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Abstract

Mobile communication channels are often modeled as linear time-varying filters or, equivalently, as time-frequency integral
operators with finite support in time and frequency. Such a characterization inherently assumes the signals are narrowband and
may not be appropriate for wideband signals. In this paper time-scale characterizations are examined that are useful in wideband
time-varying channels, for which a time-scale integral operator is physically justifiable. We present a review of these time-
frequency and time-scale characterizations. Both the time-frequency and time-scale integral operators have a two-dimensional
discrete characterization which motivates the design of time-frequency or time-scale rake receivers. These receivers have taps for
both time and frequency (or time and scale) shifts of the transmitted signal. A general theory of these characterizations which
generates, as specific cases, the discrete time-frequency and time-scale models is presented here. The interpretation of these
models, namely, that they can be seen to arise from processing assumptions on the transmit and receive waveforms is discussed.
Out of this discussion a third model arises: a frequency-scale continuous channel model with an associated discrete frequency-scale
characterization.
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Canonical time-frequency, time-scale, and
frequency-scale representations of time-varying
channels

I. INTRODUCTION

It is common to assume that a received communication signal is composed of superpositions of different versions of the
transmitted signal. These different versions arise from reflections of the signal off of scatterers in the environment. In the
time-scale channel modetach reflection is a delayed and time scaled copy of the transmitted signal. The delays arise from
differing path lengths from transmitter to scatterer to receiver. Relative motion of the transmitter, scatterers, or receiver causes
time dilations/contractions of the transmitted wavefor(n). Thus, each reflection is of the form,

Tap(t) = Jlml (t;b) )

and the received signal is a summation of the reflections characterizédaby), the wideband spreading functién

// (a,b)—— ‘a <ab)dadb @)

We call a time-scale channelwideband channeWhen the wideband spreading function has finite support. Due to the
physical limitations of signal propagation, it is reasonable to expectdtath) has finite support. The maximum possible rate
of change in path length, which is constrained by the speeds of the objects in the environment, limits the supfofi)of
to a narrow range around the= 1 line. Causality and the propagation loss associated with increasing path length effectively
limit the support of£(a,b) to a finite range in thé direction. The support in the direction causes a spreading in scale of
the transmitted signal, and the support in theirection causes a spreading in time of the transmitted signal. Thus, channels
described by (2) are often refereed todmibly spreacchannels.

Many signals and signaling environments satisfy tlagrowband conditionan assumption under which the time dilations
or contractions are modeled as Doppler shifts. Under this assumption, each received reflection of the signal is assumed to be
of the form,

Tr0(t) = x(t — 7)eI 20" 3

In the narrowband channel modethe received signal is a superposition of time delayed and frequency shifted copies of the
input and the channel is characterized by tiaerowband spreading functiof (6, ),

/ / S0 — 7)e?m0drde, (4)

where S(6, 7) typically has finite support i and due to the physical limitations of the channel. The span of this spreading
in time and frequency has proven to be a crucial parameter in communication systems [1-3]. Regardless of whether the support
constraint is satisfied or not, (4) is a time-frequency description of a general time-varying linear system,

y(t) = / h(t,7)x(t — 7)dr. (5)

WhenS(6, 7) has no support constraint, the transmitted waveform and environment need not satisfy the narrowband condition.
Kailath’s pioneering work in his 1959 Master's thesis [4] and the concomitant development of the rake channel model
provided a mathematical framework for capturing the energy associated with multiple transmission paths between transmitter
and receiver using a discretization of the channel model. This work was furthered in 1963 by Bello, who proposed a discrete
time-frequency characterization of the time-varying channel [1]. In [5], Sayeed and Aazhang reinterpreted this characterization
from a diversity viewpoint, and used this canonical time-frequency channel characterization which combines a discrete set of

time delayed and frequency shifted versions of the input signal,

-2 3 5 () (e ®

n=0k=—K
where
// S0, 7)sinc((r — 7') W) sinc((0 — 6') T) e 7= =T 49’ d7’ 7)

1we will assume that all integrals are taken oyeroo, co) unless otherwise specified.



to define a delay-Doppler RAKE receiver, a two-dimensional extension of the classic rake receiver. The delay-Doppler rake

takes advantage of the inherent added channel diversity associated with time-varying narrowband channels [5]. While the
narrowband assumption is satisfied in many wireless communication signal environments, many wireless systems are widebanc
due to the higher data rates and multiaccess techniques [6]. Thus we may expect, in light of differences in the narrowband
and wideband models, some advantages to the development of a canonical time-scale channel characterization in widebant
communication scenarios. Motivated by this, [7, 8] used the channel in (2) to derive a time-scale canonical channel model

w) =3 e (t - Zgbf“g@) - ®)

m,n aO

whereag, by are related to channel and signal characteristics, and

Cm,n = //Ll(a,b)sinc(m_ In

a ) sinc <n - b> dadb 9)
In ag abg

An identical formula has been derived independently in [9, 10]. There is a difference, however, in the physical meaning of the
decomposition in (8) between [7, 8] and [9, 10]. We will discuss this difference in Section IV where we will also present our
point of view on canonical channel models. For us, a canonical model will refer to a time-varying linear system applied to
a particular class of transmit signals whose output is measured through a particular observation procedure. For example, the
time-frequency canonical model derived in [5] is based on bandlimited transmit signals observed at the receiver over a finite
observation horizon (i.e., a time-domain limited receiver). As we discuss below, the time-scale canonical model can be derived
from bandlimited transmit signals being observed at a scale-domain limited receiver. Furthermore, the new third canonical
frequency-scale channel model introduced in this paper can be derived from scale-limited transmit signals being received at a
time-domain limited receiver. We elaborate on this point in Section IV.

Based on the above interpretation, in Section IV-A we introduce a frequency-scale time-varying channel model of the form:

y(t) = /_0:0 /000 p“(w,a)eﬂmt%x (;) dadw (20)

which is equivalent to (5) for positive time supported input signals and positive time horizon receivers, as we show in Appendix
C. The canonical channel model derived from (10) is

y(t) _ Z Cm’nejQﬂmt/(Tz_Tl)1[T1’T2](t)ag/Zx(agt) (11)

m,n

where
1 : Tl S t § T2

1[T17T21(t>:{ 0 : otherwise

andc,, ,, are coefficients which depend on the span of the observation time hofizon 1), the scale domain bandwidth,
and frequency-scale spreading function (see Equation (81)).

