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Abstract

In this paper we are given an extension of Barbashin-Krasovski-LaSalle Theorem) to

the case when the kernel of the time derivative of the Liapunov candidate includes some

trajectories. Our goal is to improve the su�ciency conditions for the asymptotic stability

of the equilibrium. The starting point is the paper [ByMa94] where, especially, the case of

zero-state observable dynamics is considered. We try to extend this result to the case of

zero-state detectability (being motivated by the linear situation: Given (C;A) a detectable

pair, if there exists a positive semide�nite matrix P � 0 such that: ATP + PA+ CTC = 0

then A is Hurwitz -i.e. it has eigenvalues with negative real part).

In the �rst section we present the proof of the LaSalle's Invariance Principle and Barbashin-

Krasovski Theorem using Barb�alat's Lemma.

In the second section we present a geometric technique called the observability decom-

position for nonlinear systems and we present the observability and zero-state detectability

properties for nonlinear dynamics considered to be in the following form:�
_x = f(x)

y = h(x)

In the last section we suppose f to have only one equilibrium point, namely �x = 0 and under

the assumption of detectability or certain equivalent condition we obtain the asymptotic

stability of this equilibrium.
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1 Barbashin-Krasovski-LaSalle's Theorems

1.1 Introduction and Statement of BKLS Theorems

We consider the following dynamical system:

_x = f(x) ; x 2 U � Rn (1)

where f 2 C1(D) is a vector �eld of class C1 on U and U a domain in Rn.

De�nition Consider x0 2 U and T = fx(t)j0 � t < tx0g the positive trajectory initialized

at x0 (where tx0 � +1 is the positive escaping time). We call X! 2 U an !-limit point for T if

tx0 = +1 and there is a sequence of positive real numbers (tk)k2N such that:

i) lim
k!1

tk =1 and ii) lim
k!1

x(tk) = x!

We denote by 
(x0) or 
(T ) the set of !-limit points of the trajectory T . From now on we

consider those systems for which tx = +1 for any x 2 D. We shall denote by x(t; x0) the ow

generated by the system (1) (i.e. the integral curve at the moment t when at t0 = 0 the systems

was in x0). Thus T = x(R+
; x0).

It is well-known (result due to Poincar�e) that the set of !-limit points is a closed and positive

invariant set (see [HirSma74]). (By positive invariant set we mean a set S such that for any

x0 2 S , the positive trajectory starting from x0 remains in S: T � S).

There is also another result for !-limit points :

THEOREM 1 (Birko�'s Limit Sets Theorem - see [Birk12]) Any bounded trajectory ap-

proaches its !-limit set:

lim
t!1

d(x(t);
(x0)) = 0

where d(x;M) = miny2M k x� y k , is the distance from x to the closed set M .

Now we are able to state the LaSalle's Invariance Principle (see [LaSa60]):

THEOREM 2 (LaSalle's Invariance Principle) Consider the dynamical system (1) with

U = Rn and a function V : D! R of class C1 (D a domain included in U) with the following

properties:

i) It is bounded below (i.e. 9M 2 R such that V (x) �M , 8x 2 D)

ii) dV

dt
= LfV � 0, 8x 2 D

Consider x0 2 D and T = fx(t)jt 2 R+
; x(0) = x0g the positive trajectory starting from x0

and completely included in D. Then one of the following holds:

1) The trajectory is unbounded;

2) The trajectory is bounded and its !-limit set is included in N = fx 2 DjdV
dt
(x) = 0g

(
(x0) � N) or, equivalent, the distance from the trajectory to the maximal positive invariant

set included in N tends to zero. 2

Remark There is another variant of this theorem in which it is required D to be a positive

invariant set. This variant ends to be a simple corollary of the above statement.

