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Abstract

The purpose of this paper is to study the motion of a spinless axially symmen-

tric rigid body in a Newtonian �eld whose center of mass we suppose to be on a

Keplerian orbit. In this case the system can be reduced to a Hamiltonian system

with con�guration space a two-dimensional sphere. We prove that the restricted

planar motion has no analytic second integral and we �nd horseshoes due to the

eccentricity of the orbit. In the case I3=I1 > 4=3, we prove that the system on the

sphere is also analytically nonintegrable.
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1 Introduction

The purpose of this paper is to study the integrability of a Hamiltonian dynamical system

modelling the motion of a rigid body in a central gravitational �eld. We prove that the

spinless axially symmetric rigid body, which is completely integrable in an uniform �eld

(the Lagrange case), is analytically nonintegrable in a central gravitational �eld in the

sense that chaotic motion of the internal rotation occurs.

In the restricted three-body problem there have been published many papers, from

Poincar�e 1899 [Poin899] to recent years [Xia92, Xia93]. On the other hand, the chaotic

motion of a rigid body (namely the existence of horseshoes and Arnold di�usion) has been

studied for some mechanical systems as in [HolMar83] or [Gray92].

The rigid body problem in celestial mechanics appeared with the paper by Duboshin

in 1958 ([Dubo58]). Meantime many papers have appeared in two main areas: in one, the

complete interaction between the motion of the centers of mass (CM) and the attitude

motion has been considered and the studies have focussed, primary, on existence and sta-

bility analysis of special solutions (see for instance [Erem83], [CidEl85] or [WaMaKr92]);

in the other, the motion of the CM has been decoupled from the attitude motion and

usually just the �rst correction in the attitude motion has been kept (see for instance the

study of [Belets66] or the papers of [TeoGra92] or [CelFal92]).

Our study is of the second type. The CM is supposed to move on an unperturbed

Keplerian orbit. We also suppose to have an axially symmetric rigid body without spin.

This su�ciently simpli�es the equations of motion so that we are able to prove chaotic

behaviour of the solution.

2 The Hamiltonians and Statement of the Problem

To describe the rigid body we use two coordinate systems whose origins are at the center

of attraction: one �xed called the �xed system (�; �; �) and another corresponding to the

principal axes of the body (i.e. in which the moment of inertia tensor diagonalizes), called

the body system with coordinates (x; y; z) - see �g.1. The transition from one coordinate

system to the other is given by a 3 � 3 matrix from SO(3):

0
B@

x

y

z

1
CA = A(t)

0
B@

�

�

�

1
CA ; A(t) 2 SO(3) (1)

so that r2 = x2 + y2 + z2 = �2 + �2 + �2.
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Suppose we have a rigid body of massm in a Newtonian �eld whose center of attraction

is denoted by O. In O suppose we have two coordinate systems as above. We denote by

~r the position vector of the center of mass of the rigid body (CM) and by (�; �; �) and,

respectively, (x; y; z) the coordinates of CM in the two systems. For an element dm in

the rigid body we denote by ~r1 its position vector with respect to O, ~R its position vector

with respect to CM and by � the angle between ~R and ~r. Then:

~r1 = ~R+ ~r and r21 = r2 +R2 � 2rR cos�:

The potential energy of dm is then given by (see formula [5-84] from [Gold80]):

dEp = �GMdm

r1
= �GMdm

r

1X
n=0

Pn(cos�); (2)

where Pn(x) are the Legendre polynomials (P0(x) = 1, P1(x) = x, P2(x) =
3x2�1

2
...) and

G is the constant of attraction. Let us denote by (X;Y;Z) the coordinates of ~R in the

body system. Then:

cos� = �~r �
~R

rR
= �xX + yY + zZ

rR
: (3)

On the other hand, integrating (2) we get:

Ep = �GM
r

1X
n=0

1

rn

Z
m

RnPn(cos�)dm = �GM
r

1X
n=0

1

rn
Qn(�̂r); (4)

where Qn(�̂r) is the 2n-polar inertial momentum given by Qn(�̂r) =
R
m
RnPn(cos�)dm.

Using (3) and the fact that the body system is the principal axes system, we obtain:

Q0(�̂r) =

Z
m

dm = m;

Q1(�̂r) =
Z
m

R cos�dm = �x
r

Z
m

X dm� y

r

Z
m

Y dm� z

r

Z
m

Z dm = 0;

Q2(�̂r) =
Z
m

R23cos
2�� 1

2
dm = �3

2
(
x2

r2
I1 +

y2

r2
I2 +

z2

r2
I3) +

1

2
(I1 + I2 + I3);

where I1 =
R
m
(Y 2+Z2)dm and I2; I3, obtained by circular permutations, are the principal

moments of inertia.

Finally we get:

Ep = �GMm

r
+
GM

2r3
[3(

x2

r2
I1 +

y2

r2
I2 +

z2

r2
I3)� (I1 + I2 + I3)] +O(

1

r4
): (5)
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This is called MacCallagh's formula (see [Gold80]).

For the kinetic energy we use K�oenig's theorem to obtain:

Ec =
p2
�
+ p2

�
+ p2

�

2m
+

l21
2I1

+
l22
2I2

+
l23
2I3

(6)

where (p�; p�; p�) are the components of the CM linear momentum in the �xed system

(p� = m _�, p� = m _�, p� = m _�) and (l1; l2; l3) are the components of the internal angular

momentum in the body system (i.e. the rigid body angular momentum with respect to

the CM).

The con�guration space for our problem isK = R3�SO(3) parametrized by (�; �; �;A).