Each of the three doubly spread canonical channel models discussed above motivates the development of a different two-
dimensional rake receiver. A delay-dilation rake receiver based on the canonical time-scale channel characterization [9-11]
leverages the diversity in wideband signaling environments in the same way that the delay-Doppler rake leverages the diversity
in narrowband signaling environments [5]. Such a channel model and receiver may be particularly useful for ultra-wideband
signaling due to the extremely wide transmission signal bandwidth [12, 13].

(12)

A. Outline of paper

In Section Il we review background material on continuous narrowband (time-frequency) and wideband (time-scale) channel
characterizations and examine simple one-path delay-Doppler and one-path delay-dilation channels in the framework of these
representations. We derive and discuss the mapping between time-frequency and time-scale kernel operators and note thz
there exist time-frequency channels with no corresponding time-scale channel. In Section Il we develop a general technique
for the generation of canonical channel models and demonstrate the application of the technique to time-frequency and time-
scale kernel operators. In Section IV we discuss the interpretation and derivation of these canonical models from reasonable
processing assumptions on the transmit and receive waveforms. In Section IV-A we propose a frequency-scale canonical channe
characterization based on the translation operators in frequency and scale. We conclude and propose future work in Section V.

1. CONTINUOUS NARROWBAND AND WIDEBAND CHANNEL CHARACTERIZATIONS

In this section we review and discuss the time-frequency and time-scale channel models and examine some simple channels
to gain some intuition concerning the characterizations. The time-frequency description is a general time-varying linear system
characterization. However, in a slight abuse of nomenclature, we will refer to all channel characterizations which can be
related to the channel described BY6, ) via Fourier transforms and phase factors as narrowband channels. Specifically,



in this section, we discuss twelve such equivalent characterizations which were first explored by Kailath [4], Zadeh [14],
and Bello [1]. We call these “narrowband” characterizations because Wtern) has finite support, the characterization is
typically used only in narrowband systems and is not appropriate for wideband signals. We will only discuss the support
condition constraint or(6, 7) for the narrowband characterizations when relevant, and consider the more general case where
there is no such constraint on the suppors&, 7). Similarly, we will refer to channel characterizations based on the time-scale
kernel £(a,b) as wideband characterizations because they are typically used in a wideband setting [15].

A. Narrowband Characterizations

In this section, we develop a general technique for the generation of canonical channel models and demonstrate the applicatior
of the technique to time-frequency and time-scale kernel operators.

The linear time-varying channel is characterized by the time-varying impulse respnse¢ which denotes the response
of the channel at time to an impulse at time¢ — 7. The channel input-output relationship is thus,

y(t) = / h(t, D) (t — 7)dr (13)

Such notation is used in, for example, [5, 16-19].
Another possible notation for the time-varying impulse response is

y(t) = / ko(t, 7)a(r)dr. (14)

with the interpretation thak,(t, 7) is the response of the channel at tim& an impulse at time-. This is the formulation

used in, for example, [20-22]. Bello [1] calks (¢, 7) a kernel system functioand notes the obvious correspondence between
the two representations,(t,7) = ko(t,t — 7). Bello [1] defines four equivalent representations of the time-varying channel
represented by, (¢, 7) that map the time or frequency representations of the input into the time or frequency representations
of the output. We define these four kernel functions,

y(t) = /ko(t,T)aj(T)dT Y(09) = /kl(G,T)x(T)dT
y(t) = /kg(t,l/)X(V)dV Y(0) = /kg(@,l/)X(l/)du

The kernel system functions can be transformed into one another using the Fourier transform. For example, the kernel function
that maps the input time domain to the output time domaijft( 7)) and the kernel function that maps the input time domain

to the output frequency domairky(0, 7)) are Fourier transforms of one another with respect to the first argument. We can
summarize the relationships between the kernel system functions as follows,

(15)

fy—w‘ ]:u—>7' (16)

kg(t, l/) I kg(g, I/)

ft—»@
That is,
ko(t,7) = / ko(t,)e ™2™ dy  ky(0,7) = / ko(t, 7)e 72Tt 4t
17)
kao(t,v) = / k3(0,v)e* 0 dg ks(6,v) = / ki(0,7)e > dr

The direction of the Fourier transform betwekf and k> (and also betweek; and k3) is opposite to convention; We take
the Fourier transform with respect to a “frequency” variable gnd replace it with a “time” variabler]. This is necessary to
be consistent with the kernel functions as defined in (15).

Bello [1] provides the following useful interpretation of the kernel system functions,

» The response to inpui(t — ¢o) is time functionko(¢, o) with spectrumky (6, o),

« The response to input27%¢ is time functionk, (¢, 6) with spectrumks (6, 6,),
and also notes, by simple inspection of (15), thatand k3 are time-frequency duals of one another, asigrand k.

Despite the simple input-output interpretations, the kernel system functions often lack intuitive physical interpretations [4].
For this reason, Bello [1] and Kailath [23] examined eight other system function characterizing the linear time-varying channel.
These eight system functions are (13); its time-frequency dual,

Y (6) = / G(0,)X (0 — v)dv; (18)



h(t,T)

input delay spread function

y(t) = /h(t,T)a:(t —T1)dr

S(6,7)

delay-Doppler spreading function

S(0,7) = /h(t,r)e’ﬂ’rwdt

T(t,v)

time-varying transfer function

T(t,v) = /h(t, T)e_j%""dfr

H(0,v)

output Doppler spread function

H(0,v)= // h(t, 7)e 92" (04T qedr

G(0,v)

input Doppler spread function

Y(0) = /G(H,V)X(G —V)dv

V(t,v)

Doppler-delay spreading function

V(t,v) = /G(e, v)e??m0t 49

M(0,1)

frequency dependent modulation functi

bn M(e,T):/G(e,y)eﬂ“”du

g(t,7)

output delay spread function

g(t,7) = //G(e, 1)eI27 O+ T) 4ody

EIGHT SYSTEM FUNCTIONS CHARACTERIZING THE LINEAR TIMEVARYING CHANNEL, THEIR FUNCTION NAMES FROMBELLO [1], AND THEIR

TABLE |

ASSOCIATED INPUFOUTPUT RELATIONSHIP OR DEFINITION

the three functions obtained by taking the Fourier transform(ofr) with respect tot, 7, and botht and r; and the three
functions obtained by taking the inverse Fourier transfornGo#, ) with respect tod, v, and bothf and v. These eight
functions are listed in Table I. In the current literatutgf, 7) is usually referred to as théme-varying impulse response
(e.g., [5, 16-19]) and the delay-Doppler spreading functi, 7), is known simply as thepreading functior(e.g., [5, 16—

19, 21]). Unfortunatelyk, (¢, 7) is also commonly referred to as the time-varying impulse response (e.g., [20, 21]). We will

refer tokq(¢,7) as the time-varying impulse resporisernelto avoid confusion.

