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STABILITY OF FRAMES WHICH GIVE PHASE RETRIEVAL

RADU BALAN

Abstract. In this paper we study the property of phase retrievability by re-

dundant sysems of vectors under perturbations of the frame set. Specifically

we show that if a set F of m vectors in the complex Hilbert space of dimen-

sion n allows for vector reconstruction from magnitudes of its coefficients,

then there is a perturbation bound ρ so that any frame set within ρ from

F has the same property. In particular this proves a recent construction for

the case m = 4n− 4 is stable under perturbations. Additionally we provide

estimates of the stability radius.

1. INTRODUCTION

The phase retrieval problem presents itself in many applications is physics and

engineering. Recent papers on this topic (see [7, 14, 5, 6, 1, 11, 31]) present a full

list of examples ranging from X-Ray crystallography to audio and image signal

processing, classification with deep networks, quantum information theory, and

fiber optics data transmission.

In this paper we consider the complex case, namely the Hilbert space H = Cn
endowed with the usual Euclidian scalar product 〈x, y〉 =

∑n
k=1 xkyk. On H

we consider the equivalence relation ∼ between two vectors x, y ∈ H defined as

follows; the vectors x and y are similar x ∼ y if and only if there is a complex

constant z of unit magnitude, |z| = 1, so that y = zx. Let Ĥ = H/ ∼ be the

quotient space. Thus an equivalence class (a ray) has the form x̂ = {eiϕx , ϕ ∈
[0, 2π)}. A subset F = {fi; i ∈ I} ⊂ H of the Hilbert space H (regardless whether

it is finite dimensional or not) is called frame if there exist two positive constants
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0 < A ≤ B <∞ (called frame bounds) so that for any vector x ∈ H,

(1) A ‖x‖2 ≤
∑
i∈I
|〈x, fi〉|2 ≤ B ‖x‖2

In the finite dimensional case considered in this paper, the frame condition simply

reduces to F being a spanning set. Specifically F = {f1, . . . , fm} is frame for H

if and only if H = span(F). Obviously m ≥ n must hold. When we can choose

A = B the frame is called tight. If furthermore A = B = 1 then F is said a

Parseval frame. Consider the following nonlinear map

(2) β : Ĥ → Rm , (β(x̂))k = |〈x, fk〉|2 , 1 ≤ k ≤ m

which is well defined on the classes x̂ since |〈x, fk〉|2 = |〈y, fk〉|2 when x ∼ y.

Definition 1. The frame F = {f1, . . . , fm} is called phase retrievable (or we say

it is a frame that gives phase retrieval) if the nonlinear map β is injective.

Notice that any signal x ∈ H is uniquely defined by the magnitudes of its frame

coefficients β(x) up to a global phase factor, if and only if F is phase retrievable.

The main result of this paper states that the phase retrievable property is stable

under small perturbations of the frame set. Specifically we show

Theorem 1.1. Assume F = {f1, . . . , fm} is a phase retrievable frame for the

complex Hilbert space Cn. Then there is a ρ > 0 so that any set F ′ = {f ′1, . . . , f ′m}
with ‖fk − f ′k‖ < ρ, 1 ≤ k ≤ m, is also a phase retrievable frame.

Let a0 be the lower constant introduced in Lemma 3.2, and let B denote the

upper frame bound. The following choice for ρ

(3) ρ = min(
1√
m
,

a0

2
√

2(3B + 2)3/2
)

provides a lower constant a0(F ′) uniformly bounded below by a0
2 , for such each

perturbed frame F ′.

We prove this theorem in section 3. The proof is based on a recent necessary

and sufficent condition obtained independently in [11] and [6]. The exact form of

this result is slightly different than the equivalent results stated in the aforemen-

tioned papers. Consequently we will provide an additional proof. The authors of

the recent paper [13] proved a similar stability result but for real frames. In fact

they showed a more general result that covers the case of arbitrary projections

instead of just rank-one projections considered here. Their argument can be ap-

plied to the complex case as well (cf. [17]). However in this paper we additionally

provide an estimate of the stability radius.
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An interesting problem on phase retrievable frames that is still open is to show

the existence (and compute its value) of a cardinal number m∗(Cn) that has the

following properties:

(A) For any m ≥ m∗(Cn) the set of phase retrievable frames is generic (i.e.

open and dense) with respect to the norm topology;

(B) If F is a phase retrievable frame of m vectors, then m ≥ m∗(Cn).

