.1)1058

1059

The claim follows by contradiction if Sr,r is closed. Explicitly, if Sr,r is closed then1060

Sr,r ∩ {x ∈ Cn×n : ||x||2 = 1} is compact. Assume a0 = 0, then there exists L0 ∈1061

Sr,r ∩ {x ∈ Cn×n : ||x||2 = 1} so that1062

0 =

m∑
j=1

〈L0, Aj〉2(C.2)1063

1064

This implies that the map β is not injective since, in particular, if xx∗ = (L0)+1065

and yy∗ = (L0)− then xx∗ 6= yy∗ since ||L0||2 = 1 but β(x) = β(y). It remains1066

to show that the spaces Sp,q and in particular Sr,r are closed. Consider the map1067

η : Cn×n → {0, . . . , n}2 with η(A) = (rank(A+), rank(A−)) taking A to its Sylvester1068

indices (p, q). Then η is continuous with respect to the usual topology on Cn×n and1069

with respect to the “upper box” topology τub on {0, . . . , n}2 generated by the base1070

Bub = {{x, . . . , n} × {y, . . . , n}|(x, y) ∈ {0, . . . , n+ 1}}(C.3)10711072

The maps A→ A± are continuous and it is well known that rank(A+B) ≥ rank(A)1073

whenever ||B||2→2 < σp+q(A), hence η is continuous. Moreover {0, . . . , p}×{0, . . . , q}1074

is closed in τub hence Sp,q, its pullback through the continuous map η, is closed in1075

Cn×n.1076

C.2. Proof of Theorem 5.6.1077

Proof. We first prove that a0 = infz∈Cn×r a(z). We note that1078

a0 = inf
x,y∈Cn×r
xx∗ 6=yy∗

1

||xx∗ − yy∗||22

m∑
j=1

|〈xx∗ − yy∗, Aj〉R|2(C.4)1079

1080
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We may change coordinates to z = 1
2 (x+ y) and w = x− y so that1081

a0 = inf
z,w∈Cn×r
zw∗+wz∗ 6=0

1

||zw∗ + wz∗||22

m∑
j=1

|〈zw∗ + wz∗, Aj〉R|2(C.5)1082

1083

Recall that z has rank k, and therefore we may take z = [ẑ|0]U for ẑ ∈ Cn×k∗ and1084

U ∈ U(r). We then define ŵ ∈ Cn×k via the first k columns of wU∗ then zw∗+wz∗ =1085

ẑŵ∗+ ŵẑ∗ = Dπ(ẑ)(ŵ), so that in fact we may take ŵ ∈ Hπ,ẑ(Cn×k∗ )\{0}. We obtain1086

a0 = inf
z∈Cn×r\{0}

inf
ŵ∈Hπ,ẑ(Cn×k∗ )\{0}

1

||Dπ(ẑ)(ŵ)||22

m∑
j=1

|〈Dπ(ẑ)(ŵ), Aj〉R|2

= inf
z∈Cn×r\{0}

min
W∈Tπ(ẑ)(S̊

k,0(Cn))

||W ||2=1

m∑
j=1

|〈W,Aj〉R|2

= inf
z∈Cn×r
||z||2=1

min
W∈Tπ(ẑ)(S̊

k,0(Cn))

||W ||2=1

m∑
j=1

|〈W,Aj〉R|2

= inf
z∈Cn×r
||z||2=1

a(z)

(C.6)1087

1088

This proves (5.11). The first two inequalities of (5.12) are clear from the definitions1089

of the quantities involved, namely a0 ≤ a2(z) ≤ a1(z). It remains to prove that1090

a1(z) ≤ a(z). We will need the following families of real-linear subspaces of Cn×r1091

indexed by z ∈ Cn×r.1092

Hz = {Hz +X|H ∈ Cn×n, H∗ = H = PRan(z)H,X ∈ Cn×r,PRan(z)X = 0, XPker(z) = 0}
(C.7)

1093

∆z = {w ∈ Cn×r| ∃ρ > 0 ∀|ε| < ρ z∗(z + εw) ≥ 0}
(C.8)

1094

Γz = {y ∈ Cn×r|PRan(z)y = 0, yPker(z) = y}
(C.9)

10951096

1097

Lemma C.1. The space ∆z is alternately characterized as1098

∆z = {w ∈ Cn×r|z∗w = w∗z}(C.10)10991100

And is thus manifestly a real-linear subspace. Moreover, ∆z decomposes orthogonally1101

into1102

∆z = Hz ⊕ Γz(C.11)11031104

Finally, if z = [ẑ|0]U for ẑ ∈ Cn×k∗ then1105

Hz =

[
Hπ,ẑ(Cn×k∗ )

∣∣∣∣0]U(C.12)1106
1107
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Proof. Clearly a necessary and sufficient condition for w ∈ ∆z is that z∗w =1108

w∗z, for in this case take |ε| < σk(z)/||w||2. We can use this condition to obtain a1109

parametrization for ∆z:1110

w ∈ ∆z ⇐⇒ z∗w = w∗z1111

⇐⇒ z∗w = H̃ H̃ ∈ Cr×r, H̃∗ = H̃ = Pker(z)⊥H̃1112

⇐⇒ z∗w = z∗Hz H ∈ Cn×n, H∗ = H = PRan(z)H1113

⇐⇒ w = Hz +X H ∈ Cn×n, H∗ = H = PRan(z)H,X ∈ Cn×r,PRan(z)X = 0

(C.13)

11141115

This proves (C.11), with orthogonality easily verified. To prove (C.12) note that if1116

z = [ẑ|0]U for ẑ ∈ Cn×k∗ , U ∈ U(r), and w = Hz + X ∈ Hz then the condition1117

XPker(z) = 0 implies X = [X̃|0]U for X̃ ∈ Cn×k and PRan(z)X = 0 if and only if1118

PRan(z)X̃ = 0. Thus1119

Hz = {H[ẑ|0]U + [X̃|0]U |H ∈ Cn×n, H∗ = H = PRan(z)H, X̃ ∈ Cn×k,PRan(z)X̃ = 0}

= {[Hẑ + X̃|0]U |H ∈ Cn×n, H∗ = H = PRan(ẑ), X̃ ∈ Cn×k,PRan(ẑ)X̃ = 0}

= [Hπ,ẑ(Cn×k∗ )|0]U

(C.14)

1120

1121

With this lemma in mind, we may transform a1(z) into a linear minimization1122

problem over ∆z. Namely1123

a1(z) = lim
R→0

inf
x∈Cn×r

||xx∗−zz∗||2<R

∑m
j=1 |〈xx∗ − zz∗, Aj〉R|2

||xx∗ − zz∗||22

= lim
R→0

inf
x∈Cn×r

||xx∗−zz∗||2<R
z∗x≥0

∑m
j=1 |〈xx∗ − zz∗, Aj〉R|2

||xx∗ − zz∗||22

(C.15)1124

1125

We can add the z∗x ≥ 0 constraint without altering the infimimum since doing so1126

amounts to a choice of representative for x, but x only appears as π(x) = xx∗. We now1127

show the following lemma, implying that we may instead minimize over ||x−z||2 < R.1128

Lemma C.2. For all z ∈ Cn×r and ε > 0 there exists δ > 0 such that if z∗x ≥ 01129

and ||zz∗ − xx∗||2 < δ then ||z − x||2 < ε.1130

Proof. We begin with the fact that the operation1131

ζ : PSD(n)→ PSD(n)

ζ(A) =
√

trA
√
A

(C.16)1132

1133

is continuous with respect to the topology induced by the Frobenius norm. Note that1134

ζ(xx∗) = ||x||2(xx∗)
1
2 = ψ(x) (the embedding ψ as given in Definition 3.5). Therefore,1135

given any z ∈ Cn×r and ε1 there exists δ such that1136

||xx∗ − zz∗||2 < δ =⇒ ||||x||2(xx∗)
1
2 − ||z||2(zz∗)

1
2 ||2 < ε1(C.17)11371138

The latter expression here is of course ||ψ(x)−ψ(z)||2, which satisfies ||ψ(x)−ψ(z)||2 ≥1139
1
2D(x, z)2 by (A.19). If z∗x ≥ 0 then D(x, z) = ||x− z||2, so if we take ε1 = ε2