The relationships of the eight functions via duality and the Fourier transform are summarized in the following diagram.

Duality is represented by a dotted line.

f—>
G(0,v) « =0 V(t,v)
". I V_.
f‘r—u/
f—)
Fo ., h(t, ) =2 - S(0,7)
\7:7'—>y
f—)
M(6,7) < =0 gt T) Fo,
A v,
"A 4 .'A 4
T(t,v) Fieo L o,

We can derive the following input-output relationships,

y(t) = /h(t,T)x(t —T7)dr

y(t) = // S(0,7)e?* % x(t — 7)dAdT

y(t) = /T(t,u)ejzmtX(u)dy Y(9) = /H(9 —v, )X (v)dv

and

Y(6) = /G(G,V)X(G —v)dv Y (6)

Y (0) = / MO, 7)e= 20V dr (1)

— / / V(t,v)e 70X (9 — v)dtdr
_ /g(t—r, P (r)dr

(19)

(20)

(21)



We can relate the eight system functions to the four kernel system functions as follows,

kO (ta T) = h(tv t— T) = g(t -7 T) (22)
ki(0,7) = //S(z/, 1)e?2r D=0 q,d4t = M (6, 7)e~ 92770 (23)
ko(t,v) = T(t,v)el?mt - / / V(r,0)e? =1 0+) 4140 (24)
ks3(0,v) = H(—v,v) =G(0,0 —v) (25)

S(0,7) and V (t,v) are distinctive in that their input-output characterizations and relations to the kernel system functions
involve double integrals. In fact, it is the double integral formulation involvi@, 7) in (20) with the interpretation that

the output is a superposition of time-delayed and Doppler-shifted copies of the input that fi{ékes an extremely useful
characterization. For completeness, we note the inverse relations,

S(6,7) = // ki (v, t)e? 2 D=0 qydt (26)
V(t,v) = / / ko (7, 0)e? 2= 0+) 410 (27)
and note the following relationship between the dual characterizatigng) and G(6, v),
h(t,7) = / / G(0,v)e??m0 =127 T(0=Y) 49y (28)
G(O,v) = / / h(t,7)e 920 a2V (t=T) qtd (29)

Although less commonly used in the literatukg(6, ) plays a pivotal role in understanding the narrowband and wideband
characterizations [7]. We note the mapping betwggmmand S,

k3(0,v) = /S(H—V,T)e_jQ”T”dT (30)

S@,7) = /k3(0—|—1/, V)2V dy. (31)

which can be derived directly from the input-output channel characterizations. In the kernel system formulation of the channel,
the outputs could be simply expressed in term of the kernel functions for inputs that were impulses in time and frequency. For
the above characterizations, these relations are:

« The response t6(t — to) is h(t,t — to) with spectrumM (6, ty)e=727%%,

« The response te’2™%? is T(t,6,)e’?t% with spectrumH (6 — 6y, 6p).

For clarity, we display just the front face of the cube in (19), which details the Fourier transform relationships between the
four most commonly used system functions.

h(t,T) Tig S(0,7)
fr—)y f‘f‘—ﬂ/ (32)
Ft%@

T(t,v) — H(0,v)
In order to get some intuition concerning the channel characterization functions (both the four kernel functions (15) and
the additional eight characterizations listed in Table I, we examine simple channels. Consider the time-invariant channel that

consists of a pure delay.
(1) ~ (=)

In the case of the time-varying impulse response kernel, this channel is represerigd, by = 6(t — 7 — 79). In the case of

the time-varying impulse response, this channel is representédtby) = (7 — o). Plots of these two functions are displayed

in Figure 1. One useful attribute of a system function is for a visual inspection of the function to readily reveal some physical
properties of the channel. In the case of Figure 1, we see that,forr), a diagonal delta function line crossing through

(0, —70) and (70,0) arises from a delay ofy. For h(t,7), a delay ofr, corresponds to a horizontal delta function line

from the origin. A channel with several reflections (i.e., several different delays), would thus correspond to a system function
with several parallel delta function lines. When the channel involves both a simple delay and a Doppler shift, the simple delta
function lines for bothk (¢, 7) and (¢, 7) are modulated by the Doppler shift. Table Il displays the twelve system functions
for the delay and delay-Doppler channels. The system function with the simplest fdif,is) which is the product of delta
functions. From this, we interpret a region of localized energ¥ (6, ) centered atf,, 79) as arising from an echo path with
delay y and Doppler shifdy; see Figure 2.
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Fig. 1. ko(t, ) (left) andh(t, ) (right) for the delay-byry channel.

y(t) = x(t — 70)

y(0) = al(t — 7o)l 2700

ko(t,T) S5t —7 —10) 5(t — 7 — 70)eI 2700
k1(6,7) e~ 727 (7+70)0 =327 (7¥70)(0—00)
ka(t,v) ed2m(t=70)v ed2mt(vF00) g—j27ToV
k3(0,v) | 6(0 — v)e=727To0¥ 5(0 — v — Bg)e 92770
h(t, 1) 5(1t — 10) 3(r — 10)eI %770
S(0,7) [ (7 = 70)5(0) 3(r — 10)5(0 — 8o)
T(t, l/) e—J2TToV 2700t o — 2oV
H(0,v) | e772m7075(0) e ITTTOV 5 (6 — 05)
G(G, I/) e*j?TrToG(S(V) €7j27r70(9790)5(y — 60)
V(t,v) d(t — 70)0(v) 612”70905(,5_7_0)5(1,_00)
M0, 1) e—J27To0 e—92770(0—00) gi27 700
g(t, 1) 6(t — 10) ej?ﬂToQo(s(t_TO)ej%ﬂ—OU
TABLE I

TIME-FREQUENCY CHARACTERIZATION FUNCTIONS FOR THE ONEPATH DELAY AND ONE-PATH DELAY-DOPPLER CHANNELS 5(9,7‘) HAS A VERY

B. Wideband Characterizations

Starting from the wideband channel characterization,

and defining,

Y (0)

SIMPLE FORM FOR THE ONEPATH DELAY-DOPPLER CHANNEL

t—1>

y(t) = // E(a,b)\/lax <a) dadb.

we derive the frequency domain to frequency domain mapping,

1 t—b\ _.
—j27to
///ﬁ(a,b)\/wx( - )e dadbdt
/ / / L(a,b)\/|alz (') e 727 (@' +0)0 qqdbdt’
// L(a,b)v/]a]X (ah) e=72™dadb

