EquwvalencePrinciple for Optimizationof
SparseversusLow-SpreadRepresentations
for Signal Estimationin Noise

RaduV. Balan, JustinianRosca,Scott Rickard
SiemensCorporateResearchy55 College Road East, PrincetonNJ 08540

Abstract

Estimationof a sparsesignal representationpne with the minimum numberof nonzerocomponents,
is hard. In this paperwe shawv that for a nontrivial setof the input datathe correspondingoptimization
problemis equivalentto andcanbe solved by analgorithmdevisedfor a simpleroptimizationproblem.The
simpleroptimizationproblemcorrespondso estimationof signalsundera low-spreadconstraint.The goal
of the two optimizationproblemsis to minimize the Euclidiannorm of the linear approximationerror with
ani? penaltyon the coeficients,for p = 0 (sparsejandp = 1 (low-spreadyespectiely. The I° problemis
hard,whereashe I! problemcanbe solved efficiently by an iterative algorithm. Here we preciselydefine
the 1° optimizationproblem,constructan associated’ optimizationproblemand shaw that for a setwith
openinterior of the input datathe optimizersof the two optimizationproblemshave the samesupport.The
associated! optimizationproblemis usedto find the supportof the I° optimizer Oncethe supportof the
1° problemis known, the actualsolutionis easilyfound by solving a linear systemof equations However
we point out our approachdoesnot solve the harderoptimizationproblemfor all input dataandthus may
fail to producethe optimal solutionin somecases.

Index Terms

sparsesignal,i® quasi-norm/* norm, optimization

I. INTRODUCTION
Considerthe following linear problem:Given x € C" of the form

x=As+v 1)

estimates € C™ where A is a givenn x n invertible (complex) matrix andv € C" is an interference
(noise) term. Obviously, when v = 0 the solution of this problemis trivially, s = A~!x. However, in
a practical settingrv # 0 and it may also happenthat A is ill-conditioned in which casethe inversion
becomesa problem.Two approachesave beendevisedto dealwith theseissues.

Oneapproactis purely deterministicandaddressemainly the casewhen A is ill-conditioned. The main
obsenationin this caseis thatinverting A yields

A lx=s+A v

which potentially amplifiesthe noise-like error in the data. The solution is thento minimize a criterion
containingtwo terms: one term that measurediow well x matchesAs without regardto the noiseterm
and a secondterm that penalizeslarge entriesin s which, potentially are due to amplified noise.Thus,
the regularizedproblembecomes:

in |||As — A 2
min [|[As —x [l +A s ll2 2
where||| - ||l1 and ||| - |||z are somenorm-like measureshosenmore often from a corvenientalgebraic
computationpoint of view. One of the most popular choicesfor thesemeasuress the squareof the
Euclidiannorm |||}, [ly[l = (Xr_4 |yk|2)1/2, thus the problemcan be statedas:
minseCnHAs—XH2 —i—)\HSHZ )
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where) is a regularizationparameterChoosing|-||*> for ||| - ||| and]||- |||> asin (3) resultsin the Tikhonov
regularizationmethod[8]. Alternatively, and more general,one can usethe following measure:

minseanAstHZ—|—/\||s||g, for p >0 4)

and

mingecn ||As — x||* + A |s|ly, for p=0 (5)

where||-||,, is the p (quasi)norm definedby

n 1/p
Ivll, = <Z ka|p> , forp>0
k=1

and

lylly = Isupp(y)|, for p=20

with ||-|[, insteadof ||-||8, becausdimy o [[sl|; = [Isllg, supp(y) = {k | yr # 0} is the supportof y,
and |S| denotesthe cardinalof the discretesetS. For 0 < p < 1, ||-||,, definesa quasi-normwhereasfor
p =0 it is not even linear with respectto scalarmultiplication.

A secondapproachto solving (1) usesa stochasticestimationframewnork. For example,we may assume
v is N(0, 0*T) Gaussiamoiseandthatthe signals hasn independentomponentsvith a priori distribution
Exp(0, p, ) givenby:

fals) = H Cp e 1o /0 6)
k=1

Suchdistributions, for instance have beencited assparsedistributionsin [15, 19] sincethey have a sharper
peakthanthe Gaussiardistributionfor p < 2. It is not hardto show thatthe Maximum A Posteriori(MAP)
estimatorof s in this caseis given by:

. . 2 1
§ = argmingcgnl|As — x||” + —— |s[|} @)
oip
which is exactly the sameasthe regularizationmentionedbefore.
The purposeof this paperis to connectthe optimization problemwith the generalform expressedn