The phase space will be the cotangent bundle T �K, parametrized by (�; �; �;A; p�; p�; p�; l1; l2; l3),

so that the Hamiltonian of our problem is the function H : T �K ! R given by:

H =
p
2

�
+p2�+p

2

�

2m
+

l
2

1

2I1
+

l
2

2

2I2
+

l
2

3

2I3
�GMm

r
+ GM

2r3
[3(x

2

r2
I1 +

y
2

r2
I2 +

z
2

r2
I3)�

�(I1 + I2 + I3)] +O( 1
r4
)

(7)

We break this expresion in three terms:

H01(�; �; �; p�; p�; p�) =
p
2

�
+p2�+p

2

�

2m
� GMm

r
; (8)

H02(l1; l2; l3) =
l
2

1

2I1
+

l
2

2

2I2
+

l
2

3

2I3
; (9)

Hint(�; �; �;A) =
GM

2r3
[3(

x2

r2
I1 +

y2

r2
I2 +

z2

r2
I3)� (I1 + I2 + I3)] +O(

1

r4
) ;(10)

each one describing one kind of problem: H01 describes the two-body problem, H02

describes the free rigid body problem and Hint describes the interaction-term for the

\coupled"-problem, which is the object of our interest.

At this point one can immediately write the canonical equations using the above

Hamiltonian (see for instance [AbraMa78] for how to do this). A system of 12 �rst order

di�erential equations is obtained. The �rst idea that one can have is to consider this

system as a perturbation problem withHint as perturbation. If so, we get the classical two-

body problem for the CM (with the Keplerian solution) and the free rigid body problem

whose motion, in the angular momentum space, is given by intersection between the

sphere of modulus of angular momentum (which is conserved) and the ellipsoid of kinetic

energy (which is another �rst integral) - see [HolMar83]. In the case I1 > I2 > I3 we have

two saddle points and four heteroclinic orbits connecting these saddles in the rigid body

angular momentum space. Next, when the interaction is introduced , one can ask if the

heteroclinic orbits are preserved. For example, one might apply the Melnikov's method
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to see if the heteroclinic orbits become transversal heteroclinic orbits. The problem is

that the complete equations of the heteroclinic orbits (in T �SO(3)) are not explicitly

known and this makes closed form calculations, at least now, impossible. We therefore

seek another perturbative problem and make additional approximations and assumptions

about the system.

First we shall suppose that the motion around the CM (i.e. the rotation motion) has

no inuence on the motion of the CM around the center of attraction (i.e. the revolution

motion). More precisely, if we consider T �K ' T �R3 � T �SO(3) then we shall assume

that:

A1. The canonical equations in the �rst 6 coordinates (�; �; �; p�; p�; p�) are given by

the Hamiltonian H01.

This means that the motion of the CM is given by a Keplerian orbit unperturbed by

the attitude motion, parametrized, for instance by:

� = r cos v

� = r sin v

� = 0 ;

(11)

and:

1

r
=

1

p
(1 + "cos v) (12)

r2 _v = C (13)

GMp = C2 : (14)

Here v is the true anomaly (the planar angle measured between the position vector and the

apocenter vector), p is the parameter of the orbit, " the eccentricity and C the constant

of areas. We shall consider only the cases 0 � " < 1, namely circular and elliptic orbits.

Then, from (13) and (14) we see that we can invert the dependency v = v(t) into t = t(v)

and obtain:
d

dt
=

C

r2
d

dv
: (15)

In fact, a similarity criterion for this approximation is given by:

s =k Hint

H01

k� I

mr2
= (

R

r
)2 ;

where R is a characteristic dimension of the rigid body. Furthermore:

k @Hint

@x
k� 3GMxI1

r5
+
15GMx3I1

r7
+
3GM

r4
I
x

r
� GMI

r4
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and

k @H01

@x
k� GMm

r2
x

r
� GMm

r2
:

Then:

k @Hint

@x
k = k @H01

@x
k� I

mr2
� s

Thus s measures the e�ect of the extent of the rigid body to the motion of the CM. Our

approximation holds for s� 1.

The second approximation is less important than A1 but is made in order to avoid

very messy equations. It concerns the higher order terms in the potential expansion (5):

A2. The higher order terms in the interaction Hamiltonian are negligible, i.e.:

Hint =
3GM

2r3
(
x2

r2
I1 +

y2

r2
I2 +

z2

r2
I3)�

GM

2r3
(I1 + I2 + I3) (16)

Since the second term in Hint does not depend on SO(3) variables, it will not a�ect the

canonical equations on T �SO(3) and then it can be canceled from the interaction (it would

perturb only the motion of the CM, but we have neglected these e�ects).

With these assumptions, we obtain a Hamiltonian system on T �SO(3) given by the

following time-dependent Hamiltonian:

H2(A; l1; l2; l3; t) =
l21
2I1

+
l22
2I2

+
l23
2I3

+
3GM

2r3
(
x2

r2
I1 +

y2

r2
I2 +

z2

r2
I3) (17)

where (x; y; z) are obtained using (1) and (11).

Now, even this Hamiltonian is too complicated because of the di�culty explained

above. We still do not know the trajectory of heteroclinic orbits, so that we cannot see

(17) as a perturbed Hamiltonian of (9). Therefore we shall consider only a particular case

of the general rigid-body, namely the axially symmetric rigid body. Thus we shall assume

that:

A3. I1 = I2 6= I3 : (18)

Now we can see that the Hamiltonian (17) is symmetric with respect to the rotations

around the z-axis. Indeed, (17) can be rewritten as:

H2 =
l21 + l22
2I1

+
l23
2I3

� 3GM

2r5
(I1 � I3)z

2 +
3GM

2r3
I1 : (19)

As in the case of (16) we can cancel out the last term and we can see that the potential

part depends only on r and z which are invariant under the rotations around the z-

axis. Because of this symmetry we obtain that l3 = constant (an integral of motion)
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and we can reduce the system to the quotient space SO(3)=SO(2) ' S2 and we get a

Hamiltonian system on T �S2 with con�guration space a 2-dimensional sphere. To express

this, we use the Euler's angles and the Euler parametrization of SO(3) - see �g.2. In this

parametrization, the above Hamiltonian when the last term is dropped takes the form

(after a little algebra using (11)):

~H2(�; �;	; p�; p�; p	; t) =
(p��p	 cos �)2

2I1sin
2
�

+ p�
2

2I1
+ p	

2

2I3
�

�3GM
2r3

(I1 � I3)sin
2�(1�cos 2(��v)

2
) ;

(20)

where (�; �;	) are the Euler's angles and (p�; p�; p	) are the associated canonical angular

momenta (see [Gold80] for details).