£O(q,0) = / L(a,b)e—7270dp,

*(GOvTO)

»0

>

+(aow bo)

Y

Y

(33)

(34a)

(34b)

(34¢)

(35)

Fig. 2. S(0, ) for one-path channel with delayy and Doppler shiffy (left); L£(a, b) for one-path channel with deldy, and time dilationao (right).



y(t) = =(t —bo) | y(t) = \/Ila—o‘m(t;ﬁ”)
L(a,b) 6(a—1)6(b— bo) 0(a — ap)d(b— bo)

13(2)(517 0) | 6(a— 1)e—j2rrb09 5(a— ao)e—jQﬂ-boe

TABLE Il
TIME-SCALE CHARACTERIZATION FUNCTIONS FOR THE ONEPATH DELAY AND ONE-PATH DELAY-DILATION CHANNELS.

we obtain
0) / £ (a,0)\/JalX (a6) da (36)

Table Il displays the wideband characterization functions for the one-path delay and one-path delay-dilation channels. In
the narrowband casé, (0, 7) is the product of delta functions for the one-path delay-Doppler channel; In the wideband case,
the one-path delay-dilation channel is the product of delta functions. We interpret a region of concentrated eféigy)in
centered afag, by) as arising from an echo path with delay and dilation parameter.

C. Narrowband and Wideband Correspondence

In this section we briefly examine the correspondence between the narrowband and wideband channel models. More
specifically, we wish to link the narrowband channel model characterized by the dozen system functions discussed above,
one of which was described by the time-frequency integral operator,

Nsx(t) / / S0 — 1)ed? 047 dh (37)

to the wideband channel description embodied in the time-scale integral operator,

Wea(t) //E a,b)—— |a < . b> dadb. (38)

We are interested in the mapping betwegrand £ for N = W,. The approach taken here differs from the traditional
interpretation of the narrowband characterization as an approximation of the wideband characterization when applied to
narrowband signals. This approximation is discussed in detail in, for example, [15, 24—29]. We do not consider the narrowband
description of the channel as an approximation of the wideband channel, but rather look at the two descriptions without
constraining the properties of the input signal.

We first establish the relation from wideband to narrowband, showing that for every time-scale kernel, there exists a
corresponding time-frequency kernel. Starting from (38), we have

y(t) = //[, (a,b)—— |a < P b) dadb (39a)

/ (/ V]alL(a,t — a7’)da> x(7)dT, (39b)

and therefore,
ko(t,7) = /\/ la|L(a,t — aT)da. (40)

Returning to the mapping fromi(a, b) to the narrowband characterizations, starting from (40), the remaining system functions

can be related td(a, b) as follows,
= / VlalL(a, (1 - a)t+ ar)da (41)

and, taking the Fourier transform of (41) with respect,tave obtain,

= / VialL(a, (1 = a)t + ar)e 72 dadt (42)

Using (40), it is possible to relaté to all twelve narrowband representations [7].
It is also possible to expres$(a, b) in terms of S(6, 7),

9] j270(b—
(1 — a)f, 7)e?? =) qgdr (43)
// \/|a




although the mapping relies on the assumption that the input signal has no DC component; see [7] for a discussion of this
mapping. We can observe from (36) that, in the wideband model, the DC input component can only affect the DC output
component. Intuitively, it is clear that rescaling the time axis and shifting in time a DC signal does not have any effect, and
all the time-scale channel can do is amplify or attenuate the DC component of a signal. This is not the case in the narrowband
model. For example, fronks(0,v) in (15) it is clear that the DC input signal component can affect any output frequency
component. Therefore, there are time-frequency characterizations which have no corresponding time-scale representation.

We look to some simple channel models and examine the mappings befivaed S. We first consider the wideband
(delay-dilation) single path channel,

L(a,b) =d(a— ag)d(b—byg). (44)
It follows from (42) that,
vV laol — 27r9b° —20T |
SO, 7) =4 Tmag¢ 0 a#l (45)
8(0)(T — bo) :oag=1

and, substituting this into (4) we obtaif{t) = ., s, (t), as expected.
We can derive the time-varying impulse response characterization) for the wideband single path channel,

h(t,7) = / S(0,7)e’?™0d0 (46a)
|1 |G;J | —j2m29=20T bo— “0 3270t 40 (46b)
— 0o
_ Vlaol 5 (bo—aor — (1 —ap)t (460)
[1— aopl 1—ap
= /]aol8(bo — aoT — (1 — ag)t) (46d)

which is also valid whem = 1. We can compare this result to that of the single narrowband path (delay, Boppler shift
by 6y) channelh(t,7) = §(7 — 79)e??™*% . The wideband path gives rise to a delta function line with slé‘?;el intersecting
the T-axis atby/ap; The narrowband path gives rise to a modulated delta function line parallel tbakis intersecting the
T-axis atry.

We now turn to the expression of the narrowband (delay-Doppler) single path in the wideband model:

S(0,7) =6(0 —0p)d(1 — 1) 47
If we ignore the difficulties arising from the instabilities on the= 1 line [7], it follows from (43) that
0o

Va1 —a)?

and, plugging this into (2), we indeed obtay() = zr, g, (t)-

The various channel characterizations for the simple one-path models (including the time-invariant one-path model) are
displayed in Table IV. We note that the one-path delay-dilation channel requires infinite support in time-frequency (45)
whereas it requires only point support in time-scale (44). On the other hand, the one-path delay-Doppler channel requires
infinite support in time-scale (48) whereas it requires only point support in time-frequency. Thus, since we are interested in
channels which have finite support in time-frequency or time-scale (as we will see in the next sections), the choice of channel
model is crucial and must be appropriate to the signaling environment (i.e., narrowband or wideband). Examirgfian df
for the one-path channels reveals that it is possible (up to a scaling constant) for the one-path delay-Doppler and the one-path
delay-dilation channels to have the same effect on a narrowband signaX (e@,= 6(v — 1y)) by settingry = bo/ao and

ap—1
ag

bao

L(a,b) = eI 2001 (48)

90:1}0(

Ill. DISCRETECANONICAL CHANNEL MODELS

In this section we develop a general technique for the generation of canonical channel models and demonstrate the applicatior
of the technique to time-frequency and time-scale kernel operators.