(7) for p = 0 to thatwith p = 1. For p = 0, the problemcan be simply statedas:

As —x|* + pl{k ; s # 0} ®)

Mmingegn

for somefixed . > 0. If oneis given the supportof the optimizer, thenfinding the optimizer becomesa
simple leastsquareproblem,andthis involves merely solving a linear system.Hencethe hard problemis
to find the right support.For p = 1, the situationis completelydifferent.In the literaturealgorithmshave
beenproposed4, 8] to solve

in |Bx —s|* 9
min |[Bx —s| +>‘;|5k| 9)

and they corverge quickly to a solution. In this paperwe shav how the solution of (9) can be usedto
obtain the solution of (8), for specificchoicesof B, and )\, andfor an opensetof datax.

The next sectionbriefly discussesvork relatedto problems(8) and (9). Then Sectionlll presentghe
maintheoreticalresults,which weregroupedtogetherin orderto offer a succinctview of thework. Section
IV containsproofs of the main lemmasand the centraltheorem.SectionV demonstrateshe application
of this work in a simple example.SectionVI summarizeghis work.



Il. RELATED WORK

The seminalwork by Donohoand Huo [6], in which a connectionof a similar naturehasbeenmade,
subsequenthsparled interestfrom otherresearchers[7, 9-11, 16]. Theseauthorstackledthe problem,
given a redundantdictionary D = {dy,...,d,,} in C" (m > n), anda vectorx € C" thatadmitsa
sparserepresentationfind the sparsedecompositiorof x, thatis x = -,y s;d; where|J| <n.

The problemcanbe turnedinto an optimizationproblemasfollows:

argminge gm and Ds:x{|supp(s)|} (10)

whereD = [d4|- - - |d,,] is the n x m matrix whosecolumnsarethe d; vectors.

The main resultin [6] is that for a “thin” setof input datax (“thin” in the sensethat is hasempty
interior), the solutionof this problemcoincideswith the solutionof a similar but easierto solve optimization
problem:

argmingegm and Ds=x{llSll} (11)
In this framawork our problemcan be restatedasfollows. Definethe n x 2n matrix

E=[A I] (12)

Then(7) is equivalentto the following optimizationproblem:
argmingegen and Eu:x”qug (13)

where . o
all, o = D luel? + Y Jukl? (14)

k=1 k=n+1

which is slightly differentthan (11), evenwith p = 1. Note [luf, , is nota norm (or quasi-normjsinceit

doesnot scaleproperly Unlike [6] our theoremsaysthat for a nonthinset(i.e. with nonemptyinterior) of

input datax, the supportof the first n component®of the optimizerfor p = 1 coincideswith the support
of the first n componentf one optimizerfor p = 0. On the one handthe conclusionof our theorem
is wealer than [6], namelythe optimizersfor p = 0 andp = 1 do not coincide but only their supports
coincide.On the other hand our result hasa much wider applicability sincethe set of input datawhere
the conclusionholds true hasnonemptyinterior.

Optimizationproblemsof type (8) have beenanalyzedfrom a computationatomplexity point of view.
More specificallyin [5] the authorsprovedthatwhen A is a full rankn x m matrix with m = O(n*), for
somek > 1, the finite-input L-term e-approximationof the optimum value problem (i.e. within ¢ of the
optimum)is NP-completeThe proof thoughreliescrucially uponthe redundang of the dictionaryformed
by the columnsof matrix A. For instancewhen A = UD with U a unitary (or orthogonal)matrix and
D adiagonalinvertible matrix, we have:

lAs — x| + [Is]l, = | Ds — U*x|* + | Ds||, (15)

which can easily be solved in order O(n?) time. However, for generalA, we do not know whetherthe
L-term approximationproblemwithin e to the optimal valueis NP-completeor not.

Researchinto practical problemsleadingto similar optimization problemsappearsn the literatureon
speectenhancemerandimageprocessingandmoregenerallysignaltransformatiorusingtheindependent
componentanalysis(ICA) and blind sourceseparation(BSS) techniques.In speechenhancementthe
interestis to use a signal-adaptedi.e. learnedfrom the data) representatiorinstead of the standard
frequeng-domain representationjn hope of transformingthe signal into a sparseform, which can
offer simplification of the complex estimationproblemsto be dealt with. Recently mary other signal
transformationproblemsseemto benefitfrom the use of data-dependentransformationsfor example
independentwavelet basesor independentcomponentslearned from the data, in contrastto the use
of fixed transformationssuch as a frequeny domain data-independeriransformation.One outstanding
researctguestionis whetherreal datain variousdomains(MRI, EEG, vision, speech)s amenableo such
approachesExperimentalevidenceis constantlybeing gainedin this sense.The definition of a sparse
representationf a signalhereis thata “small” numberof coeficientsdifferentfrom zeroarenecessaryn



a decompositiorof the signalusingthe baseq19]. Theideaof sparsecodingis summarizedy Hyvarinen
etal [13].