Since 	 is a cyclic variable and p	 = l3 = constant, the above Hamiltonian is actually

de�ned on T �S2 �R. For the top case, the heteroclinic orbits of the free rigid body are

degenerate to the equilibrium points and imply p	 = 0. This suggests that we examine

the case p	 = 0. So, �nally we shall restrict ourself to the particular case:

A4: p	 = l3 = 0 (21)

which is the rigid body with no spin.

Then, under the 4 assumptions A1{A4, the reduced Hamiltonian describing our rigid

body is de�ned on T �S2 �R by:

Hred(�; �; p�; p�; t) =
p�

2

2I1sin
2�

+
p�

2

2I1
� 3GM

2r3
(I1 � I3)sin

2�
1� cos 2(�� v)

2
: (22)

We mention that the system has two singular points on the sphere, namely � = 0 and

� = � (the north and south poles), and this is due to the Euler's parametrization of the

SO(3). Furthermore, we see that (20) is invariant under the discrete transformation:

� �! � � �

� �! � + �

p� �! p�
p� �! �p�
p	 �! �p	

(23)

This symmetry reduces the system from the 2-dimensional sphere (with 2 singular points)

to the 2-dimensional projective space RP2 (with one singular point); but we will not use

this reduction subsequently.
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3 The Analysis of the Hamiltonian System on the

Sphere

As we have seen, our problem can be reduced to a system on T �S2 �R with the Hamil-

tonian (22). The canonical equations can be written now as:

_� = @H

@p�
= p�

I1sin
2
�

_� = @H

@p�
= p�

I1

_p� = �@H

@�
= 3GM

2r3
(I1 � I3)sin

2� sin 2(� � v)

_p� = �@H

@�
=

p�
2 cos �

I1sin
3
�
+ 3GM

2r3
(I1 � I3) sin 2�(

1�cos 2(��v)
2

)

(24)

We prefer to change the time variable to v using (15) and (12). At the same time, we

make a change of variable: ' = 2(� � v). Then (24) is brought into the following non

canonical form:
d'

dv
= 2r2

CI1

p�

sin2�
� 2

d�

dv
= r

2

CI1
p�

dp�

dv
= 3GM

2rC
(I1 � I3)sin

2� sin'
dp�

dv
= r

2

CI1

p�
2 cos �
sin3�

+ 3GM
2rC

(I1 � I3) sin 2�
1�cos'

2

(25)

There are two zeros of the vector �eld (which are equilibria only in the circular motion)

given by:

P1 = (0;
�

2
;
CI1

r2
; 0) ; P2 = (�;

�

2
;
CI1

r2
; 0) (26)

where P = ('; �; p�; p�) is the parametrization of T �S2.

On the general case, when the CM is moving on an elliptic orbit, we have the following

result:

LEMMA 3.1 The following manifold:

Minv = f� = �

2
; p� = 0g � T �S2 (27)

is an invariant manifold for (25). Moreover, Minv is di�eomorphically equivalent to T
�S1.

2

This fact comes from a simple check of the second and fourth equations of (25). On

the other hand, the above manifold is invariant for both circular and elliptic motions of

the CM so that this provides important information about the ow. Also we can see that
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P1; P2 2 Minv. The motion restricted to Minv represents the planar motion case of the

rigid body.

Now we are able to de�ne the unperturbed and perturbed systems.

The unperturbed system is given by (25) when the CM has a circular motion. The

perturbed system is (25) when the CM has an elliptic motion. Thus, the eccentricity "

(de�ned in (12)) plays the rôle of a perturbation parameter. Using (12), the system (25)

becomes:

x0 = f(x) + "g(x; v; ") ; (28)

where xT = ('; �; p�; p�) 2 T �S2 is the state vector and f; g are vector �elds given by:

f(x) =

2
666664

2p2

CI1

p�

sin2�
� 2

p
2

CI1
p�

3GM
2pC

(I1 � I3)sin
2� sin'

p
2

CI1

p�
2 cos �

sin3�
+ 3GM

2pC
(I1 � I3) sin 2�

1�cos'
2

3
777775 (29)

and:

g(x; v; ") =

2
666664

� 2p2

CI1

p� cosv(2+" cosv)

sin2�(1+" cosv)2

� p
2

CI1

p� cosv(2+" cosv)

(1+" cosv)2

3GM
2pC

(I1 � I3)sin
2� cos v sin'

� p
2

CI1

p�
2 cos � cosv(2+" cosv)

sin3�(1+" cosv)2
+ 3GM

2pC
(I1 � I3) sin 2� cos v

1�cos'
2

3
777775 : (30)

Now we analyze the unperturbed system. Suppose that the CM is moving on a circular

orbit given by r = p. First we change canonical the variables as follows:

x1 = ' x2 = �

p1 =
r2

2CI1
p� p2 =

r2

CI1
p�

by which (25) is brought into the following form (recal that GMp = C2 from (14)):

dx1

dv
= 4p1

sin2x2
� 2

dx2

dv
= p2

dp1

dv
= 3

4
I1�I3
I1

sin2x2 sinx1
dp2

dv
=

4p2
1
cosx2

sin3x2
+ 3

2
I1�I3
I1

sin 2x2
1�cosx1

2
:

(31)
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This is a Hamiltonian system with Hamiltonian �H : T �S2 ! R:

�H(x1; x2; p1; p2) =
2p21

sin2x2
+
p22
2
� 3

2

I1 � I3

I1
sin2x2

1� cosx1

2
� 2p1 : (32)

The zeros P1; P2 given by (26) become relative equilibria for the system. In the new

variables:

Q1 = (0;
�

2
;
1

2
; 0) Q2 = (�;