A. The canonical rake receiver model
We begin with the derivation of the canonical model associated with the standard rake receiver. The classic expression of
the sampling theorem for a signal(v) with support(—=W/2,W/2) is

z(t) = i x (i) sin (W (£ — b)) . (49)

W (t - )




one-path delay only

one-path delay-Dopplefly # 0

one-path delay-dilationgg # 1

S(6,7) 0(0)d(T — to)

6(6 — 60)6(T — T0)

Vlaol —j2m029=20T
[1—ag]

L(a,b) | 6(a—1)8(b— to)

160l _g2mhe T

T—a
Vlal(1—a)?

4(a — ap)d(b — bo)

t,T 0(T — to)

o(t — To)€j27rt00

m&((l — ao)t + aogT — bo)

k3(0,v) | 6(0 —v)e I2mtov

5(0 — v — p)e 32770V

V]aole 72790 5(v — agh)
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TABLE IV
TIME-FREQUENCY AND TIME-SCALE CHARACTERIZATIONS FOR THE ONEPATH DELAY-DOPPLER AND ONEPATH DELAY-DILATION CHANNELS.

An alternative formulation of the sampling theorem [19] is obtained by defipitg= z(a — ¢),

_oNs () S )
g(t) —n;mg(w) T — (50)
and thus, ( ( ))
- n\ sin (7W (t — 3%
r(a—t)= nzz_oox (a - W) AW (=2 (51)
Mapping (o, t) — (¢,7), we obtain,
B > n \ sin (7rW (7' — %))
z(t—71)= n;mx (t - W) 7 (T - %> . (52)
Following [19], substituting (52) into the time-varying impulse response channel characterization (13), we obtain
y(t) = /htT (t —7)dr (53a)
_ Z n /h sm (7W (1 — &) dr (53b)
e oo W 7TW ’7' — W)
:hn(t)
L:=[T,, /W] n
~ X e (t — W) ha(t) (53¢)

where the approximation is made based on the assumption that the channel is causal and has finite multipath, spitestd,

is, h(t,7) = 0,VT < 0,7 > T,,. Under this assumption, the approximation (53c) corresponds ¢ for which the mainlobe

of the sinc function overlaps with the support of the time-varying impulse response. The tapped-delay line in (53c) forms the
basis for the classic rake receiver, whérgt)'s are usually assumed to be independent of each other.

B. The canonical time-frequency model

We now proceed to examine the time-frequency canonical channel model which was originally derived in [5]. Alternative,
but similar models are explored in [30—32]. The path we take in this derivation is essentially the same as that in [5]. We look
at only the(0,7") portion of the received waveform, that igit)1 o1 (t). Starting from (53b), we impose th{e, T) restriction
and obtain

> n .
yOlon® = Y @ (t-1) { / At )1 0.1 (Dsine (W (7 - 1)) dr] (54)
Now we expand thé(t, 7)1, r)(t) term as a Fourier series,
1| T N— ,
h(th)l(O,T) (t) = Z f / h(t/,T)e_]2ﬂkt /Tdt/] e]27rkt/T (55a)
k=—oc0 0
_ Z % |:/ h(t/, T)l(O,T) (t/)ejQ‘n'k:t'/Tdt/] ejZTrkt/T (55b)
k=—o0 —

22, 8(0,7)Tsing( (& —0)T)e—im(h=T0)dg

which is valid fort € (0, 7).
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Substituting (55b) into (54) we obtain,

Z Z (t =) er2mtrs (; I’;/) (56)

n=—o0 k=—o0
where,
S(0,7) = // \sinc((r — ') W) sinc((6 — ¢') T) e 77— q¢'d7’ (57)

(56) is valid for that part of any bandlimited signal received duri6gl’).

Under the path scatterer interpretation we assume that the channel introduces a maximum delay $jpyeadighaximum
Doppler spread of3,, that is,S(6, 7) has support ifl—Bg, B4) x (0,T,,). In the smoothed version & (8, r) in (57), if we
consider only the terms in (56) where the main lobe of the smoothing kernel (which hds-8iZE, 1/T)-by-(—1/W,1/W))
overlaps with the support of(6, ), we need only sum ovet =0,...,N whereN = [WT,,] andk = —K,..., K where
K = [TB,]. We thus obtain the canonical representation of the time-frequency channel model,

[WT,,] [TBdl ( n) E
vty = > > ax(t- J%kt/Ts( > (58)
n=0 k=—[TBq] W W

C. Restatement
The double sum time-frequency channel formulation (56) was obtained by assuming,

« the input signal is bandpass with bandwidih, and
« the output signal is analyzed only forc (0,7).

With these assumptions in mind, we define the following two projection operators,

Pra(t) = 1jo,1(t)z(t) (59)
and,
Qwz(t) := F_l{l[,W/Q,W/Q] (W)F{z(t)}(w)}, (60)
and using the following two operators, the translation operator,
T x(t) :=x(t — 1), (61)
and the modulation operator, ‘
M, x(t) := x(t)el?™1, (62)
we can rewrite (56) as,
PrNsQw =Y cmnPrMTT? Quw (63)
T w

m,n

where thec,, , = S(T, V’{,) and Ns is the narrowband channel operator defined in (37). Restating the channel operator
in this setting, we can ask what general properties of the operators allow us to express the channel as a double summatior
of transformed input waveforms. In this section, we determine properties of the operators that are sufficient conditions for

the existence of such an expansion. Our goal is to develop an analogous time-scale canonical channel model. That is, in

Section IlI-F we propose projectiond and Q such that,

PWLQ = Zcm nPDmeOQ (64)

for some choice of dilation and translation spacing parametgrar{db,), where thec,, ,, depend onZ, and D is the dilation

operator,
D,x(t) := ! x (t) , (65)

\/m a

for the wideband channel operator defined in (38).
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D. Generalization

For the statement of the general theorem, we require the following definition.

Definition 1 (paired-up operators)P andU are paired-up operators with generatgriff,

1) P is an orthogonal projection in?(R)

2) U is unitary in L3(R)

3) PU=UP

4) Jep € RanP s.t{U™eq : m € Z} is an orthonormal basis for Rdh

Using two different pairs of paired-up operators, the following theorem gives a sufficient condition for the channel expansion.

Theorem 1:If (P,U) and (Q,V) are both paired-up operators with generator elementand f, respectively,H is a
bounded operator, angt,, ,, such that

Zcm,n <Vn+kf0aUl_meO> = <Hka07UleO> ’ Vkala (66)
then,
PHQ =Y cn PU™V"Q (67)

The proof of this theorem can be found in AppendixmAnand a method for calculating the coefficigntgan be found in
Appendix B.