2 then1140

the above δ satisfies the lemma.1141
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With this lemma in hand we may freely replace ||xx∗ − zz∗||2 by ||x− z||2 in the1142

infimization constraint for a1(z) (note that the converse of the lemma is immediate1143

since π is continuous with respect to the topology induced by the Frobenius norm).1144

After doing so, we change variables from x to w = x− z so that1145

a1(z) = lim
R→0

inf
x∈Cn×r
||x−z||2<R
z∗x≥0

∑m
j=1 |〈xx∗ − zz∗, Aj〉R|2

||xx∗ − zz∗||22

= lim
R→0

inf
w∈Cn×r
||w||2<R
z∗(z+w)≥0

∑m
j=1 |〈zw∗ + wz∗ + ww∗, Aj〉R|2

||zw∗ + wz∗ + ww∗||22

= lim
R→0

inf
w∈∆z

||w||2<R

∑m
j=1 |〈zw∗ + wz∗ + ww∗, Aj〉R|2

||zw∗ + wz∗ + ww∗||22

≤ lim
R→0

inf
w∈Hz
||w||2<R

∑m
j=1 |〈zw∗ + wz∗ + ww∗, Aj〉R|2

||zw∗ + wz∗ + ww∗||22

= lim
R→0

inf
w∈Hz
||w||2<R

∑m
j=1 |〈zw∗ + wz∗ + ww∗, Aj〉R|2

||zw∗ + wz∗||22 + ||ww∗||22 + 4<tr{zw∗ww∗}

≤ lim
R→0

inf
w∈Hz
||w||2<R

∑m
j=1 |〈zw∗ + wz∗ + ww∗, Aj〉R|2

||zw∗ + wz∗||22(1 + 4<tr{zw∗ww∗}
||zw∗+wz∗||22

)

(C.18)1146

1147

We need to show that the ratio1148

R(w) = 4
|<tr{zw∗ww∗}|
||zw∗ + wz∗||22

(C.19)1149
1150

is O(||w||) when w ∈ Hz. We employ the parametrization of Hz given in (C.7) and1151

note that for w = Hz +X1152

||zw∗ + wz∗||22 = 2(||z∗Hz||22 + ||zz∗H||22 + ||zX∗||22)(C.20)1153

<tr{zw∗ww∗} = <tr{z∗H2zz∗Hz}+ <tr{X∗Xz∗Hz}(C.21)11541155

Thus we find1156

R(w) ≤ 2|<tr{z∗H2zz∗Hz}|+ 2|<tr{X∗Xz∗Hz}|
||z∗Hz||22 + ||zz∗H||22 + ||zX∗||22

≤ 2
|<tr{z∗H2zz∗Hz}|

||z∗Hz||22
+ 2

|<tr{X∗Xz∗Hz}|
||zX∗||22 + ||z∗Hz||22

≤ 2
||z∗H2z||2
||z∗Hz||2

+
||X∗X||2
||zX∗||2

(C.22)1157

1158

Up until this point we have not used the fact that HPRan(z) = H = PRan(z)H and1159

XPker(z) = 0. We do so now by noting that if z = U1ΛV ∗ for U1 ∈ Cn×k such1160

that U1U
∗
1 = PRan(z), Λ = diag(σ1(z), . . . , σk(z)) is the diagonal matrix of ordered1161

singular values σ1(z) ≥ · · · ≥ σk(z) > 0, and V1 ∈ Cr×k such that V1V
∗
1 = Pker(z)⊥1162
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then1163

||z∗H2z|| = ||ΛU∗1H2U1Λ||2 ≤ σ1(z)2||U∗1H2U1||2 = σ1(z)2
√

tr{PRan(z)H
2PRan(z)H

2} = σ1(z)2||H2||2

||z∗Hz|| = ||ΛU∗1HU1Λ||2 ≥ σk(z)2||U∗1HU1||2 = σk(z)2
√

tr{PRan(z)HPRan(z)H} = σk(z)||H||2

||zX∗||2 = ||ΛV ∗1 X∗||2 = ||Λ(XV1)∗||2 ≥ σk(z)||XV1||2 = σk(z)
√

tr{XPker(z)⊥X∗} = σk(z)||X||2

(C.23)

1164

1165

Thus if κ(z) = σ1(z)/σk(z) is the condition number of z we find1166

R(w) ≤ 2κ(z)2 ||H2||2
||H||2

+ σk(z)−1 ||X∗X||2
||X||2

≤ 2κ(z)2||H||2 + σ−1
k (z)||X||2

≤ 2κ(z)2σk(z)−1||Hz||2 + σ−1
k (z)||X||2

≤
√

2 max(2κ(z)2, 1)

σk(z)

√
||Hz||22 + ||X||22

=
2
√

2κ(z)2

σk(z)︸ ︷︷ ︸
C(z)

||w||2

(C.24)1167

1168

Thus returning to a1(z) we obtain1169

a1(z) ≤ lim
R→0

inf
w∈Hz
||w||2<R

∑m
j=1 |〈zw∗ + wz∗, Aj〉R|2

||zw∗ + wz∗||22
(1 + 2C(z)||w||2)

= inf
w∈Hz
w 6=0

∑m
j=1 |〈zw∗ + wz∗, Aj〉R|2

||zw∗ + wz∗||22

= inf
w∈Hπ,ẑ
ŵ 6=0

∑m
j=1 |〈ẑŵ∗ + ŵẑ∗, Aj〉R|2

||ẑŵ∗ + ŵẑ∗||22

= min
W∈Tπ(ẑ)(S̊

k,0(Cn))

||W ||2=1

m∑
j=1

|〈W,Aj〉R|2

= a(z)

(C.25)1170

1171

This proves (5.12). In order to prove (5.14) we will employ an explicit parametrization1172

of Tπ(ẑ)(S̊
k,0(Cn)) implied by (4.7). The condition on W ∈ Sym(Cn) in (4.7) that1173

PRan(z)⊥WPRan(z)⊥ = 0 implies that1174

W ∈ Tπ(ẑ)(S̊
k,0(Cn)) ⇐⇒ W = W1 +

1

2
(W2 +W ∗2 )(C.26)1175

1176

ForW1,W2 ∈ Cn×n where PRan(z)W1 = W1 = W ∗1 , PRan(z)W2 = 0, andW2PRan(z) =1177

W2. In other words, if U1 ∈ Cn×k and U2 ∈ Cn×n−k are as in Definition 5.4 then1178

Tπ(ẑ)(S̊
k,0) = {U1AU

∗
1 +

1

2
(U2BU

∗
1 + U1B

∗U∗2 )|A ∈ Sym(Ck), B ∈ Cn−k×k}(C.27)1179
1180
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We will now employ the fact that the maps τ and µ in (5.6) are isometries. Specifically,1181

if A,B ∈ Sym(Cn) then 〈A,B〉R = τ(A)T τ(B) and if X,Y ∈ Cn×r then 〈X,Y 〉R =1182

µ(X)Tµ(Y ). With this in mind, we obtain that for W ∈ Tπ(ẑ)(S̊
k,0)1183

m∑
j=1

|〈W,Aj〉R|2 =

m∑
j=1

|〈U1AU
∗
1 +

1

2
(U2BU

∗
1 + U1B

∗U∗2 ), Aj〉R|2

=

m∑
j=1

|〈U1AU
∗
1 , Aj〉R + 〈U2BU

∗
1 , Aj〉R|2

=

m∑
j=1

|〈A,U∗1AjU1〉R + 〈B,U∗2AjU1〉R|2

=

m∑
j=1

([
τ(A)
µ(B)

]T [
τ(U∗1AjU1)
µ(U∗2AjU1)

])2

=

[
τ(A)
µ(B)

]T( m∑
j=1

[
τ(U∗1AjU1)
µ(U∗2AjU1)

] [
τ(U∗1AjU1)
µ(U∗2AjU1)

]T)[
τ(A)
µ(B)

]
=WTQzW

(C.28)1184

1185

Where W =

[
τ(A)
µ(B)

]
∈ Rk2+2k(n−k) = R2nk−k2 . Meanwhile, again owing to the fact1186

that τ and µ are isometries, we find that for W ∈ Tπ(ẑ)(S̊
k,0) we have ||W ||2 = ||W||2.1187

