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Abstract

In this paper we discuss Stefan's and Sussmann's papers about inte-

grability of singular distributions. We point out some gaps and we give a

di�erent version of their results.

1 Introduction

Let M be a C1 �nite-dimensional paracompact manifold; let F(M ) denote

the ring of the C1 real-valued functions de�ned on M and let V 1(M ) be the

F(M )-module of C1 vector �elds on M . We put n = dimM .

We call distribution onM , the mapping L : x 2M �! L(x) � TxM where

L(x) is a vector subspace of the tangent space to M at x. The dimension(or
rank) of the distribution is dim L(x) (it is punctually de�ned).

Let S be a set of C1 everywhere de�ned vector �elds. The distribution

generated by the set S is L(x) = span
R
f vjx ; v 2 S g 8x 2M:

We call C1-distribution on M , a distribution L generated by a set S of C1

vector �elds.

The distribution L is called integrable at x0 2 M if there exists a subman-

ifold Nx0
i

,! M (i being the canonical inclusion) passing through x0, such

that TxNx0 = L(x) ; for all x 2 Nx0 (more precisely, we have: i�;x(TxNx0) =

L(x) ; 8 x 2 Nx0 ; where i�;x is the di�erential of i in x). Nx0 is called an in-
tegral manifold of the distribution. From the de�nition it follows directly that

dim Nx0 = dimL(x0) and L is also integrable at every q 2 Nx0 .
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The distribution is called locally integrable, or to have the integral manifold
property, if for each point in M there is an integral manifold of the distribution

L (namely if it is integrable at every point of M ).

Let us consider the distribution L and a point x0 2 M . If there exists

a neighborhood of x0 where the distribution has constant dimension then the

point x0 is called an ordinary point (or a regular point), otherwise it is called a

singular point. If the distribution has singular points then we say that it is a

distribution with singularities.
In x2 we discuss Stefan's and Sussmann's papers pointing out some gaps and

we state a correct version of their results. In x3 we construct a splitting of a

distribution and we prove some results about punctual integrability. In x4 we

give the proof of our main result.

Since our study is punctual, we point out that the integral manifolds are

always regular embedding submanifolds.

2 Discussion about Stefan's and Sussmann's pa-

pers and statement of the main result

If S is a set of vector �elds everywhere de�ned on M then we denote by S#

the F(M )-module generated by S (i.e. the smallest F(M )-module which in-

cludes S). We observe that the distribution generated by S is the same as the

distribution generated by S#.

2.1 Discussion about Stefan's and Sussmann's papers

In this section we are going to show by a counterexample that the implication

e ) d of Theorem 4:2 from Sussmann's paper ([Su73]) and Theorem 4 from

Stefan's paper ( [St80]) do not hold .

We refer now to Stefan's paper and we begin by recalling the de�nition of local

subintegrability. For a set S of C1 vector �elds we denote by L the distribution

generated by S. For every vector �eld X of S, the map t ! Xt(x) denotes

the integral curve of X passing through x at t = 0 and dXt(x) denotes the

di�erential at x of the local di�eomorphism Xt : M !M . The set S is called

locally subintegrable at x0 2M if there exists a neighborhood 
 of x0 inM and

a subset Sb of S which generates the distribution Lb and satis�es the following

conditions :

(LS.1) Lb(x0) = L(x0) and Sb is integrable on 


(LS.2) For every vector �eld X in S there exists " > 0 such that

dXt(x0):L
b(x0) = Lb(Xt(x0)) for jtj < "

We remark that the choice of the subset Sb may depend on the point x0.

The gap we are refering to occurs in the following:
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"STATEMENT (Theorem4 from[St80]) A set S of C1 vector �elds is
integrable if and only if the set S# is locally subintegrable on M . "2
This is in turn a

COUNTEREXAMPLE Let M = R
2 and let S be the set of all vector

�elds of the form:
@

@x
+ �(x; y)

@

@y

where � is an arbitrary smooth (i.e. C1) function which satis�es two require-
ments:
1) �(0,0)=0
2) @�

@x
� 0 in some neighborhood of the origin depending on �. 3

The distribution L generated by S is de�ned as:

L(x) =

�
TxR

2 ; x 6= (0; 0)

spanRf
@

@x
j(0;0)g ; x = (0; 0)

and its dimension is given by :

dimL(x) =

�
2 ; x 6= (0; 0)

1 ; x = (0; 0)

It is clear now that L is not integrable at the origin. We will prove that S# is

locally subintegrable on M = R
2.