�

2
;
1

2
; 0) :

The di�erential of the vector �eld (25) (i.e. of the right-hand side) has the form:

Df j(x1;x2;p1;p2) =

2
66664

0 �8p1 cosx2
sin3x2

4
sin2x2

0

0 0 0 1
3
4
I1�I3
I1

sin2x2 cos x1
3
4
I1�I3
I1

sin 2x2 sinx1 0 0
3
4
I1�I3
I1

sin 2x2 sinx1 � 8p1 cosx2
sin3x2

0

3
77775 (33)

where:

� = � 4p21
sin2x2

� 12p21cos
2x2

sin4x2
+ 3

I1 � I3

I1
cos 2x2(

1� cosx1

2
) :

At Q1 this becomes:

Df(Q1) =

2
6664

0 0 4 0

0 0 0 1
3
4
I1�I3
I1

0 0 0

0 �1 0 0

3
7775 ; (34)

while at Q2 we get:

Df(Q2) =

2
66664

0 0 4 0

0 0 0 1

�3
4
I1�I3
I1

0 0 0

0 �1� 3 I1�I3
I1

0 0

3
77775 : (35)

The characteristic polynomials are:

pQ1
(s) = (s2 + 1)(s2 � 3 I1�I3

I1
)

pQ2
(s) = (s2 + 3 I1�I3

I1
)(s2 + 1 + 3 I1�I3

I1
)

(36)

Now we see that, depending on the value of a = 3 I1�I3
I1

, we have di�erent types of equi-

libria:

� for a > 0 , Q1 is center-saddle and Q2 is center;
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� for �1 < a < 0 , Q1 is center and Q2 is center-saddle;

� for a < �1 , Q1 is center and Q2 is saddle;

We turn now to the restricted system on the invariant manifold given in Lemma 3.1.

We shall prove that for any value of a 6= 0 we have two homclinic orbits to a saddle point

and that these connections are preserved under the perturbation. Then we shall return

to the full system on T �S2 (31) and we shall prove that the stable and unstable manifolds

to the saddle point (Q2, when a < �1) are candidates for a hyperbolic structure and

consequently for a global chaotical motion. This will imply the analytic nonintegrability

of the Hamiltonian system.

Now let us consider the restriction of (25) to the invariant manifold Minv given in

Lemma 3.1. We set � = �

2
and p� = 0 and we obtain:

dp�

dv
= 3GM

2rC
(I1 � I3) sin'

d'

dv
= 2r2

CI1
p� � 2

(37)

which is equivalent to the following second order di�erential equation:

d2'

dv2
� 3

GMr

C2

I1 � I3

I1
sin' =

2

r

dr

dv
(2 +

d'

dv
) (38)

This system is still a Hamiltonian system; it may be obtained from (22) by setting � = �

2

and p� = 0. We rewrite (38) as a system of 2 �rst di�erential equations with the following

state variables: if I1 < I3 y1 = ' else y1 = '+ � and y2 =
d'

dv
. This yields:

dy1

dv
= y2

dy2

dv
= �3GMr

C2 j I1�I3I1
j sin y1 + 2

r

dr

dv
(2 + y2)

(39)

We next use the decomposition given in (28), using the de�nitions of (12) and (14). We

get:
dy1

dv
= y2

dy2

dv
= �3j I1�I3

I1
j sin y1 + "(3j I1�I3

I1
j sin y1 cosv

1+" cosv
+ 2(2 + y2)

sinv
1+" cos v

)
(40)

Letting 
2 = 3j I1�I3
I1
j > 0, we see that the unperturbed system corresponds to d

2
y1

dv2
+


2 sin y1 = 0 which is a pendulum equation. This equation has two homoclinic connections

to y1 = �; y2 = 0, given by:

y01(v) = �2 arctan(sinh(
v))
y02(v) = �2
 sech(
v) ;

(41)

where + stands for the upper homoclinic connection (in the y1; y2 plane) and � corre-

sponds to the lower branch.
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Now we ask if these homoclinic connections are preserved under the perturbation. The

answer is given by the following result:

LEMMA 3.2 For any 
 > 0 the perturbed system (40) has in�nitely many transversal

homoclinic orbits for any " 2 (0; 1) excepting, at most, for a �nite number of values. 2

The proof uses Melnikov's function and Smale-Birkho� Theorem and is presented in

the section 5. This result has been also proved in [TeoGra92] and [Bur87] (conform to

[TeoGra92]).

Now we can return to (31) which describes the unperturbed two degree of freedom

system on T �S2. We consider only the case a < �1, or equivalently I3=I1 > 4=3. The

unperturbed system has at Q2 a saddle point and then two invariant 2-dimensional man-

ifolds pass through Q2, the stable and unstable manifolds. From the above discussion we

know there exist two homoclinic connections. Thus, the intersection of the stable and

unstable manifolds is non empty: it contains the �xed point Q2 and two 1-dimensional

curves asymptotic to it. In order to obtain transversal intersection of these manifolds for

the perturbed system, we need to prove that the intersection is precisely of dimension 1

and this is achieved by the following Lemma:

LEMMA 3.3 For the unperturbed system (31) (i.e. " = 0) with I3=I1 > 4=3 consider

a point q0 on the homoclinic connections (41) away from Q2. Let us denote by W s;u the

stable/unstable manifolds passing through Q2. Then q0 2 W s \ W u and dim(Tq0W
s +

Tq0W
u) = 3 for all values of 
 excepting at most 1 value. 2

The proof given in section 6, is based on two steps: �rstly we �nd the �rst correction

to the stable and unstable manifold around the relative equilibrium Q2; then we solve

asymptotically the �rst variational system that transports the tangent vectors along the

homoclinic orbits. Note that the condition I3=I1 > 4=3 (or a < �1) is required for Q2

to be a saddle point with two dimensional stable and unstable manifolds. The critical

value of 
 is found to be 
c = 1:70557 and this happens only for the upper branch of the

homoclinic orbits. The details are presented in section 6.