Thus returning to our computation of a(z)1188

a(z) = min
W∈Tπ(ẑ)(S̊

k,0(Cn))

||W ||2=1

m∑
j=1

|〈W,Aj〉R|2

= min
W∈R2nk−k2

||W||2=1

WTQzW

= λ2nk−k2(Qz)

(C.29)1189

1190

This concludes the proof of (i)− (iii). As for (iv) and (v) note that when rank(x) ≤ k1191

then we may find P ∈ U(r) such that x = [x̂|0]P for x̂ ∈ Cn×k and moreover1192

d(x, z) = d(x̂, ẑ) and xx∗ − zz∗ = x̂x̂∗ − ẑẑ∗. Thus1193

â1(z) = lim
R→0

inf
x∈Cn×r
d(z,x)<R

rank(x)≤k

∑m
j=1 |〈xx∗ − zz∗, Aj〉R|2

d(x, z)2

= lim
R→0

inf
x̂∈Cn×k
d(x̂,ẑ)<R

∑m
j=1 |〈x̂x̂∗ − ẑẑ∗, Aj〉R|2

d(x̂, ẑ)2

(C.30)1194

1195

The constraint rank(x) ≤ k is therefore equivalent to the assumption that z ∈ Cn×k∗ .1196

Hence, in order to avoid a plethora of hats we will assume z ∈ Cn×k∗ . This assumption1197

simplifies the situation considerably since in this case ∆z = Hπ,z. As we shall see,1198

if the Γz component of ∆z were to be non-trivial, the local lower bounds â1(z) and1199

â2(z) would be zero. We next note that d(x, z) = ||x − z||2||x + z||2 precisely when1200
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x∗z = z∗x ≥ 0, which may be achieved without loss of generality in â1(z) via choice1201

of representative for x. Thus, keeping in mind that z ∈ Cn×k∗ , we find1202

â1(z) = lim
R→0

inf
x∈Cn×k
d(z,x)<R

∑m
j=1 |〈xx∗ − zz∗, Aj〉R|2

d(x, z)2

= lim
R→0

inf
x∈Cn×k

||x−z||2·||x+z||2<R
x∗z=z∗x≥0

∑m
j=1 |〈z(x− z)∗ + (x− z)z∗ + (x− z)(x− z)∗, Aj〉R|2

||x− z||22 · ||x+ z||22

(C.31)

1203

1204

In analogy with our analysis of a1(z) we change variables from x to w = x − z and1205

are thus able to linearize the infimization constraint, since for ||w||2 < σk(z) we1206

have that z∗(z + w) ≥ 0 if and only if z∗w = w∗z, or in other words if and only1207

if z ∈ ∆z ⇐⇒ z ∈ Hπ,z (the vertical component of ∆z, namely Γz, is trivial for1208

z ∈ Cn×k∗ ). We also exploit the fact that D and d generate the same topology and1209

therefore instead of ||w||2||2z + w||2 < R we may simply take ||w||2 < R.1210

â1(z) = lim
R→0

inf
w∈Hπ,z
||w||2<R

∑m
j=1 |〈zw∗ + wz∗ + ww∗, Aj〉R|2

||w||22||2z + w||22

=
1

4||z||22
lim
R→0

inf
w∈Hπ,z
||w||2<R

1

||w||22

m∑
j=1

|〈zw∗ + wz∗, Aj〉R|2(1 +O(||w||22))

=
1

4||z||22
inf

w∈Hπ,z
||w||2=1

m∑
j=1

|〈zw∗ + wz∗, Aj〉R|2

=
1

4||z||22
â(z)

(C.32)1211

1212

We now consider â2(z). In a manner precisely analogous to (C.30) the constraint1213

in â2(z) that rank(x) ≤ k and rank(y) ≤ k is equivalent to the assumption that1214

z ∈ Cn×k∗ . We first employ the unitary freedom of x and y to note that1215

â2(z) = lim
R→0

inf
x,y∈Cn×k
d(x,z)<R
d(y,z)<R

∑m
j=1 |〈xx∗ − yy∗, Aj〉R|2

d(x, y)2

= lim
R→0

inf
x,y∈Cn×k

||x−z||2||x+z||2<R
||y−z||2||y+z||2<R

x∗z=z∗x≥0
y∗z=z∗y≥0

∑m
j=1 |〈xx∗ − yy∗, Aj〉R|2

d(x, y)2

= lim
R→0

inf
x,y∈Cn×k
||x−z||2<R
||y−z||2<R
x∗z=z∗x
y∗z=z∗y

∑m
j=1 |〈xx∗ − yy∗, Aj〉R|2

d(x, y)2

(C.33)1216

1217

We now weaken the infimization constraints and obtain a lower bound. We note that1218

x∗z = z∗x and y∗z = z∗y taken together imply that (x − y)∗z = z∗(x − y), and1219
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also that the denominator d(x, y)2 ≤ ||x− y||22||x+ y||22. Thus, changing variables to1220

ξ = x− z and η = y − z we obtain1221

â2(z) ≥ lim
R→0

inf
ξ,η∈Cn×k
||ξ||2<R
||η||2<R

z∗(ξ−η)=(ξ−η)∗z

∑m
j=1 |〈z(ξ − η)∗ + (ξ − η)z∗ + ξξ∗ − ηη∗, Aj〉R|2

||ξ − η||22||2z + ξ + η||22

=
1

4||z||22
lim
R→0

inf
ξ,η∈Cn×k
||ξ||2<R
||η||2<R

z∗(ξ−η)=(ξ−η)∗z

∑m
j=1 |〈z(ξ − η)∗ + (ξ − η)z∗, Aj〉R|2

||ξ − η||22
(1 +O(||ξ||22 + ||η||22))

=
1

4||z||22
lim
R→0

inf
ξ,η∈Cn×k
||ξ||2<R
||η||2<R

z∗(ξ−η)=(ξ−η)∗z

∑m
j=1 |〈z(ξ − η)∗ + (ξ − η)z∗, Aj〉R|2

||ξ − η||22

=
1

4||z||22
lim
R→0

inf
ξ,η∈Cn×k
||ξ−η||2<2R

z∗(ξ−η)=(ξ−η)∗z

∑m
j=1 |〈z(ξ − η)∗ + (ξ − η)z∗, Aj〉R|2

||ξ − η||22

(C.34)

1222

1223

The last line is an equality rather than an inequality owing to homogeneity in ξ − η.1224

Changing variables once more to w = ξ − η and using the fact that for z ∈ Cn×k∗1225

z∗w = w∗z ⇐⇒ w ∈ ∆z ⇐⇒ w ∈ Hπ,z(Cn×k∗ ) gives1226

â2(z) ≥ 1

4||z||22
lim
R→0

inf
w∈Hπ,z(Cn×k∗ )
||w||2<2R

∑m
j=1 |〈zw∗ + wz∗, Aj〉R|2

||w||22

=
1

4||z||22
inf

w∈Hπ,z(Cn×k∗ )
||w||2=1

m∑
j=1

|〈zw∗ + wz∗, Aj〉R|2

= â(z) = â1(z)

(C.35)1227

1228

The reverse inequality â2(z) ≤ â1(z) is immediate from the definitions of â1(z) and1229

â2(z), thus (5.15) is proved. We now turn to explicit computation of â(z) as the1230

smallest non-zero eigenvalue of Q̂z. As with the computation of a(z) we rely on1231

several embeddings. Specifically we define1232

l : Cn×k → R2n×k j : Cn×k → R2n×2k
1233

l(X) =

[
<X
=X

]
j(X) =

[
<X −=X
=X <X

]
(C.36)1234

1235

Note that j is an injective homomorphism and moreover that1236

j(X) =
[
l(X) Jl(X)