Let x0 2 R
2; x0 6= (0; 0).Let 
 be a neighborhood of x0 such that O(0; 0) 62 


(
 denotes the closure of 
). Then there exists a function � so that �(q) 6=

0; 8q 2 
 and �(x; y) @
@y

2 S# . Let 	 : R2 ! R be a smooth function such

that 	(q) 6= 0; 8q 2 R
2 and 	(q) = �(q) 8q 2 
 (	 can be found , possi-

bly by reducing the neighborhood 
 and using the partition of unit) and let

Y2 = 	�1� @

@y
2 S#. On 
 we have Y2j
 = @

@y
j
. Let Y1 = @

@x
2 S# and

Sb = fY1; Y2g. The condition (LS:1) is ful�lled by this Sb. For every x in S

there exists " > 0 such that Xt(x0) 2 
 with jtj < ". Since Xt is a local di�eo-

morphism and dimLb(x) = 2, for every x 2 M the second condition (LS:2) is

also ful�lled.

Let us take now Sb = f @

@x
g and let denote by Y = @

@x
. We are going to

verify that S is locally subintegrable at x0 = (0; 0). This Sb ful�lls the condi-

tion (LS:1). Let X 2 S#. Then X is of the form X = f1
@

@x
+ f2�

@

@y
, where

f1; f2 : R
2 ! R are arbitrary smooth functions and � satis�es the two require-

ments. Remark that 9� > 0 such that �(x; 0) = 0, for all jxj < �.

We �nd the integral curve of the vector �eld X passing through the origin. We

have the system:

�
_x = f1(x; y) ; x(0) = 0

_y = f2(x; y)�(x; y) ; y(0) = 0
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We obtain a solution x=x(t) at least continuous. We choose " > 0 such that we

have: jx(t)j < � , for all jtj < ". Then �(x(t); 0) = 0.

Since y(t) = 0; jtj < " is a particular solution of the second equation and

using the theorem of existence and unicity of the Cauchy problem we obtain the

system solution: x = x(t), y = 0 for jtj < ". The ow associated to the vector

�eld X is de�ned by :

Xt(x; y) = (�(t; x; y);  (t; x; y))

for x; y small enough, in a neighborhood of the origin, and:

dXt(x0):Y (x0) =
@�

@x
(t; 0; 0)

@

@x
jp +

@ 

@x
(t; 0; 0)

@

@y
jp

where p = Xt(x0) = (x(t); 0). But @ 

@t
= f2� then:

@

@t
(
@ 

@x
) =

@

@x
(
@ 

@t
) =

@f2

@x
� + f2

@�

@x

Let denote by g(t) = @ 

@x
(t; 0; 0). Since  (0; x; y) = y we have g(0) = 0. In the

neighbourhood of the origin where @�
@x

(p) = 0 and �(p) = 0 with p as above, we

obtain: dg

dt
(t) = 0, for jtj < ". Then g(t) = 0 and :

dXt(x0):Y (x0) =
@�

@x
(t; 0; 0)Y jp 2 L

b(Xt(x0))

Since @�

@x
(t; 0; 0) 6= 0 (the ow is a local di�eomorphism) we conclude that:

dXt(x0):L
b(x0) = Lb(Xt(x0)) (i:e: (LS:2))

Then S# is locally subintegrable on M = R
2.

The gap (in [St80]) occurs in the proof of the Lemma(6:2). It a�ects

Theorem 4, that uses this Lemma, and ,implicitly, the proof of Theorem 5,

that uses Theorem 4.

The solution that we propose in subsection 2:2 is to reformulate the condi-

tion of the existence of " (see the condition (LS.2)) in such a way that it becomes

independent of every other conditions (that means there exists an " > 0 "good"

for all vector �elds ). This happens , for example, in the case when S# is �nitely

generated, because we choose " = mini "Xi
, where fXigi=1;p spans the module.

From here we obtain Theorem 5 ([St80]).

Now we turn to Sussmann's paper. Even though the implication e)d is false,

the other equivalences are true. We prove this directly on the Sussmann's

proof (for this we suppose that the reader is familiar with the Sussmann's pa-

per | [Su73]): We will prove that from (a) it results (d) (in Theorem 4:2).
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The implication (a))(e) is true (for example it is included in Theorem 2:1

of this paper) and from both (a) and (e) we will obtain (d). We have that

W 1(t); : : : ;W k(t) 2 �(Xt(m)) are independent. Since Xt(m) belongs to the

integral manifold of � passing through m it results dim�(Xt(m)) = dim�(m)

and so W 1(t); : : : ;W k(t) form a basis for �(Xt(m)). Now the proof is complete.