For example,speechs a sparsesignal,andthe propertyhasbeenexploitedin the ICA-BSS community
for parameteestimationand sourceseparation[1, 12, 19]. A time-frequeng (TF) sparsenesassumption
hasbeenintroduced [14] andsubsequentlysedin [2, 17], which allows for the separatiorof morethan
two sourcesgiven just two mixtures. This sparsenesproperty called W-digoint orthogonality (WDO),
assumeshatthe signalshave non-overlappingTF representatiosupportsGiven sourceTF representations
Sy (w,t),...,Sn(w,t), the WDO assumptiorcan be stated:

Si(w,t)S;(w,t) =0, Vi # j,V(w, t). (16)

This assumptionhas been shovn to be approximatelytrue for speechsignals[18]. Further WDO is
approximatelysatisfiedwhen one assumes signal model of the form:

S(w,t) = B(w,t)G(w,t) (17)

where B(w, t) is a Bernoulli randomvariable (i.e. it takes a value of only 0 or 1), and G(w,t) is a
continuouslydistributed randomvariable[2]. It follows that the joint distribution is:

Ps1,5,(S1,52) = (1 —q)*6(51)8(52) + q(1 — @)(6(S1)p(S2) + 6(S2)p(S1)) + ¢°p(S1)p(S2)  (18)

Sparsedecompositionglirectly leadto solving a problemequialentto (7) in the contet of learninga
signal dictionary that is the matrix A, suchaswavelet or ICA basesMore specifically assumegiven a
sequencef measurementér?)”_, with obsenation modelz! = As? + v, for every 0 < t < T. Assume
that each st is dravn independentlyfrom a distribution ps(s), eachv? is dravn independentlyfrom a
distribution p, (), andthe prior distribution pa (A) of A. Thenthe posteriordistribution of (A, (s*)Z_)
given (*)L_, is given by

P(A, (50l (2) o) = [Ipv(@" — As)ps(s')pa(A) (19)

pe() g

The MAP estimatorof (A, (s*)~_,) is obtainedmy maximizingthe above probability. Typically optimiza-
tion algotihms(see[19]) iterate betweenoptimizationover A for fixed (s*)._,, and optimization over
(st)L, for fixed A. In this work we concentrateon the latter optimizationproblem,that is given A, we
look for the MAP estimatorof (s*)Z,.

[11. MAIN RESULTS
Considerthe following two optimizationproblems:

(x) = argmingeon |x — As||* + 4 |sllg (20)
s'(x) = argmingecn[x — Bs||* + Alls], (21)

whereA,B € C"*", u, A > 0 andx € C™ aregiven.In generalthe optimizerin (20) may not be unique,
in which cases’(x) denotesone such optimizer On the other hand, since the criterion (21) is strictly
corvex, the optimizerin (21) is uniqueand s!(x) is a well-definedfunction.

The main resultsof this paperare statedasfollows:

Proposition 1. Considerthe optimization problem (21) with B invertible and A > 0. Then for every
subsefl C {1,2,...,n}, thereis asetEy C C™ with nonemptyinterior sothatfor x € Er, supp(s'(x)) =
I

O

Proposition 2. Considerthe optimization problem (20) with A invertible and » > 0. Thenfor every
subsetl C {1,2,...,n}, thereis a set F; C C" with nonemptyinterior so that for x € Fj thereis an
optimizer s°(x) suchthatsupp(s°(x)) = I.

O

Theorem 3: AssumeA is invertible and i > 0 is given constantThentherearea = a(A) > 0 and
setswith nonemptyinteriors Dy indexed by subsetsl C {1,2,...,n} suchthatfor B = (A*l)* (the



adjoint of the inversematrix), A = ,/%“, andfor every subsefl C {1,2,...,n}, x € Dy, andat leastone
optimizer s°(x) has
supp(s°(x)) = supp(s' (x)) =1 (22)

O

Remark 4: With the notationsabove, the main result simply says E1 N F1 hasnonemptyinterior for
everyIC {1,2,...,n}, whenB = (A~1)" and\ = /3.

