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Abstract

In this paper we present a new approach to the Popov's Positivity Theorem and new statements and proofs of

Absolute Stability Theorems.

In the �rst chapter we establish connexions between Riccati equations, Kalman-Yakubovitch-Popov systems

and Luri�e systems. We prove this results for stabilizable and antistabilizable solutions avoiding Youla's factoriza-

tion.

In the second chapter we state the Absolute Stability Theorems that we are dealing with: Circle Criteria,

General Popov Criteria and the usual Popov Criteria. Then we present the mechanism of the proofs and at the

end of the chapter we give the extended proofs.



Chapter 1

The Popov Theorem of Positivity

1.1 The Objects and Statement of the Results

The main object of this paper will be the triplet of the form � = (A;B;P ) 2 Rn�n � Rn�m �
R(n+m)�(n+m) called a Popov triplet with P = PT partitioned as:

P =

�
Q L

LT R

�

The appropriate interpretation of the triplet � is given refering to a control system:

_x = Ax+Bu (1.1)

and a criterion with weighting matrix P , namely

J(t1) =

Z
t1

0

[xTuT ]P

�
x

u

�
dt (1.2)

where [xTuT ] 2 L2;n[0; t1]� L2;m[0; t1].
The rational function:

��(s)
def
= [BT (�sI �AT )

�1
I]P

�
(sI � A)

�1
B

I

�

= R+BT (�sI �AT )
�1
L + LT (sI �A)�1B+

+BT (�sI � AT )
�1
Q(sI �A)�1B

(1.3)

is called the Popov function associated to �. It is easy to prove that the Popov function has the following

realization:

H� =

2
664

A 0

�Q �AT

B

�L

LT BT R

3
775 (1.4)

We call a Kalman-Yakubovich-Popov system the following set of equations:

R = V TV

L +XB = WTV

Q+ATX +XA = WTW

(1.5)
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and a solution of KYP, a pair (V;W;X = XT ) that ful�lls (1.5). For any solution of KYP system we can

bring the criterion into the following form:

J(t1) = �[xTXx]jx(t1)x(0) +

Z
t1

0

kWx(t) + V u(t)k2dt (1.6)

We call a Luri�e system the following set of equations:

ATX +XA + Q+ (XB + L)F = 0

BTX + LT +RF = 0
(1.7)

and a solution of Luri�e system, a pair (F;X = XT ) that ful�lls (1.7). We call F a stabilizable solution if

�(A+BF ) � C� whereas an antistabilizable solution if �(A+BF ) � C+ (warning! C+ = fz 2 CjRe z �
0g)

We see that for any solution of Luri�e system we obtain a solution of KYP system (for the same X)

in the following form: V is a Cholesky factor of R and W = �V F .
In the case R > 0 we consider the following equation:

ATX +XA � (XB + L)R�1(LT + BTX) + Q = 0 (1.8)

called the continuous-time algebraic Riccati equation (CTARE) associated to �. For any solutionX = XT

of CTARE we have a solution of Luri�e system of the form:

F = �R�1(LT + BTX) (1.9)

The solution X of (1.8) is said stabilizable or antistabilizable depending on how F , de�ned above, is.

To CTARE we associate the Hamiltonian matrix that is:

H =

�
A� BR�1LT �BR�1BT

�Q �AT + LR�1BT

�
(1.10)

and has the meanning of the A-matrix of the inverse system of (1.4).

We are looking here only for the stabilizable and antistabilizable solutions of CTARE. This is why

our statements shall give information about these two solutions. For the general case (i.e. for any Youla

partition of the Popov function) see the original Popov's positivity theorem ([Popov73]).

Our �rst statement gives the result only for the case of strict positivity:

THEOREM 1 Consider the Popov triplet � = (A;B;P ) and the Popov function ��(s) associated to

it. We supposde (A;B) controllable. Then the following are equivalent:

A 1. �(j!) > 0, 8! 2 �R excepting for those imaginary eigenvalues of A.

2. The realisation (1.4) has no uncontrollable modes on the imaginary axis.

B 1. R > 0

2. There are (V;Ws; Xs) and (V;Wa; Xa) the two (unique) stabilizable and, respectively, antistabi-

lizable solutions of KYP system (1.5).

C 1. R > 0

2. There exist (Fs; Xs) and (Fa; Xa) the two (unique) stabilizable and , respectively, antistabilizable

solutions of the Luri�e system (1.7).

