

Introduction

We study filtering of time-varying graph signals on directed (or undirected) graphs in the context of representation learning and graph convolutional networks. Our two primary contributions are an expressive graphical model using Laurent graph-shift operators and a flexible filter design framework using functional calculus.

Modeling Time-Varying Graph Signals

Let \mathcal{G} be a graph with nodes $\mathcal{V} = \{0, \ldots, n-1\}$. Time-varying graph signals are sequences,

$$\mathbf{x} = \left(\mathbf{x}_t \in \ell^2\left(\mathcal{V}\right)\right)_{t \in \mathbb{Z}},$$

elements in a Hilbert space $\mathcal{H} = \ell^2 (\mathbb{Z} \times \mathcal{V})$. Graph-shift operators of time-varying graph signals are bounded linear transformations on \mathcal{H} . Any $\mathbf{S} \in \mathcal{B}(\mathcal{H})$ has a unique kernel function, $\mathbf{K}: \mathbb{Z} \times \mathbb{Z} \to \mathcal{B}(\ell^2(\mathcal{V}))$ such that

$$(\mathbf{S}\mathbf{x})_t = \lim_{N \to \infty} \sum_{s=-N}^{N} \mathbf{K}(t, s) \mathbf{x}_s.$$

We consider Laurent graph-shift operators $\mathbf{S} \in \mathcal{B}(\mathcal{H})$, *i.e.* $\mathbf{K}(t,s) =$ $\mathbf{K}(t+d, s+d) = \mathbf{K}_{t-s}$ for all $d \in \mathbb{Z}$,

$$\mathbf{S}\mathbf{x} = \begin{bmatrix} \cdots \cdots \cdots & \cdots & \cdots & \cdots \\ \cdots & \mathbf{K}_0 & \mathbf{K}_{-1} & \mathbf{K}_{-2} & \cdots \\ \cdots & \mathbf{K}_1 & \mathbf{K}_0 & \mathbf{K}_{-1} & \cdots \\ \mathbf{K}_2 & \mathbf{K}_1 & \mathbf{K}_0 & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix} \begin{bmatrix} \mathbf{x} \begin{bmatrix} -1 \\ \mathbf{x} \begin{bmatrix} 0 \end{bmatrix} \\ \mathbf{x} \begin{bmatrix} 1 \end{bmatrix} \\ \mathbf{x} \end{bmatrix},$$

for which we recover a variant of the convolution theorem:

$$\sum_{t \in \mathbb{Z}} e^{2\pi i \omega t} \left(\mathbf{S} \mathbf{x} \right)_t = \left(\sum_{s \in \mathbb{Z}} e^{2\pi i \omega s} \mathbf{K}_s \right) \cdot \left(\sum_{t \in \mathbb{Z}} e^{2\pi i \omega t} \mathbf{x}_t \right).$$
(4)

The kernels capture the weighted edges between nodes at fixed timescales, *i.e.* $[\mathbf{K}_t]_{i,j}$ is the weighted edge from node j to node iat timescale t.

Pointwise for $\omega \in [0, 1]$, we have a Jordan spectral representation

$$\sum_{s \in \mathbb{Z}} e^{2\pi i \omega s} \mathbf{K}_s = \sum_{k=0}^{m(\omega)} \lambda_k(\omega) \mathbf{P}_k(\omega) + \mathbf{N}_k(\omega)$$
(5)
$$\sum_{s \in \mathbb{Z}} m(\omega) \leq m \quad \text{The spectrum of } \mathbf{S} \text{ is } \Lambda(\mathbf{S}) = -$$

where $0 < m(\omega) \leq n$. The spectrum of **S** is $\Lambda(\mathbf{S}) =$ $\bigcup_{\omega \in [0,1]} \left\{ \lambda_k(\omega) \right\}_{k=0}^m.$

Learning Flexible Representations of Stochastic Processes on Graphs

Addison W. Bohannon,^{1,3} Brian M. Sadler,¹ Radu V. Balan^{2,3}

¹ U.S. Army Research Laboratory, Adelphi, MD, USA ² Department of Mathematics, University of Maryland, College Park, MD, USA ³ Center for Scientific Computation and Mathematical Modeling, University of Maryland, College Park, MD, USA

(1)

(2)

(3)

Goal

Let $\mathbf{S} \in \mathcal{B}(\mathcal{H})$ be as in Fig. 2, where \mathbf{K} is given by the weighted edges of the graph. We want to design an ideal bandpass filter $\mathbf{A} \in \mathcal{B}(\mathcal{H})$ according to (8) which passes only a single invariant subspace of \mathbf{S} .

