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Abstract

In this paper the windowed Fourier encoding-decoding scheme applied to the multiple description

compression problem is analyzed. In the general case, four window functions are needed to de�ne

the encoder and decoder, although this number can be reduced to three or two by using time-shift or

frequency-shift division schemes. The encoding coe�cients are next divided into two groups according

to the eveness of either modulation or translation index. The distortion on each channel is analyzed

using the Zak transform. For the optimal windows, explicit representation formulas are obtained and

non-localization results are proved. Asymptotic formulas of the total distortion and transmission rate

are established and the redundancy is shown to trade-o� between these two.
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1 Introduction

The multiple description problem, a generalization of the problem of source coding subject to a �delity

criterion, is one of the fundamental problems of source coding theory. The objective of a multiple

description coder is to construct several descriptions of the source sequence, with the property that the

descriptions be good individually (in the rate distortion sense) and be better together. The simplest

case (the one considered here) is of constructing two descriptions. Multiple description source codes

are designed with the following scenario in mind. It is assumed that several (in this case two) channels

connect the source to the destination, each with its own rate constraint. Each channel may fail; whether

or not a channel has failed is known to the decoder but not to the encoder. The encoder wishes to send

information about the source sequence over both channels, subject to the rate constraints, such that when

both channels work a high �delity replica of the source sequence is obtained, and if either channel fails,

the degradation is graceful.

In addition to being an interesting and non-trivial problem in its own right, the multiple description

problem is of signi�cant practical interest because it results in compression systems that are better able

to withstand frame erasures. Frame erasures are a signi�cant problem in several communication systems

of current interest, most notably wireless digital speech communications and packetized speech and video

communications.

The formulation of the multiple description problem is attributed jointly to Gersho, Ozarow, Wit-

senhausen, Wolf, Wyner and Ziv. The main problem that information theorists consider is that of

determining the rate distortion region for a given statistical model for the source and for a given �-

delity criterion. Ozarow [Ozarow80], constructed the rate distortion region for the only case solved so

far, namely the special case of a memoryless Gaussian source and the squared-error distortion criterion.

An achievable rate region was given by El Gamal and Cover [ElGaCo82] for a memoryless source and a

single-letter �delity criterion. The binary symmetric memoryless source with an error frequency distortion

criterion has been studied by Berger and Zhang [BerZha83], [ZhBe87], Ahlswede [Ahls85], Witsenhausen

and Wyner [WiWy81], Wolf, Wyner and Ziv [WoWyZi80]. It was conjectured that the achievable rate

region given in [ElGaCo82] coincided with the rate distortion region in cases other than the Gaussian

memoryless source and the squared-error distortion criterion. However, this conjecture was disproved

in [ZhBe87]. An important special case of the multiple description problem is the problem of successive
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re�nement of information [EquCov91]. In [EquCov91], a necessary and su�cient condition for a rate

distortion problem to be successively re�nable is derived.

Published design techniques can loosely be divided into two categories, quantization-based approaches

and subspace approaches. In quantization-based approaches, the starting point is a memoryless source

and the most basic system is the multiple description quantizer [Vaish93, VaDo94]. Multiple description

quantizers operate by sending information about each source sample over each channel. The simplest

illustration is of two uniform step-size quantizers each with step size �, one o�set from the other by half

a step size. The �rst quantizer index is sent on the �rst channel and the second quantizer index is sent

on the second channel. If both channels work, the decoder sees a quantizer with e�ective step size �=2

whereas if only a single channel works, the e�ective step size is �. Thus two channels are better than

one in the sense that a lower distortion is obtained when both channels work. However, when the step

size is small, we are using 2R bits in order to obtain the performance of an R+ 1 bit quantizer, i.e., the

rate overhead is almost 100%. More e�cient constructions are presented in [Vaish93] and an asymptotic

analysis is presented in [VaBa98].

For real-world sources such as speech and video, it is important to exploit the correlation in order to

build e�cient coders. Multiple description quantizers can be used e�ciently for sources with memory by

using standard decorrelating transforms [BaVa94, Vaish96].

Subspace methods begin by assuming that the source to be encoded is correlated. The objective is to

construct two subspaces of the signal space and to send the projection of the signal on each space over

a separate channel. If the spaces are well chosen, the two projections are correlated and it is possible to

obtain acceptable quality when one channel is broken. Subspace methods are considered in [IngVai95],

[VaSi95], [JayChr81], [OrWaVaRe97]. One common point in all the subspace methods cited above is that

they do not use overcomplete expansions of the signal being coded. More recently several new approaches

have been considered; some papers have considered overcomplete sets (see [ChMeWa99, GoKoVe99]);

others have used vector quantization methods (see [FlEf99, SeVaSl99]), a forward error correction coding

([MoRiLa99]) or an iterative decoding approach ([Srin99]). Here we consider the design of a multiple

description system based on overcomplete windowed Fourier expansions.

In this paper we use the discrete windowed Fourier transform to encode and decode the signal. A

(discrete) windowed Fourier transform is de�ned by the following data: a function g called window, and

two positive parameters �; � > 0 called modulation parameter, respectively translation parameter. With
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these data one constructs the following set of functions called a Weyl-Heisenberg set (or a WH set):

WHg;�;� = fgmn;�;� ; m;n 2 Zg ; gmn;�;�(x) = e2�im�xg(x � n�) (1)

A windowed Fourier transform-based encoder converts a signal f into a sequence of coe�cients cmn =

< f; gmn >, where < f1; f2 >=
R1
�1 f1(x)f2(x)dx is the scalar product in L2(R) (in this paper we

shall deal with continuous-time signals; in practice the signal is usually discrete and the scalar product

becomes a discrete sum). The inverse operation is performed by the windowed Fourier decoder. This

takes a double-indexed sequence of (complex) numbers (dmn)m;n2Z and returns a continuous-time signal

of the form
P

m;n
dmngmn. We use the notation gmn signaling a double-indexed sequence of functions.

Usually it is equivalent to gm;n;�;� if not otherwise indicated.

Weyl-Heisenberg sets have been long studied in the literature (see [Daub90] or [HeWa89]). In Appendix

A we brie
y review the main known results. Two important de�nitions regarding these (and other sets)

are the following:

DEFINITION 1 A Weyl-Heisenberg set is called a frame if there are two positive constants A;B > 0

such that for every f 2 L2(R):

Akfk2 �
X
m;n

j < f; gmn > j2 � Bkfk2 (2)

The numbers A;B are called frame bounds. If A = B, the frame is called tight.

A WH set is called a Riesz basis for its span (or a s-Riesz basis) if there are two positive constants

A;B > 0 such that for every �nite sequence (cmn)m;n2Z (i.e. only a �nite number of elements are

non-zero):

A
X
m;n

jcmnj2 � k
X
m;n

cmngmnk2 � B
X
m;n

jcmnj2 (3)

The numbers A;B are called Riesz basis bounds. If the WH set is simultaneously frame and s-Riesz basis,

then it is simply called a Riesz basis (its closed span is, in this case, the entire space L2(R)).

An extension of a (single windowed) Weyl-Heisenberg set is given by a Weyl-Heisenberg multiset

de�ned simply as a union of Weyl-Heisenberg sets. Thus, given g1; g2 2 L2(R) and �; � > 0, we

call WH(g1;g2);�;� = WHg1 ;�;� [ WHg2;�;� a Weyl-Heisenberg multiset. Similarly we use the terms of

multiframe and multi s-Riesz basis to suggest the multiset property as well as the frame, respectively the
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s-Riesz basis property of the WH multiset. Thus WH(g1;g2);�;� is a multiframe if there are A;B > 0 such

that for every f 2 L2(R):

Akfk2 �
X
m;n

(j < f; g1mn > j2 + j < f; g2mn > j2) � Bkfk2

The multiset WH(g1;g2);�;� is called a multi s-Riesz basis if there are A;B > 0 such that for every

c1; c2 2 l2(Z2):

A
X
m;n

(jc1
mn
j2 + jc2

mn
j2) � k

X
m;n

(c1
mn

g1
mn

+ c2
mn

g2
mn

)k2 � B
X
m;n

(jc1
mn
j2 + jc2

mn
j2)

Weyl-Heisenberg multisets have been studied in [ZiZe97] and recently in [ChDeHe99]. In Appendix A we

recall some of their results.

The block scheme of the multidescription transmission system we are proposing is given in Figure 1.

