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1. Introduction

Let H be a separable Hilbert space and I a countable index set. A sequence
F = {fi}i∈I of elements of H is a frame for H if there exist constants A, B > 0
such that

∀h ∈ H, A ‖h‖2 ≤
∑
i∈I

|〈h, fi〉|2 ≤ B ‖h‖2. (1)

The numbers A, B are called lower and upper frame bounds, respectively (the
largest A and smallest B for which (1) holds are the optimal frame bounds).
Frames were first introduced by Duffin and Schaeffer [5] in the context of non-
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harmonic Fourier series, and today frames play important roles in many appli-
cations in mathematics, science, and engineering. We refer to the monograph of
Daubechies [4] or the research-tutorial [8] for basic properties of frames.

Each frame F is complete in H, i.e., the finite linear span of F is dense in
H. Moreover, a frame provides basis-like representations of the elements of H.
Specifically, there exist vectors f̃i such that

∀h ∈ H, h =
∑
i∈I

〈h, fi〉 f̃i =
∑
i∈I

〈h, f̃i〉 fi, (2)

with unconditional convergence of these series. In general, however, a frame need
not be a basis, and the representations in (2) need not be unique. Frames which
are not bases are overcomplete, i.e., there exist proper subsets of the frame which
are complete [5]. The excess of the frame is the greatest integer n such that n

elements can be deleted from the frame and still leave a complete set, or ∞ if
there is no upper bound to the number of elements that can be removed. In
the former case, it can be shown that the frame is simply a Riesz basis to which
finitely many elements have been adjoined [9]. Such frames are called “near Riesz
bases” and behave in many respects like Riesz bases. A frame with infinite excess
need not contain a Riesz basis as a subset; an example was constructed in [3] and
is discussed in Example 5.1.

In this paper we will study the excess of frames and of more general sys-
tems, and the dual concept of the deficit of a system (the minimum number of
elements that must be adjoined to obtain a complete set). Our motivation was
the particular case of Weyl–Heisenberg or Gabor frames. These are frames for the
Hilbert space L2(R) of the form {e2πimβx g(x−nα)}m,n∈Z, where g ∈ L2(R) and
α, β > 0. The Balian–Low Theorem states that if a Weyl–Heisenberg frame is
a Riesz basis for L2(R), then the window function g must be poorly localized in
either time or frequency, specifically, ‖tg(t)‖2 ‖ωĝ(ω)‖2 = ∞ [4]; see also [1] for
an “amalgam space” variation. Thus, the most useful Weyl–Heisenberg frames
are overcomplete. It can be shown that if αβ > 1 then any Weyl–Heisenberg
system is incomplete, if αβ = 1 then a Weyl–Heisenberg frame is a Riesz basis,
and if αβ < 1 then a Weyl–Heisenberg frame is overcomplete, cf. [13], [12], [4].

It was shown in [7, Prop. 7.1.3] that if g generates an overcomplete Weyl–
Heisenberg frame and is compactly supported with support contained in an in-
terval of length 1/β, then the frame has infinite excess. The question of whether
every overcomplete Weyl–Heisenberg frame has infinite excess motivated the re-
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search for this paper. We prove in this paper that this is the case, and in fact
we obtain a much stronger result: in any overcomplete Weyl–Heisenberg frame
it is possible to find an infinite subset that can be deleted yet leave a frame (not
merely a complete set), and furthermore we can specify the frame bounds of the
resulting system. Moreover, we obtain this result as a corollary of more general
results on the excesses and deficits of Bessel sequences and arbitrary frames, and
we also obtain as corollaries statements about wavelet frames.

The organization of our paper and a sketch of the main results is as follows.
In Section 2, we present basic notation and definitions. In Section 3, we show
that if F is any complete sequence in a Banach space which has infinite excess,
meaning that for any n there exists a finite subset Gn of cardinality n such that
F \ Gn is complete, then there actually exists a countably infinite subset G ⊂ F
such that F \ G is complete. We remark that it is not true that F \ ∪Gn will
necessarily be complete, even if the Gn are nested.

In Section 4, we restrict to the case of Bessel sequences in Hilbert spaces, i.e.,
sequences which at least satisfy the upper frame condition. We relate the deficit
and excess of a Bessel sequence to the dimension of the kernels of the analysis
operator T and synthesis operator T ∗ associated with the Bessel sequence. We
show that if there exists a pair of operators Q, L that intertwine with T , i.e.,
LT = TQ, then the structure of the point spectrum of these operators induces
restrictions on the deficit and excess of the sequence. In particular, if Q has no
point spectrum then the deficit is either 0 or ∞, while if L∗ has no point spectrum
and F is a frame, then the excess is either 0 or ∞.

In Section 5, we further restrict to the case of frames in Hilbert spaces. It
was proved by Duffin and Schaeffer [5] that if F is a frame for H and f ∈ F is
such that F \{f} is complete in H, then F \{f} is a frame for H. We prove that
if there exist infinitely many elements gn ∈ F such that F \ {gn} is complete for
each individual n and if there is a uniform lower frame bound L for each frame
F \ {gn}, then for each ε > 0 there exists an infinite subset Gε of {gn}n∈N such
that F \ Gε is a frame for H with lower frame bound L − ε. Moreover, we show
that the existence of such elements gn is necessary as well as sufficient in order
that an infinite set may be deleted yet leave a frame, and we provide an example
of a frame with infinite excess where such a collection of elements gn yielding a
uniform lower frame bound for each F \ {gn} does not exist. We further show
that the existence of such elements gn can be determined from the values of the
inner products of the frame elements with the standard dual frame elements.
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Finally, in Section 6 we apply our results to the specific cases of Weyl–
Heisenberg and wavelet systems. We prove that any Weyl–Heisenberg or wavelet
system that is an overcomplete frame for its closed linear span contains an in-
finite subset that can be deleted yet still leave a frame for the same space. We
extend these results to the case of Weyl–Heisenberg multisystems whose generat-
ing parameters are rationally related, or to wavelet multisystems whose dilation
parameters are logarithmically rationally related. A sequel paper will examine
the case of systems where these rationality assumptions are not satisfied.

2. Notation

N will denote the set of natural numbers, while I will denote a generic
countable index set. |E| denotes the cardinality of a set E.

Let X be a Banach space and let F = {fi}i∈I be a sequence of elements of
X. The finite linear span of F is denoted by span(F), and span(F) denotes the
closure (in the norm-topology of X) of span(F). We say that F is complete if
span(F) = X.

A sequence F = {fi}i∈I in a separable Hilbert space H is a Bessel sequence
if there exists a constant B > 0 such that

∀h ∈ H,
∑
i∈I

|〈h, fi〉|2 ≤ B‖h‖2.

Associated to any Bessel sequence are the analysis operator T defined by

T : H → �2(I)

h �→ {〈h, fi〉}i∈I

and the synthesis operator T ∗ defined by

T ∗: �2(I)→ H

c �→
∑
i∈I

cifi.