The function a = «(A) hasan explicit descriptionthat we presentext. First alemma:

Lemma 5: Assume{vy,...,v,} is a setof independentvectorsin C". Considertwo setsI,J C
{1,2,...,n} sothat |I| > |J|. Denoteby P the orthogonalprojectiononto the spanof {v; ; j € J}.
Thentheset{(1 — P)v; ; i € I\ J} is independentn C".

O

This lemmasaysthat for every two setsI,J C {1,2,...,n} with |I| > |J|, anddenotingby A, theit"
columnof A, andby P the orthogonalprojectionontothe spanof {A; ; j € J} theset{(1-P)A;; i €
I\ J} is a Rieszbasisfor its span(see[3] for definition), hencethereis a a(I,J) > 0 sothat:

2

> a(l=P)A| >a@I) Y |el’, Ver,...,cn €C (23)

iel\J iel\J

Then define « as the minimum of Riesz basislower boundsa(I,J) over all pairs of subsets(I,J) of
{1,2,...,n} with |I| > |J|,

= mi 1J 24
“ I,Jl:ﬁlwrzlma(’ ) @)

IV. PROOF OF RESULTS

Let us startby proving first Lemmab.

Proof of Lemma 5.

Consider{vi,va,...,v,} independenvectorsin C"*, andI,J C {1,2,...,n} with |I| > |J|. Denote
by P the orthogonalprojection onto span{v; ; j € J} andby Q = 1 — P, the projection onto its
orthogonalcomplementWe needto prove {Qv; ; i € I\ J} is independentAssumethis is not so. Then
therearec; € C, i € I\ J, notall zeroso that

Z CiQV’L' =0

i€I\J
Hence

Z c;ivi € span{v; ; jeJ}
ie\J

But then, thereshouldexist d; € C, j € J sothat

Z C;V; = Zdjvj

iel\J jed

Thus we obtaineda linear combinationof {vq,va,...,v,}, with not all coeficients zero, that is zero.
Contradictionwith the independencéypothesisQ.E.D.

Now we prove Theorem3. A sketch of its proof is asfollows. First we constructexplicit solutionsof
(21) andprove Proposition2. Thenwe shav thatthereis somex € Ej thatis alsoin Fy, andfurthermore
it is an interior point in both which concludeghe proof of Theorem3.

Considerthe [*-optimizationproblem(21).

Definition. We call a pair (s, x) € C" x C" admissible if it satisfiesthe following setof conditions:

A s
(B*Bs — B*x);, + §|S—I”| = 0, for all k so that s; #0 (25)
Sk
A
[((B*Bs — B*x);| < 5 for all j so that s; =0 (26)

Thenwe have the following Lemma:



Lemma 6: s is a solution of the optimizationproblem(21) if andonly if (s,x) is an admissiblepair.
In otherwords, this lemmasaysthat (s*(x), x) satisfies(25) and (26) and corversely ary solution of
(25) and (26) is an optimizet
Proof of Lemma 6
First note that the criterion
Ji(s) =[x = Bs|* + Alsll, (27)

is strictly corvex, andthereforeit hasa uniqueglobal minimum.

“=" Assumes = s'(x) is the unique minimum. Denoteby I the index setof non-zeroentriesof s,
thatis I = {k ; s; # 0}, anddenoteby e, the k" vectorof the canonicalbasis,i.e. all entriesare zeros
exceptfor one“1” on the k" position. Sincefor k € I, J; (t) = Ji(s + tex) hasa minimum and is
differentiableat t = 0, 0J1/0sk|s=s1(x) = 0. The partial derivative is exactly the left handside of (25).
For j ¢ I the situationis different.\We computethe variation J; (s +te;) — Ji (s). Expandingthe quadratic
form we obtain:

Ji(s+te;) — Ji(s) = t?||Bj||* — t(Bj,x — Bs) — t(x — Bs, Bj) — Alt|

where B; is the j** columnof B. Choosingt = (x — Bs, B;) = ¢(B*(x — Bs));, with £ > 0 arbitrary
small, we obtain:

Ji(s +tej) — Ji(s) = O(e?) + [e]|(B* (x — Bs));|(A — 2/(B*(Bs — x));)
In orderfor this to be positive for all € > 0, the last term shouldalways be nonneative, meaning
A 2|(B*(Bs — x));| >0

andthus (26).
“<"Assumenow that (s, x) is anadmissiblepair. Thencomputethe variation J; (s + v) — J1(s), where
w =y, wey iS anarbitrary vectorwith |wy| < |si| for k € I. We obtain:

Ji(s+w) = Ji(s) = [Bw|”+ ) [2Re((B*Bs — B*x)y) + A(|sk + wi| — [s])] +
kel
> [2Re ((B*Bs — B*X) @) + Alwg]
kgl

Now use(25) in the first sumover k € I, andthen (26) to obtainthe inequality below:

Jl(SJrW)iJl(S) = ||BW||2+Z/\[|Sk+wk| - |5k| Re( |];k|’~>]+
kel ‘

Z 2|w;| {é + Re ((B*Bs —B™x); &ﬂ
= 2 |wj]

S {|sk + wi| = |sk| = Re (Skwkﬂ

kel sl

Y

Now a little algebrashaws:

SEWi 1
s + wi| — |sk| — Re (W) = 3r] (I8l + lwi] — [sk + wil] [|sk + wi| + [wi| — |sk]

which is always positive by applicationof the triangle inequality twice, oncein eachterm. Therefore,if
(s,x) is anadmissiblepair, J; (s +w)— Ji(s) > 0 in a neighborhoodf zero.Hences is alocal minimum
for J1(-), but sincethe local minimum is alsoglobal,s = s!(x). Q.E.D.

Next we constructparticularadmissiblepairs. Fix I an arbitrary subsetof {1,2,...,n}, possiblythe
empty set. We will constructan admissiblepair (s, %) so that supp(§) = I. Considera § € C" so that
supp(8) =T and 8] < W. Thendefinefor k € I,

A S
&= (B*B)psi+ 5 (28)
lel 2 |3kl



and construct

=36 (B e (29)
kel

We claim (8, x) is anadmissiblepair. Indeed first note (B*x);, = & for k € 1, and (B*%x); =0forj ¢ 1.
Then (28) proves (25), whereag26) is satisfiedby the norm constraint||s|| < W'

The third stepis to shav that for an admissiblepair (s,%), as constructedabove, thereis an open
neighborhoodf %, say Ex, so thatfor every x € Er the optimal solution s!(x) hassupport,

supp(s'(x)) =1, Vx € Ex

Note first that at (8, X), (26) is actually satisfiedas:

A
B*Bs — B*x); - < =
(B'Bs - B'R);| < 5 <

By continuity of the left hand side thereare r1,7, > 0 so that for every s,x € C”, |[s —§| < ry,
x = x| <2, \
(B"Bs — B'x);| < 5
Now set
FP "M xI"(I)xC" > C, kelje{1,2}

. A g
FF(u,v,x) = B*B)p u; + = B*x)
1 ( ) ;( e, 2 Jirve — (B™x)y,

Vi
F¥(u,v,x) =Y (B*B)x,u + =

wherel*(I) is the setof I-indexed vectorswith norvanishingcomponentsAn admissiblepair (s, x) with

supp(s) =1 satisfiesF’“(s §,x) =0, forall £ € Tandj € {1,2}. Our taskis to shav that there
is u = u(x) so that Fk(u( ),u(x),x) = 0 for all k € 1, j € {1,2} andx in a neighborhoodof .

This follows from the ImpI|C|t Mapping Theorem provlded the Jacobianof ( )kelje{l 2y With respect
to (u,v) is nonzeroat (7(8), 7(8),%) (wheren : I*({1,2,...,n}) — I*(I) |s the reduction,or cut-off,

operatorto index setI). The Jacobianat (7 (8), 7(8), %) turnsout to be the determinanbf:

A
mB*Bn* + Dlag(‘s ‘) Dlag (Sk‘sk‘)
— Dlag( 7B*Br* + %Dlag (L)

B
We computethe quadraticform (%, 2:3)J (21; 22)T with z1, 25 € 12(1):

*(B* )k

J =

Sk\sk\

* * x * 2 x= (12 A |.’L'17]€ - x27k672i§0k|2 * 2 2
<w1,x2>J( o ) = [Br“a: | +]|Br % [+ 7 D o > Amin(BB) (a1 ]*+ 1)
' kel k
wheree ¥+ = ‘ z&-. HencelJ is invertible and det(J) > 0. By the InverseMapping Theoremwe thus

have obtaineda neighborhoodof x where s!(x) always hassupportexactly I. This concludesthe proof
of Propositionl. Q.E.D.

Let us turn now our attentionto Proposition2. For every I C {1,2,...,n} we constructa solution of
(20) which is stableunderperturbationsn x. This will prove the result.