4 Statement of the Main Results

In this section we present the conclusion of the Lemmas 3.2 and 3.3 from the previous

section.

As we have said, Lemma 3.2 has been proved in some other papers (see [TeoGra92] and

[Bur87]). We give here just a briey interpretation of the symbolic dynamics associated
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to the chaotic motion that occurs due to the existence of transversal homoclinic points.

This idea is taken from a lecture given by Professor P. Holmes at Princeton University.

THEOREM 4.1 For any 
 > 0 and almost any " 2 (0; 1) (except, at most, a �nite

number of values) the planar attitude motion of the rigid body (i.e. the motion restricted

to Minv) has chaotic behaviour in the following sense: for any sequence of integers s =

(sk)k2Z, sz 2 Z there exists a sequence of increasing numbers (tk)k2Z, tk < tk+1, tk 2 R

and a trajectory of (37) such that : '(tk) = 2�sk, for any k. 2

This means that the rigid body can rotate for an arbitrary number of times in one

sense, then rotate in the opposite sense for another arbitrary number of times and so on.

Orbits associated with such arbitrary sequences are found using the Markov partition

construction (the "horseshoe") associated to the transversal homoclinic points. This

standard construction is presented in many papers; we refer the reader, for instance,

to [Moser73],[GucHol93] or [Xia92].

From Lemmas 3.2 and 3.3 we conclude the transversal intersection of the stable and

unstable manifolds of the Poincar�e mapping of the perturbed system (28). This transver-

sality gives us the analytic nonintegrability of the system (we refer the reader to [Kozlov83]

for an extensive survey on nonintegrability of Hamiltonian systems). Here we shall state

a result about non-existence of two analytic, independent �rst integrals.

Suppose we have a periodic and analytic Hamiltonian H" : R2n � R ! R depen-

dent analytic on a small parameter " > 0 (H"(x; p; t + T ) = H"(x; p; t)). Consider the

Hamiltonian system:

_x = @H"

@p

_p = �@H"

@x

(42)

and associate to it the Poincar�e returning map:

P "

t0
: (x1; p1) 7! P "

t0
(x1; p1) = (x2; p2)

where x2; p2 is the solution of (42) at t0+T when at t0 (x; p) = (x1; p1) (x1; x2; p1; p2 2 Rn).

A function F " : R2n � R ! R periodic in time (F "(x; p; t + T ) = F "(x; p; t)) and

depending on " as a formal power series:

F "(x; p; t) =
X
i�0

"iF i(x; p; t)

is said to be an analytic �rst integral if:

1) F i : R2n �R! R are analytic ;

2) F "(P "

t0
(x; p); t0) = F "(x; p; t0), for any (x; p) 2 R2n and t0 2 [0; T ]

12



A set of n analytic �rst integrals F "

1 ; : : : ; F
"

n
: R2n �R! R is said to be independent

if the level set:

Mc(t0) = f(x; p) 2 Rn j F "

k
(x; p; t0) = ck ; 1 � k � n g

does not include any manifold of dimension higher than n. In fact, the set Mc(t0) is

an analytic set and, because of Lojaciewicz's result, that we shall state and use in a

moment, it can be written as local �nite union of analytic manifolds. Now we can state

our nonintegrability result:

THEOREM 4.2 Consider a spinless, axialsymmetric rigid body lying in a central grav-

itational �eld, whose attitude motion dynamics is given by (25). If I3=I1 > 4=3 then

there do not exist 2 analytic, independent �rst integrals, and the system is analytically

nonintegrable. 2

We shall give a straightforward proof of this result (as well as for any system in which

there is a transversal intersection of the stable and unstable manifolds to a periodic orbit)

based on the �-Lemma and Lojaciewicz's Structure Theorem for Real Analytic Manifolds.

Another proof can be done using the [Kozlov83] paper, by noting that the union of stable

and unstable manifolds W s

"
[W u

"
is a key set, in the terminology of the aforementioned

paper. We recall now the two results; from the Lojaciewicz's Structure Theorem we

present only the result that we are using.

�-Lemma (see [Palis69])Let f be a C1 di�eomorphism of Rn with a hyperbolic �xed

point p having s and u dimensional stable and unstable manifolds (s+u = n), and let D be

a u-dimensional disk in W u(p). Let � be a u-dimensional disk meeting W s(p) transversely

at some point q. Then
S
n�0 f

n(�) contains u-dimensional disks arbitrarily close to D.

3

Lojaciewicz's Structure Theorem for Real Analytic Manifolds (see [KraPar92]

for the complete statement, pp.154) Let �(x1; : : : ; xn) be a real nontrivial analytic function

in a neighborhood of the origin. Then there exist numbers �j > 0; j = 1; :::; n so that the

set:

Z = fx 2 Rnj jxjj < �j;8j and �(x) = 0 g
has a decomposition:

Z = V n�1 [ � � � [ V 0 :

The set V 0 is either empty or consists of the origin alone. For 1 � k � n � 1 we may

write V k as a �nite, disjoint union of k-dimensional submanifolds (in the full statement,

an explicit description of these manifolds is given). 3

13



Now we prove Theorem 4.2. Suppose there are 2 analytic, independent �rst integrals,

say F "

1 and F "

2 . Suppose we have �xed t0 and denote by P "

t0
the Poincar�e map. Then, on

stable manifold they must be constant. The same thing happens on the unstable manifold.