These are everywhere-defined, bounded operators, each adjoint to the other. If
c ∈ �2(I), then the series

∑
cifi defining T ∗c converges unconditionally in the

norm of H. Since span(F) ⊂ ran T ∗ ⊂ span(F), we have span(F) = ran T ∗. The
elements of a Bessel sequence are uniformly bounded above in norm, specifically,
‖fi‖2 ≤ B for each i ∈ I.



R. Balan et al. / Deficits and Excesses of Frames 5

Frames are special cases of Bessel sequences. The utility of a frame lies in the
fact that there exists a dual frame {f̃i}i∈I such that the frame expansions in (2)
hold (this fails in general for Bessel sequences). The standard dual frame is given
by f̃i = S−1fi, where S = T ∗T is the frame operator. The frame operator is a
positive, continuously invertible mapping of H onto itself, with AI ≤ S ≤ BI. A
frame is tight if it is possible to take A = B in (1), normalized tight if A = B = 1
(but note that some authors define a normalized frame to be one where ‖fi‖ = 1
for every i ∈ I). Since S is a positive operator, it has a positive square root S1/2.
Moreover, S−1/2 is a bounded, continuously invertible operator and {S−1/2fi}i∈I

is a normalized tight frame for H [7, Cor. 6.3.5], [2, Thm. III.2]. Thus every
frame is equivalent to a normalized tight frame.

A Riesz sequence is a sequence F = {fi}i∈I for which there exist A, B > 0
such that

∀ c ∈ �2(I), A
∑
i∈I

|ci|2 ≤
∥∥∥∥
∑
i∈I

cifi

∥∥∥∥
2

≤ B
∑
i∈I

|ci|2.

If a Riesz sequence is complete then it is called a Riesz basis for H. All Riesz
bases are frames. If F is a Riesz basis, then for each h ∈ H the frame expansion
given in (2) is unique. A frame is a Schauder basis for H if and only if it is a
Riesz basis for H.

Definition 2.1. Let F = {fi}i∈I be a sequence in a separable Banach space X.

a. The deficit of F is

d(F) = inf
{|G| : G ⊂ X and span(F ∪ G) = X

}
.

That is, the deficit is the least cardinal d(F) such that there exists a subset
G ⊂ X of cardinality d(F) so that F ∪ G is complete in X.

b. The excess of F is

e(F) = sup
{|G| : G ⊂ F and span(F \ G) = span(F)

}
. (3)

We will show in Lemma 4.1 that the supremum in (3) is achieved, i.e., the excess
is the greatest cardinal e(F) such that there exists a subset G ⊂ F of cardinality
e(F) so that F \ G is complete in span(F).

Note that a frame for a Hilbert space H has zero deficit, whereas a Riesz
sequence in H has zero excess. The converses of these statements are not true
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in general. However, it is true that if a frame has zero excess, then it is a Riesz
basis for H [5].

3. Arbitrary Sequences

In this section we will show that if a complete sequence F in a Banach space
X has infinite excess, then there exists a countably infinite subset G such that
F \ G is complete in X. First, however, consider the following trivial example.

Example 3.1. Let {en}n∈N be an orthonormal basis for a Hilbert space H.
Then F = {2−m/2en}m,n∈N is a normalized tight frame with infinite excess. Let
F = {fn}n∈N be any enumeration of F , and set Gn = {f1, . . . , fn}. Then F \ Gn

is complete in H for every n, yet F \ ∪Gn = ∅.

Clearly, in this example there does exist an infinite set G such that F \ G is
complete. We show in the following lemma that whenever there exist increasing
finite nested subsets which can be deleted from a sequence F yet leave a complete
set, then is in fact possible to find an infinite subset that can be deleted yet leave
a complete set.

Lemma 3.2. Let F = {fi}i∈I be a sequence in a Banach space X, and assume
that there exists a subsequence {gn}n∈N such that F \{g1, . . . , gn} is complete in
X for each n ∈ N. Then there exists an infinite subsequence G of {gn}n∈N such
that F \ G is complete in X.

Proof. Let E = F \ {gn}n∈N. Let k1 = 1. Since E ∪ {gn}∞n=2 = F \ {g1} is
complete, there exists k2 > k1 such that

dist
(
gk1 , span(E ∪ {gn}k2−1

n=2 )
)

<
1
2
,

where dist(x, Y ) = inf{‖x − y‖ : y ∈ Y } is the distance from a vector x to a
subset Y of X. Since E∪{gn}∞n=k2+1 = F \{g1, . . . , gk2} is complete, there exists
k3 > k2 such that both

dist
(
gk1 , span(E ∪ {gn}k3−1

n=k2+1)
)

<
1
3

and

dist
(
gk2 , span(E ∪ {gn}k3−1

n=k2+1)
)

<
1
3
.
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Continuing in this way we find k1 < k2 < · · · such that for each � ∈ N we have

dist
(
gkj

, span(E ∪ {gn}k�+1−1
n=k�+1)

)
<

1
� + 1

, j = 1, . . . , �. (4)

Let G = {gkj
}∞j=1. We claim that F \ G is complete. Since F is complete, it

suffices to show that

∀ j ∈ N, dist
(
gkj

, span(F \ G)
)

= 0. (5)

Since E ∪ {gn}k�+1−1
n=k�+1 ⊂ F \ G, we have from (4) that for all � ≥ j,

dist
(
gkj

, span(F \ G)
) ≤ dist

(
gkj

, span(E ∪ {gn}k�+1−1
n=k�+1)

)
<

1
� + 1

.

Hence (5) holds and the proof is complete.

Next, we show that it is possible to remove the hypothesis of nestedness in
Lemma 3.2. Consequently, in every sequence with infinite excess there exists an
infinite subsequence that can be deleted yet leave a complete set.

If S is a subspace of a Banach space X, then dim(S) denotes the dimension
of a subspace S (either finite or ∞). The codimension of S is codim(S) = dim(T )
where T is any algebraic complement of S, i.e., any subspace such that S+T = X

and S∩T = {0}. The codimension of S is independent of the choice of subspace T .

Theorem 3.3. Let F = {fi}i∈I be a complete sequence in a Banach space X

with infinite excess. Then there exists an infinite subsequence G of F such that
F \ G is complete in X.

Proof. We claim that there must exist a subsequence {gn}n∈N of F such that
F \ {g1, . . . , gn} is complete in X for each n ∈ N. Once this is shown, the result
then follows immediately from Lemma 3.2.

If no such subsequence existed, there would exist at least one maximal finite
subset G = {g1, . . . , gn} of F such that F \ G is complete. Since F has infinite
excess, there must also exist a finite subset H = {h1, . . . , hm} of F with m ≥ 2n
such that F \H is complete. Since G is maximal, we cannot have G ⊂ H. Hence
G∩H contains at most n−1 elements and H \G contains at least n+1 elements.