Fix I c {1,2,...,n}. Set
2w
0 0 0 Koy
= .- Aey, L o= 4 — 'k 30
x E & Aer, & Ve (30)

kel
where (¢k)ke1 are somearbitrary phasesDefine:

s” = kaoek (31)

kel



We claim s above is a solution of (20) for x = x°. Denote:
2
Jo(s) = ||x° — As||” + ullsll, (32)

We needto shav Jy(s%) < Jo(s), for all s # s®. Note first Jy(s®) = /1|
Let s € C™ be arbitrary If [supp(s)| > |I|, thenclearly Jo(s) > plsupp(s)| > u|I| = Jo(s?).
Assumenow |supp(s)| < |I|. Let usdenoteJ = supp(s). Noticethatx? ¢ span{Ae; ; j € J} because
otherwisethis would imply the columnsof A are not independentLet us denoteby P the orthogonal
projectiononto the spanof {Ae; ; j € J}. Then:

Jo(s) > ||(1 - P)XOH2 + Ty = Z \/%ew’“(l —P)Ae|| +|J|pn

kE\J )
Now we apply (23) with (24), and obtain:
J 2 _ 0
o(s) = a(LJ) Y — H e = 20(INI) +plI| > [T+ (1 = [TDe > pll] = Jo(s7)
keI\J
This shaws that s° is the optimumfor J,(-). Furthermorewe also obtainthe following inequalities:
Jo(s) — Jo(s”) = pl lIsllo — [[s°]l, |
for all s € C”, and
Jo(s) = Jo(s") > 2u[T\ J|
when ||s||, = [I|. Explicitly this means:
2 2
on — ASH +plsllg— HXO — ASOH — i HSOHO > p-max(] sy — HSOHO |, 2|supp(s) \supp(sO)D (33)

In particulartheseshow s° is the unique solution of (20). The left handside of (33) is a differentiable
function on x°, with Lipschitz constantZ = 2 ||A(s — s%)||. Therefore for ary s € C™ with ||s — s°|| <

srztay V21T =t S with 01min(A) the smallestsingulareigervalue of A, andsupp(s) # supp(s®), and
x € C™ with

HX—XOH < min(u/(2]|A]S), Vi) (34)
we obtain:
Jo(s,%) — Jo(s®, %) > pmmax(| [slly — [s°[|, | = 1, lsupp(s) \ T/ — 1) > 0
where

2
Jo(s, x) = [lx — As||” + p|[s]
Furthermorefor ||s — s"|| > Ay V 21T,

2/ 2u|I| < omin(A) Hs — g0

’ < HA(S — SO)H <|lx— As| + HX — ASOH < |Ix — As|| + v/ u/T]

Hence
JI(s,%) > (9= 4V2)u[T] + plsupp(s)| > (9 — 4v2)ul1|

On the other hand ,
J(s%,x) = [|x = x"||” + p[I| < 2u/T] < I(s,x)

This shaws thatfor sucha x, anoptimum s®(x) hasto have the samesupportass?, i.e. supp(s°(x)) = I.
Hencewe obtaineda neighborhoodf x°, say Fi, sothatthe optimumsolutionof (20) hassupportI. This
proves Proposition2 Q.E.D.

Now we are preparedo prove Theorem3. The above discussiorshaved the existenceof neighborhoods
in C™, denotedfy, Er, wherethe optimizersof (21), respectiely (34) have supportexactly I. Theorem3

is proved by shawing Ey N Fy # . But, for B = (A~1)" and\ = /£, x° of (30) is in the closureof
both the setof x definedby (28) and of x definedby (29). Hencethe two setsEy and F1 shouldhave a
nonemptyinterior intersection,and this provesthe statemenof the Theorem.Q.E.D.



V. AN EXAMPLE
In this sectionwe presentan exampleof optimizationin R2. Considerthe caseof problem(20) where:

1 1
A:{O 1}, pw=1 (35)
This dataturns (20) into:

(s3(2), 55(x)) = argmin,, ,, {\1‘1 — 51— 5|+ w2 — 52|" + Lo, 20 + 132;&0} (36)

wherel,,q is 1 if s # 0, and0 for s = 0.