Clearly (B) is equivalent to the following minimality property:

(C) If m < m∗(Cn) there is no frame F of m vectors that is also phase

retrievable.

On the other hand denote by m0(Cn) the smallest cardinal of a phase retrievable

frame for Cn. Obviously m0(Cn) ≥ n. If m∗(Cn) exists then m∗(Cn) = m0(Cn)

by property (C).

It is possible that the cardinal m∗(Cn) may exist only for some integers n. On

the other hand m0(Cn) always exists for any integer n. Here we prove that for

any m ≥ m0(Cn) the set of phase retrievable frames is open in (Cn)m.

The current state-of-the-art on this problem is summarized by the following

statements:

(1) (see [19]) If m ≥ 4n − 4 then any generical (with respect to the Zariski

topology) frame is phase retrievable for Cn;

(2) (see [12]) For any n ≥ 2, m0(Cn) ≤ 4n− 4;

(3) (see [25]) For any n ≥ 2,

m0(Cn) ≥ 4n− 2− 2β +


2 if n odd and β = 3mod 4

1 if n odd and β = 2mod 4

0 otherwise

;

where β = β(n) is the number of 1’s in the binary expansion of n− 1.

(4) (see [30]) For n = 4, m0(C4) = 11 = 4n− 5;

(5) (see [19]) For n = 2p+1, M∗(Cn) exists and m∗(Cn) = m0(Cn) = 4n−4.

Hence, if the critical cardinal m∗(Cn) exists, we know 4n−O(log(n)) ≤ m∗(Cn) ≤
4n − 4. The authors of [11] conjectured that m0(Cn) = 4n − 4. This fails

for n = 4 but holds for n = 2p + 1. In the case m = 4n − 4, Bodmann and

Hammen constructed [12] a phase retrievable frame. In section 4 we review their

construction and we show it is stable under small perturbations. Our result is

independent of [19] which can be used to obtain a similar conclusion. Here we

additionally obtain a stability bound for phase retrievability. Note also additional

constructions by [20] and [22].
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The corresponding problem for the real case is completely solved. In fact [7]

gives a geometric condition equivalent to a frame being phase retrievable in Rn.

That condition (namely, for any partition of the frame set F = F1 ∪ F2, at least

one of F1 or F2 must span Rn) is stable under small perturbations. Thus m∗(Rn)

exists and m∗(Rn) = m0(Rn) = 2n− 1 is the critical cardinal.

2. Notations

In this section we recall some notations we introduced in [6] that is used in the

following sections. Let F = {f1, . . . , fm} be a frame in Cn. Let j : Cn → R2n

denote the embedding

(4) j(x) =

[
real(x)

imag(x)

]
which is a norm-preserving isomorphism between Cn seen as a real vector space

endowed with the real inner product 〈x, y〉R = real(〈x, y〉) and R2n:

(5) 〈x, y〉R = real(〈x, y〉) = 〈j(x), j(y)〉.

For two vectors u, v ∈ R2n, Ju, vK denotes the symmetric outer poduct

(6) Ju, vK =
1

2
(uvT + vuT ).

and similarly for two vector x, y ∈ Cn denote by Jx, yK their symmetric outer

product defined by

(7) Jx, yK =
1

2
(xy∗ + yx∗)

For each n-vector fk ∈ Cn we denote by ϕk the 2n real vector, and by Φk the

symmetric nonnegative rank-2, 2n× 2n matrix defined respectively by

(8)

ϕk = j(fk) =

[
real(fk)

imag(fk)

]
, Φk = Jϕk, ϕkK+ JJϕk, JϕkK = ϕkϕk

T +Jϕkϕk
TJT

where

J =

[
0 −I
I 0

]
and I the identity matrix of size n. Note the following key relations:

real(〈x, fk〉) = 〈ξ, ϕk〉(9)

|〈x, fk〉|2 = 〈Φkξ, ξ〉(10)

real(〈x, fk〉〈fk, y〉) = 〈Φkξ, η〉(11)
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where ξ = j(x) and η = j(y). For every ξ ∈ R2n set

(12) R(ξ) =

m∑
k=1

JΦkξ,ΦkξK = Φkξξ
TΦk.