Let E = F \ (G ∪H). Since E ∪ (G \H) = F \H and E ∪ (H \G) = F \G

are both complete, we have that

span(E) + span(G \ H) = X (6)
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and

span(E) + span(H \ G) = X. (7)

It follows from (6) that

codim(span(E)) ≤ |G \ H| ≤ n.

Combining this with (7) implies that span(H \G) contains an algebraic comple-
ment of span(E) of dimension at most n. Since |H \ G| ≥ n + 1, at least one
element h ∈ H \G must lie in the closed span of the union of E and the remaining
elements of H \ G. But then E ∪ (

H \ (G ∪ {h})) = F \ (G ∪ {h}) is complete,
which contradicts the maximality of G.

4. Bessel Sequences

In this section we consider the deficits and excesses of Bessel sequences
in a Hilbert space. The following result connects the excess and deficit to the
dimension of the kernels of the analysis and synthesis operators.

Lemma 4.1. Let F = {fi}i∈I be a Bessel sequence in a separable Hilbert space
H, and let T :H → �2(I) be the associated analysis operator.

a. d(F) = dim(ker T ).

b. e(F) ≥ dim(ker T ∗).

c. If F is a frame then e(F) = dim(ker T ∗).

Proof. a. This follows immediately from the fact that
(
span(F)

)⊥ =(
ranT ∗)⊥ = ker T .

b. For simplicity of notation, let I = N. Let y1, . . . , ym be linearly indepen-
dent sequences in ker T ∗, and write yj = (yj,i)i∈N. Then

T ∗yj =
∞∑
i=1

yj,ifi = 0, j = 1, . . . ,m, (8)

or, in terms of an infinite matrix equation,
⎡
⎢⎢⎣

y1,1 y1,2 · · ·
...

... · · ·
ym,1 ym,2 · · ·

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f1

f2

...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
...
0

⎤
⎥⎥⎦ .
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The matrix on the left above has row rank m, hence has column rank m by
the same Gaussian elimination argument used for finite matrices. Let F =
{k1, . . . , km} denote the indices of a set of m independent columns. We claim
that {fi}i∈N\F is complete in span(F).

Suppose that h ∈ span(F) satisfies 〈fi, h〉 = 0 for i ∈ N \ F . Then from (8)
we have

0 = 〈T ∗yj, h〉 =
∞∑
i=1

yj,i 〈fi, h〉 =
m∑

i=1

yj,ki
〈fki

, h〉, j = 1, . . . ,m.

That is, ⎡
⎢⎢⎣

y1,k1 · · · y1,km

...
. . .

...
ym,k1 · · · ym,km

⎤
⎥⎥⎦

⎡
⎢⎢⎣
〈fk1, h〉

...
〈fkm, h〉

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
...
0

⎤
⎥⎥⎦ .

However, the matrix on the left-hand side is invertible, so this implies that
〈fkj

, h〉 = 0 for j = 1, . . . ,m. Hence 〈fi, h〉 = 0 for all i ∈ N, so h = 0.
Thus {fi}i∈N\F is complete, so e(F) ≥ m.

c. If dim(ker T ∗) = ∞, then e(F) = ∞ by part b. If dim(ker T ∗) < ∞, then
the fact that dim(ker T ∗) = e(F) follows from Theorems 2.4 and 3.1 in [9].

Example 4.2. If F is a Bessel sequence that is not a frame, then it is pos-
sible that e(F) can strictly exceed dim(ker T ∗). For example, let {en}n∈N be
an orthonormal basis for a Hilbert space H, and set f =

∑∞
n=1 en/n. Then

F = {en/n}n∈N ∪ {f} is a Bessel sequence but is not a frame, and it is easy
to see that e(F) = 1 while dim(ker T ∗) = 0. It is similarly possible to con-
struct Bessel sequences where e(F) is any specified finite value or infinity yet
dim(ker T ∗) = 0. In Example 6.7 we exhibit a Weyl–Heisenberg Bessel sequence
which satisfies e(F) = 1 and dim(ker T ∗) = 0.

Next we will show that with some additional structural assumptions on the
Bessel sequence, we can obtain more concrete information on the excess and
deficit of the sequence.

Definition 4.3. Let F be a Bessel sequence in a Hilbert space H with associated
analysis operator T :H → �2(I). If there exists a pair (Q,L) of bounded operators
Q:H → H and L: �2(I) → �2(I) such that

LT = TQ, (9)
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then we call (Q,L) an intertwining pair of operators for F .

It follows immediately that if (9) holds then:

a. ker T is Q-invariant,

b. ker T ∗ is L∗-invariant,

c. ran T is L-invariant,

d. ran T ∗ is Q∗-invariant.

Therefore, in light of Lemma 4.1, if an intertwining pair of operators exists, then
the excess and deficit of F are realized as dimensions of invariant subspaces
associated with Q and L∗. Now, if N is an operator on H which has no point
spectrum (i.e., there are no values λ ∈ C such that ker(N − λI) �= {0}), then
all non-trivial invariant subspaces of N must be infinite-dimensional. Indeed,
suppose that E was a finite-dimensional invariant subspace. Then N |E maps
the finite-dimensional space E into itself, hence must have an eigenvalue λ with
eigenvector x ∈ E. But then λ is also an eigenvalue of N , contradicting the fact
that N has no point spectrum. An operator with no point spectrum is said to
have a purely continuous spectrum. Combining these remarks with Lemma 4.1,
we obtain the following.

Theorem 4.4. Assume that there exists an intertwining pair of operators (Q,L)
for a Bessel sequence F in a separable Hilbert space H.

a. If Q∗ has no point spectrum, then either dim(span(F)) = 0 or
dim(span(F)) = ∞.

b. If Q has no point spectrum, then either d(F) = 0 or d(F) = ∞.

c. If L∗ has no point spectrum and F is a frame, then either e(F) = 0 or
e(F) = ∞.

Proof. a. If Q∗ has no point spectrum, then since span(F) = ranT ∗ is Q∗-
invariant, it must be either {0} or infinite-dimensional.

b. If Q has no point spectrum, then since ker T is Q-invariant, it must be
either {0} or infinite-dimensional. Hence d(F) = dim(ker T ) is either 0 or ∞.

c. If L∗ has no point spectrum, then since ker L∗ is L∗-invariant, it must
be either {0} or infinite-dimensional. However, if F is a frame then e(F) =
dim(ker T ∗), so e(F) must be either 0 or ∞.
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5. Frames

In this section we consider the excess of frames in Hilbert spaces.
By Theorem 3.3, if F is a frame that has infinite excess, then there exists

an infinite subset G ⊂ F such that F \ G is complete. However, the following
example shows that it is possible that there may be no way to choose G so that
F \ G is a frame. This example is exactly the example constructed in [3] of a
normalized tight frame which contains no subset that is a Riesz basis.