]
(C.37)12371238

where J ∈ R2n×2n is the symplectic form1239

J =

[
0 −In×n

In×n 0

]
(C.38)1240

1241
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Note that Jj(X) = j(X)J for all X ∈ Cn×n.The embedding l is isometric, and1242

the embedding j is isometric up to a constant since for X,Y ∈ Cn×k we have1243

〈X,Y 〉R = 〈l(X), l(Y )〉R = 1
2 〈j(X), j(Y )〉R. The embedding j is furthermore a1244

structure preserving homomorphism since for p ∈ Cn×k, q ∈ Ck×l we have that1245

j(p)l(q) = l(pq), j(pq) = j(p)j(q), and j(p∗) = j(p)T . We will also employ the1246

isometric embedding vec defined in the obvious way in (5.8). We will need the fact1247

that if A ∈ Rn×k and B ∈ Rk×l then1248

vec(AB) = (Il×l ⊗A)vec(B)(C.39)12491250

Note that this further implies that for x, y ∈ Rn×k and F ∈ Rn×n we have that1251

vec(x)T (Ik×k ⊗ F )vec(y) = vec(x)Tvec(Fy) = 〈x, Fy〉R = tr{xTFy}(C.40)12521253

With this in mind we find that for z ∈ Cn×k∗ and w ∈ Hπ,z(Cn×k∗ )1254

|〈Dπ(z)(w), Aj〉R|2 = 4|〈wz∗, Aj〉R|2

= 〈j(wz∗), Aj〉2

= 〈j(w), Ajj(z)〉2

=

(
vec(j(w))Tvec(j(Aj)j(z))

)2

=

(
vec(j(w))T (I2k×2k ⊗ j(Aj))vec(j(z))

)2

= 4

(
vec(l(w))T (Ik×k ⊗ j(Aj))vec(l(z))

)2

= 4WTFjZZ
TFjW

(C.41)1255

1256

where W = µ(w), Z = µ(z) and Fj = Ik×k⊗ j(Aj). This should not be too surprising1257

since in fact1258

βj(z) = 〈zz∗, Aj〉R
= 〈z,Ajz〉R

=
1

2
〈j(z), j(Aj)j(z)〉

=
1

2
vec(j(z))Tvec(j(Aj)j(z))

=
1

2
vec(j(z))T (I2k×2k ⊗ j(Aj))vec(j(z))

= vec(l(z))T (Ik×k ⊗ j(Aj))vec(l(z)) = ZTFjZ

(C.42)1259

1260

Thus when βj is viewed as map from R2nk to R we find that |Dβj(Z)(W )|2 =1261

4WTFjZZ
TFjW . Returning to a(z) we first note that the constraint w ∈ Hπ,z(Cn×k∗ )1262

precisely avoids the “trivial” kernel of dimension k2 common to each FjZZ
TFj .1263

Specifically, we note that ZTFjV = 0 for V ∈ Vz ⊂ R2nk where1264

Vz = {vec(Jl(z)S + l(z)A)|S ∈ Sym(Rk), A ∈ Asym(Rk)}(C.43)12651266
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Namely if V ∈ Vz and η = Jl(z)S + l(z)A ∈ R2n×r for A ∈ Asym(Rk) and S ∈1267

Sym(Rk) so that V = vec(η) then1268

ZTFjV = vec(l(z))T (Ik×k ⊗ j(Aj))vec(η)

= tr{l(z)T j(Aj)η}
= tr{l(z)T j(Aj)(Jl(z)S + l(z)A)}
= tr{l(z)T j(Aj)Jl(z)S}+ tr{l(z)T j(Aj)l(z)A}
= 0

(C.44)1269

1270

The last line follows from the fact that j(Aj) is symmetric and j(Aj)J is anti-1271

symmetric since (j(Aj)J)∗ = −Jj(Aj) = −j(Aj)J . The reason that w ∈ Hπ,z(Cn×k∗ )1272

avoids this common kernel is that in fact Vz = µ(Vπ,z(Cn×k∗ )). Recall that1273

Vπ,z(Cn×k∗ ) = {zK|K ∈ Asym(Ck)}(C.45)12741275

We may decompose K ∈ Asym(Cn) as K = A + iS where A ∈ Asym(Rn) and1276

S ∈ Sym(Rn). Hence if u ∈ Vπ,z(Cn×k∗ ) then on the one hand j(u) = [l(u)|Jl(u)] and1277

on the other1278

j(u) = j(zK) = j(z)j(K) = [l(z)|Jl(z)]
[
A −S
S A

]
= [l(z)A+ Jl(z)S| − l(z)S + Jl(z)A]

(C.46)

1279
1280

From which we may clearly identify l(u) = l(z)A+ Jl(z)S, thus1281

Vz = {µ(u)|u ∈ Vπ,z(Cn×k∗ )}(C.47)12821283

The map µ is an isometry, so if w ∈ Hπ,z(Cn×k∗ ) then the image W = µ(w) lies1284

precisely in the orthogonal complement of Vz. Thus1285

â(z) = min
w∈Hπ,ẑ(Cn×k∗ )
||w||2=1

m∑
j=1

|〈Dπ(ẑ)(w), Aj〉R|2

= min
W∈R2nk

W⊥Vz
||W ||2=1

WT (4

m∑
j=1

FjZZ
TFj)W

= λ2nk−k2(Q̂z)

(C.48)1286

1287

Note that at this point the hats return and Z = µ(ẑ). Eigenvalues are continuous1288

with respect to matrix entries, and Q̂z is manifestly continuous with respect to z. As1289

a result of this and the fact that k 7→ 2nk − k2 is monotone increasing for k ≤ n we1290

conclude that â(z) approaches zero whenever z approaches a drop in rank. Indeed,1291

â(z) jumps discontinuously to a non-zero value once the surface of lower rank is1292

actually reached, but this cannot prevent infz∈Cn×r â(z) from being zero, thus there1293

is no hope of defining a non-zero global lower bound â0. This concludes the proof of1294

claims (iv)-(vi).1295

Claim (vii) gives local control of a(z) in terms of â(z). We first prove that the1296
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the inequality (5.17) holds. To do so we consider the following operators:1297

Π1(ẑ) : (Tπ(ẑ)(S̊
k,0(Cn)), || · ||2)→ (Rm, || · ||2)

Π1(ẑ)(W ) = (tr{WAj})mj=1

(C.49)1298

Π2(ẑ) : (Hπ,ẑ(Cn×k∗ ), || · ||2)→ (Rm, || · ||2)

Π2(ẑ)(w) = (tr{(ẑw∗ + wẑ∗)Aj})mj=1 = Π1(ẑ)Dπ(ẑ)w
(C.50)1299

1300

Note that a(z) and â(z), defined respectively in (5.3) and (5.4), are expressible in1301

terms of the operator norms of the pseudo-inverses of Π1(ẑ) and Π2(ẑ).1302

a(z) = ||Π1(ẑ)†||−2
∗

â(z) = ||Π2(ẑ)†||−2
∗

(C.51)1303

1304

We may therefore obtain operator-theoretic inequalities relating a(z) and â(z), namely1305

||Π2(ẑ)†||∗ = ||Dπ(ẑ)−1Π1(ẑ)†||∗ ≤ ||Dπ(ẑ)−1||∗||Π1(ẑ)†||∗
||Π1(ẑ)†||∗ = ||Dπ(ẑ)Π2(ẑ)†||∗ ≤ ||Dπ(ẑ)||∗||Π2(ẑ)†||∗

(C.52)1306

1307

Hence1308

||Dπ(ẑ)||−2
∗ â(z) ≤ a(z) ≤ ||Dπ(ẑ)−1||2∗â(z)(C.53)13091310

It remains only to compute appropriate bounds for ||Dπ(ẑ)||−2
∗ and ||Dπ(z)−1||2∗ in1311

order to prove (5.17). First note that1312

||Dπ(ẑ)−1||2∗ = sup
W∈Tπ(ẑ)(S̊k,0(Cn))\{0}

||Dπ(ẑ)−1(W )||22
||W ||22

=

(
inf

w∈Hπ,ẑ(Cn×k∗ )\{0}

||ẑw∗ + wẑ∗||22
||w||22

)−1

(C.54)

1313

1314

Next note that for w = Hẑ + X ∈ Hπ,ẑ(Cn×k∗ ) we have ||w||22 = ||Hẑ||22 + ||X||22 and1315

||ẑw∗ + wẑ||22 = 2(||ẑ∗Hẑ||22 + ||ẑẑ∗H||22 + ||ẑX∗||22) thus1316

||Dπ(ẑ)−1||−2
∗ = inf

w∈Hπ,ẑ(Cn×k∗ )\{0}

||ẑw∗ + wẑ∗||22
||w||22

= 2 inf
H∈Sym(Cn),PRan(ẑ)

H=H

X∈Cn×k,PRan(ẑ)
X=0

||ẑ∗Hẑ||22 + ||ẑẑ∗H||22 + ||ẑX∗||22
||Hẑ||22 + ||X||22

≥ 2 inf
H∈Sym(Cn),PRan(ẑ)