Let S1,0 and S1,1 denote the following spaces of symmetric operators over a

Hilbert space H (real or complex)

S1,0(H) = {T ∈ Sym(H) , rank(T ) ≤ 1 , λmax(T ) ≥ 0 = λmin(T )}
S1,1(H) = {T ∈ Sym(H) , rank(T ) ≤ 2 , λmax ≥ 0 ≥ λmin}

where Sym(H) denotes the set of self-adjoint operators (matrices) on H, Sp(T )

denotes the spectrum (i.e. the set of eigenvalues) of T , and λmax, λmin denote

the largest, and smallest eigenvalue of the corresponding operator. Note

S1,0(H) = {T = Jx, xK = xx∗ , x ∈ H}.

Lemma 3.2 justifies the definition of S1,1. For the frame F = {f1, . . . , fm} we let

A denote the linear operator

(13) A : Sym(H)→ Rm , (A(T ))k = 〈Tfk, fk〉 = trace (T Jfk, fkK)

Note the frame condition (1) reads equivalently:

(14) A ‖Jx, xK‖1 ≤ ‖A(Jx, xK)‖2 ≤ B ‖Jx, xK‖1
where ‖T‖1 =

∑dim(H)
k=1 |λk(T )| denotes the nuclear norm of operator T , that is

the sum of its singular values, or the sum of magnitudes of its eigenalues when

T is symmetric. In the case of finite frames the upper bound is always true (for

an appropriate B). The lower bound in (1) or (14) is equivalent to the spanning

condition span(F) = H. In turn this spanning condition can be restated in terms

of a null space condition for A. Specifically let ker(A) = {T ∈ Sym(H) , A(T ) =

0} denote the kernel of the linear operator A. Then span(F) = H (and therefore

F is frame) if and only if

(15) ker(A) ∩ S1,0 = {0}

3. Stability of Phase Retrievable Frames

We start by presenting two lemmas regarding the objects we introduced earlier.

Lemma 3.1. For any real or complex Hilbert space H:

(1) As sets, S1,1(H) = S1,0(H)− S1,0(H). Explicitly this means:

∀T ∈ S1,1 ∃T1, T2 ∈ S1,0 s.t. T = T1 − T2.

Conversely: ∀T1, T2 ∈ S1,0 , T1 − T2 ∈ S1,1.
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(2) For any T ∈ S1,1(H) there are u, v ∈ H so that T = Ju, vK;

(3) For any u, v ∈ H, Ju, vK ∈ S1,1(H);

(4) S1,1(H) = {T = Ju, vK , u, v ∈ H}.

The proof of this lemma can be found in [6] Lemmas 3.7, 3.8.

Lemma 3.2. Consider the case H = Cn. The following are equivalent:

(1) The nonlinear map β is injective;

(2) ker(A) ∩ S1,1 = {0}
(3) There is a constant a0 > 0 so that

(16)

m∑
k=1

∣∣|〈x, fk〉|2 − |〈y, fk〉|2∣∣2 ≥ a0 (‖x− y‖2 ‖x+ y‖2 − 4(imag(〈x, y〉))2
)

for any x, y ∈ Cn;

(4) There is a constant a0 > 0 so that for all ξ ∈ R2n, λ2n−1(R(ξ)) ≥ a0 ‖ξ‖2

(here, λ2n−1(T ) denotes the 2n−1st largest eigenvalue of T , which is also

the second smallest eigenvalue);

(5) There is a constant a1 > 0 so that for any ξ ∈ R2n,

(17) L1(ξ) := R(ξ) + JJξ, ξKJT =

m∑
k=1

Φkξξ
TΦk + JξξTJT ≥ a1 ‖ξ‖2 1R2n

where the inequality is between symmetric operators;