Example 5.1. Let H be a separable Hilbert space. Index an orthonormal basis
for H as {en

j }n∈N, j=1,...,n. Set Hn = span{en
1 , . . . , en

n}. Define

fn
j = en

j − 1
n

n∑
i=1

en
i , j = 1, . . . , n,

fn
n+1 =

1√
n

n∑
i=1

en
i .

Then Fn = {fn
1 , . . . , fn

n+1} is a normalized tight frame for Hn [3, Lemma 2.5].
Since Hn is n-dimensional, at most one element can be removed from Fn if the
remaining elements are to span Hn. Moreover fn

n+1 is orthogonal to fn
1 , . . . , fn

n ,
so fn

n+1 cannot be removed. If one of the other elements is removed, say fn
1 , then

since
n+1∑
j=2

|〈en
1 , fn

j 〉|2 =
( n∑

j=2

1
n2

)
+

1√
n

2 =
2
n
− 1

n2
,

the lower frame bound for Fn \ {fn
1 } as a frame for Hn is at most 2

n − 1
n2 .

Now consider that H ∼= (∑∞
n=1 Hn

)
�2 with the Hn mutually orthogonal. The

sequence F = {fn
j }n∈N, j=1,...,n+1 is a normalized tight frame for H with infinite

excess. Suppose that G is any infinite subset of F such that F \ G is complete.
Then G cannot contain any elements of the form fn

n+1. Hence G = {fnk
jk

}k∈N

with n1 < n2 < · · · and jk ≤ nk for every k. But then the lower frame bound for
F \ G can be at most 2

nk
− 1

n2
k

for every k, which implies that F \ G cannot have
a positive lower frame bound and therefore is not a frame.

Note that in this example, if we fix a particular k then the subsequence
F \ {fnk

jk
} formed by deleting the single element fnk

jk
from F is a frame for H.

However, there is no single positive number that can serve as a common lower
frame bound for all of the subframes F \ {fnk

jk
}. Suppose that F was a frame
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such that there did exist an infinite subsequence G = {gn}n∈N so that F \ G
was a frame for H, say with lower frame bound L. Then for each fixed n, since
F \ G ⊂ F \ {gn} ⊂ F , we have that F \ {gn} is a frame for H with lower frame
bound L. Hence the existence of such a sequence {gn}n∈N with uniform lower
frame bound for each F\{gn} is a necessary condition in order to be able to delete
infinitely many elements from a frame and still leave a frame. Our next goal is
to show that this condition is sufficient as well as necessary. Specifically, we will
show that if such gn exist, then there exists an infinite subsequence Gε = {gnk

}k∈N

such that F \ Gε is a frame with lower frame bound L − ε.
First, we will prove the theorem for the special case of normalized tight

frames. While this result will be superseded by Theorem 5.4 below, the proof of
this special case is so elegant and enlightening that we choose to include it.

Theorem 5.2. Let F = {fi}i∈I be a normalized tight frame for a Hilbert space
H, and assume that there exists an infinite subsequence G = {gn}n∈N of F such
that for each n, F \ {gn} is complete in H (and hence a frame). If there exists a
single constant L > 0 that is a lower frame bound for each frame F \ {gn}, then
for every 0 < ε < L there exists an infinite subsequence Gε of G such that F \ Gε

is a frame for H with lower frame bound L − ε.

Proof. Since A = B = 1, the frame operator S for F is simply the identity.
That is,

∀ f ∈ H, f = Sf =
∑
i∈I

〈f, fi〉 fi.

We are given that, for each n ∈ N, F \ {gn} is a frame with lower frame bound
L. Let Sn be the frame operator for F \ {gn}, i.e.,

Snf =
∑
i∈I

〈f, fi〉 fi − 〈f, gn〉 gn = f − 〈f, gn〉 gn.

Since

〈Snf, f〉 = ‖f‖2 − |〈f, gn〉|2 ≥ ‖f‖2 − ‖f‖2 ‖gn‖2 =
(
1 − ‖gn‖2) ‖f‖2,

we have that 1 − ‖gn‖2 is a lower frame bound for F \ {gn}, and by considering
the element f = gn we see that it is the optimal lower frame bound for F \ {gn}.
Therefore we must have

∀n ∈ N, L ≤ 1 − ‖gn‖2.
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Since {gn}n∈N is a subset of the frame F , we have
∑

k |〈gn, gk〉|2 ≤ ‖gn‖2 <

∞. Therefore,

∀n ∈ N, lim
k→∞

〈gn, gk〉 = 0.

Because of this fact, we can extract a subsequence Gε = {gnk
}k∈N with the

property that
∑

j,k∈N
k �=j

|〈gnk
, gnj 〉| < ε.

We claim that F \ Gε is a frame for H with lower frame bound L − ε.
Consider the operator

Rf =
∞∑

k=1

〈f, gnk
〉 gnk

.

This is a bounded operator since Gε is a subset of the frame F . We have

‖Rf‖2 =
〈 ∞∑

k=1

〈f, gnk
〉 gnk

,
∞∑

j=1

〈f, gnj〉 gnj

〉

=
∞∑

k=1

|〈f, gnk
〉|2 ‖gnk

‖2 +
∑

j,k∈N
k �=j

〈f, gnk
〉 〈gnj , f〉 〈gnk

, gnj 〉

≤
(
sup
k∈N

‖gnk
‖2

)
〈Rf, f〉 + ‖f‖2

(
sup
k∈N

‖gnk
‖2

) ( ∑
j,k∈N
k �=j

|〈gnk
, gnj 〉|

)

≤ (1 − L) ‖Rf‖ ‖f‖ + ‖f‖2 (1 − L) ε.

From this it follows that ‖R‖ ≤ 1 − L + ε, and consequently

∑
i∈I

|〈f, fi〉|2 −
∞∑

k=1

|〈f, gnk
〉|2 = ‖f‖2 − 〈Rf, f〉 ≥ (L − ε) ‖f‖2,

so F \ Gε is a frame with lower frame bound L − ε.

Given a frame F with frame bounds A, B, let S = T ∗T be the frame
operator. Recall then that S−1/2 is a bounded, continuously invertible operator
and that S−1/2(F) is a normalized tight frame for H. This can be used to give a
generalization of Theorem 5.2 to the case of non-tight frames; however, the best
conclusion we can draw via that approach is that the lower frame bound of F \Gε

is at least L(A/B) − ε, which we will see is not the best possible estimate. For
many applications it is essential to have sharp knowledge of the frame bounds.
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Theorem 5.4 below is the optimal result: by an argument more involved than
the proof of Theorem 5.2 we will show that it is possible to construct Gε so that
F \ Gε has lower frame bound L − ε.

To attempt to motivate the proof of Theorem 5.4, suppose that there existed
a subsequence {hk}k∈N of F which had the following properties:

a. for each k ∈ N, F \ {hk} is a frame for H with lower frame bound L,

b. {hk}k∈N is an orthogonal sequence,

c. each hk is an eigenvector of S1/2.