D 1. R > 0

2. There exists Xs and Xa the two (unique) stabilizable and ,respectively, solutions of CTARE

(1.8). 2
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(for the proof see the next section)

If we allow not to have strict inequalities, then we obtain a weaker statement whose proof involves

some perturbation techniques:

LEMMA 2 Consider the Popov triplet � = (A;B;P ) and its associated Popov function ��. Suppose

(A;B) controllable and (�(j!) � 0 , 8! 2 R. Then, if we perturb R with "I (R ! R0 = R + "I with

0 < " � 1) such that �
0

�(j!) > 0, 8! 2 �R we obtain two solutions (V (");Ws("); Xs("); Fs(")) and

(V (");Wa("); Xa("); Fa(")) as in the previous theorem and for "! 0 we obtain the following behaviour:

V (")! V ; Ws;a(") !Ws;a ; Xs;a(")! Xs;a(0)

�nite, and

Fs;a(") �
1p
"
M (")

possible in�nite. 2

Using this Lemma we obtain for the limit case the following theorem:

THEOREM 3 Consider the Popov triplet � = (A;B;P ) and its associated Popov function ��(s). If

the pair (A;B) is controllable and ��(j!) � 0, 8! 2 R then there are two solutions (possibly identic) of

KYP system (V;Ws; Xs), (V;Wa; Xa) such that the transmission zeros of (A;B;W; V ) (i.e. the roots of

p(s) = det(V +W (sI �A)�1B) � det(sI �A)) are for the �rst solution with Re sk � 0 and for the second

solution with Re sk � 0. 2

1.2 Proof of Theorem 1 (The Case R > 0)

First it is obvious that conditions B,C and D are equivalent. Moreover, the relations between these

solutions are:

Fs = �V �1Ws ; Fa = �V �1Wa

" ( " If we suppose B,C,D ful�lled then by algebraic manipulation one can prove the following

spectral factorization for Popov function:

��(s) = ST (�s)RS(s)

where:

S(s) = I � F (sI �A)�1B =

�
A B

-F I

�

The transmission zeros of S(s) are given by the eigenvalues of A +BF because of:

S�1(s) =

�
A+BF B

F I

�

Then we obtain the following facts:

i) ��(j!) = SH (j!)RS(j!) > 0 , 8! 2 R� j�(A)

ii) ��(1) = R > 0

(H being the hermitian conjugacy) and moreover

iii) The realisation (1.4) has no uncontrollable (and unobservable modes on the imaginary axis).

") " Before starting the proof of Theorem, we need the following Lemma:
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LEMMA 4 If the realisation (1.4) has no uncontrollable modes on the imaginary axis, then it also has

no unobservable modes on the imaginary axis.

Proof: From the de�nition of uncontrollable modes we have:

rank

�
j!I �A 0 B

Q j!I +AT �L

�
= n ; 8! 2 R

We complex conjugate the matrix and then we multiply the �rst column with �I:

rank

�
j!I + A 0 B

�Q �j!I + AT �L

�
= n

Now we multiply the second block row with �I and then we inter-change the �rst two block columns:

rank

�
0 j!I +A B

j!I �AT Q L

�
= n

We transpose the matrix:

rank

2
4 0 j!I � A

j!I + AT Q

BT LT

3
5 = n

and we interchange the block columns:

rank

2
4 j!I � A 0

Q j!I + AT

LT BT

3
5 = n ; 8! 2 R

The last relation says exactly that our realisation has no unobservable modes on the imaginary axis. This

ends the proof. 2

Now we begin the main part of the proof for the implication A) B;C;D. We shall apply a Kucera-

type scheme for proving the existance of the stabilizable and antistabilizable solutions. For, it is enough

to prove the dichotomy of the Hamiltonian and to assume the pair (A;B) is controllable (and this is

already assumed). The dichotomy of the Hamiltonian comes from the following facts: the eigenvalues of

the Hamiltonian (1.10) are exactly the transmission zeros of the Popov function and it has no zero on

the imaginary axis because of:

1) �(j!) > 0, 8! 2 �R

2) The realisation (1.4) has no uncontrollable or unobservable modes on the imaginary axis (from the

above lemma).

So we obtain the dichotomy of the Hamiltonian and with the controllability of the pair (A;B) the

proof is complete now. 2

1.3 Proof of Lemma 2 (The Case R � 0)

We shall use here a variational technique which supposes to perturb R with an in�nitesimal quantity ("I)

and to study how the solutions of our problems depend on ". If ��(j!) � 0, 8! 2 R, then for R! ~R =

R+"I, " > 0 we obtain �
0

�(j!) > 0, 8! 2 �R. We apply Theorem 1 and obtain (V (");Ws("); Xs("); Fs("))

and (V (");Wa("); Xa("); Fa(")) the stabilizable and, respectively, antistabilizable solutions of the Riccati

problem. Let U be an orthogonal matrix such that:

R0 = URUT =

�
R1 0

0 0

�
; R1 > 0 (1.11)
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and R1 2 Rm1�m1 . We multiply the equations (1.5) and (1.7) with U and UT and renote the variable as

follows:

R0 = URUT ; V 0 = UV UT ; L0 = LUT ; B0 = BUT ; W 0 = UW ; F 0 = UF

Then (1.5) and (1.7) keep the form with these new matrices. To perturb the initialR with "I is equivalent

to perturb this new R0 because U"IUT = "I. In that it follows we shall considere the system in this new

form and we shall give up to the prime symbol:

R" = R0 + "I L L0 B  B0

We look now to the Riccati equation (1.8) written for R":

ATX" +X"A� (X"B + L)(R + "I)
�1
(X"B + L)

T
+ Q = 0 (1.12)

We know that the stabilizable solution Xs(") has the meanning:

min

u 2 L2;m[0;1) x 2 L2;n[0;1)

_x = Ax+ Bu x(0) = x0

Z 1

0

[xT uT ]

�
Q L

LT R"

� �
x

u

�
dt = xT0Xs(")x0

Whereas the antistabilizable solution Xa(") has the meanning:

min

u 2 L2;m(�1; 0] x 2 L2;n(�1; 0]

_x = Ax+ Bu x(0) = x0

Z 0

�1
[xT uT ]

�
Q L

LT R"

� �
x

u

�
dt = �xT0Xa(")x0

Since for "1 > "2 we have R"1
> R"2

we also obtain: Xs("1) > Xs("2) and Xa("1) < Xa("2). Then the

stabilizable and antistabilizable solutions of (1.12) are monotone sequences. It is enough to prove the lower

boundedness of the stabilizable solution and, respectively, the upper boundedness of the antistabilizable

solution in order to obtain that there exist lim"!0Xs(") and lim"!0Xa(").

We rewrite (1.12) by using from Luri�e system the equation X"B + L = FT

"
R":

ATX" +X"A� FT

"
(R+ "I)F" + Q = 0 (1.13)

One could verify that the e�ect of a state-feedback matrix ~F is given by:

A! ~A = A +B ~F

F" ! ~F" = F" � ~F

Q! ~Q" = Q + L ~F + ~FTLT + ~FT (R+ "I) ~F

and the Riccati equation (1.13) takes the form:

~ATX" +X"
~A� (F" � ~F )

T
(R+ "I)(F" � ~F ) + ~Q = 0 (1.14)

We choose ~F such that A+B ~F = ~A is an antistable matrix (i.e. has eigenvalues with strict positive real

part). Then the following Liapunov equation has an unique solution:

~ATX1 +X1
~A+ ~Q1 = 0 (1.15)

where:
~Q1 = Q+ L ~F + ~FTLT + ~FT (R+ I) ~F
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We substract (1.15) from (1.14) and then we get:

~AT (X" �X1) + (X" �X1) ~A � (F" � ~F )T (R + "I)(F" � ~F )� (1� ") ~FT ~F = 0

Or:

(� ~A)T (X" �X1) + (X" �X1)(� ~A) + [(F" � ~F )T (R+ "I)(F" � ~F ) + (1 � ") ~FT ~F ] = 0

Since � ~A is stable and (F"� ~F )T (R+ "I)(F"� ~F )+ (1� ") ~FT ~F � 0 we obtain that the above Liapunov

equation has a unique positive semide�nite solution and so:

X" �X1 � 0 , X" � X1

We have obtained the lower boundedness of the stabilizable solution.

For the antistabilizable solution we use the same construction but we choose ~F such that ~A is stable

(Hurwitz). We denote by X2 the unique solution of (1.15) (with ~A in this case stable). Then the solution

of the above Liapunov equation is negative semide�nite i.e. X" � X2 � 0 and then Xa(") � X2. This

proves the upper boundedness of the antistabilizable solution.

With the previous discussion we obtain that there exist both limits " ! 0 for the stabilizable and

antistabilizable solutions of the Riccati equation even if we are not able to write the limit Riccati equation

(because of singularity of R). In this situation it is interesting to know what happened with Kalman-

Yakubovich-Popov and Luri�e systems.

We start with KYP system and partition V (") according to (1.11):

V = [V1 V2] ; V1 2 Rm�m1

Then: �
R1 + "I1 0

0 "I2

�
=

�
V T

1 V1 V T

1 V2
V T

2 V1 V T

2 V2

�

and we get:

V1 =

�
V11
0

�
V2 =

�
0p
"I2

�

with V11 2 Rm1�m1 such that V T

11V11 = R1 + "I1 > 0. So:

V (") =

�
V11(") 0

0
p
"I2

�
(1.16)

We partition W ("), L and B according to the above partitions as:

W (") =

�
W1(")

W2(")

�
L = [L1 L2] B = [B1 B2]

From the last KYP equation we obtain:

L+X"B = [W T

1 (")V11(")
p
"W T

2 (")] (1.17)

Because of boundedness of W2, for Xs(") and Xa(") at limit "! 0 we have:

L +X(0)B = [L1 +X(0)B1 0]

and then:

WT

1 (0) = (L1 +X(0)B1)V
�1
11 (0) (1.18)
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where the above expression gives W1;s(0) and W1;a(0). For W2 we return to (1.17) and obtain:

W T

2 (0)W2(0) = Q+ ATX(0) +X(0)A � (L1 +X(0)B1)R
�1
1 (L1 +X(0)B1)

T � 0 (1.19)

So we obtain W2;s(0) and W2;a(0) as Cholesky factor of the above matrix. The equations (1.16),(1.18)

and (1.19) give us the singular solutions of KYP system. Moreover, for any Riccati solution X" if we

have the limit "! 0 then we have also a singular solution of KYP system associated to X.