In the case of studying only the asymptotic behavior of an equilibrium, the previous theorem

turns into the Barbashin-Krasovski statement:
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THEOREM 3 (Barbashin-Krasovski Theorem) Consider the dynamical system (1) with

�x = 0 2 U an equilibrium point (i.e. f(0) = 0). If there exists a function V : D ! R of class

C
1 (D a neighborhood of the origin) such that:

i) V (x) > 0, x 6= 0, V (0) = 0;

ii) W = dV

dt
= LfV � 0, 8x 2 D;

iii) In N = fx 2 DjW (x) = 0g there is not included any positive trajectory othere than the

trivial solution x(t) � 0;

then the equilibrium point �x = 0 is an asymptotical stable equilibrium. 2

In the linear case (i.e. f(x) = Ax) the above statement turns into the following version:

THEOREM 4 If there exists a solution P � 0 of the following Liapunov equation:

A
T
P + PA + C

T
C = 0

with (C;A) an observable pair, then A is a hurwitz matrix (i.e. has eigenvalues with negative

real part). 2

In the next subsection we shall prove the Barb�alat's Lemma which is a key tool in the proof

of LaSalle's Invariance Principle that is presented in the third section. In the last section we shall

prove Barbashin-Krasovski Theorem and the philosophy of the asymptotic stability in terms of

this approach.

1.2 The Barb�alat's Lemma

LEMMA 5 (Barb�alat's Lemma) Consider a function f : [0;1) ! R with the following

properties:

i) It is an uniform continuous function (i.e. 8" > 0 9�" > 0 8x; y 2 [0;1), jx� yj < �" )

jf(x)� f(y)j < ")

ii) There exists and it is �nite:

lim
t!1

Z 1

0
f(�)d�

Then limt!1 f(t) = 0.

Proof: We shall prove that limt!1 f(t) = 0 by contradiction. Suppose 'ex absurdo' that

f(t) does not converge to zero as t tends to in�nity. This means that there exist M > 0 and a

sequence (tk)k�0, tk ! 1 such that jf(tk)j � M . We set " = M=2 and choose � > 0 such that

for any � 2 [o; �] and t � 0 we have jf(t)� f(t + �)j < M=2. Then jf(tk) � t(tk + �)j < M=2

that implies jf(tk + �)j > M=2, for any k � 0. We obtain:

j

Z
tk+�

tk

f(�)d� j =

Z
tk+�

tk

jf(�)jd� >
1

2
M� (2)

We have used that f is continuous and then it keeps constant sign on [tk ; tk + �].

We build up a sequence (sn)n�1 in the following manner:

s2k�1 = tk s2k = tk + � ; n � 1
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Then limn!1 sn =1. The inequality (2) shows that the sequence:

In =

Z
sn

0
f(�)d� ; n � 1

is not a Cauchy chain and then does not converge. This is a contradiction with the hypothesis.

The contradiction comes from our assumption that f(t) does not converge to zero as t tends to

in�nity. Now the proof is complete. 2

1.3 The Proof of LaSalle's Invariance Principle

1) If the trajectory is unbounded we have nothing to prove.

2) If the trajectory is bounded, let B denote a compact set such that T � B. We have the

following relations:
dV

dt
= W (x(t))

V (x(t))� V (x0) =

Z
t

0
W (x(�))d� (3)

Now, because _x = f(x) and x(t) is bounded we obtain that x(t) is uniform Lipschitz and

also uniform continuous function on [0;1). On the other hand, since W is continuous and B

compact, then W jB is uniform continuous. Then W (x(:)) : [0;1)! R is uniform continuous.

Since W (x(t)) � 0 then
R
t

0 W (x(�))d� is monotone decreasing function. Using (3), boundedness

of the trajectory and the lower boundedness of V we obtain that there exists:

lim
t!1

Z
t

0
W (x(�))d�

Now, using Barb�alat's Lemma we get:

lim
t!1

W (x(t)) = 0 (4)

Let x! be an !-point for our trajectory. Then there exists tk !1 such that limk!1 x(tk) = x!.

From (4) we get:

lim
k!1

W (xk) = 0

and because of continuity of W : W (x!) = 0. This proves that the !-point set is included in the

kernel of W : 
(x0) � N . 2

1.4 Consequences

Firstly we recall the Liapunov stability theorem:

THEOREM 6 (Liapunov Theorem) Consider the system (1) and �x = 0 2 U an equilibrium

point. If there exists a function V : U ! R such that:

i) V (x) > 0, x 6= 0, V (0) = 0

ii) dV

dt
� 0 , 8x 2 U

then the equilibrium point �x = 0 is stable. 2
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whose proof is given, for instance, in [Khal93].