Let us statethe [° optimization problem.To computex we needto consideronly (I = {1},J = {2})
and (I = {2},J = {1}), becausd = {1,2} andJ = {1} (or J = {2}) reducesto one of thesetwo
cases.The lower Rieszbasicsequencdoundis the norm of the projectionof the correspondingcolumn
vector onto the orthogonaldirection to the other column vector The boundfor (I = {1},J = {2}) is
a(I,J) = 1, whereasthe boundof (I = {2},J = {1}) is a(I,J) = 1. Hencea = } and thereforethe
associated!-optimizationproblem(21) hasthe following parameters:

1 0
B_{_l 1},>\_4 (37)
This dataturns (21) into:
(s%(x), s%(x)) = argming, {|T1 — 31\2 + |x2 + 51 — 32|2 +4|s1|+4 |sz\} (38)

After a few computationsone can obtain the solutionsin closedform as follow. The I optimization
problem (36) hasthe following solution:

$9=0,89=0 for (z1,22) € {x?+23 <2}n{|z1]| <1} {|z1 + 22| < V2}
DY for (21,29) € {Jw1 — 22| < V2} N {|mn +m22\/§}ﬂ{%§\/§—1}
1

s1=0,55 =

2

sl =x1,85=0 for (w1,22) € {|lz1| >1}N{|z2| <1} N {E <V2- 1}
I

s =x1 — 29,85 =2 for (z1,22) € {|w2| > 1} N {21 — 22| > 1} N {2] + 23 > 2}

Figurel shavsthedatadomainsE; in theinput spacewherethe solutionto the optimizationproblemhas
somespecificsupport.At the intersectionof domains(on the frontiers), the optimizer may be degenerate.
TheI' optimizationproblem(38) hasthe following solution:

51=0,89=0 for (z1,22) € {|w2| <2} N {||w2 — 21| < 2}
sl =0,s) =20 (%) for {|aa| > 2} N {Jo1 — 2sign(z1)| < 2}

2

) + sign(s3)]
s1) + 2sign(s3)]

s%z@(l‘lzZ),s%:O for (z1,22) € {|za — x1] > 2} N {|z1 + 22 — 2sign(axy)| < 4}

1 : 1
s} = x1 — 2 [sign(s]
sy =x) + 19— 2 [Sign( for rest

where
rz—1 for z>1

0(z) = 0 for |z|<1
z+1 for <1

Figure 2 shaws the datadomainsfor the [* optimizationproblem.Within eachdomain,the solutionhas
the samesupport.

Overlappingthe Figure 1 and Figure 2 we obtain Figure 3. The intersectionswhere supportsof the
solutionsof the two problemscoincide, Dy, D13, D{23, D1 2}, describethe setof input datawherethe
methodpresentedn this papercorrectlysolvesthe hardi® problemby first solving the easierl® problem.
The unlabeledshadedportionsof the graphcorrespondo inputs for which the methoddescribedn this
paperwould fail to determinethe correct/® solution. One of the main resultsof this paperis that the set
of input datafor which the supportsof the solution to the (° problemand appropriatelyconstructed*
problemcoincideis non-empty andthis factis clearly verified in Figure 3.
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VI. CONCLUSIONS

Estimation of a sparsedata or signal representationis hard. We presenta new approachto the
correspondingpptimization problem, which shows that for a nontrivial setof input datathe problemis
equivalentto and canbe solved by an algorithmdevisedfor the simplerlow-spreadoptimizationproblem.
This doesnot meana reductionof the harder® problemto a simpler/! problemin all caseshowever.
The two optimizationproblemsareto minimize the Euclidian norm of linear approximationerror with an
19 penalty or with an! penalty The latter problem can be solved efficiently by an iterative algorithm.
Here,for a given (° optimizationproblem,we constructan associated! optimizationproblemand show
thatfor a setwith openinterior of the input datathe optimizersof the two optimizationproblemshave the
samesupport.Oncethe supportof the I° problemis known, the actualsolutionis easilyfound by solving
alinear systemof equationsThusthe associated' optimizationproblemis usedto find the supportof the
19 optimizerand this leadsto the optimal I° solutionwhenthe two optimizationproblemshave the same
support.When the optimizersdo not have the samesupport,the methodwill fail to producethe optimal
solution.

This classof optimizationproblemsis relatedto a numberof signalestimationproblemsof interest.The
MAP estimatorof a signalwith generalizedexponentialprior in the presenceof Gaussiamoisereduces
to an optimization problemof the type studiedhere. Similarly, regularizationproblemswith exponential
costreduceto the sameoptimizationproblem.

Our resultcanbe appliedto a new classof sparsesignal representationechniquesfor examplespeech
enhancementechniquesthat usesignal-adaptedepresentationmsteadof the standardrequeng-domain
representationSuch representationsise for instancethe ICA techniqueto replacethe Fourier transform
by a more densebut, hopefully, bettersignal adaptedransformationthat representshe signalin a much
sparsefform.