As concerned the Luri�e system, we start with the equation of F :

F = R�1(L +XB)T =

�
R�11 (")(LT1 +BT

1 X")
1
"
(LT2 + BT

2 X")

�

The problem is with the last rows because of 1
"
. On the other hand, developing the equation 1.12 we get:

ATX" +X"A� (L1 +X"B1)R
�1
1 (")(L1 +X"B1)

�1 � 1

"
(L2 +X"B2)(L2 +X"B2)

T
+Q = 0

Because of boundedness of the terms, we obtain the following behaviour:

(L2 +X"B2)
T � 1p

"
M (")

Then:

F �
�

F1(")
1p
"
M (")

�

for which lim"!0F1(") = R�11 (LT1 + BT

1 X(0)) is �nite, but for F2(") we cannot say anything about the

limit. In terms of Extended Hamiltonian Pencil the condition of existence of the limit for F (") is given

in [IoOa94].
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Chapter 2

Absolute Stability Criteria

2.1 Statement of the Problem and the Results

Let us consider a SISO linear system described by its transfer function H(s) and a scalar nonlinear

feedback v = '(y) as in the �gure. Connected with the nonlinear function ' we de�ne the following six

sectorial classes:

N�;� = f' : R! Rj' piecewise continuous ; '(0) = 0 and � � '(y)

y
� �g

SN�;� = f' : R! Rj' continuous ; '(0) = 0 and � <
'(y)

y
< �g

CN�;� = f' : R! Rj' continuous ; '(0) = 0 and � � '(y)

y
� �g

N�;�(t) = f' : R�R! Rj'(y; t) continuous in t ; and '(:; t) 2 N�;�g
SN�;�(t) = f' : R�R! Rj'(y; t) continuous in t ; and '(:; t) 2 SN�;�g
CN�;�(t) = f' : R�R! Rj'(y; t) continuous in t ; and '(:; t) 2 CN�;�g

for �1 � � � � �1. Our problem is the following:

Given �; � and a classe of the above ones, �nd the conditions on H(s) which ensures the stability

or asymptotic stability of the origin for the closed loop system for any nonlinearity ' belonging to that

classe.

To be more precise let us consider a minimal realization of H(s): (A; b; cT )

L

�
_x = Ax+ bu

y = cTx

e H(s)

'

-

�

6
--r = 0 u y

v
�

Figure 2.1: The Linear System and Nonlinear Feedback
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Then, for �; � and a classe of nonlinearities given above we look for su�ciency conditions such that the

equilibrium point �x = 0 of the following dynamics:

_x = Ax� b'(cTx)

to be stable or asymptotically stable.

For a linear system (L) and for some classe S of nonlinearities we say that it is absolute stable (with

respect to the classe S) if for any ' 2 S the origin of the closed loop system is a stable equilibrium. We say

that it is absolute asymptotical stable (with respect to the classe S) if the origin is an asymptotical stable

equilibrium for the closed loop system with any nonlinearity in that classe as feedback and moreover, the

attraction domain of the equilibrium is given by the whole space.

We are going now to give results on absolute (asymptotic) stability using two types of Liapunov

functions: the �rst results (Circle Criteria) use quadratic Liapunov functions and allow time-varying

nonlinearities whereas the second type results (Popov Criteria) use Luri�e type Liapunov functions (i.e.

quadratic form plus integral of the nonlinearity) and allow only time-independent nonlinearities.

The Circle Criteria

THEOREM 5 (Circle Theorem of Absolute Stability) Let us consider a linear system H(s) and

the time-varying classe of nonlinearities N�;�(t). If the following conditions are ful�lled then H(s) is

absolute stable with respect to N�;�(t):

1) There exists k 2 [�; �] such that the closed loop system with '(y) = ky is asymptotic stable (in

sense of linear systems).

2) For any ! 2 R excepting the pur imaginary poles of H(s) of the form j!:

Re[(1 + �H(�j!))(1 + �H(j!))] � 0 (2.1)

2

THEOREM 6 (First Circle Criterion of Absolute Stability) Let us consider a linear system H(s)

and the time-varying classe of nonlinearities SN�;�(t). If the above conditions are ful�lled then H(s) is

absolute asymptotic stable with respect to SN�;�(t).