Now the Barbashin-Krasovski Theorem (Theorem 3) appears as a corollary of the previous

results:

1) The stability of the equilibrium is implied by the Liapunov theorem stated above;

2) The attractivity of the equilibrium is obtained from the LaSalle's Invariance Principle

because N = f0g;

and the proof of Theorem 3 is complete.

This construction suggests that in order to prove the asymptotic stability of an equilibrium

we need to follow two steps with two di�erent methods:

1) First we need to prove the stability (in Liapunov sense) of the equilibrium. This is

implied by a Liapunov argument (i.e. positive Liapunov function) and thus we get some local

boundedness of the trajectories.

2) In the second step we prove the attractivity of the equilibrium by means of Barb�alat's

Lemma. In fact, the LaSalle's Invariance Principle says that a special set (which is the maximal

positive invariant set included in the kernel of the time derivative of the scalar function) has got

a property of attractivity. But this set depends upon the function V (the scalar function). By

changing the function we could obtain another set. Then the !-limit set of our system is exactly

the intersection of the whole these invariant sets and ... it is not very easy to be computed.

This is the reason for which we try to throw away some subsets from a given invariant set. Our

approach use a geometric technique and we need some regularity conditions for the invariant

set. In the next section we study these conditions for a nonlinear system.

2 The Observability Decomposition for Nonlinear Systems

2.1 Integrability of Nonsingular Distributions

We consider a domain D � Rn and a set of vector �elds fv1; v2; : : : ; vrg on D of class C1 which

are linear independent over R in every point x 2 D.

We denote by f!r+1; : : : ; !ng a set of n� r 1-form linear independent which are ortoghonal

to fv1; : : : ; vrg (i.e. !i(vj) � 0).

De�nitions We say that the distribution spanned by v1; : : : ; vr is integrable if through every

point p 2 D passes a submanifold N ,! D of dimension r (p 2 N) such that for every point

x 2 N the tangent space at x to N is given by spanRfv1jx; : : : ; vrjxg.

Equivalent, the codistribution spanned by !r+1; : : : ; !n is integrable if there are n � r C
1

real-valued functions hr+1; : : : ; hn : R! R such that dhr+1; : : : ; dhn is a basis in the free module

over F(D) (the ring of real-valued functions over D) spanned by !r+1; : : : ; !n.

We say that the distribution spanned by v1; : : : ; vr is involutive if for any 1 � i; j � r the

Lie brackets [vi; vj ] is a linear combination of v1; : : : ; vr.

We say a distribution is nonsingular if the vector �elds that span the distribution are linear

independent (as in our case).

A very known result about integrability of nonsingular distributions (or codistributions) is

given by the Frobenius theorem which is stated below:
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THEOREM 7 (Frobenius Theorem) A nonsingular distribution is integrable if and only if

it is involutive. 2

For the proof we refer the reader to [Isid89].

2.2 Observability and Detectability of Nonlinear Systems

Let us consider the following nonlinear system without input:

(S)

(
_x = f(x)

y = h(x)
; x 2 D � Rn (5)

where f is a vector �eld and h a vector-valued function both of class Cs with s large enough

(f : D ! TD, h : D! Rp). We suppose 0 2 D and f(0) = 0, h(0) = 0. Now we can de�ne the

observability in terms of the above system:

De�nition We say that the pair (h; f) is observable if from y(t) � 0, 8t � 0 we obtain that

x(t) � 0, 8t � 0 (this means that the unobserved trajectory is only the trivial solution x(t) � 0).

Let us de�ne K = fx 2 Djh(x) = 0g and denote by N the maximal f -invariant set included

in K. Then, to say that pair (h; f) is observable is equivalent to say that N = f0g. In the case

when N contains more elements than 0, it is interesting to consider the restriction of the system

(5) on this set. We set ~f = f jN and the system (5) becomes:

(S0)

(
_x = ~f(x)

y = 0
; x 2 N (6)

We should rather regard this system as a dynamics given by the ow generated by f on D and

then restricted to N ; we point out that N may not be a manifold. Regarding the system (6) we

de�ne:

De�nition The pair (h; f) is said to be zero-state detectable if the system S
0 has �x = 0 an

asymptotical equilibrium point.

In the case of zero-state detectability we obtain that from:

y(t) � 0 ; 8t � 0 ) lim
t!1

x(t) = 0

i.e. every unobserved trajectory goes to zero as t tends at in�nity.