H=H

X∈Cn×k,PRan(ẑ)
X=0

||ẑ∗Hẑ||22 + ||ẑX∗||22
||Hẑ||22 + ||X||22

≥ 2σk(ẑ)2 inf
H∈Sym(Cn),PRan(ẑ)

H=H

X∈Cn×k,PRan(ẑ)
X=0

||Hẑ||22 + ||X||22
||Hẑ||22 + ||X||22

= 2σk(z)2

(C.55)1317

1318
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Hence ||Dπ(ẑ)−1||2∗ ≤ 1
2σk(z)2 . For the opposing bound note that1319

||Dπ(ẑ)||2∗ = sup
w∈Hπ,ẑ(Cn×k∗ )\{0}

||ẑw∗ + wẑ∗||22
||w||22

≤ sup
w∈Hπ,ẑ(Cn×k∗ )\{0}

||ẑw∗ + wẑ∗||21
||w||22

≤ sup
w∈Hπ,ẑ(Cn×k∗ )\{0}

4||ẑw∗||21
||w||22

≤ 4||z||22

(C.56)1320

1321

Hence ||Dπ(ẑ)||−2
∗ ≥ 1

4||z||22
, proving (5.17). We note that choosing w = ẑ ∈ Hπ,ẑ(Cn×k∗ )1322

proves that in fact ||Dπ(ẑ)||2→1 = 1
2||z||2 . Finally, the claimed bounds in (5.17) are1323

tight in the case rank(z) = 1, since in this case the inequality is equivalent to the1324

norm inequality for W ∈ Cn×n1325

1√
rank(W )

||W ||1 ≤ ||W ||2 ≤ ||W ||1(C.57)1326

1327

Specifically if W ∈ Tπ(z)(S̊
1,0(Cn)) for z ∈ Cn∗ then W = zw∗ + wz∗ for some w ∈1328

Hπ,z(Cn∗ ) ⊂ Cn and has rank at most 2. Moreover we have that1329

||W ||1 = ||zw∗ + wz∗||1 =
1

2
||(z + w)(z + w)∗ − (z − w)(z − w)∗||1(C.58)1330

1331

Recall (3.8) that for x, y ∈ Cn we have that ||xx∗−yy∗||1 = d(x, y) and that d(x, y) =1332

||x− y||2||x+ y||2 when x∗y ≥ 0. Let x = z +w and y = z −w, and note that in this1333

case w ∈ Hπ,z(Cn∗ ) implies x∗y = z∗z +w∗z − z∗w−w∗w = z∗z −w∗w ≥ 0 for ||w||21334

sufficiently small. Thus for ||w||2 or equivalently ||W ||2 sufficiently small,1335

||W ||1 =
1

2
||(z + w)− (z − w)||2||(z + w) + (z − w)||2 = 2||z||2||w||2(C.59)1336

1337

The condition that ||W ||2 be sufficiently small is of no issue since the ratio in a(z) is1338

homogeneous in ||W ||2, hence recalling that rank(W ) ≤ 2 (C.57) implies1339

√
2||z||2||w||2 ≤ ||W ||2 ≤ 2||z||2||w||2(C.60)13401341

Thus for rank(z) = 1 the inequality (C.57) is equivalent to1342

1

4||z||22
â(z) ≤ a(z) ≤ 1

2||z||22
â(z)(C.61)1343

1344

which is recognizable as (5.17) since if rank(z) = 1 then ||z||22 = σ1(z)2 and hence1345

since (C.57) is tight so too is (5.17). This concludes the proof of (vii).1346

1347

To prove (viii) we combine (5.11) and (5.14) to obtain the following formula for1348

computing a0:1349

a0 = min
k=1,...,r

min
U∈U(n)
U=[U1|U2]

U1∈Cn×k
U2∈Cn×(n−k)

λ2nk−k2(QU )(C.62)1350

1351
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Recalling that1352

Q[U1|U2] =

m∑
j=1

[
τ(U∗1AjU1)
µ(U∗2AjU1)

] [
τ(U∗1AjU1)
µ(U∗2AjU1)

]T
(C.63)1353

1354

Finally, we need to prove that the minimum over k in fact occurs at k = r. We may1355

write1356

a0 = min
k=1,...,r

inf
z∈Cn×k∗

min
W∈Tπ(z)(S̊k,0(Cn))

1

||W ||22

m∑
j=1

|〈W,Aj〉R|2(C.64)1357

1358

Then note that if ẑ ∈ Cn×k∗ and z̃ ∈ Cn×(r−k)
∗ is such that ẑ∗z̃ = 0 then z =1359

[ẑ|z̃] ∈ Cn×r∗ and moreover, recalling the parametrization of the tangent space (4.7)1360

(or alternately that the stratification is a-regular), we find that Tπ(z)(S̊
r,0(Cn)) ⊃1361

Tπ(ẑ)(S̊
k,0(Cn)) since Ran(z)⊥ = Ran(ẑ)⊥ ∩ Ran(z̃)⊥. Thus, in fact1362

a0 = min
U∈U(n)
U=[U1|U2]

U1∈Cn×r
U2∈Cn×(n−r)

λ2nr−r2(QU )(C.65)1363

1364

We now set out to prove (ix), specifically to control a0 using an infimization of â(z)1365

rather than of a(z) by including the additional constraint that z∗z = Ir×r. With this1366

constraint we may write any w ∈ Hπ,z(Cn×r∗ ) as w = zH̃ + X where H̃ ∈ Sym(Cr)1367

and X ∈ Cn×r satisfies PRan(z)X = 0 (equivalently X satisfies z∗X = 0). We note1368

that for z satisfying the constraint1369

||w||22 = ||H̃||22 + ||X||22(C.66)1370

||zw∗ + wz∗||22 = 4||H̃||22 + 2||X||22(C.67)13711372

Hence referring to (5.3) and (5.4) we find that for z∗z = Ir×r1373

1

4
â(z) ≤ a(z) ≤ 1

2
â(z)(C.68)1374

1375

Note that a direct application of (5.17) to the case where z has orthonormal columns1376

would lead to the lower constant being 1
4r rather than 1

4 .The form (5.18) for a0 tells1377

us that a(z) depends only on the range of z, and that we may obtain a0 via1378

a0 = inf
z∈Cn×r∗
z∗z=Ir×r

a(z)(C.69)1379

1380

Thus1381

1

4
inf

z∈Cn×r∗
z∗z=Ir×r

â(z) ≤ a0 ≤
1

2
inf

z∈Cn×r∗
z∗z=Ir×r

â(z)(C.70)1382

1383

This concludes the proof of (ix) and Theorem 5.6.1384

Remark C.3. For r = 1 the inequality (5.17) tells us that1385

1

4||z||22
â(z) ≤ a(z) ≤ 1

2||z||22
â(z)(C.71)1386

1387
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But in fact, as was proved in [6], more is true. Namely if the nuclear norm is used in1388

the definition of a0 instead of the Frobenius norm so that1389

a1
0 = inf

x,y∈Cn×r
x6=y

∑m
j=1(〈xx∗, Aj〉R − 〈yy∗, Aj〉R)2

||xx∗ − yy∗||21
(C.72)1390

1391

And similarly in the definition of a(z) so that1392

a1(z) = min
W∈Tπ(ẑ)(S̊

k,0(Cn))

||W ||1=1

m∑
j=1

|〈W,Aj〉R|2(C.73)1393

1394

then1395

a1
0 = inf

z∈Cn×r\{0}
a1(z)(C.74)1396

a1(z) =
1

4||z||22
â(z)(C.75)1397

1398

Remark C.4. For r = 1, Qz is orthogonally equivalent to the restriction of Q̂z to1399

the orthogonal complement of its null space, giving a correspondence between (5.14)1400

and (3.5) in [2] when the frame is positive semidefinite (Aj = fjf
∗
j ). Specifically, if1401

r = 1 then we may take U1 = z
||z||2 =: e1 and U2 = [e2, . . . , en] where e1, . . . , en forms1402

an orthonormal basis for Cn with respect to the complex inner product 〈·, ·〉C. Thus1403

τ(U∗1AjU1) =
|〈z, fj〉C|2

||z||22
=

1

||z||2
〈e1, fj〉C〈fj , z〉C

µ(U∗2AjU1) =
1

||z||2
l(

〈e2, fj〉C〈fj , z〉C
...