The original signal f is passed through the analog encoders de�ned for the �rst channel by a Weyl-

Heisenberg set associated to the window g1, respectively for the second channel by g2. Their outputs

represent the encoding coe�cients c1mn =< f; g1mn >, c2mn =< f; g2mn >. These coe�cients are passed

through the quantizers Q� and d1mn = Q�(c
1
mn), d

2
mn = Q�(c

2
mn) are their quantized values (we take the

mid-point of the quantization inter-level). Next, the coe�cients d1
mn

, d2
mn

are encoded, using for instance

an entropy encoder, into the bit-sequences b1
mn

, b2
mn

and sent through the two channels. The receiver

is made out of three decoders; the side decoders convert, in the �rst stage, the bit-sequences into the

approximate coe�cients d1
0

m;n
, respectively d2

0

m;n
and then, in the second stage, decode these coe�cients

into approximating signals f1, respectively f2; the central decoder does the same thing, except for the

fact that it uses both bit-streams b1
0

mn
and b2

0

mn
.

Our problem is to analyze this scheme by computing the distortion, minimizing it under certain hy-

potheses, evaluating the transmission rate and determining the rate-distortion characteristics (or the side

distortion - central distortion characteristics). As we shall see later, by varying the encoding redundancy

we can trade o� between side distortions and the transmission rate.

The paper is organized as follows: in section 2 we discuss the analog encoders and decoders, we analyze

di�erent signal models and state certain optimization problems; in section 3 we solve the optimization

problems using the Zak transform; we also analyze the optimal, partial optimal and near-optimal cases

by obtaining the distortion-redundancy characteristics; in section 4 we discuss the rate and obtain the

rate-distortion and side distortion - central distortion characteristics; section 5 contains the conclusions

and is followed by the bibliography.
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2 Models and Optimization Problems

Let us now return to the block scheme in Figure 1. Suppose for the moment the quantizer does not

introduce any error (for instance consider the asymptotic limit � ! 0) and therefore the bit-stream

(b1
mn

; b2
mn

) contains the same information as the coe�cients (c1
mn

; c2
mn

). If both channels work, then the

full information is known to the central decoder. Then we have to design the encoders/central decoder in

such a way to losslessly reconstruct the original signal (recall that we make abstraction of the quantization

error). This is possible only if the multisetWH(g1;g2);�;� de�ning the encoder is a multiframe. The density

result due to Christensen, Deng and Heil (see the Appendix A) shows the redundancy of this multiframe

is 2
��

� 1. For the reconstruction (central decoder) we have many possibilities, all given by various dual

frames. Even if we impose the dual frame to be given by a WH multiset, an in�nite number of choices

(assuming 2
��

> 1) remains (for instance see [Li95]). Among these we shall choose the standard dual

frame (also known as canonical, orminimal dual frame) ( ~g1; ~g2;�; �), whose construction will be indicated

later, in the next section. 1 Let us now consider that only one channel works, say channel 1. Then the

receiver knows the bit-stream fb1m;ng solely. Unless we are prepared to spend a lot of rate, this bit-stream

should contain only partial information on the original signal f (even neglecting the quantization error).

Thus the coe�cients c1m;n =< f; g1m;n > typically represent an incomplete description of the signal. This

means that the set WHg1 ;�;� should be an incomplete set, which suggests 1
��

� 1 (see again Appendix

A). Thus we obtain the natural condition:

1 � 2

��
� 2 (4)

i.e. the redundancy of the original WH multiset WH(g1;g2);�;� should be between 1 and 2.

On the other hand, the side decoders are assumed linear, of the form
P

m;n
d1
0

m;n
g1#
m;n

, respectively

P
m;n

d2
0

m;n
g2#
m;n

. Approximating again d1
0

m;n
= c1

m;n
we obtain: f1 =

P
m;n

c1
m;n

g1#
m;n

. In principle,

the fg1#
m;n

g could be an arbitrary collection of functions not necessarily obtained via (1). If we impose

two invariance conditions on this decoding scheme, we can show that the decoder necessarily has to

be coherent, i.e. given by translations and modulations as in (1). The two (very natural) invariance

conditions are the following:

1. If f is translated by � then the decoded signal f1 translates by � as well, i.e. if T� : L
2(R)! L2(R)

1As reminded by one of the readers, this dual frame minimizes the reconstruction error variance in the case of white
quantization error (see for instance [BolHla97], for single window case).
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is the translation operator T�f(x) = f(x � �), then

X
m;n

< T�f; g
1
m;n

> g1#m;n =
X
m;n

< f; g1m;n > T�g
1#
m;n

; 8f (5)

2. If f is modulated by 2��, then the decoded signal f1 modulates by 2�� as well, i.e. if M2�� :

L2(R)! L2(R) is the modulation operator M2��f(x) = e2��ixf(x) then:

X
m;n

< M2��f; g
1
m;n

> g1#
m;n

=
X
m;n

< f; g1
m;n

> M2��g
1#
m;n

; 8f (6)

LEMMA 2 If conditions (5) and (6) are satis�ed and WHg1;�;� is a s-Riesz basis, then there exists a

function g1# such that:

g1#
m;n

(x) = e2�im�xg1#(x� n�) (7)

Proof

Since the set fg1m;ng is incomplete we can �nd f0 such that < f0; g
1
m;n >= �m;0�n;0 (where �a;b = 1 if

a = b and 0 otherwise). From here, by setting fM;N (x) = e2�iM�xf0(x�N�) we obtain < fM;N ; g
1
m;n >=

�m;M�n;N . On the other hand one can easily check that < T�f; g
1
m;n >= e�2�im�� < f; g1m;n�1 > and

< M2��f; g
1
m;n >=< f; g1m�1;n > for every f . In particular by plugging fM;N in (5) and (6) we get:

e�2�iM��g1#
M;N+1 = T�g

1#
M;N

; g1#
M+1;N =M2��g

1#
2M;N

(8)

for every integer M;N . Iterating now these relations we obtain (7). 2

Assuming the same invariance hypotheses for the second channel we obtain similarly the following

relations:

g2#m;n(x) = e2�iM�xg2#(x� n�) (9)

which shows that both fg1#
m;n

g and fg2#
m;n

g should be coherent, i.e. obtained as WH sets.

This discussion justi�es our choice for the side decoders as given by the WH sets WHg1#;�;�, respec-

tively WHg2#;�;�.

There are two particular choices for the encoder or decoder that we would like to single out. Both

choices correspond to using a single windowedWH frameWHg;�0�0 followed by a downsampling (division)

of the coe�cients. One possibility is to split with respect to the time shifts as follows:

g1mn = gm;2n;�0;�0 g2mn = gm;2n+1;�0;�0 (10)
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We call this encoder a time-shift division encoder (TSDE). Then it is obvious that c1
mn

, c2
mn

can be

equivalently obtained via:

c1mn =< f; g1mn;�0;2�0 > ; c2mn =< f; g2mn;�0;2�0 >

where g1 = g and g2 = T�0g. Similar translation-modulation invariance conditions on the decoder ask

for the following relations: g1#
mn

= g1#
m;2n;�0;�0

, respectively g2#
mn

= g2#
m;2n+1;�0�0

. The encoding-decoding

scheme is represented in Figure 2.

The other possibility is to split the coe�cients with respect to the frequency shifts as follows:

g1
mn = g2m;n;�0�0 g2

mn = g2m+1;n;�0�0 (11)

We call this encoder a frequency-shift division encoder (FSDE). We can still obtain the encoding scheme

via the general scheme presented in Figure 1, except for a constant phase factor in the second channel,

which is canceled out by a similar choice of the second side-decoder. We have c1
mn

=< f; g1
mn;2�0;�0

>

and c2
mn

= e2�in�0�0 < f; g2
mn;2�0;�0

> where g1 = g and g2 = M2��0g. The invariance conditions on

the decoder are satis�ed if we use the following windows: g1#
mn

= g1#2m;n;�0;�0 and g2#
mn

= g2#2m+1;n;�0;�0
.

Note that g2#2m+1;n;�0�0
= e2�in�0�0(M2��0g

2#)m;n;2�0;�0 and this explains how the constant phase factor

is removed. The encoding-decoding scheme is similar to the one in Figure 2 where the indexes m; 2n and

m; 2n+ 1 are replaced by 2m;n, respectively 2m+ 1; n.