2

THEOREM 7 (Second Circle Criterion of Absolute Asymptotic Stability) Let us consider a

linear system H(s) and the time-varying classe of nonlinearities CN�;�(t). If the condition 1 of Theorem

5 is ful�lled and moreover:

3) The frequency inequality (2:1) is strict i.e.:

Re[(1 + �H(�j!))(1 + �H(j!))] > 0

for any ! 2 �R excepting those poles of H(s) on the imaginary axis;

4) The pair (Ae; Be) has no uncontrollable modes on the imaginary axis, where:

Ae =

�
A 0

��ccT �AT

�
; Be =

�
b

��+�
2
c

�
(2.2)

(for instance, this is true if H(s) has no poles on the imaginary axis);

Then H(s) is absolute asymptotic stable with respect to CN�;�(t). 2
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Popov Criteria: The General Case

THEOREM 8 (General Popov Criterion of Absolute Stability) Let us consider a linear system

H(s) and a time-independent classe of nonlinearities N�;�. Then, if:

1) There exists k 2 (�; �) such that the closed loop system with u = �ky is asymptotic stable (as

linear system);

2) There is �0 2 R such that:

1 + (�+ �)ReH(j!) + ��jH(j!)j2 + �0Re[j! H(j!)] � 0 (2.3)

for any ! 2 R excepting those poles of H(s) on the imaginary axis;

then H(s) is absolute stable with respect to the classe N�;�. 2

THEOREM 9 (First General Popov Criterion of Absolute Asymptotic Stability) Suppose H(s)

be a linear system. Then if the above conditions are ful�lled then H(s) is absolute asymptotic stable with

respect to the classe SN�;� . 2

THEOREM 10 (Second General Popov Criterion of Absolute Asymptotic Stability) For the

linear system H(s) if the condition 1 of the Theorem 8 is ful�lled and moreover:

3) The inequality (2:3) is strict: i.e. there is �0 2 R

1 + (�+ �)ReH(j!) + ��jH(j!)j2 + �0Re[j!H(j!)] > 0 ; 8! 2 �R

4) The following pair (Ae; Be) has no uncontrollable modes on the imaginary axis:

Ae =

�
A 0

���ccT �AT

�
; Be =

�
b

��+�
2 c� �0

2 A
T c

�
(2.4)

(for instance this is true if H(s) has no poles on the imaginary axis) where (A; b; cT ) is a minimal

realisation of H(s), then H(s) is absolute asymptotic stable with respect to the classe CN�;�. 2

Popov Criteria: The sector [0; k0] k0 > 0

THEOREM 11 (Popov Criterion of Absolute Stability) Consider a linear system H(s) and N0;k0

the classe of time-invariant nonlinearities. Then H(s) is absolute stable with respect to the classe N0;k0

if:

1) There exists 0 < k < k0 such that the closed loop system with the feedback u = �ky is asymptotic

stable;

2) There exists � 2 R such that:

1

k0
+ Re[(1 + j�!)H(j!)] � 0 8! 2 R (2.5)

excepting those poles of H(s) on the imaginary axis. 2

THEOREM 12 (First Popov Criterion of Absolute Asymptotic Stability) Consider a linear sys-

tem H(s) and N0;k0 a classe of time-invariant nonlinearities. Then if the above conditions are ful�lled,

the linear system H(s) is absolute asymptotic stable with respect to the classe SN0;k0 . 2
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THEOREM 13 (Second Popov Criterion of Absolute Asymptotic Stability) Consider a linear

system H(s) with no poles on the imaginary axis and N0;k0 a classe of time-invariant nonlinearities. Then

if the condition 1 from Theorem 11 is ful�lled and, moreover, we have:

3) There exists � 2 R such that (2:5) is strict:

1

k0
+ Re[(1 + j�!)H(j!)] > 0 ; 8! 2 �R

then H(s) is absolute asymptotic stable with respect to the classe CN0;k0. 2

2.2 Preliminary Results

The idea behind the proofs of the previous statements is to �nd a Liapunov function that guarantees the

stability of the system for any nonlinear feedback in some classe. This Liapunov function will be built

up around the antistabilizable solution of a certain KYP system.

In the second step, in order to prove the attractivity of the origin we shall use two ways:

The �rst one is to consider the same Liapunov function and to apply the Barbashin-Krasovski-LaSalle

Theorem on attractivity.

The second way is to look for the stabilizable solution of the same KYP system and to apply a

Popov-Datko argument.

I shall develop below these ideas. We need the following de�nition:

De�nition The Popov triplet � = (A;B;P ) has the property of minimal stability if for any x0 2 Rn

there exists u 2 L2;m[0;1) such that:

i) limt!1 x(t) = 0 where x(t) is the solution of (1:1) with the initial condition x(0) = x0;

ii) J(1) =
R1
0 [xT uT ]P [xT uT ]

T
dt � 0

which is justi�ed by the following result:

LEMMA 14 Consider a Popov triplet � = (A;B;P ), R > 0 and suppose the following two conditions

hold:

i) The associated KYP system has an antistabilizable solution Xa;

ii) � has the property of minimal stability;

Then Xa < 0

Proof Because of (i), relation (1:6) becomes:

J(t1) = �[xTXax]jx(t1)x0
+

Z
t1

0

kWax+ V uk2dt

Let us choose u(:) to be that control such that limt!1 x(t) = 0. We set t1 = 1 and the above relation

becomes:

J(1) = xT0Xax0 +

Z 1

0

kWax+ V uk2dt � 0

(the last inequality comes from (ii), the second property of minimal stability). This proves that xT0Xax0 �
0 for any x0 2 Rn and then Xa � 0. We shall prove the strict inequality by contradiction. For, let x0 6= 0

be such that Xax0 = 0. Then, because of J(1) � 0 we obtain:

Wax(t) + V u(t) � 0

We have supposed R > 0 then V is invertible and u(t) = �V �1Wax(t) = Fax(t). On a hand �(A+BFa) �
C+, on the other hand limt!1 x(t) = 0. This is a contradiction that proves that x0 must vanish and then

Xa < 0. 2

11



We recall now the Barbashin-Krasovski-LaSalle Theorem:

THEOREM 15 Let us suppose a dynamical system _x = f(x), f(0) = 0 and a function V : Rn ! R of

classe C1 such that:

i) V (x) > 0, x 6= 0, V (0) = 0;

ii) dV

dt
= LfV � 0 ;

iii) The set N = fx 2 Rn jLfV (x) = 0 g does not include any positive trajectory;

iv) The function V is radially unbounded:

lim
R!1

min
kxk=R

V (x) =1

Then the equilibrium point �x = 0 is a global asymptotical stable equilibrium. 2

(for proof see, for instance, [Sastr94] or [Balan94]).

The second way to obtain the attractivity of the origin is the Popov-Datko argument. This is given

by the following result:

THEOREM 16 Let us suppose the linear dynamics:

_x = Ax+ Bu ; x(0) = x0

If:

i) A is Hurwitz (i.e. �(A) � C�)
ii) u 2 L2;m[0;1)

Then the trajectory is bounded (by the 2-norm of u), belongs to L2;n[0;1) and

limt!1 x(t) = 0

Proof We have the following representation formula of the solution:

x(t) = eAtx0 +

Z
t

0

eA(t��)Bu(� )d�

Consider M > 0 and a > 0 such that k eAt k�Me�at (this inequality holds because A is Hurwitz). Then:

k x(t) k�Me�at k x0 k +M
Z

t

0

e�a(t��) k B k � k u(� ) k d�

Using Cauchy-Buniakowski-Schwartz inequality:

k x(t) k�Me�at k x0 k +M k B k (
Z

t

0

e�2a(t��)d� �
Z

t

0

k u(� )k2d� )
1

2 �

�Me�at k x0 k +M k B k (
Z 1

0

e�2a�d�

Z 1

0

k u(� )k2d� )
1

2 =

= Me�at k x0 k +
Mp
2a
k B k � k uk2 �M k x0 k +

M k B kp
2a

k uk2

This proves the boundedness of the state. Now we are going to prove that x 2 L2;n[0;1). For, it is

enough to prove that:

f(t) =

Z
t

0

e�a(t��) k u(� ) k d� 2 L2[0;1)

12



We have that:

f2(t) = (

Z
t

0

e�
a

2
(t��)e�

a

2
(t��) k u(� ) k d� )2 �

�
Z

t

0

e�a(t��)d� �
Z

t

0

e�a(t��) k u(� )k2d� � 1

a

Z
t

0

e�a(t��) k u(� )k2d�

And then:Z 1

0

f2(t)dt � 1

a

Z 1

0

dt

Z
t

0

d�e�a(t��) k u(� )k2 = 1

a

Z 1

0

d� k u(� )k2
Z 1

�

dte�a(t��) =

=
1

a

Z 1

0

k u(� )k2 �
Z 1

0

e�asds =
1

a2
k uk22

Then x 2 L2;n[0;1). Now both x and _x belong to L2. Then x 2 W 1;2, where W k;p is the Sobolev

space of functions which belong (with their �rst k derivatives) to Lp. It is known that the functions from

Sobolev spaces are absolute continuous (see [Barbu74], Appendix 2) and because k x k is bounded, it is

also uniform continuous. Now applying the Barb�alat's Lemma we obtain that limt!1 x(t) = 0. 2

2.3 Proofs of Circle Criteria

We shall prove Theorems 5,6 and 7 using the results stated in the previous section.

The Absolute Stability Result (Theorem 5)

Let us consider the Popov triplet � = (A; b; P ) with:

P =

�
��ccT �+�

2 c
�+�
2 cT 1

�

The Popov function associated to � is given by:

��(s) = 1 +
�+ �

2
(H(�s) +H(s)) + ��H(�s)H(s)

And, evaluated on the imaginary axis, takes the form:

��(s) = Re[(1 + �H(�j!))(1 + �H(j!))]

Now, using Popov's Positivity Theorem (Theorem 3) and relation 2.1 we obtain the exestince of the

antistabilizable solution of the KYP system associated to �. Our system (�) has the property of minimal

stability if we choose u = �kcTx (see the form of J(t) given below). Applying Lemma 14 we obtain that

Xa < 0.