(6) There are constants a ≥ a0 > 0 so that for any ξ ∈ R2n,

(18) La(ξ) := R(ξ) + aJξξTJT =

m∑
k=1

Φkξξ
TΦk + aJξξTJT ≥ a0 ‖ξ‖2 1R2n

where the inequality is between symmetric operators;

(7) For every 0 6= ξ ∈ R2n, dim kerR(ξ) = 1 ;

(8) For every 0 6= ξ ∈ R2n, rank(R(ξ)) = 2n− 1 ;

(9) For every 0 6= ξ ∈ R2n, ker(R(ξ)) = {c Jξ , c ∈ R};
(10) There is a constant a0 > 0 so that for all ξ ∈ R2n,

(19) R(ξ) ≥ a0 ‖ξ‖2 (1− PJξ)

where PJξ = 1
‖ξ‖2 Jξξ

TJT is the orthogonal projection onto span(Jξ).

Remark. Note the constants a0 in (iii), (iv), (vi) and (x) can be chosen to be

equal to one another. Hence the optimal (i.e. the largest) a0 is given by

(20) a0 = min
‖ξ‖=1

λ2n−1(R(ξ))

The constant a1 at (v) can be chosen as a1 = min(1, a0).
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Proof of Lemma 3.2

Claims (i),(ii),(iv),(vii)-(x) have been shown before - Theorem 2.2 and Theorem

3.1 in [6] (and references there in), and Theorem 4 in [11].

(x)→(v),(vi): Claim (v) follows from (x) by adding ‖ξ‖2 PJξ on both sides.

Claim (vi) follows by adding a ‖ξ‖2 PJξ on both sides.

(v), (vi)→(vii): Note Jξ ∈ ker(R(ξ). Either one of (v) or (vi) implies that Jξ

is the only independent vector in the kernel of R(ξ).

Claim (iii) follows from Theorem 3.1 (2) of [6], where we set u = x−y and v =

x + y and by remarking imag(〈u, v〉) = 2 imag(〈x, y〉) and real(〈u, fk〉〈fk, v〉) =

|〈x, fk〉|2 − |〈y, fk〉|2. �

Condition (vi) admits a form that depends essentially only on one (unkown)

constant a0. Note that if (18) holds for some a with a ≥ a0 it follows that (18)

holds true for any a with a ≥ a0, and vice-versa. Consequently it is sufficient to

find an upper bound for a0 that can be directly computed. Such an estimate is

given by the following lemma:

Lemma 3.3. The largest eigenvalue of R(ξ) satisfies

(21) max
‖ξ‖=1

λmax(R(ξ)) = ‖T‖42,4

where ‖T‖2,4 represents the mixed l2 − l4 norm of the frame analysis operator,

x 7→ T (x) = (〈x, fk〉)mk=1 and

‖T‖42,4 = sup
x∈H:‖x‖=1

m∑
k=1

|〈x, fk〉|4.

An upper bound for this mixed norm is provided by

(22) ‖T‖42,4 ≤
(

max
1≤k≤m

‖fk‖2
)
B ≤ B2

where B is the frame upper bound. In particular

(23) a0 ≤ ‖T‖42,4 ≤
(

max
1≤k≤m

‖fk‖2
)
B ≤ B2

and the constant a in (18) can be chosen as ‖T‖42,4 or max1≤k≤m ‖fk‖2B, or even

B2.

Proof of Lemma 3.3

A similar result appeared in [10] in the context of real frames. The estimate

holds true in the complex case as well, as we prove here. Let ξ = j(x) and η = j(y)
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for some x, y ∈ H with ‖x‖ = ‖y‖ = 1.

λmax(R(ξ)) = max
‖η‖=1

〈R(ξ)η, η〉 = max
‖η‖=1

m∑
k=1

|〈Φkξ, η〉|2

= max
‖y‖=1

m∑
k=1

|real(〈x, fk〉〈fk, y〉)|2 =

m∑
k=1

|〈x, fk〉|4

where the last equality is a consequence of the Cauchy-Schwarz inequality. Thus

sup
‖ξ‖=1

λmax(R(ξ)) = max
‖x‖=1

m∑
k=1

|〈x, fk〉|4 = ‖T‖42,4

which shows (21). Finally, the upper bound (22) is obtained as follows

‖T‖42,4 = max
‖x‖=1

m∑
k=1

|〈x, fk〉|4 ≤
(

max
‖x‖=1

|〈x, fk〉|2
)(

max
‖x‖=1

m∑
k=1

|〈x, fk〉|2
)

=

(
max

1≤k≤m
‖fk‖2

)
B ≤ B2.