Similarly, we can construct the side-decoders either by time-shift division or by frequency-shift divi-

sion, of one given frame. Thus if we choose g1#
mn

= g#
m;2n;�0;�0

and g2#
mn

= g#
m;2n+1;�0;�0

we obtain the

time-shift division decoder (TSDD) and the encoding-decoding scheme is shown in Figure 3. If we choose

g1#mn = g#2m;n;�0;�0 and g
2#
mn = g#2m+1;n;�0;�0

we have the frequency-shift division decoder (FSDD) and the

encoding-decoding scheme is analogous to the one drawn in Figure 3, where we replace the indexes m; 2n

and m; 2n+ 1 by 2m;n and 2m + 1; n, respectively.

Finally, we consider also the case when both the encoders and side-decoders are obtained by shift

division. Then, the time-shift division encoder-decoder (TSDED) is obtained by g1mn = gm;2n;�0;�0 ,

g2mn = gm;2n+1;�0;�0 , g
1#
mn = g#

m;2n;�0;�0
and g2#mn = g#

m;2n+1;�0;�0
. The frequency-shift division encoder-

decoder (FSDED) is de�ned analogously by g1mn = g2m;n;�0�0 , g
2
mn = g2m+1;n;�0;�0, g

1#
mn = g#2m;n;�0;�0

and g2# = g#2m+1;n;�0;�0
.

We analyze now certain signal models and we compute the one-channel approximation error.
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Given a signal f , the approximation error furnished by the �rst side decoder is given by:

e1(f) = k
X
m;n

d1
0

m;n
g1#m;n � fk2 (12)

Suppose again that d
0

= c. When no a priori information is known about the signal, a logical choice

for the error measure would be to take the supremum of e1(f) over all f with kfk = 1. We obtain the

following norm:

ewc = sup
kfk=1

k
X
m;n

< f; g1m;n > g1#m;n � fk2 (13)

The index wc stands for the worst-case. Indeed, ewc measures the worst-case error when the encoder is

�xed by g1 and the decoder by g1#. Thus the designing issue seeks to solve the following optimization

problem:

J�
wc = inf

g1 ;g1#
sup
kfk=1

k
X
m;n

< f; g1
m;n > g1#

m;n � fk2 (14)

Since for �� > 1 fg1m;n;m;n 2 Zg is always incomplete in L2(R), then obviously ewc � 1 (just take f to

be orthogonal to all g1m;n). In fact it is easy to see that the optimal value in (14) is 1 for every �� with

�� > 1 and it is 0 for �� � 1. The value 1 is the threshold for �� when fg1
mn;�;�gm;n may turn from

an incomplete set when �� > 1 into a complete one when �� � 1 (see the Appendix A). To achieve the

optimal value 1, we can choose g1 and g1# such that
P

m;n
< �; g1m;n > g1#m;n represents, for instance, an

orthogonal projection. This happens whenever g1# is the generator of a WH set that is biorthogonal to

WHg1;�;�, i.e. g
1# 2 SpanWHg;�;� and < g1#; gm;n >= �m;0�n;0 for every m;n 2 Z. We shall return

in the next section to the problem of �nding g1#, the biorthogonal generator, given g1. We note here

only the discontinuity of J�
wc

as a function of 1
��
, at the threshold value 1 (see Figure 5 top plot). The

stochastic model presented below will yield a continuous transition from 1 to 0 (see Figure 5 bottom

plot).

We introduce now the stochastic model that is going to be the main topic of this paper. The abstract

(mathematic) results needed to justify the formal computations are presented in Appendix B. More

results and extensions are presented in [Balan98].

Our stochastic model is of a stationary signal with zero-mean and known autocovariance function:

Ef (t) = 0

Ef (t)f (s) = R(t� s)
(15)
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The natural representation space can no longer be L2(R), the space of �nite energy signals, since Ejf (t)2j
is not integrable; instead one can use the Wiener amalgamspaceW (L2; l1), a space of �nite power signals

(hence the mathematical \complications" presented in Appendix B), or (less intrinsically) weighted L2-

spaces.

The approximation error is measured as an expected value of the weighted L2-norm given by a non-

negative weight function w as follows:

e1st = Ekf �
X
m;n

< f ; g1m;n > g1#m;nk2w (16)

where khk2
w
=
R1
�1 jh(x)j2w(x)dx. The lower index st stands for stationary, the upper index indicates

the channel for which the approximation error is measured. Hence e2st means the approximation error of

the second channel:

e2st = Ekf �
X
m;n

< f ; g2m;n > g2#m;nk2w: (17)

Consequently, the two-channel error (which is not the reconstruction error of the central decoder) is:

e1+2st = e1
st + e2

st = Ekf �
X
m;n

< f ; g1
m;n > g1#

m;nk2w +Ekf �
X
m;n

< f ; g2
m;n > g2#

m;nk2w (18)

The designing task is the following: given the stochastic model (15) and the weight function w,

�nd the windows g1; g2; g1#; g2# that minimize the two-channel approximation error, allow a perfect

reconstruction when both channels work and the quantizer is ignored, and are well-localized in the time-

frequency domain. To deal with the time-frequency localization we can append to the optimization

criterion certain terms measuring the time-frequency spread, but this turned out to be very expensive

computationally.

Let us state now the possible optimization problems related to the approximation errors (16){(18).

We denote by H1(g;�; �), H2(g;�; �) and H(g1; g2;�; �) the following hypotheses:

H1(g;�; �) : The set WHg;�;� is a s-Riesz basis: (19)

H2(g;�; �) : The set WHg;�;� is a frame: (20)

H(g1; g2;�; �) : The multiset WH(g1 ;g2);�;� is a multiframe: (21)
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Ocasionally we shall use H1(g);H2(g);H(g1; g2) when there is no danger of confusion. For �� = p

q
we

can also use H1(g; p; q);H2(g; p; q) or H(g1; g2; p; q) instead of (19), (20), or (21), respectively.

A. The Optimal Problems

A1. The One-Channel Optimal Problem:

e1
opt

= inf
g1; g1#

H1(g
1;�; �)

e1
st

(22)

A2. The Two-Channel Optimal Problem

e1+2opt = inf
g1; g2; g1#; g2#

H(g1; g2;�0; 2�0)

e1+2st (23)

A3. The optimal TSDE:

eTSDE
opt = inf

g; g1#; g2#

H2(g;�0; �0)

e1+2st (g1 = g; g2 = T�g) (24)

A4. The optimal TSDD:

eTSDD
opt = inf

g1; g2; g#

H(g1; g2;�0; 2�0)

e1+2st (g1# = g#; g2# = T�g
#) (25)

A5. The optimal FSDE:

eFSDE
opt

= inf
g; g1#; g2#

H2(g;�0; �0)

e1+2st (g1 = g; g2 =M2��g) (26)

A6. The optimal FSDD:

eFSDD
opt

= inf
g1; g2; g#

H(g1; g2;�0; 2�0)

e1+2
st

(g1# = g#; g2# =M2��g
#) (27)

A7. The optimal TSDED:

eTSDEDopt = inf
g; g#

H2(g;�0; �0)

e1+2st (g1 = g; g2 = T�g; g
1# = g#; g2# = T�g

#) (28)
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A8. The optimal FSDED:

eFSDEDopt = inf
g; g#

H2(g;�0; �0)

e1+2st (g1 = g; g2 =M2��g; g
1# = g#; g2# =M2��g

#) (29)

B. The Partial Optimal Problems

The partial optimal problems are variations of the following theme: �x either the encoder or the

decoder and �nd the optimal decoder, respectively encoder that minimizes the error. Obviously there

are 16 possible problems. Each of them is an optimal problem with respect to a smaller searching space.

C. The Near-Optimal Problems

For the near-optimal problems we need to know �rst the optimal value for the corresponding problem.

Next we give a threshold, say � > 0. The problem is then to �nd an encoder and/or decoder that produce

an error less than 1 + � times the optimal error for the corresponding case.

For instance the near-optimal FSDED with threshold � is to �nd a g; g# 2 L2(R) such that e1+2st (g1 =

g; g2 = M2��g; g
1# = g#; g2# = M2��g

#) � (1 + �)eFSDEDopt . We thus have 8 near-optimal problems

associated to A1-A8.

In the real world however the total distortion is di�erent from the approximation errors considered

before. The assumption made at the beginning of this section, namely that the quantization error is

negligible, may not be true. In general we should take into account all sources of error. If we do so, the

total distortion has the following form:

J (1) = Ekf �
X

(m;n)2S

Q�(< f ; g1
m;n >)g

1#
m;nk2w (30)

for the �rst channel, and similarly for the second channel, where S is the set of coe�cients actually

encoded. Using the triangle-inequality we obtain:

J (1) � Ekf �
X
m;n

< f ; g1m;n > g1#m;nk2w + Ek
X

(m;n)2S
(Q�(< f ; g1m;n >)� < f ; g1m;n >)g

1#
m;nk2w

+ Ek
X

(m;n)62S
< f ; g1m;n > g1#m;nk2w = e1st + e1q + e1tr (31)

Here: e1
st
is the stationary error due to the incompleteness of each channel description; e1

q
is the quanti-

zation error due to the quantization; e1tr is the truncation error and is due to the fact that we send only

a subset of the total set of coe�cients.