Let us consider the following Liapunov candidate:

V (x) = �xTXax

Then the equation (1:6) takes the form:

J(t) = V (x(t))� V (x0) +

Z
t

0

kWax+ Vuk2d�

and:

J(t) =

Z
t

0

[xT u]P

�
x

u

�
d� =

Z
t

0

(u+ �y)(u + �y)d�

13



We derive with respect to t the last two relations and we get:

(u+ �y)(u + �y) =
dV

dt
+ k Wax+ Vuk2

Or:
dV

dt
= � k Wax+ Vuk2 + (u+ �y)(u + �y) (2.6)

Now, for any time-varying nonlinearity in the classe N�;�(t) we have:

(u+ �y)(u + �y) � 0

Then, from (2:6) we have that, for any nonlinearity in the considered classe:

dV

dt
� 0

This proves that the origin is a stable equilibrium for the closed-loop with the feedback in the classe

N�;�(t) and ends the proof of Theorem.

The First Absolute Asymptotic Stability Result (Theorem 6)

Our system is absolute stable with respect to SN�;�(t) as a consequence of the previous theorem.

Moreover, because the classe SN�;�(t) is de�ned by strict inequalities, we obtain:

dV

dt
< 0 ; for u; y 6= 0

Since the pair (cT ; A) is observable, the only trajectory included in the set N (t) = fx 2 Rn j dV
dt
(x(t); t) =

0 g (which is time invariant) is the trivial solution �x = 0. Now x(t) is bounded which implies the

boundedness of the control u (recall the sector condition for the feedback) and then the time derivative _x

is also bounded. That means the state x(t) is uniform Lipschitz as function of t. Then W (t) = dV

dt
(x(t); t)

is uniform continuous with respect to the time t. Using Barb�alat'a Lemma we get:

lim
t!1

dV

dt
(x(t); t) = 0

Then limt!1 x(t) = 0.

The Second Absolute Asymptotic Stability Result (Theorem 7)

We shall prove the attractivity of the origin using the Popov-Datko argument. The assumptions 3

and 4 of theorem ensure us that the KYP system associated to � (de�ned above) has got a stabilizable

solution (V;Ws; Xs = XT

s
). Since R = 1 > 0 the Luri�e system associated to � has also got a stabilizable

solution (Xs; Fs = �V�1Ws). We rewrite the dynamics in the form:

_x = (A + bFs)x+ b(u� Fsx)

or:

_x = (A+ bFs)x+ bV�1(Vu +Wsx) (2.7)

We write the quadratic criterion associated to � using the stabilizable solution:

J(t) = �[xTXsx]jx(t)x0
+

Z
t

0

k Wsx+ Vuk2d� � 0

14



and then: Z
t

0

kWsx+ Vuk2d� � xT (t)Xsx(t)� xT0Xsx0

Since the closed loop system is stable (from Theorem 5), the trajectory is bounded and then in the above

inequality we could make t!1 and obatin:

Z 1

0
kWsx+ Vuk2d� <1

This proves that Wsx + Vu 2 L2[0;1). Now we return to (2:7) and we apply Theorem 16: A + bFs is

Hurwitz and Vu +Wsx 2 L2[0;1). Then limt!1 x(t) = 0 and this ends the proof.

2.4 Proofs of Popov Criteria

First we see that Theorems 11-13 are just particular cases of Theorems 8-10 when the sector [�; �]

reduces to [0; k0] (� = �0

k0
). Then we shall prove only Theorems 8-10. Furthermore, when �0 = 0 Popov's

Theorems reduce to Circle Theorems that we have already proved. Then, from now on, we assume that

�0 6= 0.

The Absolute Stability Result (Theorem 8)

The idea if this proof is very close to that of Theorem 5, but here we use a Liapunov function of Luri�e

type (i.e. quadratic form plus integral of the nonlinearity).

Firstly we consider the following Popov triplets �1 = (A; b; P1) and �2 = (A; b; P2) where:

P1 =

�
��ccT �+�

2 c+ �0

2 A
T c

�+�
2 cT + �0

2 c
TA 1 + �0c

T b

�

P2 =

�
��ccT + �2���3�

2 (ccTA +AT ccT ) �+�
2 c+ �0

2 A
T c+ �2���3�

2 ccT b
�+�
2 cT + �0

2 c
TA+ �2���3�

2 bT ccT 1 + �0c
T b

�

and �2 � �3 = �0, �2�3 = 0, �2; �3 � 0.

We see that P1 and P2 have the following form:

P1 =

�
Q L

LT R

�
P2 =

�
Q+ATX +XA L +Xb

LT + bTX R

�

where:

X = ��2�� �3�
2

ccT (2.8)

This proves that �1;�2 have the same Popov function (see Proposition 3, x4, pp.53 from [Popov73]). For

�1 the Popov function takes the form:

��1
(s) = 1 +

�+ �

2
(H(s) +H(�s)) + ��H(�s)H(s) +

�0

2
s(H(s) �H(�s))

and, when we evaluate it on the imaginary axis:

��1
(j!) = 1 + (�+ �)ReH(j!) + ��jH(j!)j2 + �0Re[j!H(j!)]