�

Using the estimate (23), conditions (v) and (vi) of Lemma 3.2 can be equiva-

lently restated as, for every ξ ∈ R2n:

(24) LB2(ξ) := R(ξ) +B2JξξTJT =

m∑
k=1

Φkξξ
TΦk +B2JξξTJT ≥ a0 ‖ξ‖2 1R2n .

Recall two frames F = {f1, . . . , fm} and G = {g1, . . . , gm} for the same Hilbert

space H are said equivalent if there is an invertible operator T : H → H so that

gk = Tfk, for all 1 ≤ k ≤ m (see [2, 24]). The property of being phase retrievable

is invariant among equivalent frames, as the following lemma shows.

Lemma 3.4. Assume F = {f1, . . . , fm} is a phase retrievable frame for H. Then

(1) For any invertible operator T : H → H and non-zero scalars z1, . . . , zm ∈
K, the frame G = {g1, . . . , gm} defined by gk = zkTfk, 1 ≤ k ≤ m, is also

phase retrievable;

(2) For any invertible operator T : H → H, the equivalent frame G =

{g1, . . . , gm} defined by gk = Tfk, 1 ≤ k ≤ m is also phase retrievable;

(3) The canonical dual frame F̃ = {f̃1, . . . , f̃m} is also phase retrievable,

where f̃k = S−1fk, 1 ≤ k ≤ m;
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(4) The associated Parseval frame F# = {f#1 , . . . , f#m} is also phase retriev-

able, where f#k = S−1/2fk, 1 ≤ k ≤ m;

(5) Any finite set of vectors G ⊂ H so that F ⊂ G is a phase retrievable

frame;

(6) If G ⊂ H is not a phase retrievable frame then any subset H ⊂ G is

also not a phase retrievable frame. Additionally, if G ⊂ H is a phase

retrievable frame then any finite set H ⊃ G is also a phase retrievable

frame;

Proof of Lemma 3.4

(i) Note that each zk 6= 0 and hence G is also frame. Let βG : Ĥ → Rm be

the nonlinear map associated to G, (βG(x))k = |〈x, gk〉|2. If x,∈ Ĥ are so that

βG(x) = βG(y) then β(T ∗x) = β(T ∗y). Since F is phase retrievable it follows

T ∗x = T ∗y and hence x = y. (Note that any operator R : H → H lifts to a

unique operator R : Ĥ → Ĥ that is denoted using the same letter).

(ii) Let βG : Ĥ → Rm be the nonlinear map assiciated to G. Note (βG(x))k =

|〈x, gk〉|2 = |〈T ∗x, fk〉|2 = (β(T ∗x))k. Hence βG is injective if and only if β is

injective.

(iii)-(iv) follows from (ii). Claims (v) and (vi) are obvious. �

Remark. The claim (vi) in previous Lemma states that subsets of frames that do

not give phase retrieval are not phase retrievable, and sets that include a phase

retrievable frame are also phase retrievable frames. For spanning sets the equiva-

lent statements to these two properties are also true: a subset of an incomplet set

is incomplete, whereas a set that includes a spanning set is spanning. Spanning

sets have an additional property: For every finite dimensional Hilbert space H

there is a critical threshold s(H) = dim(H) so that: (1) Every spanning set is of

cardinal greater than or equal to s(H); (2) If a set is of cardinal less than s(H)

then it cannot be spanning; (3) For every spanning set of cardinal strictly larger

than s(H) there is a subset of cardinal exactly s(H) that is spanning.

Now we ask whether a similar threshold exists for phase retrievable frames.