〈en, fj〉C〈fj , z〉C

)

(C.76)1404

1405

Note that τ(U∗1AjU1) is real, hence if we insert a single 0 in the middle of µ(U∗2AjU1)1406

between vec(<(U∗2AjU1)) and vec(=(U∗2AjU1)) we obtain1407


τ(U∗1AjU1)

vec(<(U∗2AjU1))

0

vec(=(U∗2AjU1))

 =
1

||z||2
l(

 〈e1, fj〉C〈fj , z〉C
...

〈en, fj〉C〈fj , z〉C

) =
1

||z||2
l(U∗Ajz) =

1

||z||2
j(U)T j(Aj)l(z)

(C.77)

1408

1409

Where in the last inequality the algebraic properties of l and j are employed. Thus1410

(up to a row and column of zeros)1411

Qz = j(U)T
{

1

||z||22

m∑
j=1

j(Aj)l(z)l(z)
T j(Aj)

}
j(U)(C.78)1412

1413

In accordance with the notation of [2] we denote ξ = l(z), φj = l(fj), and Φj =1414

j(Aj) = φjφ
T
j + Jφjφ

T
j J

T so that the above becomes1415

Qz = j(U)T
{

1

||ξ||22

m∑
j=1

Φjξξ
TΦj

}
j(U)(C.79)1416

1417
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Finally note that the column of j(U) corresponding to the the row and column of1418

zeros on the left hand side is Jl(z)/||z||2 = Jξ/||ξ||2, thus if we multiply on the left1419

by j(U) and on the right by j(U)T we obtain1420

j(U)Qzj(U)T = (I− PJξ)
{

1

||ξ||22

m∑
j=1

Φjξξ
TΦj

}
(I− PJξ)(C.80)1421

1422

C.3. Proof of Theorem 5.9.1423

Proof. As was the case for â1(z) and â2(z) the rank constraints in A1(z), A2(z),1424

Â1(z), and Â2(z) allow us to assume that z ∈ Cn×k∗ rather than Cn×r. As before, this1425

is done because without this assumption the resulting lower bounds would be zero for1426

every z not full rank. We begin with the analysis of Â1(z), the simpler of the local1427

lower bounds (we will show (x) that Ai(z) differ from Âi(z) only by a constant factor,1428

and hence will not analyze them separately). As we have done several times before we1429

will employ the right hand unitary freedom of the variable x to require that z∗x ≥ 0,1430

and then make the change of variables from x to w = x− z.1431

Â1(z) = lim
R→0

inf
x∈Cn×k
xx∗ 6=zz∗
D(x,z)<R

1

D(x, z)2

m∑
j=1

|〈xx∗, Aj〉
1
2 − 〈zz∗, Aj〉

1
2 |2

= lim
R→0

inf
w∈Cn×k

zw∗+wz∗+ww∗ 6=0
||w||2<R
z∗(z+w)≥0

1

||w||22

m∑
j=1

|〈(z + w)(z + w)∗, Aj〉
1
2 − 〈zz∗, Aj〉

1
2 |2

= lim
R→0

inf
w∈Cn×k

zw∗+wz∗+ww∗ 6=0
||w||2<R
w∈∆z

1

||w||22

{ ∑
j∈I0(z)

〈ww∗, Aj〉R +
∑
j∈I(z)

|〈zw∗ + wz∗ + ww∗, Aj〉R|2

|〈(z + w)(z + w)∗, Aj〉
1
2 + 〈zz∗, Aj〉

1
2 |2

}

(C.81)

1432

1433

Where I0(z) = {j ∈ {1, . . . ,m}|αj(z) = 0} are the indices for which αj is zero (and1434

hence not differentiable) and I(z) = {j ∈ {1, . . . ,m}|αj(z) 6= 0} are the indices1435

for which αj is not zero (and hence is differentiable). Thus, since z is full rank we1436

know that ∆z = Hπ,z(Cn×k∗ ) and since zw∗ + wz∗ + ww∗ 6= 0 ⇐⇒ w 6= 0 for1437

w ∈ Hπ,z(Cn×k∗ ) and sufficiently small in norm, we obtain1438

Â1(z) = lim
R→0

inf
w∈Hπ,z(Cn×k∗ )

0<||w||2<R

1

||w||22

{ ∑
j∈I0(z)

〈ww∗, Aj〉R +
∑
j∈I(z)

|〈zw∗ + wz∗ + ww∗, Aj〉R|2

|〈(z + w)(z + w)∗, Aj〉
1
2 + 〈zz∗, Aj〉

1
2 |2

}

= lim
R→0

inf
w∈Hπ,z(Cn×k∗ )

0<||w||2<R

1

||w||22

{ ∑
j∈I0(z)

〈ww∗, Aj〉R +
∑
j∈I(z)

|〈zw∗ + wz∗, Aj〉R|2

4〈zz∗, Aj〉
+O(||w||3)

}

= min
w∈Hπ,z(Cn×k∗ )
||w||2=1

1

||w||22

{ ∑
j∈I0(z)

〈ww∗, Aj〉R +
∑
j∈I(z)

|〈zw∗ + wz∗, Aj〉R|2

4〈zz∗, Aj〉

}

(C.82)

1439

1440

Now recall from (C.41) and (C.42) respectively that |〈zw∗+wz∗, Aj〉R|2 = |〈Dπ(z)(w), Aj〉R|2 =1441
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4WTFjZZ
TFjW and 〈ww∗, Aj〉 = βj(w) = WTFjW . Thus the above is1442

Â1(z) = min
W∈R2nk

W⊥Vz
||W ||2=1

WT

{ ∑
j∈I0(z)

Fj +
∑
j∈I(z)

FjZZ
TFj

ZTFjZ

}
W(C.83)1443

1444

As has already been noted in (C.44) the null space of each FjZZ
TFj contains Vz, but1445

in fact so does the null space of each Fj for j ∈ I0(z) since in this case Fjµ(zK) =1446

(Ik×k ⊗ j(Aj))vec(l(zK)) = vec(j(Aj)l(zk)) = vec(l(AjzK)) = 0. Thus we obtain1447

finally that1448

Â1(z) = λ2nk−k2(
∑

j∈I0(z)

Fj +
∑
j∈I(z)

Fjµ(ẑ)µ(ẑ)TFj
µ(ẑ)TFjµ(ẑ)

)(C.84)1449

1450

Note that in addition to proving (5.24) this also proves (viii) as this form makes1451

clear that, owing to continuity of eigenvalues, infimizing Â1(z) over z will give zero1452

(and hence so too will infimizing Â2(z) over z since Â2(z) ≤ Â1(z)). Specifically the1453

number of possibly non-zero eigenvalues of R̂z + T̂z is 2nk− k2 and is thus monotone1454

increasing in rank, and thus a sequence (zi)i≥1 ⊂ Cn×r∗ approaching a surface of lower1455

rank k will have λ2nr−r2(R̂z + T̂z) approach zero. Somewhat more remarkably, (C.84)1456

actually gives us Â2(z) as an eigenvalue problem also. Specifically, we prove that the1457

“differentiable” terms in Â2(z) are equal to those in Â1(z) and that in fact these are1458

the only terms which contribute to Â2(z). We define1459

ÂI2(z) = lim
R→0

inf
x,y∈Cn×r
D(x,z)<R
D(y,z)<R

rank(x)≤k
rank(y)≤k

∑
k∈I(z) |αk(x)− αk(y)|2

D(x, y)2

ÂI02 (z) = lim
R→0

inf
x,y∈Cn×r
D(x,z)<R
D(y,z)<R

rank(x)≤k
rank(y)≤k

∑
k∈I0(z) |αk(x)− αk(y)|2

D(x, y)2

ÂI1(z) = lim
R→0

inf
x∈Cn×r
D(z,x)<R

rank(x)≤k

∑
k∈I(z) |αk(x)− αk(z)|2

D(x, z)2

ÂI01 (z) = lim
R→0

inf
x∈Cn×r
D(z,x)<R

rank(x)≤k

∑
k∈I0(z) |αk(x)− αk(z)|2

D(x, z)2

(C.85)1460

1461

So that Â2(z) ≥ ÂI02 (z) + ÂI2(z) ≥ ÂI2(z), ÂI2(z) ≤ ÂI1(z), and ÂI02 (z) ≤ ÂI01 (z).1462

