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Abstract — In previous work, we have success-
fully used an ideal joint sparseness assumption:
W-Disjoint Orthogonality (WDO). This assumption,
that the time-frequency representations of the sources
have disjoint support, is satisfied in an approximate
sense by many signals of practical interest, includ-
ing speech. Here we discuss results derived from
a stochastic model of speech signals that justify the
WDO hypothesis. If the magnitude of the time-
frequency components of the source signals have
Laplacian priors, a subset of their maximum á pos-
teriori (MAP) estimates are guaranteed to satisfy the
WDO assumption.

I. Introduction
Speech is sparse. This sparseness has been exploited in the
ICA-BSS community for parameter estimation and source sep-
aration (e.g., [1],[2],[3]). A time-frequency (TF) sparseness
assumption was introduced in [4] and subsequently used in
[5] and [6] which allows for the separation of more than two
sources given just two mixtures. This sparseness property,
called W-disjoint orthogonality (WDO), assumes that the sig-
nals have non-overlapping TF representation supports. Given
source TF representations S1(ω, t), . . . , SN (ω, t), the WDO as-
sumption can be stated,

Si(ω, t)Sj(ω, t) = 0, ∀i �= j,∀(ω, t). (1)

This assumption has been shown to be approximately true for
speech signals [7]. In [6] we argued that WDO is approximately
satisfied when one assumes a signal model of the form:

S(ω, t) = B(ω, t)G(ω, t) (2)

where B(ω, t) is a Bernoulli random variable (i.e. it takes a
value of only 0 or 1), and G(ω, t) is a continuously distributed
random variable. It follows that the joint distribution is:

pS1,S2(S1, S2) = (1 − q)2δ(S1)δ(S2) + q(1 − q)(δ(S1)p(S2)

+δ(S2)p(S1)) + q2p(S1)p(S2) (3)

The purpose of this note is to point out that (1) and (3) follow
as consequences of a more general stochastic model.

II. The Stochastic Model and Main Results
Our model is based on the following assumption: TF co-

efficients of speech signals are independent and have Laplace
distributed priors. Furthermore, given a mixture, one cannot
distinguish between the true input signals and their maximum
à posteriori estimates. Hence, given empirical distributions of
the measured mixtures, the only inference about the true dis-
tribution of source signals is given by the distribution of the
MAP estimates.

Assume two signals s1(·), s2(·) are mixed by a known convo-
lutive model and measured together with some measurement
noise. In the TF domain, the mixing model becomes:

X1(ω, t) = S1(ω, t) + S2(ω, t) + N1(ω, t) (4)

X2(ω, t) = H1(ω)S1(ω, t) + H2(ω)S2(ω, t) + N2(ω, t)

Assuming N1, N2 are Gaussian distributed, the MAP estimates
of S1, S2 becomes:

(Ŝ1,Ŝ2)=argminS1,S2
|X1−S1−S2|2+|X2−H1S1−H2S2|2+λ1|S1|+λ2|S2|

(5)
where λ1 and λ2 depend on the prior variance of the two signals
and the variance of the noise. The problem (5) seems not to
have a closed form solution. In fact, the higher dimensional
equivalent problem has been the focus of many other papers,
and recently an algorithm to solve it in a wavelet basis has been
proposed (see [8]). Instead we will show the behavior of the
solution. We state here, without proof, the two main results:

Theorem 1 Assume H1 �= H2. Then ∃r > 0 such that for all
X1, X2, |X1| < r, |X2| < r, the solution of (5) satisfies:

Ŝ1Ŝ2 = 0 (6)

Theorem 1 states that the MAP estimates of the sources for
all time-frequency components with magnitude smaller than
some threshold r satisfy the WDO assumption.

Theorem 2 Assume H1 �= H2. Given the joint empirical dis-
tribution of X1, X2, the empirical dist. of (Ŝ1, Ŝ2) factors:

p
Ŝ1,Ŝ2

(S1,S2) = (1−q1)(1−q2)δ(S1)δ(S2)+q1(1−q2)p1(S1)δ(S2)

+(1−q1)q2δ(S1)p2(S2)+q1q2p(S1,S2) (7)

Theorem 2 states that the empirical MAP joint distribution
takes the same form as the joint distribution based on the
Bernoulli TF model (Equation (3)). Thus, both (1) and (3) fol-
low from the MAP source estimators of mixtures of Laplacian
distributed sources. Future work will focus on (a) the relation-
ship between r and the random variable parameters (we hope
that r is indeed large enough to contain considerable source
energy) (b) the extension to arbitrary mixing dimensions, and
(c) continuing efforts to leverage (1) and (3) to provide closed
form BSS algorithms rather than iterative procedures.

References
[1] J. Huang, N. Ohnishi, N. Sugie. “A biomimetic system for local-

ization and separation of multiple sound sources”, IEEE Trans.
on Inst. and Measurement, 44(3):733–738, June 1995.

[2] M. Aoki, M. Okamoto, S. Aoki, H. Matsui, T. Sakurai, Y.
Kaneda, “Sound source segregation based on estimating incident
angle of each freq. comp. of input signals acquired by multiple
microphones”, Acoust. Sci. Tech., 22(2), 149–157, 2001.

[3] M. Zibulevsky , B. Pearlmutter, “Blind source separation by
sparse decomposition in a signal dictionary”, Neural Computa-
tion, 13(4):863–882, 2001.

[4] A. Jourjine, S. Rickard, O. Yilmaz, “Blind separation of disjoint
orthogonal signals: Demixing N sources from 2 mixtures”, 2985–
2988, ICASSP 2000.

[5] S. Rickard, R. Balan, J. Rosca, “Real-time time-frequency based
blind source separation”, 651–656, ICA 2001.

[6] R. Balan, J. Rosca, S. Rickard, “Scalable non-square blind source
separation in the presence of noise”, ICASSP 2003.

[7] S. Rickard, O. Yilmaz. “On the approximate W-disjoint orthog-
onality of speech”, 529–532, ICASSP 2002.

[8] I. Daubechies, M. Defrise, C. De Mol, “An iterative algorithm for
ill-posed inverse problems where the object has a sparse wavelet
expansion”, AMS Meeting, Baltimore January 2003.