The natural candidate is m0(H) since it is the minimum cardinal of a phase re-

trievable frame in H. However, as the following example shows, the property

(3) for spanning sets does not hold for phase retrievable frames. A similar con-

struction was considered by [18]. The example is for H = Rn where we know

m0(Rn) = 2n− 1, but the conclusion applies equally well to the complex case.

To summarize: If a phase retrievable frame F has cardinal m > m0(Cn) then

it might not contain a subset of cardinal m0(Cn) that is also phase retrievable.
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Example 3.5. Consider H = R3 and the frame with m = 6 vectors:

(25)

f1 =

 1

0

0

 , f2 =

 0

1

0

 , f3 =

 0

0

1

 , f4 =

 1

1

0

 , f5 =

 1

0

1

 , f6 =

 0

1

1


The associated rank-1 operators Fk = fkf

T
k , 1 ≤ k ≤ 6, belong to the linear space

of symmetric 3× 3 matrices Sym(R3). Note the Sym(R3) is a real vectors space

of dimension 6. The Gram matrix G(2) associated to {F1, . . . , F6} is a 6 × 6

symmetric matrix of entries G
(2)
k,l = 〈Fk, Fl〉 = |〈fk, fl〉|2, which are the square of

the entries of Gram matrix associated to F . Explicitely G(2) is given by

(26) G(2) =



1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

1 1 0 4 1 1

1 0 1 1 4 1

0 1 1 1 1 4


Its determinant is det(G(2)) = 8. Hence {F1, . . . , F6} is a basis for Sym(R3) and

thus ker(A) = {0} which implies F is a phase retrievable frame. On the other

hand consider any subset G of 5 vectors of F . It is easy to check G is a frame

for R3. However for each G there is a subset of 3 elements that is not linearly

independent, hence cannot span R3. This fact together with Corollary 2.6 from

[7] proves that G is not phase retrievable. Thus we constructed a frame F of 6

vectors so that any subset of cardinal m0(R3) = 5 is not phase retrievable.

We are now ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1

Assume F is a phase retrievable frame. Then equation (18) is satisfied for some

a0 > 0. Let B be the upper frame bound for F . Then set ρ as in (3). We will

show that (18) is satisfied for any set F ′ = {f ′1, . . . , f ′m} with ‖fk − f ′k‖ < ρ. Let

0 < A ≤ B < ∞ be the frame bounds of F , set a = Bmax1≤k≤m ‖fk‖2, and let

L
′

a(ξ) denote the right hand side in (18) associated to F ′ for this particular a:

L
′

a(ξ) =

m∑
k=1

Φ′kξξ
TΦ′k + aJξξTJT .
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We compute

|〈La(ξ)η, η〉 − 〈L
′

a(ξ)η, η〉| ≤
m∑
k=1

| |〈Φkξ, η〉|2 − |〈Φ′kξ, η〉|2 |

≤
m∑
k=1

(|〈Φkξ, η〉|+ |〈Φ′kξ, η〉|) |〈(Φk − Φ′k)ξ, η〉|

≤

(
m∑
k=1

|〈Φkξ, η〉|+
m∑
k=1

|〈Φ′kξ, η〉|

)
max

1≤k≤m
|〈(Φk − Φ′k)ξ, η〉|.

Fix ξ ∈ R2n. Then

max
‖η‖=1

m∑
k=1

|〈Φkξ, η〉| ≤

(
m∑
k=1

〈Φkξ, ξ〉

)1/2

max
‖η‖=1

(
m∑
k=1

〈Φkη, η〉

)1/2

≤ B ‖ξ‖ .

Thus for any ξ, η ∈ R2n,

m∑
k=1

|〈Φkξ, η〉| ≤ B ‖ξ‖ ‖η‖ ,
m∑
k=1

|〈Φ′kξ, η〉| ≤ B′ ‖ξ‖ ‖η‖

where B′ is the upper frame bound of F ′. On the other hand we bound

|〈(Φk − Φ′k)ξ, η〉| ≤ ‖Φk − Φ′k‖ ‖ξ‖ ‖η‖ .