We note that the zero-state detectability requires more than the attractivity condition stated

above (it requires also the stability for the restricted dynamics).

A criterion of su�ciency for zero-state detectability is given below:

THEOREM 8 If there exists p vector �elds on D: k1; : : : ; kp such that the vector �eld f +

h1k1+ � � �+ hpkp has �x = 0 an asymptotical stable equilibrium, then the pair (h; f) is zero-state

detectable.

Proof For the system:

_z = f(z) + h1(z)k1(z) + : : :+ hp(z)kp(z) ; z 2 D

the set N is also f +hk-invariant and the restricted dynamics on N is exactly that given by (6).

2
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2.3 The Observability Decomposition of Nonlinear Systems

The set N introduces in the previous subsection has a very nice property: it is invariant and

the restriction of the system to this set produces a null output. To use this property from a

geometric point of view we need N to be a submanifold. We shall characterize N in terms of

an involutive codistribution and then the condition of integrability reduces to the condition of

regularity of this object.

We start by building up this object. From the conditions involved by N we get:

h(x) � 0
dh

dt
= Lfh(x) � 0

d
2
h

dt2
= L

2
f
h(x) � 0 ; 8x 2 N

� � �
d
q
h

dtq
= L

q

f
h(x) � 0

� � �

(7)

Then N is given by the intersection computed as follows:

N = fx 2 Djh(x) = Lfh(x) = L
2
f
h(x) = � � � = L

q

f
h(x) = � � � = 0g

Let us consider the codistribution:


 = spanF(D)fdh; dLfh; dL
2
f
h; : : : ; dL

q

f
h; : : :g (8)

Since D has dimension n, if 
 is a regular codistribution (i.e. has constant rank) then there

exists q functions with q � n: '0, '1; � � � ; 'q�1 such that:

dL
q

f
h = '0dh+ '1dLfh+ � � �+ 'q�1dL

q�1
f

h

Then the codistribution 
 is spanned only by:


 = fdhi; dLfhi; : : : ; dL
q�1
f

hij1 � i � pg

From these q:p 1-forms we pick up only linear independent ones and, with them, we construct

a basis whose entries are labeled as:

fdgs+1; dgs+2; : : : ; dgng
b

� 
 (9)

with gi : D ! R, s + 1 � i � n and s = n � rank
. From the condition of constant rank we

obtain that:

N = fx 2 Djgs+1(x) = gs+2(x) = � � �= gn(x) = 0g (10)

Now we choose another s functions from F(D) (g1; : : : ; gs) which are functional independent

together with gi's and we make the coordinate transformation:

zk = gk(x) ; 1 � k � n

In this new coordinate frame, the manifold N is given by:

N = fz 2 g(D)jzs+1 = zs+2 = � � �= zn = 0g
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and, because of its f -invariance the system (5) becomes:8><
>:

_z1 = ~f1(z
1
; z

2)

_z2 = ~f2(z
2)

y = ~h(z2)

(11)

where z1 = (z1; z2; : : : ; zs), z
2 = (zs+1; : : : ; zn) is a partition of coordinates in this new frame. In

fact we have proved the following theorem called the observability decomposition of nonlinear

systems theorem:

THEOREM 9 (The Observability Decomposition Theorem) Suppose for system (5) the

codistributions 
 has constant rank on D. Then there exists a coordinate system (z1; : : : ; zn) in

which the nonlinear system takes the form (11). 2

3 The Extension of Barbashin-Krasovski-LaSalle Theorem

3.1 Statement of the Main Results

Let us consider the following nonlinear system:

_x = f(x)

x 2 D � Rn, D a positive invariant bounded domain and 0 2 D an equilibrium: f(0) = 0. We

suppose f to be of a class large enough.

THEOREM 10 Let V : D ! R be a positive semide�nite function of class Cp+1, V � 0,

V (0) = 0 and consider the following sequence of functions:

I1
def
= _V = rV � f

I2
def
= _I1 = rI1 � f

� � � (12)

Ip
def
= _Ip�1 = rIp�1 � f

Ip+1
def
= _Ip = rIp � f

If the following conditions are ful�lled:

1. I1 � 0 and the dynamics restricted to the maximal invariant set S included in K = f x 2

D j _I1(x) = 0 g is asymptotically stable.