In section 4 we analyze the quantization and truncation errors. In the next section we deal only with

the stationary error and the optimization problems stated before.

12



3 Computations Using Zak Transform

In this section we shall compute the stationary error under the additional hypothesis that the redundancy

is a rational number. Consider the general encoding-decoding scheme in Figure 1. Set

�� =
p

q
2 [1; 2] (32)

3.1 Stochastic Errors

First we concentrate on the �rst channel and estimate the reconstruction error. Then we compute

e1+2
st = e1

st + e2st. For the stationary stochastic model (15) we obtain:

e1st = E[

Z
w(x)jf (x)�

X
m;n

< f ; g1m;n > g1#m;n(x)j2dx]

=

Z
w(x)R(0)dx�

X
m;n

Z Z
dx dyw(x)g1#m;n(x)g

1
m;n(y)R(x � y)

�
X
m;n

Z Z
dx dy w(x)g1

m;n
(y)g1#

m;n
(x)R(y � x)

+
X

m;n;m0;n0

Z Z Z
dx dy dz g1m;n(y)g

1#
m;n(x)w(x)g

1#
m0;n0

(x)g1
m0;n0

(z)R(y � z)

Using Parseval's formula (see Appendix C) for the summations over m;m0 we get:

e1
st = R(0)kwk1 �

1

�

X
m;n

R(
m

�
)

Z
dxw(x)g(x� n� � m

�
)g1#(x� n�)

� 1

�

X
m;n

R(�m
�
)

Z
dxw(x)g1(x� n� � m

�
)g1#(x� n�)

+
1

(�)2

X
m;n;m0 ;n0

R(
m0 �m

�
)

Z
dxw(x)g1(x� m

�
� n�)g1#(x� n�)g1#(x� n0�)g(x� m0

�
� n0�) (33)

To progress further we use the Zak transform. As we mentioned earlier, we assume �� = p

q
� 1 with

p and q relatively prime. The Zak transforms of the four windows g1; g2; g1# and g2# are denoted by

capital letters, respectively by G1; G2; G1#; G2# and are de�ned similarly to the following:

G(t; s) =
p
�
X
k2Z

e2�iktg(�(s + k)) (34)

The inversion formulae in time and frequency domain are:

g(x) =
1p
�

Z 1

0

G(t;
x

�
)dt ; ĝ(�) =

r
�

2�

Z 1

0

e�i�s�G(���
2�

; s)ds (35)
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We note here our convention regarding the Fourier transform: ĝ(�) = 1p
2�

R1
�1 e�i�tg(t)dt. For more

information on the Zak transform we refer the reader to [Jans82],[Jans88]. We recall here two quasi-

periodicity relations that will be used throughout this section:

G(t+ 1; s) = G(t; s) ; G(t; s+ 1) = e�2�itG(t; s) (36)

We denote by �(t; s) the p�q matrix whose (j; k) entry is G(t+ k

q
; s+j q

p
), j = 0; : : : ; p�1, k = 0; : : : ; q�1,

i.e.

�(t; s) =

2
66664

G(t; s) G(t+ 1
q
; s) � � � G(t+ q�1

q
; s)

G(t; s+ q

p
) G(t+ 1

q
; s+ q

p
) � � � G(t+ q�1

q
; s+ q

p
)

...
...

...

G(t; s+ (p� 1) q
p

G(t+ 1
q
; s + (p� 1) q

p
) � � � G(t+ q�1

q
; s+ (p� 1) q

p
)

3
77775 (37)

We de�ne similarly the matrices �1(t; s);�2(t; s);�1#(t; s) and �2#(t; s). We also de�ne the following

transforms of the autocovariance function, respectively of the weight function:

�r(t) =
X
m

e2�imqtR(
mp+ r

�
) ; r = 0; : : : ; p� 1 (38)

!(s) =
X
k

w(�(s + k)) (39)

Let us denote by M(t) the p� p matrix whose (r1; r2) entry is �r1�r2 (t), i.e.

M(t) =

2
64

�0(t) � � � ��(p�1)(t)
...

...

�p�1(t) � � � �0(t)

3
75 (40)

Note the following properties:

�r+p(t) = e�2�iqt�r(t) �r(t+
1
q
) = �r(t)

��r(t) = �r(t) ) �MT =M
(41)

i.e. for �xed t, M(t) is self-adjoint as a matrix (we shall also use M� instead of �MT (t)). Thus M(t) is a

p� p self-adjoint Toeplitz matrix.

Using W (s) de�ned in (39) we construct a p�p diagonal matrixW(s) whose (r; r) entry is !(s+ r q
p
),

i.e.

W(s) =

2
6664

!(s)
!(s + q

p
) 0

.. .

0 !(s + (p� 1) q
p
)

3
7775 (42)

Since !(s) is 1-periodic the diagonal of W(s) contains a permutation of the !(s + r

p
), r = 0; : : : ; p� 1.
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Using these notations and the Parseval identity, the error e1
st
given by (33) turns into:

e1
st
= �q

Z 1
p

0

ds

Z 1
q

0

dt tracefW(I � 1

p
�1#�1

�
)M(I � 1

p
�1�1#

�
)g =: e(W;M; �1;�1#;�; �) (43)

where �1 = �1(t; s), �1# = �1#(t; s), M =M(t),W =W(s) and I is the p� p identity matrix. In order

to make explicit dependence of the error on the window functions g and g#, we also use the notation

e(w;R; g; g#;�; �) = e(W;M; �;�#;�; �): (44)

A full account of these computations can be found in [Balan98].

The other channel error is given by:

e2
st = Ekf �

X
m;n

< f ; g2
m;n > g2#

m;nk2w

Then the same derivation leads to:

e2
st
= e(W;M;�2;�2#;�; �) (45)

We turn now to the special cases of time-shift division and frequency-shift division encoders and

decoders. Both cases can be treated by adapting formula (43) to the speci�c context. We take �� =

2�0�0 =
p

q
.

In the time-shift division case the reconstruction operator on channel 1 has the form:

STSD1 f =
X
m;n

< f ; g1
m;2n;�0;�0

> g1#
m;2n;�0;�0

=
X
m;n

< f ; g1
m;n;�0;2�0

> g1#
m;n;�0;2�0

and thus the reconstruction error is:

e1;TSDst = e(W;M; �1;�1#;�0; 2�0) (46)

with W;M;�1;�1# de�ned as before but for � = 2�0, � = �0. For the second channel we obtain:

STSD2 f =
X
m;n

< f ; g2m;2n+1;�0;�0 > g2#
m;2n+1;�0;�0

= T�(
X
m;n

< T��f ; g
2
m;n;�0;2�0

> g2#
m;n;�0;2�0

)

The error is then:

e2;TSD
st

= Ekf � STSD2 fk2
w
= EkT�(T��f �

X
m;n

< T��f ; g
2
m;n;�0;2�0

> g2#
m;n;�0;2�0

)k2
w
=

EkT��f �
X
m;n

< T��f ; g
2
m;n;�0;2�0 > g2#

m;n;�0;2�0
k2
w
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because of the stationarity of the reconstruction error. Next, T��f has the same second order statistics

as f does, because of the stationarity of the signal itself. Thus T�� can be dropped out from the above

formula and we obtain:

e2;TSD
st

= e(W;M; �2;�2#;�0; 2�0) (47)

The frequency-shift division case is similar, but a bit di�erent. For channel 1 the reconstruction error

does not raise any di�culty since:

SFSD1 f =
X
m;n

< f ; g12m;n;�0;�0 > g1#2m;n;�0;�0 =
X
m;n

< f ; g1
m;n;2�0;�0

> g1#
m;n;2�0;�0

Thus:

e1;FSD
st = e(W;M; �1;�1#; 2�0; �0) (48)

On the other hand, for the channel 2 we obtain:

SFSD2 f =
X
m;n

< f ; g22m+1;n;�0;�0g
2#
2m+1;n;�0;�0

=M2��0(
X
m;n

< M�2��0f ; g
2
m;n;2�0;�0 > g2#

m;n;2�0;�0
)

which implies:

e2;FSD
st

= Ekf � SFSD2 fk2
w
= EkM2��0(M�2��0f �

X
m;n

< M�2��0f ; g
2
m;n;2�0;�0 > g2#

m;n;2�0;�0
)k2
w

= EkM�2��0 f �
X
m;n

< M�2��0f ; g
2
m;n;2�0;�0

> g2#
m;n;2�0;�0

k2
w

Note now that M�2��0 f has a di�erent second order statistics than f has. Indeed:

E[M�2��0f (t)M�2��0f (s)] = e2�i�0(s�t)R(t� s) (49)

Thus the reconstruction error becomes:

e2;FSDst = e(W;N; �2;�2#; 2�0; �0) (50)

where N is a p�p Toeplitz matrix obtained similarly to M but for the autocovariance function (49). Let

us denote by �j(t) the entries of N(t). Then an easy computation shows that:

N(t) =

2
64

�0(t) � � � ��(p�1)(t)
...