Note that it follows from a–c that

d. span{hk}⊥ is invariant under S1/2.

We will show that it easily follows from these assumptions that F \ {hk}k∈N is
a frame with lower frame bound L. Of course, these hypotheses are unlikely to
be fulfilled in practice, and much of the actual proof of Theorem 5.4 consists of
trying to approximate them.

Note first that

‖S1/2f‖2 = 〈Sf, f〉 =
∑
i∈I

|〈f, fi〉|2.

Since F is a frame, we therefore have that

∀ f ∈ H, A ‖f‖2 ≤ ‖S1/2f‖2 ≤ B ‖f‖2. (10)

Without loss of generality, let us assume that the values of A, B in (10) are the
optimal frame bounds. Assume now that hypotheses a–d above are satisfied. In
particular, assumption a says that

∀ k ∈ N, ∀ f ∈ H, ‖S1/2f‖2 − |〈f, hk〉|2 ≥ L ‖f‖2.

Note that since F \ {hk} is a subset of the frame F and A is the optimal lower
frame bound for F , we have L ≤ A.

Fix now f ∈ H, and write f = f c +
∑

k ckhk with f c ∈ span{hk}⊥. Then
S1/2f = S1/2f c +

∑
k S1/2(ckhk), and by the orthogonality and invariance as-

sumptions, this implies that

‖f‖2 = ‖f c‖2 +
∞∑

k=1

‖ckhk‖2 and ‖S1/2f‖2 = ‖S1/2f c‖2 +
∞∑

k=1

‖S1/2(ckhk)‖2.
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Then

‖S1/2f‖2 −
∞∑

k=1

|〈f, hk〉|2 = ‖S1/2f c‖2 +
∞∑

k=1

(
‖S1/2(ckhk)‖2 − |〈f, hk〉|2

)

= ‖S1/2f c‖2 +
∞∑

k=1

(
‖S1/2(ckhk)‖2 − |〈ckhk, hk〉|2

)

≥ A ‖f c‖2 +
∞∑

k=1

L ‖ckhk‖2

= A ‖f c‖2 + L
(‖f‖2 − ‖f c‖2)

≥ L ‖f‖2,

the last inequality following from the fact that L ≤ A.
To approximate assumptions a–d in the actual proof of Theorem 5.4, we

apply the Spectral Theorem to the positive operator S1/2. This provides us with
a set of mutually orthogonal subspaces on each of which S1/2 acts approximately
as a scalar. Further, the fact that {gn}n∈N is a Bessel sequence allows us to select
a subsequence {gnk

}k∈N that is “approximately orthogonal,” and by orthogonal-
izing we can obtain a sequence of elements {hk}k∈N that are both orthogonal and
near to gnk

, although they are no longer elements of the original frame. These
approximations allow us to carry through the complete proof.

We will require the following elementary lemma.

Lemma 5.3. If {gk}k∈N is a Bessel sequence with upper bound B and if
∞∑

k=1

‖hk − gk‖2 ≤ β,

then

∀ f ∈ H,
∞∑

k=1

|〈f, gk〉|2 ≤
∞∑

k=1

|〈f, hk〉|2 + γ ‖f‖2,

where γ = β + 2B1/2β1/2.

Proof. Let s = {〈f, gk〉}k∈N and t = {〈f, hk〉}k∈N. Then

‖s‖2
�2 − ‖t‖2

�2 =
(‖s‖�2 − ‖t‖�2

) (‖s‖�2 + ‖t − s + s‖�2
)

≤ ‖s − t‖�2
(‖t − s‖�2 + 2‖s‖�2

)
≤ β1/2 ‖f‖ (

β1/2 ‖f‖ + 2B1/2 ‖f‖)
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= γ ‖f‖2.

Theorem 5.4. Let F = {fi}i∈I be a frame for a Hilbert space H, and assume
that there exists an infinite subsequence G = {gn}n∈N of F such that for each n,
F \ {gn} is complete in H (and hence a frame). If there exists a single constant
L > 0 that is a lower frame bound for each frame F \ {gn}, then for every
0 < ε < L there exists an infinite subsequence Gε of G such that F \Gε is a frame
for H with lower frame bound L − ε.

Proof. Let A, B denote the optimal frame bounds for F . Then since F \ {gn}
is a subset of the frame F , we have L ≤ A.

Let ε > 0 be fixed. Our goal is to find a subsequence Gε = {gnk
}k∈N of G

such that F \ Gε is a frame with lower frame bound L− ε. Since F \ Gε ⊂ F , the
upper frame bound is automatic, so what we have to show is that

∀ f ∈ H, ‖S1/2f‖2 −
∞∑

k=1

|〈f, gnk
〉|2 ≥ (L − ε) ‖f‖2, (11)

where S = T ∗T is the frame operator for F .

Step 1. Consider the spectral decomposition of S1/2, i.e.,

S1/2 =
∫ B1/2

A1/2
λdPλ,

where the Pλ are the spectral projections onto [0, λ]. Fix a constant α > 0 whose
exact value will be specified later, and define

δ =
B1/2 − A1/2

N
,

where N is chosen large enough that

δ (2B1/2 − δ) < α.

Note that if the frame F is tight, then A = B and so δ = 0. In this case, we will
set N = 1. Note that for a tight frame, the frame operator S is simply S = AI.

For the case of a tight frame, where δ = 0, define

Q1 = I.

Otherwise, for j = 1, . . . , N , define

Qj = PA1/2+jδ − PA1/2+(j−1)δ.
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Then the following facts hold.

a. Each Qj is an orthogonal projection.

b. The ranges Qj(H) for j = 1, . . . , N are mutually orthogonal.

c.
∑N

j=1 Qj = I.

d. The operator S1/2 acts approximately as a scalar on Qj(H), specifically,

N∑
j=1

(
A1/2 + (j − 1)δ

)2 ‖Qjf‖2 ≤ ‖S1/2f‖2 ≤
N∑

j=1

(
A1/2 + jδ

)2 ‖Qjf‖2. (12)

The difference between the right and left-hand sides of (12) can be bounded
as follows:

N∑
j=1

(
2δA1/2 + (2j − 1)δ2) ‖Qjf‖2 ≤ (

2δA1/2 + (2N − 1)δ2) N∑
j=1

‖Qjf‖2

= δ(2B1/2 − δ) ‖f‖2

< α ‖f‖2.

Consequently, the right-hand side of (12) is no more than α‖f‖2 of the left-hand
side, i.e.,
N∑

j=1

(
A1/2+(j−1)δ

)2 ‖Qjf‖2 ≤ ‖S1/2f‖2 ≤
N∑

j=1

(
A1/2+(j−1)δ

)2 ‖Qjf‖2+α ‖f‖2.

(13)

Step 2. We now iteratively construct the subsequence Gε = {gnk
}k∈N. For

n ∈ N and j = 1, . . . , N , define

gj
n = Qjgn.