Because the stable and unstable manifolds intersect, the values of F "

1 , respectively F "

2 ,

must be the same on these manifolds, that is:

F "

1 (W
u) = F "

1 (W
s) = c1 ; F "

2 (W
u) = F "

2 (W
s) = c2 :

Now, pick a point s0 2 W u and consider q a transversal intersection point between W s

and W u, di�erent from the �xed point of P "

t0
(such a point exists because of Lemmas

3.2 and 3.3). Let � be a 2-dimensional disk in W u containing q, as in �-Lemma. Then,

for any neighborhood of s0 there exists an integer n > 0 such that (P "

t0
)n(�) intersects

nonempty the neighborhood. Now we apply the Lojaciewicz's Theorem to:

�(x) = (F "

1 (x+ s0)� c1)
2 + (F "

2 (x+ s0)� c2)
2

Denote by

Z� = fx 2 T �S2j k x k� � ; �(x) = 0g
which is the intersection between the level set Z = fx 2 T �S2j�(x) = 0g and the ball

B�(s0) = fx 2 T �S2j k x � s0 k� �g. Then W u \ B�(s0) and W s \ B�(s0) are both

included in Z�. Particularly we are interested in the inclusion W u \ B�(s0) � Z�. Now

we have a decomposition of Z� into a union of manifolds of dimension 0 (the point s0),

1 and 2 (dimensions higher than 2 are forbidden by the condition that F "

1 and F "

2 are

independent). Now, if we look to the union of manifolds of dimension 2 we see that here

must lie an in�nite sequence of submanifolds of the form (P "

t0
)n(�) \ B�(s0), for some

n. Then we conclude that Z� is not a local �nite union of manifolds and this proves

the contradiction. So, our assumption of the existence of 2 analytic, independent �rst

integrals is false.

5 Proof of Lemma 3.2

For a system of the form (28), the Melnikov's function is given by (see [GucHol93]):

M(v0) =

Z 1

�1
f(y0(v)) ^ g(y0(v); v + v0; ")dv

where y0(v) is the parametrization of the homoclinic orbit and the wedge product ^ is

de�ned as f ^ g = f1g2 � f2g1 (f1; f2 and g1; g2 are respectively, the components of the

14



vector �elds f and g). The Melnikov's function measures the distance between the stable

and unstable manifolds to the cycle that is born from an unperturbed saddle point, under

the periodic perturbation. If this function has a simple zero for some v0 then the two

invariant manifolds (in the extended space) intersect transversally and we obtain, via the

Poincar�e-Smale-Birkho� theorem the existence of in�nitely many periodic orbits.

For the system (40) the Melnikov's function takes the form:

M(v0) =
Z 1

�1
y02(v)[


2 sin y01(v)
cos(v + v0)

1 + " cos(v + v0)
+ 2(2 + y02(v))

sin(v + v0)

1 + " cos(v + v0)
]dv :

We see that from (41) that y01(�v) = �y01(v) and y02(�v) = y02(v). Then, by an oddness

argument it follows that M(0) = 0. The only problem is now to prove that v0 = 0 is a

simple zero. For this, we compute M 0(0):

dM

dv0
jv0=0 =

Z 1

�1
y02(v)[�
2 sin y01(v)

sin v

(1 + " cos v)2
+ 2(2 + y02(v))

"+ cos v

(1 + " cos v)2
]dv :

We �x 
 > 0 and then the above function becomes an "-dependent function. We shall

prove that, for small ", it is not zero. It is su�cient to set " = 0 above, to obtain:

dM

dv0
(v0 = 0; " = 0) =

Z 1

�1
(�
2y02(v) siny

0
1(v) sinv + 2y02(v)(2 + y02(v)) cos v)dv :

We use the explicit expressions for y01(v) and y02(v) given in (41) and we obtain:

dM

dv0
(v0 = 0; " = 0) = �4
3F1 � 8
F2 + 8
2F3

where F1; F2; F3 are integrals that we evaluate by the method of residus as:

F1 =

Z 1

�1
sech2(
v)tanh(
v) sin v dv =

�

2
3

1

sinh �

2


;

F2 =

Z 1

�1
sech(
v) cos v dv =

�




1

cosh �

2


;

F3 =

Z 1

�1
sech2(
v) cos v dv =

�


2

1

sinh �

2


:

The �nal result is:
dM

dv0
jv0=0;"=0 =

6�

sinh �

2


� 8�

cosh �

2


; (43)

which, for the upper branch is always positive and has no zeros, whereas for the lower

branch we have a zero at 
0 =
�

ln 7
= 1:61446.

By analyticity of dM

dv0
(v0 = 0) as function of " we conclude that for any 
 > 0, 
 6= 
0

we have at most a �nite number of zeros and the proof is �nished.
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6 Proof of Lemma 3.3

The situation is now the following: we have the unperturbed system given by (31) and

we are in the case when a = 3 I1�I3
I1

< �1. This means that Q2 is a saddle point and it is

a hyperbolic equilibrium in T �S2 for (31). We know from the Stable Manifold Theorem

(see [Kelley67]) that two invariant 2-dimensional manifolds pass through Q2 tangent to,

respectivelly, the stable space and unstable eigenspace of the linearized system (35). Each

of them contains the homoclinic connections (41) so that their intersection, excluding Q2,

is not empty. We want to prove that, along of these homoclinic orbits there are three

independent vectors tangent to the union of the manifolds (i.e. two of them tangent to

one manifold and the third vector to the other manifold). We choose one of the three

independent vectors to be the tangent vector to the homoclinic orbits at that point (q0).

This is tangent to both invariant manifolds. We shall prove that taking two other vectors

tangent to the unstable, respectively, stable manifolds near Q2, they are transported by

the ow on the homoclinic orbit forward, respectively, backward at the same point into two

independent vectors. For, we need two facts: �rstly we have to know the �rst correction of

the tangent spaces to the stable/unstable manifolds near Q2 and secondly, we have to �nd

an asymptotic approximation for the transports along the homoclinic orbits of a tangent

vector (i.e. an asymptotic expansion of the solution of the �rst variational equation).