 \mathbf{S} has a Jordan spectral representation given pointwise for $\omega \in [0, 1]$ as in (5):

$$\lambda_{\pm}(\omega) = \frac{2}{5}e^{2\pi i\omega} \pm \sqrt{\left(1 - \frac{3}{5}e^{6\pi i\omega}\right)} \begin{pmatrix} 1\\ 1\\ \pm\sqrt{\frac{5-4e^{4\pi i\omega}}{5-3e^{6\pi i\omega}}} \end{pmatrix}} \\ \mathbf{P}_{\pm}(\omega) = \frac{1}{2}\begin{bmatrix} 1\\ \pm\sqrt{\frac{5-3e^{6\pi i\omega}}{5-4e^{4\pi i\omega}}} & 1 \end{bmatrix}}; \\ \mathbf{N}_{\pm}(\omega) = \mathbf{0}.$$

Filtering Time-Varying Graph Signals

Let $\mathbf{S} \in \mathcal{B}(\mathcal{H})$ be Laurent with a Jordan spectral representation given by Eq. (5). For all $\mathbf{x} \in \mathcal{H}$, we want to find covariant graph filters $\mathbf{A} \in \mathcal{B}(\mathcal{H}),$

$$(\mathbf{ASx})_t = (\mathbf{SAx})_t. \tag{6}$$

Let $U \subset \mathbb{C}$ be an open set such that $\Lambda(\mathbf{S}) \subset U$ and $\phi: U \to \mathbb{C}$ be a holomorphic function. Then, for a closed curve $\Gamma \subset U$ that encloses $\Lambda(\mathbf{S}),$

$$\phi(\mathbf{S}) := \frac{1}{2\pi i} \oint_{\Gamma} \phi(z) \left(z\mathbf{I} - \mathbf{S} \right)^{-1} dz \tag{7}$$

defines a bounded operator on \mathcal{H} . Then, $\mathbf{A} = \phi(\mathbf{S})$ satisfies (6) and

$$\sum_{t \in \mathbb{Z}} e^{2\pi i \omega t} \left(\mathbf{A} \mathbf{x} \right)_{t} = \sum_{k=0}^{m(w)} \left[\left(\phi \circ \lambda_{k} \right) (\omega) \mathbf{P}_{k}(\omega) + \left(\phi' \circ \lambda_{k} \right) (\omega) \mathbf{N}_{k}(\omega) \right] \cdot \hat{\mathbf{x}}(\omega).$$
(8)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Example