Note that gn =
∑n

j=1 gj
n, with {gj

n}j=1,...,N an orthogonal sequence.
Define n1 = 1. For j = 1, . . . , N , set

F j
1 = {gj

n1
} and Hj

1 = span(F j
1 ).

Let P j
1 be the orthogonal projection of H onto Hj

1 . Let T j
1 :Hj

1 → C be the
analysis operator for F j

1 as a frame for Hj
1 . Since T j

1 is injective and bounded, it
has a continuous inverse (T j

1 )−1:C → Hj
1 . Set

ε1 =
β

2

N∑
j=1

1

‖(T j
1 )−1‖2

,
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where β > 0 is another constant whose exact value will be specified later. Since
G is a Bessel sequence, we know that for each j = 1, . . . , N ,

lim
n→∞ 〈gn, gj

n1
〉 = 0.

Choose n2 large enough that
N∑

j=1

‖T j
1 (P j

1 gj
n2

)‖2 =
N∑

j=1

1∑
k=1

|〈gn2 , g
j
nk
〉|2 < ε1.

Now continue the process. Set

F j
2 = {gj

n1
, gj

n2
} and Hj

2 = span(F j
2 ).

Let P j
2 be the orthogonal projection onto Hj

2 . The analysis operator T j
2 :Hj

2 → C2

is continuous and injective. Set

ε2 =
β

22

N∑
j=1

1

‖(T j
2 )−1‖2

.

Then choose n3 large enough that
N∑

j=1

‖T j
2 (P j

2 gj
n3

)‖2 =
N∑

j=1

2∑
k=1

|〈gn3 , g
j
nk
〉|2 < ε2,

and so forth, to obtain the sequence Gε = {gnk
}k∈N.

Step 3. Next we orthogonalize the vectors gj
nk

. Define

hj
k = gj

nk
− P j

k−1g
j
nk

,

where P j
0 = 0. Since gj

n = Qjgn, we have that

hj
k ∈ Qj(H).

Further, the subspaces Qj(H) are mutually orthogonal, so we conclude that
{hj

k}k∈N, j=1,...,N is an orthogonal sequence.

Step 4. Define

hk =
N∑

j=1

hj
k = gnk

−
N∑

j=1

P j
k−1g

j
nk

.

We observe that hk is close to gnk
, specifically,

∞∑
k=1

‖hk − gnk
‖2 ≤

∞∑
k=2

( N∑
j=1

‖P j
k−1g

j
nk
‖
)2
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≤
∞∑

k=2

( N∑
j=1

‖(T j
k−1)

−1‖ ‖T j
k−1(P

j
k−1g

j
nk

)‖
)2

≤
∞∑

k=2

( N∑
j=1

‖(T j
k−1)

−1‖2
)( N∑

j=1

‖T j
k−1(P

j
k−1g

j
nk

)‖2
)

≤
∞∑

k=2

β

2k−1

= β. (14)

Step 5. Fix f ∈ H. Recall that {hj
k}k∈N, j=1,...,N is an orthogonal sequence

and write

f = f c +
∞∑

k=1

N∑
j=1

cj
kh

j
k = f c +

∞∑
k=1

pk,

where cj
k‖hj

k‖2 = 〈f, hj
k〉, so that f c ∈ span{hk}⊥. The functions pk are mutually

orthogonal and are orthogonal to f c, so

‖f‖2 = ‖f c‖2 +
∞∑

k=1

‖pk‖2. (15)

Recall that hk =
∑N

j=1 hj
k. Therefore

〈f, hk〉 =
N∑

j=1

〈f, hj
k〉 =

N∑
j=1

cj
k 〈hj

k, h
j
k〉 =

N∑
j=1

cj
k 〈hj

k, hk〉 = 〈pk, hk〉.

Now, since the Qj are orthogonal projections with orthogonal ranges and
since hj

k ∈ Qj(H), we have that

Qjf = Qjf
c +

∞∑
k=1

Qjpk

is an orthogonal decomposition. In fact, Qjpk = cj
kh

j
k, and, more importantly,

‖Qjf‖2 = ‖Qjf
c‖2 +

∞∑
k=1

‖Qjpk‖2. (16)

Recall that our goal is to show that (11) is satisfied. Using (13), (16), (15),
and (10), we have that

‖S1/2f‖2 ≥
N∑

j=1

(
A1/2 + (j − 1)δ

)2 ‖Qjf‖2
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=
N∑

j=1

(
A1/2 + (j − 1)δ

)2 ‖Qjf
c‖2 +

∞∑
k=1

N∑
j=1

(
A1/2 + (j − 1)δ

)2 ‖Qjpk‖2

≥
(
‖S1/2f c‖2 − α ‖f c‖2

)
+

∞∑
k=1

(
‖S1/2pk‖2 − α ‖pk‖2

)

= ‖S1/2f c‖2 − α ‖f c‖2 +
∞∑

k=1

‖S1/2pk‖2 − α
(‖f‖2 − ‖f c‖2)

≥ A ‖f c‖2 +
∞∑

k=1

‖S1/2pk‖2 − α ‖f‖2. (17)

Further, by (14) and Lemma 5.3, we have
∞∑

k=1

|〈f, gnk
〉|2 ≤

∞∑
k=1

|〈f, hk〉|2 + γ ‖f‖2 =
∞∑

k=1

|〈pk, hk〉|2 + γ ‖f‖2, (18)

where γ = β + 2B1/2β1/2. Hence, combining (17) and (18),

‖S1/2f‖2−
∞∑

k=1

|〈f, gnk
〉|2 ≥

∞∑
k=1

(
‖S1/2pk‖2−|〈pk, hk〉|2

)
+ A ‖f c‖2−(α+γ) ‖f‖2.

(19)
Now, by hypothesis, for each k we know that F \{gnk

} is a frame with lower
frame bound L. That is,

∀ k ∈ N, ∀h ∈ H, ‖S1/2h‖2 − |〈h, gnk
〉|2 ≥ L ‖h‖2.

Since ‖hk − gnk
‖2 ≤ β and since ‖gnk

‖2 ≤ B, the same type of argument as in
the proof of Lemma 5.3 yields the estimate

|〈h, hk〉|2 − |〈h, gnk
〉|2 ≤ γ ‖h‖2.

In particular, applying this to the function h = pk and combining it with (19),
we conclude that

‖S1/2f‖2 −
∞∑

k=1

|〈f, gnk
〉|2 ≥

∞∑
k=1

(
‖S1/2pk‖2 − |〈pk, gnk

〉|2 − γ ‖pk‖2
)

+A ‖f c‖2 − (α + γ) ‖f‖2

≥
∞∑

k=1

(L − γ) ‖pk‖2 + A ‖f c‖2 − (α + γ) ‖f‖2

= (L − γ)
(‖f‖2 − ‖f c‖2) + A ‖f c‖2 − (α + γ) ‖f‖2

= (L − α − 2γ) ‖f‖2 + (A − L + γ) ‖f c‖2
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≥ (L − α − 2γ) ‖f‖2,

the last inequality following from the fact that L ≤ A.
Finally, by choosing the constants α and β small enough, we can obtain

α + 2γ < ε, which completes the proof.