E. Reuvisiting time-frequency
The example we have seen so far of the application of this theorem corresponds to the situation
o (P.U,e0) = (Pr, My, J=1p07)(t))
e (Q.V, fo) = (QW;T% VWsindWt))

for the operatorf = N of the form,

t) = / / S(0,7)e?*™ x(t — 7)dAdr. (68)

Modulation and translation operators are a natural fit with our channel descriptignwhich describes the channel as a
(continuous) summation of time and frequency shifts of the input signal. In Appendix B we demonstrate the coefficient
calculation procedure for these specific operators. The procedure correctly derives the,fgsedt S (%7 %) where S is

defined in (57).

F. Time-scale canonical model

We now develop the time-scale canonical characterization. For other possible extensions to time-scale, see the approact
in [33—35] using wavelet packet modulation.
The Mellin transform (also known as the scale transform) of a signalL?(0, o) is defined by

Mz(w) = / e 2miw In tl’(t)ﬁ
Jo

i (69)

which represents the composition of two unitary transformations
a(t) — e/2x(eh) =8 Ma(w).

For more information on the Mellin transform and its use in time-frequency analysis we refer the reader to [36]. For the
time-scale canonical characterization, we will require the projection operator in the Mellin transform domain

Ro =M 1 a)2,0/2M (70)

which acts on a function € L?(0, ) as follows

l—a/2.0/2]
—_—

m—l
L a/2,a/2)(w)Ma(w) = Raw(t)

wherea > 0 defines the cut-off Mellin “frequency” Explicitly, this means

2(t) 2 Ma(w)

/ srnc[a Int—1In 7)]x(r)dr, t>0. (71)

Using the characteristic function in the Mellin transform domain,

Lo(w) = 1{ ] (w), (72)

- _1
ZTnag’2nag
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leads to the scale generator

0 : t<0

For further details on the Mellin transform domain and its generators, consult [37].

It can be shown thatP, U, eg) = (lenﬂ , Day,v0(t)) are paired-up, and thus for the time-scale model, we use the following
paired-up operators,

« (P,U,ep) = (leao,Dao, ﬁ%sinc(lfaz))

° (Qv V7 fO) = (Q%vaov ﬁSInC(%))
to decompose the wideband channel corresponding to the opéfatodV, of the form,

Ha(t) = //C(a,b)\/lma: (’5Gb> dadb (74)

1 1 Int .
Vo(t){ mﬁsmc(lnao) >0 (73)

into a discrete double summation,

PWLQ = ZCWL,HPDZZ)TEZQ- (75)
In Appendix B we calculate the coefficients in the time-scale case,
. 1 . b
Con = // L(a,b)sinc (m _na ) sinc (n — ) dadb, (76)
’ In ag abg
and the canonical time-scale model is then
_ Cm,n t— ’I’Lbo agl
=3 e (). 7

m,n 0

IV. PHYSICAL INTERPRETATION OFCANONICAL MODELS

In [10] the canonical model (77) is obtained by using two sampling results: the classical Shannon sampling formula for
bandlimited functions, and a similar sampling result for functions that have finite support in the Mellin transform domain.
With the help of these two formulas, [10] obtained a decomposition of the received signal into a series of such as (77)
where parametersg, by are directly related to transmit signal bandwidth and transmit signal Mellin domain bandwidth. The
trouble with such a model is that there are no signals that are perfectly (Fourier) frequency bandlimited and Mellin transform
bandlimited (similar to the classical result that there are no time-frequency bandlimited signals except for the trivial zero
signal). One can argue that the transmit signal is essentially frequency bandlimited, as well as, Mellin domain bandlimited, and
thus a decomposition of type (77) should hold approximately. Furthermore, for a practical application, the infinite series (77)
is truncated to a finite number of terms consistent with the finite size of the wideband spreading fuhciibas, another
approximation is introduced, so overall one might expect that not much is lost by the initial assumption of joint Fourier
frequency - Mellin domain band limitedness.

In contrast, the approach we took in [8] does not suffer from the shortcomings outlined above. This different approach uses
all the three players: the sender, the channel, and the receiver. The sender prepares the transmit signal by tailoring some of it:
properties. That is, the signal is embedded into the range of an orthogonal proj@df@g. ) can be an ideal lowpass filter);

The channel acts via the operatdr(5); and the receiver observes the channel output but in the observation process applies its
own projection operatoP through measurement, e.g.is a time cut-off operator. Thus, the entire transmitter-channel-receiver
chain is modeled by a “sandwich” of operataP¥7() where P and Q are under the user's control, arfd is the channel
operator. To simplify notation, the transmit signal is assumed to lie already in the rar@geanfd thus@ often disappears
from formulae.
Thus, our basic model for transmitter-to-receiver communication system contains three blocks (see Figure 3):
1) A transmit signal shaper, which is mathematically translated into a proje@tidhis can be thought of as the last stage
of a modulator which, for narrowband communication channels, is either a bandpass filter around the carrier frequency,
or a lowpass filter when analysis is done in the base band;

2) A physical channel, mathematically modeled by a linear time-varying sy#fems such it can be written as in (5);

3) Areceived signal observation, which again is translated into another projgetabnhe receiver; typically for memoryless

source and channels, this is a time cut-off operator, due to real-time operation constraints.

By changing the transmitter shaping and receiver observation projections, we obtain the different canonical representations.
With this interpretation in mind, we can revisit previous models.

2|t is also possible to reverse the order of applicatiorfoéind D in (75). In such case, the generated model in fact is more like that in (74) in that the
time-shifts are not scaled.
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Physical Channel
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Receiver

Fig. 3. Our basic model for communication channel.

The standard rake receiver uses a channel model of type:
n
t) = Xha(t)e (t- )

which is obtained forP equal to the identity operator (i.e. the entire channel output is available for processing) agd for
equal to the projection onto the space of frequency bandlimited functions. As mentioned bafoedready assumed to be a
frequency bandlimited signal, thuse Ran Q.

The time-frequency channel model of [5] uses the model (6) which is obtained Whisrthe time cut-off multiplication
by 1j0,r7 and Q@ is the ideal lowpass filter.

The time-scale channel model of [8] in (77) uses the ideal Mellin domain lowpass filteraasl the ideal lowpass filter as
Q. In other words, the channel output is observed through a scale filter defined using the Mellin transform. We now present
another canonical model in which the pair of projectors consists of the time cut;9ff,(¢) for P and the ideal Mellin
domain lowpass filter fof).