Several issuesremain as topics of further study One suchissueis the “size” of regions where the
supportsof the two optimizationproblemsoverlap. We have shavn hereonly that the regions have non-
zero size. Another topic concernsthe redundantcase,namelythe casewhen A is a C™*™ matrix with
m > n, which is not addressedh this work.

REFERENCES

[1] M. Aoki, M. Okamoto,S. Aoki, H. Matsui, T. Sakurai,Y. Kaneda,"Sound SourceSegregation
basedon EstimatingIncident Angle of eachFrequeng Componentof Input SignalsAcquired
by Multiple Microphones”,Acoust. ci. Tech., 22, no.2, pp. 149-157,2001.
[2] R.Balan,J. Rosca,S. Rickard,“ScalableNon-SquareBlind SourceSeparatiorin the Presence
of Noise”, ICASSP Proceedings, 2003.
[3] I. Daubechies; The Wavelet Transform, Time-Frequeng Localizationand Signal Analysis”,
IEEE Trans. on Inform. Theory, 36, no.5, pp.961-1005,1990.
[4] |. DaubechiesM. Defrise,C. DeMoal, “ An Iterative ThresholdingAlgorithm for Linear Inverse
Problemawith a SparsityConstraint”,in arXiv:math.iA/0307152at http://arXi.org/, June2003.
[5] G.Davis, S. Mallat, M. Avellaneda,'Adaptive GreedyApproximations”,J. Constr Approx. 13,
pp.57-98,1997.
[6] D.L. Donoho,X. Huo,“ UncertaintyPrinciplesandIdeal Atomic Decomposition” |EEE Trans.
on Inform. Theory, 47, no.7,pp. 2845-28622001.
[7]1 M. Elad, A.M. Bruckstein,” A GeneralizedPrinciple and SparseRepresentatiorin Pairs of
Bases”,|EEE Trans. on Inform. Theory, 48, no.9, pp. 2558-25672002.
[8] H.W.Engl, M.Hanke, A.Neubauer “Regularization of Inverse Problems”, Kluwer Academic
Publishers1996.
[9] A. Feuer A. Nemirovski, “On SparseRepresentatiom Pair of Bases”,|EEE Trans. on Inform.
Theory, 49, no.6, pp. 1579-15812003.
[10] J.-J. Fuchs,“On sparsaepresentations arbitraryredundanbases” submittedto IEEE Trans.
on Inform. Theory, Dec. 2002.
[11] R. Griborval, M. Nielsen,”* SparseRepresentations Unionsof Bases”,1499 IRISA, Rennes
France,Nov. 2002.



11

[12] J. Huang, N. Ohnishi, N. Sugie, “A Biomimetic Systemfor Localization and Separationof
Multiple Sound Sources”,IEEE Trans. on Inst. and Measurements, 44, no.3, pp. 733-738,
1995.

[13] A. Hyvarinen,J. Karhunenand E. Oja, “Independentcomponentanalysis”, John Wiley and
Sons,2001.

[14] A. Jourjine,S. Rickard,O. Yilmaz, “Blind Separatiorof Disjoint OrthogonalSignals:Demixing
N Sourcedrom 2 Mixtures”, ICASSP Proceedings, 2000.

[15] J. Karvanen,A. Cichocki, “Measuring Sparsenesef Noisy Signals”,in ICA 2003 Conference
ProceedingsjJapan2003.

[16] D.M. Malioutov, M. Cetin, A.S. Willsky, “Optimal SparseRepresentationsn GeneralOver-
completeBases”,|CASSP Proceedings 2004.

[17] S. Rickard,R. Balan,J. Rosca,“Real-Time Time-Frequeng basedBlind SourceSeparation”,
ICA and BSS Proceedings, 2001.

[18] S. Rickard, O. Yilmaz, “On the Approximate W-Disjoint Orthogonalityof Speech”,|CASSP
Proceedings 2002.

[19] M. Zibulevski, B. Pearlmutter“Blind SourceSeparatiorby SparseDecompositionn a Signal
Dictionary”, Neural Computation, 13, no.4, pp. 863—882,2001.



12

Fig. 1. The datadomainsin (x1, z2) spacewith samesupportof solutionof ° optimization(36)
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Fig. 2. The datadomainsin (x1, z2) spacewith samesupportof solutionof I! optimization(38)
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Fig. 3. The intersectionof the datadomainswheresupportsof (36) and (38) coincide