Applying the mean value theorem to the functions gk : [0, 1] → R, gk(c) = αk((1 −1463

c)x + cy) for k ∈ I(z) we see that there exist ck ∈ [0, 1] so that αk(y) − αk(x) =1464

g(1)− g(0) = g′(ck) = Dαk((1− ck)x+ cky)(y−x) (recall that these are precisely the1465

k for which said differential exists, and the differential is taken with respect to the real1466

vector space structure). Hence, replacing the rank constraints with the assumption1467
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that z ∈ Cn×k∗ and aligning both x and y with z so that z∗x ≥ 0 and z∗y ≥ 0 we1468

have:1469

ÂI2(z) = lim
R→0

inf
x,y∈Cn×k
||x−z||<R
||y−z||<R
z∗x≥0
z∗y≥0

∑
k∈I(z) |Dαk((1− ck)x+ cky)(y − x)|2

D(x, y)2
(C.86)1470

1471

Using the fact that D(x, y) ≤ ||y−x||2 and writing x = z+ ξ and y = z+η we obtain1472

that1473

ÂI2(z) ≥ lim
R→0

inf
η,ξ∈∆z

||ξ||<R
||η||<R

∑
k∈I(z) |Dαk(z + (1− ck)ξ + ckη)(η − ξ)|2

||η − ξ||22(C.87)1474

1475

The trick of linearizing the conic constraints here to ξ, η ∈ ∆z is crucial since it allows1476

us to strictly weaken the constraints in the infimum by taking w = η−ξ so that, after1477

using the continuity of Dαk (αk is continuously differentiable when differentiable)1478

ÂI2(z) ≥ lim
R→0

inf
η,ξ∈∆z

||ξ||2<R
||η||2<R

∑
k∈I(z) |Dαk(z + (1− ck)ξ + ckη)(η − ξ)|2

||η − ξ||22

= lim
R→0

inf
η,ξ∈∆z

||ξ||2<R
||η||2<R

∑
k∈I(z) |Dαk(z)(η − ξ)|2

||η − ξ||22
+O(||ξ||22 + ||η||22)

≥ lim
R→0

inf
w∈∆z

||w||2<2R

∑
k∈I(z) |Dαk(z)(w)|2

||w||22

= min
w∈Hπ,z(Cn×k∗ )
||w||2=1

∑
k∈I(z)

|Dαk(z)(w)|2

= λ2nk−k2(
∑
j∈I(z)

Fjµ(ẑ)µ(ẑ)TFj
µ(ẑ)TFjµ(ẑ)

) = ÂI1(z)

(C.88)1479

1480

We already had the reverse inequality ÂI2(z) ≤ ÂI1(z), hence ÂI2(z) = ÂI1(z). More-1481

over, assuming this minimum is achieved by w0 ∈ Hπ,z(Cn×k∗ ) then if we put x =1482

z + 1
2w0 y = z − 1

2w0 we see that the ÂI02 (z) term vanishes and ÂI2(z) is achieved,1483

hence Â2(z) ≤ ÂI2(z). We already had the reverse inequality, so we conclude that1484

Â2(z) = ÂI2(z) = ÂI1(z) and ÂI02 (z) = 0. In summary1485

Â2(z) = min
W∈R2nk

W⊥Vz
||W ||2=1

WT

{ ∑
j∈I(z)

FjZZ
TFj

ZTFjZ

}
W

= λ2nk−k2(
∑
j∈I(z)

FjZZ
TFj

ZTFjZ
)

(C.89)1486

1487

Thus claims (i) and (ii) are proven. Claim (iii) follows immediately from the inequal-1488

ity (3.6). This concludes the proof of the Theorem 5.9.1489

This manuscript is for review purposes only.



LIPSCHITZ ANALYSIS OF PHASE RETRIEVABLE FRAMES 49

Remark C.5. If z were not assumed full rank in (C.81) then w ∈ ∆z would pos-1490

sibly have a non-zero component wΓ in Γz ⊂ Vπ,z(Cn×k∗ ). As a result, it would be1491

possible to obtain a sequence (with the horizontal space component of w converging1492

to zero) for which the second sum in the last line of (C.81) is eventually fourth order1493

in ||w||2, thus A1(z) would be zero wherever α is differentiable (almost everywhere1494

in measure). The rank constraint in the definition of Â1(z) that rank(x) ≤ k avoids1495

this, since it allows us to assume that z is full rank and hence that Γz is trivial.1496

C.4. Proof of Theorem 5.13.1497

Proof. The proof of (i) is essentially identical to the proof of the analogous eigen-1498

value formula for the lower bound a0 in Theorem 5.6. One first changes coordinates1499

to z = 1
2 (x+ y) and w = x− y and repeats the computation (C.6) to obtain1500

b0 = sup
z∈Cn×r

max
W∈Tπ(ẑ)(S̊

k,0(Cn))

||W ||2=1

M∑
j=1

|〈W,Aj〉R|2(C.90)1501

1502

At this point we note that1503

b0 ≤ sup
W∈Sym(Cn)

||A(W )||22
||W ||22

= ||A||22→2(C.91)1504

1505

As before we observe that it suffices to take z ∈ Cn×r∗ since if ẑ ∈ Cn×k∗ and z̃ ∈1506

Cn×(r−k)
∗ and z = [ẑ|z̃] with z̃∗ẑ = 0 then Tπ(z)(S̊

r,0(Cn)) ⊃ Tπ(ẑ)(S̊
k,0). One then1507

employs the tangent space parametrization (C.27) and repeats the computation (C.28)1508

to obtain1509

b0 = sup
z∈Cn×r∗

λ1(Qz) = max
U∈U(n)
U=[U1|U2]

U1∈Cn×r,U2∈Cn×n−r

λ1(Q[U1|U2])(C.92)1510

1511

This concludes the proof of (i). To prove (ii) we will employ the following lemma.1512

Lemma C.6. Let ||| · ||| be any norm. Then1513

||A||1→|||·||| = sup
x∈Cn
||x||2=1

|||A(xx∗)|||(C.93)1514

1515

In other words the operator norm ||A||∗ of A : (Sym(Cn)(Cn), || · ||1) → (Rm, ||| · |||)1516

is achieved on a matrix of rank 1.1517

Proof. Let R ∈ Sym(Cn) be non-zero such that ||R||1 = 1 and |||A(R)||| =1518

||A||∗||R||1. Write R =
∑n
j=1 rjeje

∗
j and note that ||R||1 = 1 implies

∑n
j=1 |rj | = 1.1519

Then1520

||A||∗ = ||A||∗||R||1 = |||
n∑
j=1

rjA(eje
∗
j )||| ≤ (

n∑
j=1

|rj |) max
j=1,...,n

|||A(eje
∗
j )||| = max

j=1,...,n
|||A(eje

∗
j )|||

(C.94)

1521

1522

Let x0 = ej0 where j0 is the index that achieves the maximum. Then ||x0||2 = 1 and1523

||A||∗ ≤ |||A(x0x
∗
0)|||, but of course this bound is achievable by just plugging in x0x

∗
01524

into A. Thus the operator norm of A is achieved on a matrix of rank 1 and the lemma1525

holds.1526
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Next note that1527

b0,1 = sup
x,y∈Cn×r

[x]6=[y]

∑m
j=1 |〈xx∗ − yy∗, Aj〉R|2

||xx∗ − yy∗||21

= sup
z∈Cn×r∗

sup
W∈Tπ(z)(S̊r,0(Cn))

||A(W )||22
||W ||21

≤ sup
W∈Sym(Cn)
||W ||1=1

||A(W )||22

= ||A||21→2

(C.95)1528

1529

Note that by an identical computation b0 ≤ ||A||2→2. By the Lemma ||A||1→2 =1530

supx∈Cn,||x||2=1 ||A(xx∗)||22, hence1531

b0,1 ≤ sup
x∈Cn

||A(xx∗)||22
||xx∗||21

≤ sup
x∈Cn×r

||A(xx∗)||22
||xx∗||21

=
||A(x0x

∗
0)||22

||x0x∗0||21

≤ sup
U2∈Cn×n−k

U∗2U2=In−k×n−k
k=1,...,r

sup
W∈Sym(Cn)
U∗2WU2=0

||A(W )||22
||W ||21

= b0

(C.96)1532

1533

Where in the second to last equality we note that it suffices to take U2 such that1534