...

�p�1(t) � � � �0(t)

3
75 (51)

16



with

�r(t) = (�1)r�r(t+ �0�0) (52)

Note that �r and N have similar properties to those of �r and M given by (41).

The last two cases we consider are the TSDED and the FSDED. Both schemes are de�ned by two

windows g and g# only. The total error in the TSDED case is obtained by adding up e1;TSD
st

and e2;TSD
st

for g1 = g2 = g and g1# = g2# = g#. Thus we obtain:

e1+2;TSDED
st

= 2e(W;M; �;�#;�0; 2�0) (53)

In the FSDED case we have to add together e1;FSD
st

and e2;FSD
st

and we obatin:

e1+2;FSDED
st

= e(W;M +N; �;�#; 2�0; �0) (54)

The expressions (53) and (54) look very similar; note however that, because one of them uses 2�0 and the

other �0 as the time translation unit, our analysis uses di�erent Zak transforms (in which the translation

unit enters), so that �;�# have di�erent forms in the two formulas.

Next we analyze the three hypotheses (19,20,21) stated in the previous section as well as the central

decoder construction.

3.2 Biorthogonal and Dual Generators

The hypotheses impose di�erent conditions on a WH set or multiset. The s-Riesz basis and frame condi-

tions on WHg;�;�, in terms of the Zak transform, have long been studied (see [Daub90] and [HeWa89]).

Similarly one can obtain necessary and su�cient conditions on a WH multiset to become a multiframe

(see [ZiZe95]). These conditions can be stated as follows:

THEOREM 3 A. Consider WHg;�;� a WH set. Suppose �� = p

q
with p; q relatively prime integers.

Let us denote by G;G1; G2 the Zak transforms of these windows with respect to the parameter �, and by

�, �1, �2 the p� q matrices obtained similarly to (37). Then:

1. WHg;�;� is a s-Riesz basis with bounds A;B i� for a.e. (t; s) 2 [0; 1
q
]� [0; 1

p
]

A � 1

p
��� � B (55)

where the inequalities are understood in the quadratic forms sense (i.e. M � �; � 2 R i� < x;Mx >�
�kxk2). Moreover, the standard biorthogonal s-Riesz basis generator g# is given through the following
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relation:

�# = p�(���)�1 (56)

2. WHg;�;� is a frame with bounds A;B i� for a.e. (t; s) 2 [0; 1
q
]� [0; 1

p
]

A � 1

p
��� � B (57)

Moreover, the standard dual frame generator ~g is given by:

~� = p(���)�1� (58)

B. Consider now WH(g1;g2);�;� a WH multiset. Suppose again �� = p

q
with p; q integers and consider

the same notations as before.

The multiset WH(g1;g2);�;� is a WH multiframe with bounds A;B i� for a.e. (t; s) 2 [0; 1
q
]� [0; 1

p
]

A � 1

p
(�1�1

�
+ �2�2

�
) � B (59)

In this case the standard dual frame generator (~g1; ~g2) is given by:

~�1 = p(�1�1
�
+ �2�2

�
)�1�1 (60)

~�2 = p(�1�1
�
+ �2�2

�
)�1�2 (61)

This result is known in the literature, in various places. Part B is perhaps the least known, since WH

multisets have been studied less. In Appendix D we sketch its proof.

REMARK 4 Note in (55), the s-Riesz basis condition is stated in terms of ��� because p � q, whereas

in (57) the frame condition involves the product ���, since now q � p.

This result makes it possible to obtain the central decoder. Indeed, in the TSDE or FSDE cases,

the full bit-stream bmn is obtained by encoding the expansion coe�cients of the signal f with respect to

a frame WHg;�;�. On the other hand the standard (minimal) dual frame minimizes the reconstruction

error variance when the coe�cients are perturbed by an additive independent white noise. Thus, the

standard dual frame is a logical choice for the central decoder, and that is what we choose. In the other

cases when the encoder is a WH multiframe we choose its standard dual multiframe (60) and (61) for

the central decoder (note in the FSDD case the central decoder should preprocess the coe�cients of the

second channel by shifting them with a constant phase e�2�in�0�0).
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3.3 The Partial Optimal Problems

Let us now concentrate on the partial optimal problems. Note �rst of all the symmetry in terms of the

encoding and decoding problem. Indeed, because we can make circular permutations and take adjoints

under the trace we have:

e(W;M; �1;�1
#
;�; �) = e(M;W; �1

#
;�1;�; �) (62)

For the one-channel partial optimalproblemwith �xed encoder we have to minimize e(W;M; �;�#;�; �)

with respect to �#, for �� > 1. This is clearly equivalent with minimizing the following trace:

min
X

tracefW(I � 1

p
X��)M(I � 1

p
�X�)g (63)

for X 2 Cp�q, with W;M 2 Cp�p hermitian and � 2 Cp�q given, because each X(t; s) can be chosen

independently from each other for (t; s) 2 [0; 1
q
]� [0; 1

p
]. The optimal solution is given by:

�#
so
= pM�(��M�)�1 (64)

Note it does not depend on W, however the optimal value of the error does:

e(W;M; �;�#so;�; �) = �q

Z 1
p

0

ds

Z 1
q

0

dt tracefWM �WM�(��M�)�1��Mg =: eso(W;M; �;�; �)

(65)

The explicit solutions that will be presented assume implicitely the encoding hypotheses (19,20,21) are

satis�ed. We shall comment on this fact later in the subsequent subsections when the optimal problems

are considered.

We introduce also another expression that will be useful next:

e1;2so (W;M1;M2; �
1;�2;�; �) = �q

Z 1
p

0

ds

Z 1
q

0

dt tracefW(M1 +M2)

�W(M1�
1 +M2�

2)(�1
�
M1�

1 + �2
�
M2�

2)�1(�1
�
M1 + �2

�
M2)g

The solutions to the 16 partial optimal problems are given in the following theorem whose proof in given

in Appendix D:

THEOREM 5 Suppose the matrices W(s) and M(t);N(t) are strictly positive with bounded inverse.

Then the solutions of the partial optimal problems are given by:
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B1. The one-channel partial optimal problem with �xed encoder:

�1#so = pM�1(�1
�
M�1)�1 (66)

e1st;so = eso(W;M; �1;�; �) (67)

B2. The one-channel partial optimal problem with �xed decoder:

�1so = pW�1#(�1#
�
W�1#)�1 (68)

e1#
st;so

= eso(M;W; �1#;�; �) (69)

B3. The two-channel partial optimal problem with �xed encoder

�1#so = pM�1(�1
�
M�1)�1 ; �2#so = pM�2(�2

�
M�2)�1 (70)

e1+2st;so = eso(W;M; �1;�; �) + eso(W;M; �2;�; �) (71)

B4. The two-channel partial optimal problem with �xed decoder

�1so = pW�1#(�1#
�
W�1#)�1 ; �2so = pW�2#(�2#

�
W�2#)�1 (72)

e1+2#
st;so = eso(M;W; �1#;�; �) + eso(M;W; �2#;�; �) (73)

B5. The partial optimal TSDE with �xed encoder:

�1#so = �2#so = pM�(��M�)�1 (74)

e1+2;TSDE
st;so = 2eso(W;M; �;�0; 2�0) (75)

B6. The partial optimal TSDE with �xed decoder:

�so = pW(�1# + �2#)(�1#
�
W�1# + �2#

�
W�2#)�1 (76)

e1+2;TSDE#st;so = e1;2so (M;W;W; �1#;�2#;�0; 2�0) (77)

B7. The partial optimal TSDD with �xed encoder:

�#so = pM(�1 + �2)(�1
�
M�1 + �2

�
M�2)�1 (78)

e1+2;TSDDst;so = e1;2so (W;M;M; �1;�2;�0; 2�0) (79)

B8. The partial optimal TSDD with �xed decoder:

�1so = �2so = pW�#(�#
�
W�#)�1 (80)

e1+2;TSDDst;so = 2eso(M;W; �#;�0; 2�0) (81)
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B9. The partial optimal FSDE with �xed encoder:

�1#so = pM�(��M�)�1 ; �2# = pN�(��N�)�1 (82)

e1+2;FSDE
st;so

= eso(W;M; �; 2�0; �0) + eso(W;N; �; 2�0; �0) (83)

B10. The partial optimal FSDE with �xed decoder:

�so = X solution of the linear system : MX�1#
�
= p(MW�1# +NW�2#) (84)

e1+2;FSDE#
st;so

= �q

Z 1
p

0

ds

Z 1
q

0

dt tracef2WM � 1

p
X(�1#

�
WM + �2#

�
WN)g (85)

B11. The partial optimal FSDD with �xed encoder:

�#so = p(M�1 +N�2)(�1
�
M�1 + �2

�
N�2)�1 (86)

e1+2;FSDDst;so = e1;2
so (W;M;N; �1;�2; 2�0; �0) (87)

B12. The partial optimal FSDD with �xed decoder:

�1so = �2so = pW�#(�#
�
W�#)�1 (88)

e1+2;FSDD#
st;so = eso(M +N;W; �#; 2�0; �0) (89)

B13. The partial optimal TSDED with �xed encoder:

�#so = pM�(��M�)�1 (90)

e1+2;TSDED
st;so = 2eso(W;M; �;�0; 2�0) (91)

B14. The partial optimal TSDED with �xed decoder:

�so = pW�#(�#
�
W�#)�1 (92)

e1+2;TSDED#
st;so = 2eso(M;W; �#;�0; 2�0) (93)

B15. The partial optimal FSDED with �xed encoder:

�#so = p(M+N)�(��(M+N)�)�1 (94)

e1+2;FSDED
st;so

= eso(W;M +N; �; 2�0; �0) (95)

B16. The partial optimal FSDED with �xed decoder:

�so = pW�#(�#
�
W�#)�1 (96)

e1+2;FSDED#
st;so = eso(M +N;W; �#; 2�0; �0) (97)
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REMARK 6 1. We point out that the requirements (such as strict positivity) on W(s);M(t) and N(t)

are not necessary. They are su�cient conditions ensuring that the suboptimal windows g1
so
; g2

so
; g1#

so
; g2#

so

belong to L2(R); in most cases these conditions can be relaxed. Each case can be dealt with separately,

but we shall not go further into this here. However, in practice we are interested in more regularity than

simply square integrability; we are interested in smoothness for our windows as well. We return to this

issue in the designing step, in section 4 below.

2. As mentioned before, we assume that each solution satis�es the s-Riesz basis and multiframe

condition. Explicit conditions for these hypotheses will be given for the optimal problems.

4 The Optimal Problems

4.1 Spaces of Eigenvalue, Eigenvector and Eigenspace-Valued Maps

The following objects are useful in the analysis of the optimal solutions. The unit 2-dimensional square

is symbolized by 2, 2 = [0; 1]� [0; 1]. Recall that the Hilber-Schmidt scalar product of two matrices

A;B 2 Cp�q is de�ned by:

< A;B >HS= TracefA�Bg =
pX
i=1

qX
j=1

AijBij (98)

Similarly, the Hilbert-Schmidt norm of A 2 Cp�q is de�ned as usual by kAk
HS

= (< A;A >HS )
1=2. Then

we can easily de�ne several Lp spaces of matrix-valued functions. In particular we de�ne two spaces:

L2(2;Cp�q) := fA : 2! Cp�q j kAk2
L2(2;Cp�q ) :=

Z Z
2

kA(t; s)k2
HS

dt ds <1g (99)

L1(2;GLq(C)) := fA : 2! Cq�q j kAk
L1(2;GLq(C))

:= sup
(t;s)22

kA(t; s)k
HS

<1 (100)

and sup
(t;s)22

kA�1(t; s)k
HS

<1g

Note that L1(2;GLq(C)) is not a linear space (for instance the constant zero matrix does not belong

to this space), but a group with respect to the matrix multiplication. Consider now the space of p �
p nonnegative symmetric matrices Sym+

p (C). It is a convex cone and the trace is a pseudometric,

d(S1; S2) = jTracefS1�S2gj, for S1; S2 2 Sym+
p (C). Using this pseudometric we construct the L1 space

of Sym+
p (C)-valued functions as follows:

L1(2;Sym+
p (C)) = fS : 2! Sym+

p (C) j kSkL1 :=
Z Z

2

TracefS(t; s)g dt ds <1g (101)
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Sym+
p
(C) is then extended to the space of Sym+

p
(C)-equivalent matrices, denoted P lusp(C) = fTAT�1 ; A 2

Sym+
p (C); T 2 GLp(C)g. Thus a matrix M 2 P lusp(C) if and only if it is diagonalizable and all its

eigenvalues are positive real numbers. Accordingly, L1(2;Sym+
p
(C)) extends to:

L1(2;P lusp(C)) = fB : 2! P lusp(C) j kBkL1 :=
Z Z

2

TracefB(t; s)gdt ds <1g (102)

Note that L1(2;Sym+
p
(C)) is a subset of the space L1(2;P lusp(C)) which in turn is a subset of the set

of trace-class operators over L2(2;Cp). Moreover, the following property holds true as well:

PROPOSITION 7 If S;R 2 L2(2;Sym+
p
(C)) then S�R 2 L1(2;P lusp(C)) and kS�RkL1 � kSk

L
2
HS

kRk
L
2
HS

.

Proof Suppose A 2 Sym+
p (C) then there is a unique A1=2 2 Sym+

p (C) such that A1=2A1=2 = A. For

every " > 0 and B 2 Sym+
p (C) we have the following equivalence (A+"I)B � (A+"I)1=2B(A+"I)1=2 2

Sym+
p (C). Now, by continuity of the spectrum with respect to (compact) perturbations, we may take the

limit " & 0 and obtain AB � A1=2BA1=2. Thus AB 2 P lusp(C). Consequently, for S;R satisfying our

hypothesis, we have for every point (t; s), S �Rj(t;s) 2 P lusp(C). Next, note TracefS�Rg =< S;R >HS�
kSk

HS
kRk

HS
by the Cauchy-Schwartz inequality and thus S �R 2 L1(2;P lusp(C)) which ends the proof.

3

Consider now S a matrix-valued function in L1(2;P lusp(C)). We want to study the eigenproblem

solution for S(t; s). We are interested in the eigenvalue and the eigenvector maps.

At each point (t; s) 2 2, the eigenvalues are well-de�ned and positive. The eigenvectors may not be

uniquely de�ned if one or more of the eigenvalues is degenerate. Let us denote by �1(t; s); : : : ; �p(t; s)

the p monotonically decrasing ordered eigenvalues of S(t; s) at (t; s). Thus we obtain p real-valued maps

over the unit-square, �j : 2! R+, 1 � j � p. The following result characterizes these eigenvalue maps:

THEOREM 8 Consider S 2 L1(2;P lusp(C)) and �1; : : : ; �p : 2 ! R+ the monotonically decreasing

ordered eigenvalue maps as above.

1. For every 1 � j � p, �j is measurable (with respect to the standard Lebesgue measure) and

�j 2 L1(2;R+);

2. If the entries of S are continuous complex-valued functions on 2, then so are �j : 2 ! R+,

j = 1; : : : ; p;

3. Suppose the entries of S are di�erentiable at some (t; s) 2 2 (i.e. the real and imaginary parts of

Slk are di�erentiable at (t; s), for 1 � l; k � p) and �j(t; s) is nondegenerate, then �j is di�erentiable at
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(t; s).

Proof of Theorem 8

2. Part 2 is a standard result in matrix perturbation theory (see for instance Theorem IV.1.3 due to

Elsner in [StSu90]) and it is usually proved using complex analysis methods.

3. Part 3 is also standard (see Theorem IV.2.3 in [StSu90]) and it is proved using the Gerschgorin's

disks technique.