The next proposition shows that the excess can be realized in terms of certain
inner products. We will use this to obtain a condition in Corollary 5.7 below that
is both necessary and sufficient for the hypotheses of Theorem 5.4 to hold.

Recall that the standard dual of a frame F = {fi}i∈I is the frame F̃ =
{f̃i}i∈I where f̃i = S−1fi. Therefore 〈fi, f̃i〉 = ‖S−1/2fi‖2 ≥ 0. Moreover,
S−1/2(F) is a normalized tight frame, each element of which can have norm at
most 1, so 〈fi, f̃i〉 = ‖S−1/2fi‖2 ≤ 1.

Proposition 5.5. Let F = {fi}i∈I be a frame in a Hilbert space H with stan-
dard dual F̃ = {f̃i}i∈I . Then the excess of F is

e(F) =
∑
i∈I

(
1 − 〈fi, f̃i〉

)
.

Proof. By Lemma 4.1, we have e(F) = dim(ker T ∗). The orthogonal projection
of H onto ker T ∗ is given by P = I−TS−1T ∗. Letting {δi}i∈I denote the standard
basis for �2(I), we therefore have

e(F) = dim(ker T ∗) = trace(P ) =
∑
i∈I

〈δi, P δi〉 =
∑
i∈I

(
1 − 〈fi, f̃i〉

)
.

We will require the following lemma [7, Lemma 6.3.2] in order to obtain an
equivalent form of the hypotheses of Theorem 5.4.

Lemma 5.6. Let F be a frame for a Hilbert space H with frame bounds A, B.
If U :H → H is continuously invertible, then U(F) is a frame for H with frame
bounds A‖U−1‖−2, B‖U‖2.

Corollary 5.7. Let F = {fi}i∈I be a frame in a Hilbert space H with standard
dual F̃ = {f̃i}i∈I . Let G = {gn}n∈N be a subsequence of F . Then the following
two statements are equivalent.

a. There exists a constant L > 0 such that for each n ∈ N, F \ {gn} is a
frame for H with lower frame bound L.
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b. sup
n∈N

〈gn, g̃n〉 < 1.

Proof. a ⇒ b. Assume that statement a holds. Since S−1/2 is a continuously
invertible operator with ‖S1/2‖2 ≤ B, it follows from applying Lemma 5.6 to the
frame F \ {gn} that S−1/2(F \ {gn}) is a frame with lower frame bound L/B.
However, since S−1/2(F) is a normalized tight frame, we can also compute the
frame bound of S−1/2(F \ {gn}) as follows:

∑
i∈I

|〈f, S−1/2fi〉|2 − |〈f, S−1/2gn〉|2 ≥ ‖f‖2 − ‖S−1/2gn‖2 ‖f‖2

=
(
1 − ‖S−1/2gn‖2) ‖f‖2. (20)

Thus 1−‖S−1/2gn‖2 is a lower frame bound for S−1/2(F \ {gn}), and by consid-
ering the element f = S−1/2gn we see that it is the optimal lower frame bound.
Therefore we must have L/B ≤ 1 − ‖S−1/2gn‖2, so

〈gn, g̃n〉 = ‖S−1/2gn‖2 ≤ 1 − L/B.

b ⇒ a. Assume that D = supn 〈gn, g̃n〉 < 1. Fix any particular n. Then
1 − ‖S1/2gn‖2 ≥ 1 − D > 0. As in (20), we therefore have that S−1/2(F \ {gn})
is a frame for H with lower frame bound 1 − D. Since S1/2 is a continuously
invertible operator with ‖S−1/2‖2 ≤ 1/A, it follows from Lemma 5.6 that F \{gn}
is a frame for H with lower frame bound L = A(1 − D).

6. Weyl-Heisenberg and Wavelet Systems

In this section, we apply our previous results to the specific case of Weyl–
Heisenberg and wavelet frames. For simplicity, we will consider only the one-
dimensional setting, but the results given here can be easily extended to higher
dimensions.

Definition 6.1. Given a nonzero function g ∈ L2(R), called a window function,
and given α, β > 0, the Weyl-Heisenberg or Gabor system determined by g, α, β

is

(g;α, β)WH = {gm,n;α,β}m,n∈Z,

where

gm,n;α,β(x) = e2πimβxg(x − nα).
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A Weyl–Heisenberg multisystem is a union of such Weyl–Heisenberg systems,
namely,

(g1, . . . , gr;α1, . . . , αr;β1, . . . , βr)WH = (g1;α1, β1)WH ∪ · · · ∪ (gr;αr, βr)WH.

Definition 6.2. Given a nonzero function Ψ ∈ L2(R), called a wavelet, and
given a > 1 and b > 0, the wavelet system generated by Ψ, a, b is

(Ψ; a, b)Wa = {Ψm,n;a,b}m,n∈Z,

where

Ψm,n;a,b(x) = am/2Ψ(amx − nb).

A wavelet multisystem has the form

(Ψ1, . . . ,Ψr; a1, . . . , ar; b1, . . . , br)Wa = (Ψ1; a1, b1)Wa ∪ · · · ∪ (Ψr; ar, br)Wa.

For α, β ∈ R and a > 0, define the following operators:

Tα:L2(R) → L2(R), Tαf(x) = f(x − α),

Vα: �2(Z2) → �2(Z2), Vαc = {e−2πiαmcm,n−1}m,n∈Z,

Mβ:L2(R) → L2(R), Mβf(x) = e2πiβxf(x),

U : �2(Z2) → �2(Z2), Uc = {cm−1,n}m,n∈Z,

Da:L2(R) → L2(R), Daf(x) = a1/2f(ax).

In particular, note that

gm,n;α,β = MmβTnαg and Ψm,n;a,b = DamTnbΨ.

The next lemma follows from elementary calculations.

Lemma 6.3. a. Tα, Vα, Mβ, U , and Da have no point spectrum if α, β �= 0 and
a �= 1.

b. If (g;α, β)WH is a Bessel sequence then (Tα, Vαβ) and (Mβ , U) are each
intertwining pairs of operators for (g;α, β)WH.

c. If (Ψ; a, b)Wa is a Bessel sequence then (Da, U) is an intertwining pair of
operators for (Ψ; a, b)Wa.



24 R. Balan et al. / Deficits and Excesses of Frames

Consequently, conclusions about the deficit and excess of Weyl–Heisenberg
and wavelet systems follow immediately from Theorem 4.4.