2. I1; : : : ; Ip are functional independent on D (i.e. spanRf dI1; : : : ; dIp g keeps constant rank

on D)

3. Ip+1 is functional dependent of class C1 on I1; : : : ; Ip (or, equivalent, there exist p contin-

uous functions �1; : : : ; �p such that dIp+1 = �1dI1 + � � �+ �pdIp)

then the equilibrium point x0 = 0 is asymptotically stable. 2

In terms of systems theory the above result could be restated as it follows. Let us consider

a nonlinear dynamical system of the form:

(S)

(
_x = f(x)

y = h(x)

; f(0) = 0

; h(0) = 0
(13)
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where f and h are of class large enough and x 2 D, a positive invariant domain.

We consider the following geometric condition:

G. There exists p 2 N, p � n such that:

1. f dh ; dLfh; : : : ; dL
p�1
f

h g are linear independent on D.

2. There exist p continuous functions �1; : : : ; �p such that:

dL
p

f
h = �1dh+ �2dLfh+ � � �+ �pdL

p�1
f

h on D

Now we are able to state the "systemic" version of Theorem 10:

THEOREM 11 Consider the nonlinear dynamical system (13). If:

1. The pair (h; f) is zero-state detectable

2. There exists a Cp+1 positive semide�nite function V , solution on a neighborhood of x0 of

the equation:

rV � f+ k hk
q = 0

for some q (V � 0; V (0) = 0) such that V �1([0; �]) is bounded for some � > 0

3. The geometric condition G is ful�lled

then x0 = 0 is an asymptotic stable equilibrium.

3.2 Proof of Theorems

We shall prove Theorem 10 using Theorem 11 and then we shall give the complete proof of

Theorem 11. But �rst we need a lemma which gives a partial answer to our question:

LEMMA 12 (see [Hahn67], Theorem 34.2) Consider the nonlinear system:

(
_x = f(x); f(0) = 0

y = h(x); h(0) = 0

and suppose :

1) There exist a semipositive solution (V � 0) of the Liapunov equation:

dV

dt
+ k hk

q = 0

2) The pair (h; f) is detectable.

3) The origin is a stable equilibrium for f .

Then the origin is an asymptotically stable equilibrium for f .

Proof

Let us denote by S the largest f -invariant set included in N = f x 2 Rnj _V (x) = 0g. Let

~x(t) be a trajectory. Since it is bounded then there exists (tn)n ! 1 such that (x(tn))n is a

convergent sequence and let x� = limn!1 x(tn). Now, if we apply Barb�alat's Lemma (lemma

5) we get that V : [0;1) ! R, V (t) = V (x0) �
R
t

0 k hk
q(x(t))dt is an uniformly continuous

function and then limt!1
_V (x(t)) = 0 or limn!1

_V (xn) = 0, which means x� 2 S. We have to

prove that x� = 0. Let us suppose x� 6= 0. We know that x(t; x�)
t!1
�! 0 (where x(t; :) denotes

the associated ow to f) because it is a trajectory included in S. Let " =k x� k =2. Then 9�" > 0

such that for any x0 2 Rn with k x0 k< �" )k x(t; x0) k< ", 8t > 0. For t1 > 0 such that
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k x(t; x�) k< �"=2 we have limn!1 ~x(tn+ t1) = x(t1; x
�). We choose N such that k ~x(tN ) k< �".

Then for n > N ~x(tn) = x(tn � tN ; ~x(tN)) and from stability: k ~x(tn) k< " , 8tn > tN . This is

a contradiction with limn!1 k ~x(tn) k= 2". Then x� = 0 and the !-limit set of each trajectory

is 
(x) = f0g, x 2 D. Now, by Birko�'s Theorem we get the attractivity of the origin. 2

Proof of Theorem 10. Since I1 � 0 it is su�cient to consider q = 1 and h = �I1. Then

I1 = rV � f becomes:

rV � f + h = 0

and the condition of zero-state detectability is given by the �rst condition of Theorem 10. The

geometric conditions G are given by the next two conditions of Theorem 10. Then, using

Theorem 11 we conclude that x0 = 0 is an asymptotically stable equilibrium.