1. For the �rst assertion we use �rst the density of C(2;P lusp(C)) in L1(2;P lusp(C)). Then we

consider a sequence (S(n))n�1 in C(2;P lusp(C)) that converges to S in L1(2;P lusp(C)) sense. Then

we extract a subsequence (nk)k that converges pointwise almost everywhere on S. Next, the sequences

(�nk
j
)k�a, j = 1; : : : ; p of the ordered eigenvalues of S(nk) are bounded and necessarily converge to ��(j),

some eigenvalue of S, where � is a point-dependent permutation of f1; 2; : : : ; ng. Because of the ordering
of (�nk

j
) we have � = id. Thus �j(x) = limk!1 �nk

j
(x) pointwisely and each �nk

j
is continuous, hence

measurable and in L1(2;R+). Therefore �j is measurable as well. Since 0 � �j(x) � TraceS(x) we

obtain
R R

2
�j(t; s)dt ds �

R R
2
Trace S(t; s)dt ds <1. Thus for every j, �j 2 L1(2;R+). End of proof.

3

We consider now the eigenvectors problem. Unfortunately there are no easy answers to the continu-

ity problem for the eigenvectors. The di�culty arises whenever the eigenvalue is degenerate. For the

nondegenerate eigenvalues the problem is relatively easy and the answer is furnished by the spectral

theory.

Given a p� p matrix A 2 Cp�p and a closed curve � 2 C that does not pass through any eigenvalue

of A (i.e. Spec(A) \ � = ;), then

P� =
1

2�i

Z
�

(�I � A)�1d� (103)

de�nes a projection onto the spectral space associated to the eigenvalues included in the interior of �

(see for instance [Kato80]). A spectral space associated to some eigenvalue � is the largest invariant space

of A such that the restriction of A to this invariant space has the spectrum made only of �. If A is

selfadjoint, P� is an orthonormal projection and any spectral space is exactly the eigenspace associated

to some eigenvalue. In general the eigenspace is included in the spectral space, but the inclusion may be

strict. However, when A diagonalizes the two spaces are always of the same dimension.
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Suppose now A = A(t) is a p � p matrix whose entries are continuously parametrized by t, and for

t 2 I, A has a simple eigenvalue at �j(t); we choose to number the eigenvalues so that �j is continuous

in t (see above). Then the projection onto ej (the eigenvector associated to �j) is a continuous function

in the space of rank one projectors. Next, using a transformation function adapted to Pj (see [Kato80],

Cap. II, x4.2) we can construct a continuous map of eigenvectors from I into Cp: t 7! ej(t), associated

to the map �j . The same argument can be carried over to any spectral projection of constant rank. Thus

we get the following result:

PROPOSITION 9 Let A : I ! P lusp(C) be a continuous P lusp(C)-valued map de�ned on an open

set I (I � Ck, for some k > 0) and let �1(t) � � � � � �p(t) be the monotonically ordered continuous

system of eigenvalues. Suppose for some 1 � q � p, �q(t) > �q+1(t) on I, then there are q orthonormal

vectors e1; : : : ; eq, continuously de�ned on I that form an orthonormal basis for the spectral space of A

associated to f�1; : : : ; �qg. 3

REMARK 10 1. Explicitely, e1; : : : ; eq have the following property: for every t 2 I, if E is their q-

dimensional span in Cp, then E is an invariant space for A and the spectrum of A restricted to E is

exactly f�1; : : : ; �qg, i.e. Spec(AjE ) = f�1; : : : ; �qg.
2. The result in [Kato80] does not yield directly the orthonormal system, but rather a basis for each

t in the spectral space. From there it is straightforward to obtain an orthonormal basis (for instance by

Gramm-Schmidt) which will depend continuously on t as well.

In order to deal with the degenerate case we have to be more careful. Consider now A : 2! P lusp(C)

a function in L1(2;P lusp(C)) and �1 � �2 � � � � � �p its system of eigenvalues. Fix q, 1 � q � p. Let

us denote by Lq(Cp) the set of q-dimensional subspaces of Cp. We de�ne the following two important

sets of maps:

eigspacemax(A; p; q) = fV : 2! Lq(Cp) j for every (t; s) 2 2;V(t; s) is A(t; s) � invariant

dimV(t; s) = q and Spec(AjV ) = f�1; : : : ; �qg g (104)

eigmax(A; p; q) = fF : 2! Cp�q j F �(t; s)F (t; s) = Iq ; F is measurable and

9V 2 eigspacemax(A; p; q) s:t: RanF = V g (105)

We shall also use the notations eigspacemax(A;�; �) or eigmax(A;�; �) with �� = p

q
to denote the

same objects, when there is no danger of confusion. Note that V is not necessarly a spectral space,

because we do not require V in eigspacemax to be maximal as invariant space (in fact we couldn't have

required this because of the dimension constraint). If �q > �q+1 then V is a spectral space, though. In
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this case Proposition 9 proves there is a continuous F 2 eigmax(A; p; q); moreover eigspacemax(A; p; q)

contains only one map, namely the one associates for every (t; s) 2 2 the spectral space of f�1; : : : ; �qg.
In the case when �q = �q+1 eigspacemax(A; p; q) will contain in�nitely many maps. Note the columns

of F 2 eigmax(A; p; q) form an orthonormal basis for some V 2 eigspacemax(A; p; q).

For a better characterization of these objects we introduce the following indices. For every (t; s) we

de�ne the degeneracy indices k1(t; s) and k2(t; s) as follows:

k1(t; s) = max
k

fk j �q�k = �qg ; k2(t; s) = max
k

fk j �q+k = �qg (106)

Thus the eigenvalues at (t; s) are ordered as follows:

�q�k1�1 > �q�k1 = � � � = �q = � � � = �q+k2 > �q+k2+1 (107)

Then we de�ne:

Dl1 ;l2 = f(t; s) 2 2 j k1(t; s) = l1 ; k2(t; s) = l2g (108)

and

Dl = [q
j=0Dj;l (109)

Note that we always have 0 � k1 � q and 0 � k2 � p � q always. An easy exercise shows the following

properties of these sets:

1) Dl1;l2 \Dm1;m2
= ;, for every (l1; l2) 6= (m1;m2);

2) D0;0 = f(t; s) 2 2 j �q�1(t; s) > �q(t; s) > �q+1(t; s)g is open;
3) D0 = f(t; s) 2 2 j �q(t; s) > �q+1(t; s)g is open;
4) D0 [D1 [ : : :[Dl is open;

5) [0�l1�m1
[0�l2�m2

Dl1;l2 is open for every m1;m2.

With these notations Proposition 9 implies that on D0 we can construct (continuous) q-system of

orthonormal basis in the spectral space of f�1; : : : ; �qg (assuming A is continuous). Note also that

eigspacemax(A; p; q) restricted to D0 contains only one map. We are now ready to discuss the optimal

problems and the localization result.

4.2 The Optimal Problems

Once we have solved the partial optimal problems we can optimize over the remaining freedom in the

choice of window functions, i.e. we now concentrate on the eight optimal problems stated in (22){(29).
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We shall solve exactly (i.e. in a closed form) seven of these eight problems. For the eighth problem (the

FSDE problem) we provide upper and lower bounds for the approximation error. The exact value of

the optimal error in this particular case can be obtained by solving a continuously parametrized �nite

dimensional optimization problem. For all the cases the optimal solution represents a Karhunen-Lo�eve

approximation of the original stochastic signal. For the remainder of this section we assume M(t) is

bounded and invertible for almost every t 2 [0; 1] (more precisely, M 2 L1([0; 1];GLp(C))).

We are going to study separately each of the eight optimal problems. In the following we use the

notations introduced before.

4.2.1 The One-Channel Optimal Problem

The one-channel optimal problem is the simplest and, in some sense, represents a benchmark for the

other optimization problems.

Recall the one-channel structure involves two WH s-Riesz bases WHg;�;�, WHg# ;�;� and the com-

munication structure contains one encoding and one decoding block. If g, respectively g#, denotes the

encoding, respectively decoding window, then the optimal solution is obtained by solving one of the

following optimization problems:

e1
st;o := inf

g
H1(g;�; �)

inf
g#

H1(g
#;�; �)

e(w;R; g; g#;�; �) = inf
g#

H1(g
#;�; �)

inf
g

H1(g;�; �)

e(w;R; g; g#;�; �)

(110)

where e(w;R; g; g#;�; �) was de�ned in (44). Solving the �rst optimization problem is equivalent to

�rst solving the partial optimal one-channel problem with �xed encoder, and then optimizing over the

encoders . The second form in (110) means to optimize the partial optimal one-channel problem with

�xed decoder over all admissible decoders, and then to optimize over the encoders. The solution is given

by the following:

THEOREM 11 (One-Channel) The optimal solutions of the one-channel optimal problem are parametrized

in the Zak transform domain as follows:

�opt(t; s) = F (t; s) � L(t; s) (111)

�
#
opt(t; s) = F#(t; s) �L#(t; s) (112)
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where:

F 2 eigmax(WM;�; �) ; F# =MF (F �M2F )�1=2 2 eigmax(MW;�; �) (113)

and

L 2 L1(2;GLq(C)) ; L
# = p(F �M2F )1=2(F �MF )�1L�� 2 L1(2;GLq(C)) (114)

L�� denotes the hermitian conjugate of the inverse: L�� = (L�1)�. Recall from x4.1 that eigmax(S;�; �)

represents the set of p � q-matrices of functions whose columns at each point are orthonormal vectors and

span an invariant space of S corresponding to the largest q eigenvalues.