According to Lemma 3.14 (4) from [6], ‖Φk − Φ′k‖ = ‖Fk − F ′k‖, where Fk = fkf
∗
k

and F ′k = f ′kf
′∗
k . Note Fk−F ′k ∈ S1,1(Cn) and Fk−F ′k = Jfk − f ′k, fk + f ′kK. Now

using Lemma 3.8 (1) from [6], we obtain

‖Fk − F ′k‖ ≤ ‖Fk − F ′k‖1

=

√
‖fk − f ′k‖

2 ‖fk + f ′k‖
2 − (imag(〈fk − f ′k, fk + f ′k〉))2

≤ ‖fk − f ′k‖ ‖fk + f ′k‖

where ‖T‖1 is the nuclear norm (the sum of its singular values) of T . Next notice

‖fk + f ′k‖ ≤ ‖fk‖+‖f ′k‖ ≤
√
B+
√
B′ ≤

√
2(B +B′). Putting all these estimates

together we obtain:

|〈La(ξ)η, η〉 − 〈L
′

a(ξ)η, η〉| ≤
√

2(B +B′)3/2
(

max
1≤k≤m

‖fk − f ′k‖
)
‖ξ‖2 ‖η‖2 .

Thus

L
′

a(ξ) ≥ (a0 −
√

2(B +B′)3/2ρ) ‖ξ‖2 1R2n .
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Finally we obtain an estimate of B′ in terms of B, ρ and m. Let δk = f ′k − fk.

Then
m∑
k=1

|〈x, f ′k〉|2 =

m∑
k=1

|〈x, fk〉+ 〈x, δk〉|2 ≤ 2

(
m∑
k=1

|〈x, fk〉|2 +

m∑
k=1

|〈x, δk〉|2
)

= 2(B +mmax
k
‖δk‖2) ‖x‖2 .(27)

Since ρ ≤ 1√
m

from (3) we obtain B′ = sup‖x‖=1

∑m
k=1 |〈x, f ′k〉|2 ≤ 2(B+1). This

bound implies that

L
′

a(ξ) ≥ a0
2
‖ξ‖2 1R2n

and hence F ′ is a frame which gives phase retrieval. �

4. The case m = 4n− 4

This section comments on the recent construction by Bodmann and Hammen

[12] of a 4n − 4 phase retrievable frame in Cn. Their construction is as follows.

Fix a ∈ R \ πQ, an irrational multiple of π. The frame set F is given by a union

of two sets, F = F1 ∪ F (a)
2 , where F1 contains the following 2n− 3 vectors:

(28) F1 = {f (1)k , 1 ≤ k ≤ 2n− 3}

where:

f
(1)
k =

[
1 e2πik/(2n−1) e2πik2/(2n−1) · · · e2πik(n−1)/(2n−1)

]T
and F (a)

2 contains the following 2n− 1 vectors:

(29) F (a)
2 = {f (2)k =

[
1 zk zk

2 · · · zk
n−1 ]T , 1 ≤ k ≤ 2n− 1}

where

(30) zk =
sin
(

π
2n−1

)
sin(a)

e2πi
k−1
2n−1 − ei

π
2n−1

sin
(

π
2n−1 − a

)
sin(a)

The proof that F is a phase retrievable frame is based on a result by P. Jaming

from [26]. Our Theorem 1.1 proves that, in fact, F remains phase retrievable for

a small perturbation. Since f
(2)
k depends continuously on a, it follows that the set

R \ πQ can be replaced by a much larger set of real numbers that includes most

of rational multiples of π. Going through the proof of Theorem 2.3 in [12], and

in particular of Lemma 2.2, the only requirement on a is that, any set of 2(n− 1)

complex numbers cannot be simultaneoulsy symmetric with respect to the real

line and to a line of angle a− π
2n−1 passing through cot π

2n−1 . This phenomenon

happens for any n when a is an irrational multiple of π. However, for a fixed n,
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only finitely many values of a may allow such a symmetry. In fact when such

a symmetric set of 2(n − 1) complex numbers exists, a = π
2n−1 + π pq for some

q ≤ 2(n− 1). Thus the frame set above F = F1 ∪F (a)
2 remains phase retrievable

for all values of a except a finite set included in { π
2n−1 + π pq , −2q ≤ p ≤ 2q ≤

4(n− 1)}.
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