And then the frequency condition (2.3) says that ��2
� 0.
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On the other hand, after a little algebra manipulation one could prove that the quadratic criterion

associated to �2 takes the form:

J2(t) =

Z
t

0

(u+ �y)(u + �y)d� + �2

Z
t

0

(u+ �y)
dy

d�
d� � �3

Z
t

0

(u+ �y)
dy

d�
d� (2.9)

(recall dy

d�
= cT (Ax+ bu)).

Now let us choose ' 2 N�;� and consider u = �'(y). Then the following inequalities hold:

Z
t

0

(u+ �y)(u + �y)d� � 0

	1(y1) =

Z
y1

0
(u+ �y)dy � 0

	2(y1) =

Z
y1

0

(u+ �y)dy � 0

Then the quadratic criterion could be rewritten as:

J2(t) =

Z
t

0

(u + �y)(u + �y)d� + �2	1(y(t)) � �2	1(y0)� �3	2(y(t)) + �3	2(y0)

And, with �2; �3 � 0 we have the following boundednes:

J2(t) � ��2	1(y0) + �3	2(y0) (2.10)

We are going now to prove that �2 has the property of minimal stability (for the original proof see 4. x25
from [Popov73]). Let us consider the case �0 > 0. Then �2 = �0 and �3 = 0. Consider u = �kcTx+ v.

Then it is enough to �nd v 2 L2[0;1) such that J2(1) � 0 because the dynamics is given by:

_x = (A� kbcT )x+ bv

A� kbcT is Hurwitz and using Popov-Datko argument limt!1 x(t) = 0.

In the new variable v, the criterion becomes:

J2(t) =

Z
t

0

((�� k)y + v)((� � k)y + v + �0
dy

d�
)d�

We introduce a new variable:

~y = y +
1

�� k
v

and the criterion takes the form:

J2(t) = (�� k)(� � k)

Z
t

0
~y2d� +

�0(�� k)
2

~y2(� )jt0 �
Z

t

0
~y(�0

dv

dt
+ (� � �)v)d�

If we choose v to be the solution of the di�erential equation:

�0
dv

dt
+ (� � �)v = 0

with initial condition v(0) such that ~y(0) = 0, then:

v(t) = �(�� k)cTx(0)exp(�� � �
�0

t) 2 L2[0;1)
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and J2(1) � 0.

Now the proof goes very similar with that of Theorem 5. From Lemma 14 we obtain that the

antistabilizable solution of �2 X
(2)
a < 0. We factorize the criterion as:Z

t

0

(u + �y)(u + �y)d� + �2	1(y(t)) � �2	1(y0)� �3	2(y(t)) + �3	2(y0) =

= �[xTX(2)
a
x]jx(t)

x0
+

Z
t

0

kWax+ Vuk2d�

We de�ne the Liapunov candidate as:

V (x) = �xTX(2)
a
x� �2	1(c

Tx) + �3	2(c
Tx)

Since 	1 � 0, 	2 � 0 and X
(2)
a < 0 we have V (x) > 0; x 6= 0 , V (0) = 0. Moreover, the above

factorization of the criterion enables us to write:

V (x) = V (x0) +

Z
t

0

(u+ �y)(u+ �y)d� �
Z

t

0

k Wax+ Vuk2d�

and for the derivative:
dV

dt
= (u+ �y)(u + �y)� k Wax+ Vuk2 (2.11)

which is identical with (2.6). With the same argument we obtain the absolute stability of H(s) with

respect to the classe N�;�.

N.B. The factorization (2.11) holds only for u = �'(y).

The First Absolute Asymptotic Result (Theorem 9)

We use V de�ned above as a Liapunov function of LaSalle type. Note that in the set N = fx j dV
dt

= 0 g
is included only the trivial solution �x = 0. Now, applying Theorem 15 (BKLS Theorem) we obtain the

absolute asymptotic stability with respect to the classe SN�;� .

The Second Absolute Asymptotic Result (Theorem 10)

As in the proof of Theorem 5 we apply the Popov-Datko argument. For it is enough to see that the

hypothesys of Theorem 10 ensures the existence of the stabilizable solution of the associated KYP system

to �1. The connection between J1 and J2, the two criteria associated to �1 and �2, is given by:

J2(t) � J1(t) = xTXxjx(t)
x(0)

where X is given by (2:8). Then factorizing J1 with the help of stabilizable solution of �1, X
(1)
s :

J1(t) = �[xTX(1)
s
x]jx(t)

x(0) +

Z
t

0

kWsx+ Vuk2d�

we obtain for J2 the expansion:

J2(t) = xT (X �X(1)
s

)xjx(t)
x(0) +

Z
t

0

kWsx+ Vuk2d�

Using the boundedness given by (2.10) we obtain for ' 2 CN�;� and u = �'(y) that:Z 1

0

kWsx+ Vuk2d� <1

Now the proof goes straightforward.
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