Proof of Theorem 11. We change the coordinate system such that our dynamics is

brought into a special form. We see that under condition G we can apply the Observability

Decomposition Theorem (Theorem 9) and then in this new coordinates the dynamics is described

by: 8><
>:

_� = '(�)

_� =  (�; �)

y = �1

and 'T (�) = [�2; �3; : : : ; �n�s; F (�)], '(0) = 0 ,  (0; 0) = 0. Now, let us consider the decoupled

system:

(DS)

(
_� = '(�)

y = �1

Since dV

dt
= rV � f = � k hk

2 = �j�1j
2 and � = �(t; �0) we have that V (x) = V (�) (it depends

only on the �rst p coordinates). On the other hand, if y(t) � 0) �1 � 0) �2 = _�1 � 0 and so

on. Then � � 0. That means that (�1; ') is zero-state observable (see [ByMa94]). Now, applying

Theorem 3.1 from [ByMa94] for V to (DS) we conclude that �0 = 0 is an asymptotically stable

equilibrium for '.

From zero-state detectability we claim that  (0; �) has at �0 = 0 an asymptotically stable

equilibrium.

In that it follows we shall prove the stability of the origin for f . (This proof is borrowed

from [Vidy80]). Since:
_� = '(�)

_� = 	(0; �)

are asymptotic stable systems, there exist V1 : D ! R and V2 : D ! R two strict positive

Liapunov functions of class C1 (i.e. V1;2 > 0 and _V1;2 < 0 for x 6= 0) for which there are

F1; F2; F3; G1; G2; G3 of class K

K = f' : [0;1)! Rj'(0) = 0 ; ' continuous ; ' strict increasing g

such that:

F1(k � k) � V1(�) � F2(k � k)

dV1

dt
= rV1(�) � '(�) � �F3(k � k)
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G1(k � k) � V2(�) � G2(k � k)

dV2

dt
= rV2(�) �	(0; �) � �G3(k � k)

Moreover, we suppose 	 to be at least of class C1. Then:

sup
k�k�c

k r�	(�; �) k= L1 <1

We set:

M = sup
kx2k�c

k rx2
V2(x2) k

where c is a constant such that B(0; c)� B(0; c) � D. Let " > 0; we shall �nd �1 > 0; �2 > 0

such that for any k �0 k� �1, k �0 k� �2 we obtain k �(t) k< " and k �(t) k< ". We take �2 to be

such that G2(�2) � G1("). Let "1 < min(";
G3(�3)
ML1

) and �1 such that F2(�1) < F1("1). Then for

k � k� �1 )k �(t) k� "1 � ". We claim that dV2

dt
js = rV2(�) �	(�; �) � 0 for k �(t) k� "1 and

k � k� �2. We have:

rV2(�) �	(�; �) = rV2(�) �	(0; �) +rV2(�) � (	(�; �)�	(0; �)) � �G3(k � k) +ML2 k � k�

� �G3(k � k) +ML2"1

Now, since G3 is increasing and "1 �
G3(�3)
ML1

the above claiming follows.

Then, for any k �0 k� �2 we have V2(�(t)) � G2(�2) � G1("). Then k � k� " and this proves

the stability.

The asymptotic stability comes from the Lemma 12.

This ends the proof. 2

3.3 An Example

Let us consider the following nonlinear system:

_x = �x3

_y = �y3 � yx2

We see that it has an unique equilibrium, namely (x0; y0) = (0; 0). For the following Liapunov

candidate function:

V =
x
2

2

we obtain:
_V = �x

4 = �h
q
� 0

and we choose q = 4, h(x) = x. Then Lfh = �x3 = �h3(x). Then:

1) The pair (h; f) is zero-state detectable because the maximal invariant set included in

Ker h is

S = f (0; y) j y 2 R g

and the dynamics restricted to S is given by y = �y3 which is asymptotically stable.

2) V is solution of rV � f + h
4 = 0

11



3) For p = 1, dh = dx 6= 0 and Lfh = �h3.

Then according to Theorem 11 we assert that the equilibrium point (x0; y0) = (0; 0) is

asymptotically stable.

On the other hand, if we consider:

~V =
x
2

2
+
y
2

2

as a Liapunov candidate we have:

d ~V

dt
= �x

4
� y

4
� x

2
y
2
� 0

Thus, by Liapunov's theorem on asymptotic stability we obtain the same conclusion: (0; 0) is

an asymptotically stable equilibrium.
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