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An Uncertainty Inequality for Wavelet Sets

Radu Balan1
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Abstract — The purpose of this note is to present an extension and an
alternative proof to Theorem 1.3 from G. Battle (Appl. Comput. Harmonic
Anal. 4 (1997) 119–146). This extension applies to wavelet Bessel sets which
include wavelet Riesz bases for their span, wavelet Riesz bases (including
orthogonal and biorthogonal wavelet bases) , and wavelet frames. q 1998 Academic

Press

Let C √ L 2(R) and a ú 1, b ú 0 be given data. We denote by

WC;ab Å {Cmn;ab ; m , n √ Z }, Cmn;ab(x) Å am /2C(amx 0 nb) (1)

the wavelet set associated to the wavelet C and parameters a , b .

DEFINITION We call WC;ab a wavelet Bessel set if there exists a constant B ú 0
such that for every f √ L 2(R) :

∑
m ,n

É» f , Cmn;ab…É
2 £ B\ f \ 2 . (2)

We shall use the notations of [1] for P , X , sC( X ) , sC( P) , »P …C , »X …C . Then, the
main result can be stated as

THEOREM Suppose WC;ab is a wavelet Bessel set. Then

\X C\r\PC\ § 3
2. (3)

Furthermore, if »P …C Å 0 ( for instance, when C is real-valued) then

sCmn,ab
(X )sCmn,ab

(P) Å sC( X )sC( P) § 3
2. (4)
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Proof. If X C, PC do not both lie in L 2(R) , then either \X C\ or \PC\ is infinite
and (3), (4) trivially hold.

Suppose now that both X C, PC are in L 2(R) , which means, equivalently, xC, C*

√ L 2(R) . Thus C and CO are integrable (i.e., in L 1(R)) and continuous.
On the other hand, the same technique that C. K. Chui and X. Shi used to prove

Littlewood–Paley type inequalities for wavelet frames in [2] allows us to obtain these
two conditions on C because WC;ab is a Bessel set,

1
b

∑
m√Z

ÉCO (amj)É2 £ B , (5)

a.e. j √ R and, since CO is continuous, it follows that (5) holds for any j √ R. By
integration from 1 to a we get the second relation,

1
2b log a *

`

0`

ÉCO (j)É2

ÉjÉ
dj £ B . (6)

Since CO is continuous we obtain that necessarily CO (0) Å 0 which means

* C(x)dx Å 0. (7)

Consider now two linear spaces (S is the space of the rapidly decreasing functions):

S0 Å {w √ S , * w(x)dx Å 0}, (8)

V0 Å { f √ L 2(R) , Xf , P f √ L 2(R) , and * f ( x)dx Å 0}. (9)

We claim that S0 is dense in V0 with respect to the norm ÉÉÉ f ÉÉÉ Å \ f \ / \Xf \ /
\P f \ (for which, by the way, the space V0 is closed). To see this, consider f √ V0

and a sequence wn √ S such that ÉÉÉwn 0 f ÉÉÉ r 0 (i.e., \wn 0 f \ r 0, \X wn 0
Xf \ r 0, \Pwn 0 P f \ r 0). Choose G √ S such that * G(x)dx Å 1 and set cn Å
* wn(x)dx . Then w 0

n Å wn 0 cnG √ S0 and ÉÉÉw 0
n 0 f ÉÉÉ r 0, since cn r 0. Thus S0

is dense in V0 .
For C √ S0 , Battle proved that (3) holds and, when »P …C Å 0, (4) holds as well.

We extend now his result to V0 by a density argument.
Consider now C √ V0 . Choose wn √ S0 converging to C in norm ÉÉÉrÉÉÉ. Then,

obviously

\X wn\ r \X C\, \Pwn\ r \PC\ (10)

and thus (3) is established.
For (4) we first note that (10) implies »P …wn r »P …C Å 0, »X …Cn r »X …C , and, since

sC( X ) Å ( \X C\ 2 0 ( »X …C)2) 1/2 , sC( P) Å ( \PC\ 2 0 ( »P …C)2) 1/2 , we get as well
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that swn(X ) r sC( X ) and swn(P) r sC( P) . Finally, as has been observed many
times before (for instance in [3]) , the uncertainty product sC( X )sC( P) is invariant
along the wavelet set. This ends the proof of (4) and of the theorem. j

Remark We point out that the inequality (3) holds as well for every element of
WC;ab , i.e.,

\X Cmn;ab\r\PCmn;ab\ § 3
2, (11)

since (7) holds for every Cmn;ab .
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