2.2 Statement of the main result

Inspired by the previous discussion, we state now the main result of this paper.

THEOREM 2.1 Let L be a F(M )-module of C1 vector �elds on M and let
L denote the associated distribution. Let x0 2 M and k = dimL(x0). Then L

is integrable at x0 if and only if there exist " > 0 , vector �elds a1; : : : ; ak 2 L

and a neighborhood U of x0 that satisfy the following conditions:
1) At the point x0 a1jx0 ; : : : ; akjx0 span L(x0)
2) For all smooth vector �eld Z 2 L, there exist smooth functions

�
j

i
: (��Z ; �Z)! R such that for all t 2 (��Z ; �Z) and 1 � i � k we have:

[Z; ai]jexp tZ:x0 =

kX
j=1

�
j

i
(t)aj jexp tZ:x0 (1)

where: �Z
def
= supf�j� � " and exp tZ:x0 2 U for all jtj < �g 2

3 Split of the distribution and some punctual

results

Let L be a F(M )-module of C1 vector �elds and let L denote the associated

distribution. Let x0 2 M be a �xed point. Let k = dimL(x0) � n = dimM .

Then there exist k vector �elds a1; : : : ; ak 2 L such that a1jx0 ; : : : ; akjx0 span

L(x0) and in a chart around x0 ,(U ; ') , we have:

ai =
@

@xi
+

nX
j=k+1

aji
@

@xj
(2)

From now on we will agree implicitly that x 2 U . We associate to (ai) the

family F" de�ned by:

F" = fa� 2 V
1(M ) j a�

def
=

kX
i=1

�iai ; � = (�1; : : : ; �k) 2 R
k; j�j

def
=

kX
i=1

< "g

F" can be identi�ed with a ball in a k-dimensional space. For " > 0 small

enough we know that exp : F" !M is a regular embedding. So expF":x0 �M
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is a submanifold in M of dimension k (expF":x0
def
= fexp a�:x0j a� 2 F"g

and exp a�:x0 denotes x(1) where x(t) is the solution of the di�erential system

_x(t) = a�jx(t) with the initial condition x(0) = x0).

LEMMA 3.1 If L is integrable at x0, then N":x0
def
= expF":x0 is an integral

manifold of L passing through x0. 2

Let

G
def
= fb 2 Ljb =

nX
j=k+1

bj(x)cj(x); where b
j(x) 2 F(M ) and cj(x)jU =

@

@xj
g

L(�1)
def
= fa� 2 V

1(M ) j � = (�1; : : : ; �k) 2 R
kg

It is very easy to prove the following lemma:

LEMMA 3.2 The distribution generated by G�L(�1) coincides locally with L.
That means: L(x) = Gjx � L(�1)jx , for all x 2 U (� denotes a direct sum). 2

Clearly, dimL(x0) = dimL(�1)jx0 and: Gjx0 = f0g.

We have obtained two algebraic structures which generate locally the distri-

bution: L(�1) , which is a k-dimensional R-vector subspace, and G , which

is a F(M )-module and we say that (L(�1);G) is a splitting of the distribution
generated by L.

Directly from the de�nition and previous lemma it results:

LEMMA 3.3 The distribution L is integrable at x0 if and only if we have the
relations:
R1. L(�1)jx = TxN":x0 , for all x 2 N":x0
R2. GjN":x0

= 0 (that means Gjx = 0 , for all x 2 N":x0). 2

Following the proof of Nagano's theorem we have the next lemma (see [Na66]

for proof):

LEMMA 3.4 The distribution L is integrable at x0 if and only if:
1) [u; v]jexp tv:x0 = 0, for all u; v 2 L(�1) and jtj < "; " depending on v.
2) GjN":x0

= 0 2

In order to prove the main result we need the following lemma:

LEMMA 3.5 Let a1; : : : ; ak 2 V 1(U) (U being an open neighborhood of x0)
be smooth vector �elds and let Q = spanF(U)fa1; : : : ; akg. Let Z 2 V1(U)

and fb1; : : : ; bkg � Q such that bi =
P
k

j=1 fijaj and ai =
P
k

j=1 gijbj where
fij; gij : U ! R are smooth functions.