A. The Frequency-Scale Canonical Model
We now consider a frequency-scale canonical channel characterization based on the translation operators in frequency anc
scale. In the frequency-scale model, we restrict ourselvegttodefined fort > 0 and use for the transmitter projectighthe
Mellin domain band Iimiterle . Thus, the transmitter transmits scale limited waveforms. We use for the receiver projection
P simply a time cut-off ’

P[T17T2]x(t) = 1[T1.,T2](t)x(t) (78)
whereT; > T, > 0 define the receiver observation time horizon. The overall chain of operators then decouples into the series

PHQ — Z Cm,71,P[T1)T2]M1n}(T2 _TI)DZOR (79)

m,n

1.
ZTnag

For this model the following theorem gives a decomposition into a series of dilated and frequency shifted versions of the input
signal.
Theorem 2 (The Canonical Frequency-Scale Channel Mod&sume a time-varying channél defined by (5). Then for

any signalz that is Mellin domain bandlimited t6- 53—, 53,5, i-e. = € RanQ,
- 1 t
e _ 2mimQt
y(t) .= Hx(t) = Z Cmne ™ 7t (a“) (80)
mneZ Qo 0
for all Ty < ¢ < T, whereQ = -,
Crn = @e—Jmﬂ-Q(Tl-‘rsz) /_oo (/0 ﬁ(w,a)ejﬂw(T]+T2)S|nC<% _ m) S|nc(h?(z) — n) da) dw, (8]_)

andp is computed in turn fronh(t, 7) through (113).

The convergence in (80) is in the? sense. The proof of Theorem 2 is included in Appendix D. In (80) we see that if we
receive scale limited waveforms over a finite time window, that we can decompose the time varying channel into a discrete
representation involving a countable sum of weighted scale frequency shifts of the transmitted waveform.
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model P U \% Q
time-frequency Pr M1 T% Qw
time-scale R Da, Ty, Q1
21nag bg
frequency-scale| Pir, 1, | Mi/(mo—11) | Dao R%
nag
TABLE V

SUMMARY OF CANONICAL MODELS OF THE FORMPHQ =" cm nPUT™V"Q.

model characterization
time-frequency | y(t) =, ,, cmne?>™ ™/ e (t — )
time-scale YO =2 cm,nﬁm (t_T;%S,a‘T’n>
frequency-scale y(t) =>_,, . cm,neé)”j’”m a”l/? ()
Q

TABLE VI
SUMMARY OF CANONICAL MODELS.

V. SUMMARY AND FUTURE WORK

Table V summarizes the projection and translation operators used to generate the three discrete canonical channel mode
discussed in this paper. Each of the models can be thought of as sending a transmit waveform through a shaping transmissior
filter @ and then receiving the signal through a receiving filerThe corresponding discrete channel models are presented
in Table VI. We have presented here a general theory which generates these models based on assumptions on the transmitte
and receiver characteristics:

o The time-frequency model arises from:

— frequency bandlimited transmit waveforms
— put through a time-frequency (narrowband) channel
— at a time limited receiver.
« The time-scale model arises from:
— frequency bandlimited transmit waveforms
— put through a time-scale (wideband) channel
— to a scale limited receiver.

« The frequency-scale model arises from:

— scale limited transmit waveforms
— put through a frequency-scale channel
— to a time limited receiver.

One of the many items for further study is the question of the physical interpretation of the frequency-scale model. In what
settings can we envision a channel which imparts a limited range of frequency and scale shifts of an input signal? Perhaps a
direct path only model of a wideband sonar signal reflecting off the undulating surface of the ocean with a moving transmitter
would impart simultaneously a frequency shift (caused by the frequency of the ocean surface waves) and a scale shift (caused
by the change in transmission path length during transmission). Indeed, one main topic of future research is to characterize
the channel scenarios which lead to efficient representation in each of the three models.

Further research topics include a full analysis of the two dimensional delay-dilation and Doppler-dilation rake receivers
which arise from these canonical models, including an analysis as to which communication scenarios result in performance
gains for the two-dimensional rake over conventional receivers. Also, we hope to generalize the information theoretic analysis
to the delay-dilation and Doppler-dilation rake receivers similar to that which was done for delay-Doppler rake receiver
in [5]. Similarly, it would be of interest to develop a canonical time-scale and frequency-scale multiantenna wideband channel
model similar to that proposed in [38] for time-frequency channels. Also, [33-35] introduce wavelet-based channel models; A
comparison of these models to the model derived in this work in Section Ill is a topic of future research. Finally, we ask, is
there a corresponding underspread/overspread theory (see [22, 39]) for the time-scale and frequency-scale canonical models’
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APPENDIX
A. PROOF OF MAIN THEOREM
Proof: First we expandP(@ using the orthonormal basis and unitary properties of the paired-up operators,

P=> (U"e)Ue (82)
and "

Q=Y (V"fo) V" fo, (83)
we derive, ”

PQz = Y (Qu,UMeq)UMeq (84a)
= Y <Z (, V" fo) V" fo, Ume0> U™eo (84b)
= D> (@, V" fo) (V" fo,Ueo) Ue. (84c)

We use this to determine, |
P (Z cm,nUmvn> Qr = Zcmm,UmPQV"z (85a)

= U™ (Z (V! fo,Ureq) (V'2, V! fo) Ukeo) (85b)

k,l
= > emn (Vo Ukeo) (2, V"V fo) U UPeq (85¢)

m,n,k,l

Z <Z Cmom <Vn+uf0, Us—meo>> <$, Vuf0> Ubeg (85d)

U,S

m,n

where the commuting property of paired-up operators was used in (85a), (84c) was used in moving from (85a) to (85b), and
the unitary property of” was used in moving from (85b) to (85c). Now, looking to the LHS of (67), we expand using the
orthonormal basis and obtain,

PHQzr = > (HQx,U'e) U, (86a)
= > <H (Z (@, V" fo) vm) ,U8e0> Useo (86b)
= > (@, V fo) (HV" fo, Ueq) Uteq (860)
= Zhu,s (z, V" fo) Useo. (86d)