To simplify the calculus we translate the equilibrium point Q2 into the origin by

changing variables as follows:

�1 = x1 � � ; �2 = x2 �
�

2
; �3 = p1 �

1

2
; �4 = p2 :

Then, the system (31) becomes:

�1
0 =

4�3+2
cos2�2

� 2

�2
0 = �4

�3
0 = 1

4

2cos2�2 sin �1

�4
0 = �4(�3+ 1

2
)2 sin�2

cos3�2
+ 1

2

2 sin(2�2)

1+cos�1
2

;

(44)

whose Hamiltonian is:

H(�1; �2; �3; �4) = �H(�1 + �; �2 +
�

2
; �3 +

1
2
; �4) =

2�3
2

+2�3+ 1

2

cos2�2
+
�4

2

2
� 2�3 � 1 + 1

2

2cos2�2

1+cos�1
2

:
(45)

and the equilibrium point is now the origin (�1; �2; �3; �4) = (0; 0; 0; 0).
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We compute now the �rst correction to the tangent spaces to the invariant manifolds.

For, we use a very nice result about these manifolds, proved in [Schaft91] or see also

[Kozlov83]. The result says that both the stable and unstable manifolds are Lagrange

submanifolds (see [AbraMa78] for details on Lagrange submanifolds ). Then, there exist

two analytic scalar functions V s;u : D � R2 ! R , (�1; �2) 7! V s;u(�1; �2) de�ned on a

neighborhood of the origin that satisfy the Hamilton-Jacobi equation:

H(�1; �2;rV s;u) = H(0) (46)

and the graphs of the gradient of these functions are exactly the local stable and , respec-

tively, unstable manifolds of (44), providing that these two manifolds can be parametrized

by using the �rst two coordinates �1 and �2 (this is the disconjugacy condition of the

Hamiltonian system with respect to the stable and unstable solutions of (46)). We shall

use the equation (46) to �nd the �rst correction to the quadratic terms of V s;u (i.e. the

third order terms).

Firstly we check the disconjugacy. For we recall Df(Q2) given in (35). We know from

(36) that the spectrum of the linearized system is given by Spec = f
;�
;
p

2 � 1;

�
p

2 � 1g. The corresponding eigenvectors are:

� the unstable space:

�1 = 
 ; vT1 = (1; 0;



4
; 0)

�2 =
p

2 � 1 ; vT2 = (0; 1; 0;

p

2 � 1) ;

� the stable space:

�3 = �
 ; vT3 = (1; 0;�


4
; 0)

�4 = �
p

2 � 1 ; vT4 = (0; 1; 0;�

p

2 � 1) :

Now it is obvious that the projections of both Eu and Es, the unstable and stable

spaces spanned by eT1 = (1; 0; 0; 0) and eT2 = (0; 1; 0; 0), are of dimensions 2. Even more,

from the geometric theory of the Algebraic Riccati Equations (see [Shay83] for details)

we know that the quadratic terms in V s;u are given by:

Xs =

"
�


4
0

0 �
p

2 � 1

#
; Xu =

"


4

0

0
p

2 � 1

#
(47)

Now, if we keep up to the third term in V s;u we obtain:

V s

�3(�1; �2) =
1
2
�TXs� + third order terms =

= �

8
�1

2 �
p

2�1
2

�2
2 + b1�1

3 + b2�1
2�2 + b3�1�2

2 + b4�2
3
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and analogously for V u

�3(�1; �2). We have now to introduce in (46) and identify b1; b2; b3; b4
by expanding up to the third order. The expansion of H up to the third order has the

form:

H�3(�1; �2; �3; �4) =

2 � 1

2
� 1

8

2�1

2 � 
2 � 1

2
�2

2 + 2�3
2 +

1

2
�4

2 + 2�2
2�3 ;

and the solutions for V s

�3 and V u

�3 are:

V u(�1; �2) =



8
�1

2 +
1

2
(
p

2 � 1)�2

2 � 1

2





 + 2
p

2 � 1

�1�2
2 ;

V s(�1; �2) = �


8
�1

2 � 1

2
(
p

2 � 1)�2

2 � 1

2





 + 2
p

2 � 1

�1�2
2 :

Now, the invariant manifolds are given by:

(�1; �2) �! (�1; �2;
@V u;s

@�1
;
@V u;s

@�2
) ;

which are approximated by the following 2-dimensional manifolds:

� the unstable manifold:

(�1; �2) �! (�1; �2;



4
�1 �

1

2





 + 2
p

2 � 1

�2
2; (
p

2 � 1)�2 �





 + 2
p

2 � 1

�1�2)

� the stable manifold:

(�1; �2) �! (�1; �2;�



4
�1 �

1

2





 + 2
p

2 � 1

�2
2;�(

p

2 � 1)�2 �





 + 2
p

2 � 1

�1�2)

These expressions hold only for j�1j+ j�2j small enough.

The tangent vectors to these approximating manifolds, computed on the homoclinic

orbits (where �2 = 0) are given by:

� for the unstable manifold:

X1 =
@

@�1
+ 


4
@

@�3
X2 =

@

@�2
+ (
p

2 � 1 � 



+2
p

2�1�1)

@

@�4
;

(48)

� for the stable manifold:

X3 =
@

@�1
� 


4
@

@�3
X4 =

@

@�2
� (
p

2 � 1� 



+2
p

2�1�1)

@

@�4
:

(49)
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Now it is straightforward to see that X1 and X3 are tangent to the homoclinic orbits at

the origin. Thus, what we have to do is to prove that X2 is not transported along the

homoclinic orbits into X4.