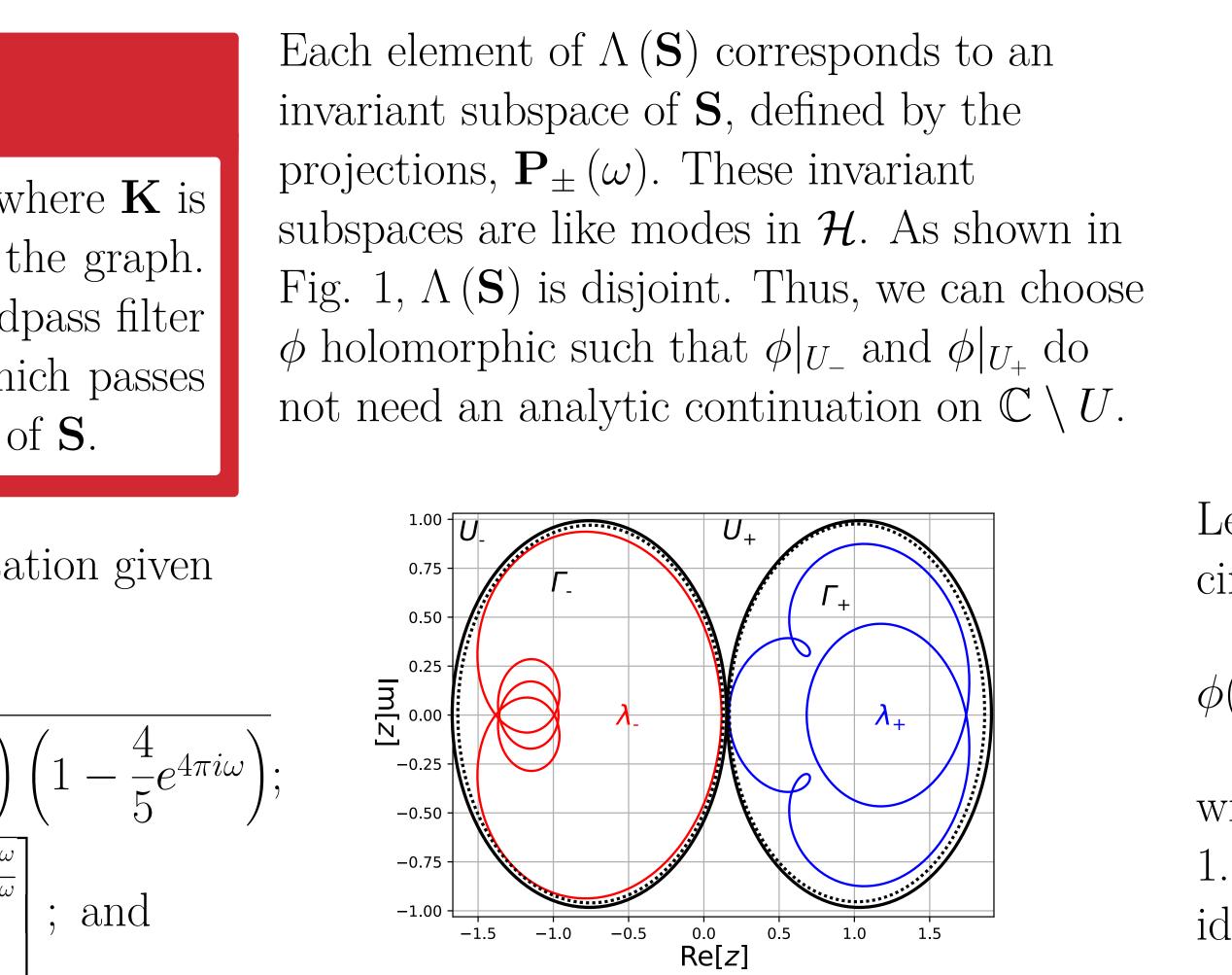


Figure 1: Spectrum of **S**

- Laurent graph-shift operators offer a more expressive graphical model than factor graphs
- Learning complexity can be controlled by parameterization of holomorphic function ϕ
- Applications include network neuroscience, social network modeling, and sensor array processing
- Future work will focus on application of approach in a learning problem

Radu Balan was partially supported by NSF grant DMS-1413249, ARO grant W911NF1610008, and LTS grant H9823013D00560049.

Corresponding email: addison.w.bohannon.civ@mail.mil

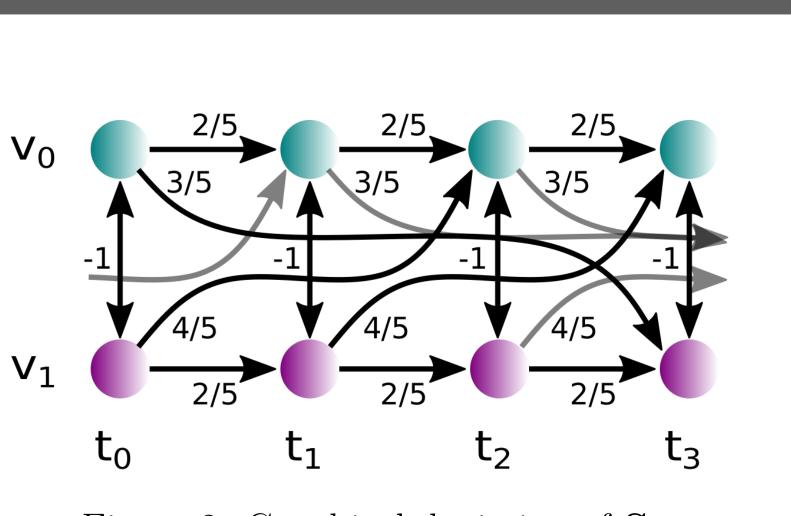


Figure 2: Graphical depiction of \mathbf{S} .

Let $\mathbf{A} = \lim_{\sigma \to 0} \phi(\mathbf{S}; \mu, \sigma)$ where ϕ is a circular complex Gaussian,

 $\phi(z;\mu,\sigma) = \begin{cases} \frac{1}{2\pi\sigma} \exp\left\{-\frac{1}{\sigma^2}|z-\mu|^2\right\} & z \in U_+\\ 0 & o.w. \end{cases}$

with $\mu \in \mathbb{C}$, $\sigma \in \mathbb{R}$, and U as defined in Fig. 1. Let $\mu = \lambda_+(\omega_0)$. Then, **A** implements an ideal bandpass,

$$(\mathbf{A}\mathbf{x})_t = e^{-2\pi i\omega_0 t} \mathbf{P}_+(\omega_0) \left(\sum_{s\in\mathbb{Z}} e^{2\pi i\omega_0 s} \mathbf{x}_s\right).$$

Conclusion

Acknowledgements