U2U
∗
2 = PRan(x0)⊥ and in the last equality we use the implicit parametrization of the1535

tangent space (4.7). Thus1536

b0,1 = ||A||1→2 = sup
x∈Cn

||A(xx∗)||22
||xx∗||21

= sup
x∈Cn×r

||A(xx∗)||22
||xx∗||21

(C.97)1537

1538

We now seek an operator Tr : Cn×r → (Cn×r)m, an integer q, and a norm ||| · ||| so1539

that for x ∈ Cn×r1540

|||Tr(x)|||q = ||A(xx∗)||22(C.98)15411542

We find that if Aj ≥ 0 for all j then1543

||A(xx∗)||22 =

m∑
j=1

|〈xx∗, Aj〉R|2 =

m∑
j=1

||A
1
2
j x||

4
2(C.99)1544

1545

So we let Tr be as in Definition 5.12, |||X||| = |||X|||2,4 and q = 4 and find b0 =1546

||Tr||42→(2,4) = ||T1||42→(2,4). This concludes the proof of (ii). To prove (iii) note that1547

by (3.5) ||(xx∗) 1
2 − (yy∗)

1
2 ||2 ≥ D(x, y) hence1548

B0 ≤ sup
x,y∈Cn×r

[x]6=[y]

||α(x)− α(y)||22
D(x, y)2

(C.100)1549

1550
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Thus1551

B0 ≤ sup
x,y∈Cn×r

[x] 6=[y]

1

D(x, y)2

m∑
j=1

|〈xx∗, Aj〉
1
2 − 〈yy∗, Aj〉

1
2 |2

= sup
x,y∈Cn×r
x∗y≥0

1

||x− y||22

m∑
j=1

|〈xx∗ − yy∗, Aj〉R|2

(〈xx∗, Aj〉
1
2 + 〈yy∗, Aj〉

1
2 )2

(C.101)1552

1553

We now make the change of coordinates z = 1
2 (x+ y), w = x− y so that x = z+ 1

2w,1554

y = z − 1
2w. As before let I0(z) be the subset of {1, . . . ,m} for which Ajz = 01555

and I(z) its complement in {1, . . . ,m}. In this case we note that if j ∈ I0(z) then1556

0〈zw∗ + wz∗, Aj〉R = 〈xx∗ − yy∗, Aj〉. Thus, employing the triangle inequality via1557

〈xx∗, Aj〉
1
2 + 〈yy∗, Aj〉

1
2 = ||A

1
2
j x||2 + ||A

1
2
j y||2 ≥ 2||A

1
2
j z||2 = 2〈zz∗, Aj〉

1
2 we find that1558

B0 ≤ sup
x,y∈Cn×r
x∗y≥0

1

||x− y||22

m∑
j∈I(z)

|〈xx∗ − yy∗, Aj〉R|2

(〈xx∗, Aj〉
1
2 + 〈yy∗, Aj〉

1
2 )2

(C.102)1559

≤ sup
z∈Cn×r
z 6=0

sup
w∈Cn×r

z∗z− 1
4w
∗w+ 1

2 (w∗z−z∗w)≥0

1

||w||22

∑
j∈I(z)

|〈zw∗ + wz∗, Aj〉R|2

4〈zz∗, Aj〉
(C.103)1560

1561

Next note that the condition z∗z − 1
4w
∗w + 1

2 (w∗z − z∗w) ≥ 0 holds if and only if1562

z∗w = w∗z and w∗w ≤ 4z∗z. Moreover, since w only appears as w/||w||2 we may scale1563

w so that σ1(w) ≤ σk(z) (where z has rank k), thus the latter non-linear criterion1564

becomes the linear criterion that wPker(z) = 0. Taken together, these these criterion1565

hold if and only if w ∈ Hz. Thus, with reference to the computations (C.41) and1566

(C.42) we find that1567

B0 ≤ sup
z∈Cn×r
z 6=0

sup
w∈Hz

1

||w||22

∑
j∈I(z)

|〈zw∗ + wz∗, Aj〉R|2

4〈zz∗, Aj〉
(C.104)1568

= sup
z∈Cn×r
z 6=0

max
W∈R2nk

W⊥VZ
||W ||2=1

WT

( ∑
j∈I(z)

Fjµ(ẑ)µ(ẑ)TFj
µ(ẑ)TFjµ(ẑ)

)
W(C.105)1569

= sup
z∈Cn×r
z 6=0

λ1(T̂z)(C.106)1570

1571

Moreover note that by setting y = 0 in the definition of B0 and observing that1572

||(xx∗) 1
2 ||2 = ||x||2 and that 〈xx∗, Aj〉 ≥ 0 we obtain that1573

B0 ≥ sup
x∈Cn×r

1

||x||22

m∑
j=1

〈xx∗, Aj〉 = B(C.107)1574

1575

Meanwhile by Cauchy-Schwartz 〈zw∗, Aj〉 ≤ ||A
1
2
j w||2||A

1
2
j z||2 = 〈ww∗, Aj〉

1
2 〈zz∗, Aj〉

1
21576
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(similarly for 〈wz∗, Aj〉). Hence1577

B0 ≤ sup
z∈Cn×r
z 6=0

λ1(T̂z)

= sup
z∈Cn×r
z 6=0

sup
w∈Hz

1

||w||22

∑
j∈I(z)

|〈zw∗ + wz∗, Aj〉R|2

4〈zz∗, Aj〉

≤ sup
w∈Hz

1

||w||22

∑
j∈I(z)

〈ww∗, Aj〉

≤ sup
w∈Cn×r

1

||w||22

m∑
j=1

〈ww∗, Aj〉R = B

(C.108)1578

1579

Thus B ≤ B0 ≤ supz∈Cn×r
z 6=0

λ1(T̂z) ≤ B and hence all three are equal. This concludes1580

the proof of (iii) and of Theorem 5.13.1581

C.5. Proof of Theorem 5.14.1582

Proof. It is shown in Proposition 5.1 that the map β is injective if and only if it1583

is lower Lipschitz, that is if and only if a0 > 0. This gives equivalence of (i) to (ii)1584

immediately since we proved in Theorem 5.6 that1585

a0 = min
U1∈Cn×r

U2∈Cn×(n−r)

[U1|U2]∈U(n)

λ2nr−r2(Q[U1|U2])(C.109)1586

1587

Similarly, it is evident from (C.70) that a0 > 0 if and only if â(z) > 0 whenever1588

z∗z = Ir×r. It is proved in Theorem 5.6 that â(z) = λ2nr−r2(Q̂z), and also that the1589

null space of Q̂z includes the r2 dimension Vz. Thus the frame is generalized phase1590

retrievable if and only if the null space Q̂z does not extend beyond Vz for any z of1591

orthonormal columns, proving equivalence of (i) to (iii). We prove equivalence of (ii)1592

to (iv) by noting that Q[U1|U2] is invertible if and only if1593

spanR{
[
τ(U∗1AjU1)
µ(U∗2AjU1)

]
}mj=1 = R2nr−r2(C.110)1594

1595

Noting that τ−1(Rr2) = Sym(Cr) and µ−1(R2nr−2r2) = Cn−r×r, thus Q[U1|U2] is1596

invertible if and only if there exist c1, . . . , cm ∈ R so that (5.39a) and (5.39b) are1597

satisfied. To prove equivalence with (v) note that (5.39a) and (5.39b) both hold if1598

and only if for all U = [U1|U2] we have1599

spanR{AjU1} = {U
[
H
B

]
|H ∈ Sym(Rn), B ∈ C(n−r)×r}

= {U1K|K ∈ Cr×r,K∗ = −K}⊥
(C.111)1600

1601

Finally note that while (v) trivially implies (vi) it is also the case that 〈AjU1, U1K〉R =1602

〈U∗1AjU1,K〉R = 0 for every U1 and every K since U∗1AjU1 is Hermitian and K1603

is skew-Hermitian, hence it is automatically true that spanR{AjU1} ⊂ {U1K|K ∈1604

Cr×r,K∗ = −K}⊥. Thus we also obtain (vi) implies (v).1605

This concludes the proof of Theorem 5.14.1606
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