It is known that a tangent vector is transported along a curve via the �rst variational

system which is a linear time-varying system of the form:

z0 = Df j'(v)z (50)

For our system (31), the di�erential of the vector �eld along the homoclinic orbits has the

form (recall x2 =
�

2
and p2 = 0):

Df j(x1(v);�2 ;p1(v);0) =

2
6664

0 0 4 0

0 0 0 1

�1
4

2 cos x1 0 0 0

0 �4p21 + 
2(1�cosx1
2

) 0 0

3
7775

. We see that, if zT = (z1; z2; z3; z4) then (50) decomposes into two 2-dimensional systems:

z01 = 4z3
z03 = �1

4

2 cos x1 z1

(51)

and:
z02 = z4
z04 = (�4p21 + 
2 1�cosx1

2
)z2 :

(52)

The initial condition for the forward transport is given by X2: z1 = 0, z2 = 1, z3 = 0,

z4 =
p

2 � 1� 



+2
p

2�1�1 and then only (52) is the system to be analyzed (actually (51)

gives the transport of the tangent vector to the homoclinic orbits along the homoclinic

orbits and the solution is obvious z1 = x01(v), z3 = p01(v)). We rewrite (52) as a second-

order di�erential equation:

z002 + (4p21 � 
21� cos x1

2
)z2 = 0 :

We use the explicit form (41) of the homoclinic orbits (recall now I1 < I3 and then x1 = y01,

p1 =
1
2
+ 1

4
y02) and we get:

z002 + h(v)z2 = 0 where h(v) = 1 � 2
sech(
v) + 
2(1 � 2tanh2(
v)) : (53)

Now we change the variable v ! u = tanh(
v
2
). Then (53) becomes:


2

4
(1� u2)2

d2z2

du2
� 
2

2
u(1� u2)

dz2

du
+ k(u)z2 = 0 (54)
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with:

k(u) = 1 � 2

1 � u2

1 + u2
+ 
21� 6u2 + u4

(1 + u2)2
(55)

and the interval of analysis is (�1; 1). The initial condition, which is given by the tangent

vector to the unstable manifold, corresponds to u! �1. Let's consider u = �1 + " and

try to evaluate z4 up to order ". Firstly, we have to �nd �1. We have:

�1 = x1 � � = (�2arctan(sinh(
v))� �)mod 2� :

If we consider tanh
v
2
= �1 + " and expand �1 we get:

�1 = �2"+O("2) :

Now, we need dz2

du
. We know that dz2

dv
= z4, then:

dz2

du
=

dv

du

dz2

dv
=

2




1

1� u2
z4 ;

and using the initial condition for z4, at u = �1 + " we obtain:

dz2

du

z2
ju=�1+" =

p

2 � 1




1

"
� 2


 + 2
p

2 � 1

+O(") : (56)

Now we analyze the asymptotic solution of (54) near to u0 = �1. Firstly we see that both
u0 = �1 and u1 = 1 are regular singular points (see [BenOrs78] for a general tratement of

asymptotic approximations). We look for an asymptotic of the form z2 � (1 + u)� (near

u0). Substituting into (54) and setting u = �1 we get for � the equation:

�2
2 = �k(�1) ) � = � 1




q
�k(�1) = �

p

2 � 1




The Frobenius solution of the equation has then the form: z2 = (1+u)�P (u) where P (u)

is a polynomial in u. Keeping only the �rst two terms from P (u), we get:

z2 � (1 + u)�(C0 + C1u) (57)

We compute C0 and C1 by requiring the initial condition (56). We obtain:

dz2

du

z2
=

�

1 + u
+

C1

C0 + C1u

u=�1+"� �

"
+

C1

C0 � C1

+O(") : (58)
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By comparing (58) with (56) we get that � =
p

2�1



and:

K =
C1

C0

= � 2


� 2 + 2
p

2 � 1

: (59)

Then, at u = 0 we get:
dz2

du

z2
ju=0 = �+K : (60)

Similarly we can compute the transport of X2 backward in time, from u = 1� " to u = 0.

We get the following approximations:

�1 = �2"+O("2)
dz2

du

z2
ju=1�" = �

p

2 � 1




1

"
� 2


 + 2
p

2 � 1

+O(")

z2 = (1 � u)�(D0 +D1) ; � = �
p

2 � 1




and then:
dz2

du

z2
= �� �K ; (61)

with the same expressions for � and K as above.

Thus, the condition that at u = 0 to have three independent vectors is that (60) and

(61) do not coincide, that is:

�+K 6= ���K (62)

If the above condition is ful�lled, then the tangent vector X2 is everywhere independent

of X4 and this proves the Lemma.

For the lower branch, the condition (62) takes the form:

p

2 � 1



+

2


 + 2 + 2
p

2 � 1

6= 0 (63)

which is always true for 
 > 1. For the upper branch the condition (62) becomes:

p

2 � 1



� 2


� 2 + 2
p

2 � 1

6= 0 (64)

which has a root at 
 ' 1:70557. To completely solve the problem for the upper branch,

one must go to higher order approximations for V s;u in (46) and z2(u) in (57), but, for

genericity, this result is enough.
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7 Conclusions

In this paper we have obtained an analytic nonintegrability result for a Hamiltonian

system modelling the rotation motion of a rigid body in a central gravitational �eld. To

obtain the result, four assumptions were made.

The �rst assumption concerns the motion of the center of mass of the rigid body,

which is supposed to be undisturbed by the rotation motion. This is reasonable if the

ratio between the dimension of the rigid body and the distance to the center of attraction

is much less than 1.

The second assumption is less critical but is made in order to avoid messy calculus.

Under this assumption we neglect the higher-order terms in the interaction Hamiltonian.

The third assumption, namely the axialsymmetry of the rigid body, is made in order

to progress in description. The condition I3=I1 > 4=3 is essential for the hyperbolicity of

P2 and for the transversal intersection of the stable/unstable manifolds of the perturbed

system.

The fourth assumption, i.e. to consider a spinless top, is a technical one. Assuming a

spinless top we are able to �nd analytic expressions for the homoclinic orbits and then to

construct the horseshoes.

Under these assumptions we have proved that our problem gives rise to a time-varying

Hamiltonian system on a two-dimensional sphere. The eccentricity of the orbit of the CM

plays the rôle of a perturbation parameter. The unperturbed system (i.e. corresponding

to a circular orbit of the CM) has a hyperbolic saddle point whose stable and unstable

manifolds intersect along the homoclinic connections. The perturbation preserves the

homoclinic connections, which become transversal homoclinic orbits. Then the stable

and unstable manifolds intersect transversaly in T �S2. This is immediately connected

with chaotic behaviour of the ow and, especially, with analytic nonintegrability of the

system.
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