Given H, we then compute,
ha,s == (HV* fo, U’eq) (87)

which we use to solve,

Zcm,n (V™ fo, U ™eg) = huys,  Vu,s (88)

m,n

for ¢y, . Thesec,, , satisfy (67). [ |
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B. SOLVING THE COEFFICIENT EQUATION
We now discuss the form of the solution to (66). We define

ag = (V¥ fo,Uleq) (89)
and define
6m,n = Cn,—m (90)
which allows us to express (66) as,
hu,s = Z Cm,n <Vn+uf07 U57m60> (91a)
= Z <Vu_nf07 Us_m60> én,m (91b)
m,n
= (ax?),, (91c)
where
(ax@), = Z Qu—t,s—1Chl = Z Ak, 1Cu—o,s—1 (92)
k,l k,l
Expressingh, a, andé in the Z-transform domain,
Alz1,22) =34, Hbar, = szzé <ka0, Uleo> (93)
k,l
H(Zl,ZQ) = Zk,l Z{C,Zéhk)l = szzé <Hka0,Ul€0> (94)
k,l
C(z1,20) = Zk,l 2K 2 h (95)
we can write (91c) as, )
H=AC (96)
and solve forC H( )
~ 21,22
C = ——= 97
(21, 22) A, 22) (97)
In terms ofc, », this is,
_1 (H(z1,22)
Cmm = Z 71 (’ ) 98
’ A(Zl7 22) —n,m ( )
where N
Z7H(F(21,22)) o = / / e~ IFmhimemi2mban [ (1270 12702 49, 6, (99)
0 0
We can express (98) as a convolution of coefficients by defining
N . 1
276 276 L
A(e] 1 , 6‘7 2) = W (100)
and -
&m,n — / / €7j27r91m€7j27r02n14 (6j27r91’6j27r92) dolda% (101)
0 0
and we can obtain the,, ,, using
Cm,n = 6—77,,m = (d*h>—n,m~ (102)

Coefficient calculation

Thus, to calculate the coefficients, ,,,

1) calculatehy; via (87),

2) calculatea,, ,, via (89),

3) usea,,., to obtain A(e2m%1 i2792) via (93),

4) use A(ei?m01 ¢i2762) to obtaina,, , vua (100) and (101), and

5) usehy,; anda,, , to obtainc,, , via (102).

Here, we present the highlights of the coefficient calculation procedure for the time-frequency and time-scale canonical
models. For more detailed steps, consult [7].
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Example: time-frequency

iy = V% / / / 1jo.71()e?>™ O T sing Wt — k — Wr)S(6, 7)dodrdt (103)
W T ; nt
Amn = ,/? / e 72T sing Wt — m)dt (104)
0

For 91, 0, € [O, 1],

om0, 210, VWTei2nWT6:02 . g ¢ 0, 1
A(e” O i2m0 )= { W Te2nWT(0:-102 . g ¢ &721% (105)
1 v _ 1
CALm7n = \/MTT/ 67J27T92ns|nC(WT62 + m) = Wa_m7nd92 (106)
0
= / S(0, 7)™ 0+ Msing TO + m)sindn + Wr)dodr (107)

which are precisely the coefficients in (58).

Example: time-scale

1 1 > 1 t—>b Int
hy s = L(a,b sinc| — — sinc| —— — s | dt | dadb 108
" Vo Inag //\/|a (@ )( Vi <abo u) | (hlao s) ) ! (109

. 1
=4/ / —smc ——m sinc M—n dt (1209)
bo lnao Inag

For 61,6, € [—1, 3], in distributional sense,

1 lijop 92 OO o . gy
A0, 05) = b2 T / (T 2t gy (110)
bo In ag 0

lﬂ ao —3271'91m —j2mlan

tmn = VI ag / 1 / ¢ d6,d6s (111)

o 3TI2T A lnao ei2mo1t gt

Cmn = // a, b)sinc (m _In > sinc <n — b> dadb. (112)
nao b

C. THE EQUIVALENCE BETWEEN(5) AND (10)

In this section we obtain the correspondence relations between the two forms (5) and (10) of a general time-varying linear
system when input signal are supported on positive time domain, and the observation is restricted to a positive time horizon.
Consider first the input-output relationship given by (5). For positive time supported input signals, the output is given by

y(t) = /OOO h(t,t — )z (r)dr

We change the integration variabte— 5 and since we have a positive time horizon, t.e: 0, we obtain:

y(t):/()mh(t,t—fl)x(;)azda

Now denotep(t, a) = at—ﬁh (t,t — L), andp(w, a) its Fourier transform with respect to Then the inverse Fourier transform

allows us to write 0o 0o 1 "
y(t) = / (/ plw,a)e?™ vt —g () da) dw
( ) —o0 0 ( ) \/E a

1 e . -1
plw,a) = a\/a/o e ImIwtE p ( , a4 > dt (113)

For the converse, assume the input-output relationship in given by (10). Then, performing the integrationficstewe

obtain y(t) = /000 p(t,a)%w (Z) da.

that is (10), where, explicitly,
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Next we need to change the integration variabl®to 7 = ¢ — £
t
t t—
y(t) = /m p (L t_T> ; Da(t — r)dr

t— o , t
h(t, ) = Lis- (1) tT/ eI (w, _w> dw (114)

which is exactly (5) with

wherel,s (1) = 1f; o0 (1)

D. PROOF OFTHEOREM 2
We follow the recipe proposed in Appendix B. The two sets of paired-up operators and generatdrs-argy, 1), Mq, eo(t) =

VQlr, (1) and(Q = 9)?‘11[_21:“0,21:@0]9)2, Doy, fo(t) = ,/tmlaosino(lil“;o)lbo(t)). First we need to compute, ; and
A, We have:

T21

1 - - ; . (Int/a
hiy = (HD" fo, Mbeo) = / / H(w, a e%ﬂ(w—m)anc( —k) dt | da | dw
ki = (Do, fo, Maco) Inag J_o ( 0 Plra) Vi Inag

T
! = —2mjSintgine Int —m | dt
In ag

— —e
Vinag Jr, vVt

Next we computed(z1, z2) = 3, mn2i 28, atzy = €201, 2y = €2™% for 0, € [-1, 1], 6, € [0,1]. We obtain:

Am,n = <Dng07M8€0> =

2 2701 b In 2570
(92 + ’no) In ag

A(e27rj01 , e27rj62) _

whereng = ng(62) is the only integer so thaz5"e € [Ty, T). Then

A(e2mif | ¢2mj02) - [9)

which has its Fourier expansion with coefficieats ,, given by

To ‘ Int
dm,n = \/hliao/ \/-26*27T]n52tsinc <m + 1 n ) ar
Ty

1 agp

~ . . 1 O +ng)Inag _oxs 1 02470 (92)
A(627r3017e27r]92) _ ( 2 U) 06 2701 nag In Q

Then the coefficients,, ,, that solve the equatioa * 7 = h with 7, ,,, = ¢, are given by

Cmn = (A% h)_pm = ﬁeﬂmﬂg(ﬂﬂg)/ (/0 plw, a)e”“’(TlJrTQ)SInC(% - m) Slnc(lna — n) da) dw

nagp

which is exactly (81).
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