Corollary 6.4. Let g ∈ L2(Rd) and α, β > 0 be such that (g;α, β)WH is a Bessel
sequence in L2(Rd). Then the following statements hold.

a. span(g;α, β)WH is either {0} or is an infinite-dimensional subspace of
L2(Rd).

b. The deficit of (g;α, β)WH is either zero or infinite.

c. If (g;α, β)WH is a frame for its closed linear span, then its excess is either
zero or infinite.

Corollary 6.5. Let Ψ ∈ L2(Rd) and a > 1, b > 0 be such that (Ψ;α, β)Wa is a
Bessel sequence in L2(Rd). Then the following statements hold.

a. span(Ψ;α, β)Wa is either {0} or is an infinite-dimensional subspace of
L2(Rd).

b. The deficit of (Ψ;α, β)Wa is either zero or infinite.

c. If (Ψ;α, β)Wa is a frame for its closed linear span, then its excess is either
zero or infinite.

Next, by making use of the results from Section 5, we will extend the con-
clusions in Corollaries 6.4c and 6.5c to say that infinitely many elements can be
deleted from any overcomplete Weyl–Heisenberg or wavelet system yet leave a
frame. Additionally, we will extend these results to the case of Weyl–Heisenberg
or wavelet multisystems that satisfy a certain rationality condition among the
generating parameters of the system. the relationship among the generating pa-
rameters. Let us say that r-tuple of numbers (a1, . . . , ar) are rationally related
if there are r integers k1, . . . , kr such that k1a1 = · · · = krar. Then we have the
following result for Weyl–Heisenberg multisystems.

Theorem 6.6. Let F = (g1, . . . , gr;α1, . . . , αr;β1, . . . , βr)WH be a Weyl–
Heisenberg multisystem that is an overcomplete frame for its closed linear span H
in L2(R). If either (α1, . . . , αr) or (β1, . . . , βr) are rationally related, then there
exists an infinite subset G of F such that F \ G is a frame for H.
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Proof. Suppose that (β1, . . . , βr) are rationally related, say β = k1β1 = · · · =
krβr. Since F is overcomplete, there is some element, say gi

m0,n0;αi,βi
such that

F\{gi
m0,n0;αi,βi

} is a frame for H. Note that for each m, n, p ∈ Z and j = 1, . . . , r,
we have

Mβpg
j
m,n;αj ,βj

= MkjβjpMmβj
Tnαjg

j = M(m+kjp)βj
Tnαjg

j = gj
(m+kjp),n;αj,βj

.

Hence for each j, we have that Mβp simply permutes the elements of
(gj ;αj , βj)WH. Moreover,

Mβp

(F \ {gi
m0,n0;αi,βi

}) = F \ {gi
(m0+kjp),n0;αi,βi

}, p ∈ Z. (21)

Since Mβp is a unitary operator mapping H onto itself, each of the subsequences
in (21) is a frame for H, all with the same frame bounds. Consequently, the result
follows from Theorem 5.4. If instead (α1, . . . , αr) are rationally related, then a
similar proof can be given using Tαp instead of Mβp.

The following example shows that the frame hypothesis in Theorem 6.6 can-
not be relaxed, i.e., there exist Weyl–Heisenberg systems that are Bessel sequences
yet have positive but finite excess.

Example 6.7. Consider the Weyl–Heisenberg system F = (g; 1, 1)WH in L2(R)
generated by the Gaussian function g(x) = e−x2

with α = β = 1. It is well-known
that this Weyl–Heisenberg system is not a frame, e.g., see [8, Example 4.3.5]. Let
Q = [0, 1) × [0, 1). The Zak transform is the isometric isomorphism Z:L2(R) →
L2(Q) defined by

Zf(x, ω) =
∑
k∈Z

e2πikωf(x + k).

We refer to [4] or [8] for details on the Zak transform. It can be shown that Zg is
a continuous and bounded function on Q and has a single zero in Q. This shows
that (g; 1, 1)WH is a Bessel sequence but is not a frame for L2(R).

The synthesis operator for (g; 1, 1)WH is the mapping T ∗: �2(Z2) → L2(R)
defined by

T ∗c =
∑
m,n

cm,ngm,n;1,1 for c = {cm,n}m,n∈Z ∈ �2(Z2).
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Suppose that T ∗c = 0 for some c ∈ �2(Z2). Then, using basic properties of the
Zak transform,

0 = ZT ∗c =
∑
m,n

cm,nZgm,n =
∑
m,n

cm,nem,nZg,

where em,n(x, ω) = e2πimxe2πinω. Since c ∈ �2(Z2) and {em,n}m,n∈Z is an or-
thonormal basis for L2(Q), we have that H =

∑
m,n cm,nem,n is a well-defined

function in L2(Q). Therefore, since Zg is bounded we have that 0 = ZT ∗c =
H ·Zg. However, Zg is nonzero a.e., so this implies that H = 0 a.e., and therefore
c = 0. Thus ker T ∗ = {0}.

A similar argument, using the fact that 1/Zg /∈ L2(Q), shows that e(F) =
1. This was first proved in [11]. Thus (g; 1, 1)WH provides an example of a
Weyl–Heisenberg system that is a Bessel sequence but not a frame and such that
dim(ker T ∗) < e(F). This shows that even for Weyl–Heisenberg systems, the
inequality in Lemma 4.1b can be strict (see also Example 4.2).

The excess in this example is exactly 1. In particular, (g; 1, 1)WH\{g} =
{gm,n}(m,n)�=(0,0) is complete, but no proper subset of (g; 1, 1)WH\{g} is complete.
However, (g; 1, 1)WH\{g} is not a Schauder basis for L2(R) [6, p. 168]. In fact,
while g can be approximated arbitrarily closely by finite linear combinations
of elements of (g; 1, 1)WH\{g}, no series of the form

∑
(m,n)�=(0,0) cm,ngm,n can

converge to g, even in a weak sense, cf. [10] and [14, Thm. 1]. We refer to [14] for
a detailed study of convergence questions involving Weyl–Heisenberg systems at
the critical density α = β = 1.

A technique similar to the one used in Theorem 6.6 can be applied to the
wavelet case. We say that (a1, . . . , ar) are logarithmically rationally related if
there are r integers k1, . . . , kr such that ak1

1 = · · · = akr
r .

Theorem 6.8. Let F = (Ψ1, . . . ,Ψr; a1, . . . , ar; b1, . . . , br)Wa be a wavelet mul-
tisystem that is an overcomplete frame for its closed linear span H in L2(R).
If (a1, . . . , ar) are logarithmically rationally related, then there exists an infinite
subset G of F such that F \ G is a frame for H.

Proof. The proof is similar to the proof of Theorem 6.6, using the fact that if
a = ak1

1 = · · · = akr
r and p ∈ Z, then Dap is a unitary operator such that

DapΨj
m,n;aj ,bj

= D
a

kjp

j

Dam
j

Tnbj
Ψj = D

a
m+kjp

j

Tnbj
Ψj = Ψj

(m+kjp),n;aj ,bj
.
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