If there exist C1 functions �j
i
: (�"; ")! R; i; j = 1; k such that:

[Z; ai]jexp tZ:x0 =

kX
j=1

�
j

i
(t)aj jexp tZ:x0
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then there exist C1 functions �j
i
: (�"; ")! R; i; j = 1; k such that:

[Z; bi]jexp tZ:x0 =

kX
j=1

�
j

i
(t)bjjexp tZ:x0

Proof

We obtain:

[Z; bi]jexp tZ:x0 =

kX
l=1

[

kX
j=1

gjlZ(fij) +

kX
j;s=1

gsl�
s

j
fij]bljexp tZ:x0 =

kX
l=1

�l
i
bljexp tZ:x0

Q.E.D. 2

4 Proof of the main result

Lemma 3:5 shows that the condition (2) from Theorem 2:1 is invariant under

a change of the basis. Then we choose for faig the vector �elds which form

the basis of L(�1) obtained by a splitting of L. Moreover, let " be as in the

de�nition of N":x0 .

Suppose L integrable. We choose U as in x3.

1) It is checked by the construction of vector �elds faig

2) Let Z 2 L. Then Z =
P
k

j=1 fjaj + b where b 2 G and fj 2 F(M ). We

obtain:

[Z; ai] =

kX
j=1

fj [aj; ai] + [b; ai]�

kX
j=1

ai(fj)aj

Since L is integrable at x0 and tZjx 2 L(x); 8x 2 N":x0 we have xt = exp tZ:x0 2

N":x0 and we obtain: [Z; ai]jxt =
P

k

j=1 �
j

i
(t)aj jxt for all jtj < �Z .

To prove the converse, we apply Lemma 3:4

a) We show that for all a1; a2 2 L(�1); [a1; a2]jexp ta1:x0 = 0, with jtj < " = �a1 .

We write the given relation for Z = a1 and ai = a2.

On one hand we have: [a1; a2] =
P
n

j=k+1 �j
@

@xj

on the other hand:
P
k

j=1 �
j

2(t)aj = �12(t)
@

@x1
+ � � �+�k2(t)

@

@xk
+
P
n

s=k+1�
s

2(t)
@

@xs

From [Z; ai]jexp tZ:x0 =
P
k

j=1 �
j

i
(t)aj jexp tZ:x0 we obtain: [a1; a2]jexp tZ:x0 = 0;

jtj < ".

b) We show that GjN":x0
= 0. Let X 2 G. We put Zi = X + ai and write:

[Zi; ai] = [X; ai]. Then, as above, we obtain: [X; ai]jexp tZi:x0
= 0; jtj < �Zi

.

Obviously: [X;X]jexp tZi:x0
= 0. Then:

[X; (X + ai)]jexp t(X+ai):x0 = 0 or [Zi; X]jexp tZi:x0
= 0; jtj < �Zi

We can apply a formula from 3:2 ([St80]) and we obtain:

d

dt
X(xt) = DZi �Xjxt
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(where xt = exp tZi:x0 and DZi is the jacobian matrix of Zi) with the initial

condition: X(u(0)) = X(x0) = 0 (recall that X 2 G). Using the theorem

of existence and unicity of the solution of the Cauchy problem, we obtain:

Xjexp tZi:x0
= 0. But then Zijexp tZi:x0

= (ai + X)jexp tZi:x0
= aijexp tZ:x0 . So:

exp tZi:x0 = exp tai:x0. That means: Xjexp tai:x0 = 0, and jtj < �Zi
= �X+ai =

�ai = ". So: GjN":x0
= 0

Q.E.D. 2

5 Acknowledgments

I wish to thank Professor Andrea Bacciotti for the help during the prepara-

tion of this paper when the author was for a stage at Polytechnic Institute of

Torino. I also would like to thank Professors Paul Flondor, Vasile Brânz�anescu

and Corneliu Popeea (from Polytechnic Institute of Bucharest) for comments,

suggestions and, respectively, criticism.

References

[Hen62] R. Hermann, The Di�erential Geometry of Foliations,II,
J.Math.Mech., 11(1962), 303{316

[Na66] T. Nagano, Linear di�erential systems with singularities and an ap-
plication to transitive Lie algebras, J.Math. Soc.Japan, 118(1966),

398{404

[St80] P. Stefan, Integrability of Systems of Vector�elds , J.London Math.

Soc.(2), 21(1980), 544{556

[Su73] H.J. Sussmann, Orbits of Families of Vector�elds and Integrability of
Distributions, Trans.Amer.Math.Soc., 180(1973) , 171{188

8