The optimal value of the error turns into:

e1st;opt = eopt(WM;�; �) := �q

Z 1=p

0

ds

Z 1=q

0

dt

pX
i=q+1

�i(t; s) (115)

where (�i)i=1;p are the p real eigenvalues of WMj(t;s) decreasingly ordered as �1 � : : : � �p.

Proof First note that in the Zak domain the optimization problem decouples into independent �nite-

dimensional optimization problems continuously parametrized by (t; s). For a �zed (t; s) we have to

minimize

TracefWM�WM�(��M�)�1��Mg

over �. Assume M is invertible at (t; s). Notice that P� := M1=2�(��M�)�1��M1=2 is an orthogonal

projection for any choice of � for which ��M� is invertible. Moreover, for every q-dimensional subspace

V ofCp, there is a � such that P� = PV , where PV is the orthogonal projection onto V. Then the problem
reduces to �nding a subspace V that maximizes TracefM1=2WM1=2PVg. It is clear that this subspace
should belong to eigspacemax(M1=2WM1=2; p; q). Next we check that F given in (113) is a solution for

�. Note �rst that Spectrum(WM) = Spectrum(M1=2WM1=2) (see Proposition 7). Thus F corresponds

to the largest eigenvalues of M1=2WM1=2 as well: WMF = F�, where Tracef�g = P
q

i=1 �i with �i

the ordered eigenvalues of WM. This proves (115). Then

M1=2WM1=2PF =M1=2WMF (F �MF )�1F �M1=2 = PFM
1=2WM1=2

which shows that RanPF is an invariant subspace of M1=2WM1=2 and also TracefM1=2WM1=2PFg =
Tracef�g. Thus RanPF 2 eigspacemax(M1=2WM1=2; p; q) which proves (113).
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Next we note that any other � 2 L1(2;Cp�q) that satis�es the s-Riesz basis condition (55) and is

optimal should correspond also to an element of eigspacemax(WM;�; �). This means that Ran� 2
eigspacemax(WM;�; �). From (55), it follows that � = F � L for some L 2 L1(2;GLq(C)) and

F 2 eigmax(WM;�; �), i.e. (111).

Finally, the biorthogonal generator is obtained through (66) which turns into (112) when (111) is

used. 2.

An upper bound for the optimal error (115) can be easily obtained by using the following inequality:

1

p� q

pX
i=q+1

�i(t; s) � 1

p

p�1X
i=0

�i(t; s)

Now, note the right hand side is 1
p
tracefW (s)M (t)g. Since W(s) is diagonal and the diagonal of M(t)

is constant equal to �0(t) we obtain further:

pX
i=q+1

�i(t; s) �
p� q

p
�0(t)

p�1X
r=0

!(s +
r

p
)

Next, by integrating for (t; s) 2 [0; 1
q
]� [0; 1

p
] we get:

eopt(WM;�; �) � (1� 1

��
)R(0)kwk

L1
(116)

where kwk
L1

=
R
w(x)dx is the 1-norm of the weight function w(�) and R(0) is the autocovariance

function evaluated at lag 0.

REMARK 12 1. In the case �q is nondegenerate, the optimal solution is parametrized only by L1(2;GLq(C)).

In the case �q is degenerate, the parametrization is more complicated because it takes into account the

local degeneracy of �q .

2. In either of the two cases (i.e. �q degenerate or not), the approximation error is given by the same

formula (115).

3. In the case when W(s) = !(s)I or M(t) = �0(t)I we can solve this problem explicitely. We

postpone this analysis until later.

4.2.2 The Two-Channel Optimal Problem

The two-channel transmission scheme uses two encoding and two decoding blocks, one of each for each

channel. It thus represents a union of two one-channel transmission schemes, subject to hypotheses
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H(g1; g2) and H(g1#; g2#). Without these additional constraints, the optimal two-channel problem

would simply reduce to the previously solved one-channel optimal problem. Hence a lower bound for the

approximation error is given by twice the optimal value of the optimal error for the one-channel case:

e1+2st;opt � 2e1opt(WM;�; �) = 2�q

Z 1=p

0

ds

Z 1=q

0

dt

pX
j=q+1

�j(t; s) (117)

The issue is then whether the lower bound can be achieved or not.

The optimal solution for the one-channel problem is parametrized using the spaces in eigspacemax(WM; p; q);

in particular we have Ran�1; Ran�2 2 eigspacemax(WM; p; q). On the other hand, the frame condition

H(g1; g2) requires that in the Zak domain, Ran�1 + Ran�2 = Cp, another subspace condition. Now

clearly these two conditions are contradictory, unless almost all eigenvalues �q are degenerate and there is

enough \room" in eigspacemax(WM; p; q) to cover Cp; we can therefore in general not hope to achieve

equality in (117). Moreover, (117) cannot be improved: for every " > 0 there is a near-optimal solution

with e1+2st � 2 eopt(WM;�; �) + ". All these facts are proven in the following:

THEOREM 13 (Two-Channel) For the two-channel optimal problem, the lower bound (117) is sharp.

The equality cannot be achieved unless the following two conditions hold for almost every (t; s) 2 2:
1. The eigenvalue �q(t; s) is degenerate for WM;

2. 1 + k1(t; s) � k2(t; s) = p� q.

Proof

We have to prove two statements: one is about the near-optimal solution with bound 2eopt(WM;�; �),

the other concerns conditions to be satis�ed if the bound is attained.

For the near-optimal solution we use a perturbative argument as follows. Consider (g1; g1#) the

solution of the optimal one-channel problem. We shall tailor a near-optimal solution (g2; g2#) for the

one-channel problem by perturbing the �rst one in such a way that the two hypotheses H(g1; g2) and

H(g1#; g2#) are satis�ed.

For each (t; s) dim Ran�1(t; s) = q. Let us construct the orthogonal complement of Ran�1(t; s) and

let f1; : : : ; fp�q be an orthonormal basis in this complement. Note that f1; : : : ; fp�q can be chosen to be

at least measurable, as vector-valued functions over 2, by a similar argument as in Proposition 9 . Since
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1 � p

q
� 2 we have p� q � q. Set:

�2 = �1 + "�

�2# = �1# + "� (118)

� = [f1j � � � jfp�qj0j � � � j0]

where the p� q matrix � contains on the �rst p� q columns, the component of the vectors f1; : : : ; fp�q

in the cannonical basis and then is completed with zero on the remaining 2q � p columns. The lower

bound of the WH multiset WH(g1;g2);�;� is given by (see (59) A = 1
p
inf(t;s)mini �i(�

1�1
�
+ �2�2

�
). By

Theorem 11 �1 = F1L1 with L1 2 L1(2;GLq(C)). Then �1�1
�
= F1L1L

�
1F

�
1 . In the orthonormal basis

f1; : : : ; fp (which depends on t; s), the matrices of interest are given by:

F1 =

�
Iq
0

�
; � =

�
0

~Ip�q

�
;

where every p � q matrix is written in two blocks: a q � q block on top, and a (p � q) � q block on the

bottom; ~Ip�q is the (p� q)� q matrix of which the �rst p� q columns form the (p� q)� (p� q) identity

matrix and the remaining 2q � p columns are zero. Then

�1�1
�
+ �2�2

�
=

�
L1
0

� �
L�1 0

�
+

�
L1

"~Ip�q

� �
L�1 "~I�p�q

�
=

�
2L1L

�
1 "L1 ~I

�
p�q

"~Ip�qL
�
1 "2Ip�q

�
:

But:

�
2L1L

�
1 "~L1

"~L1 "2Ip�q

�
=

� 1
2L1L

�
1 0

0 "
2

3 Ip�q

�
+

2
4

q
3
2
L1

"
q

2
3
~Ip�q

3
5 � h q3

2L
�
1 "

q
2
3
~I�
p�q

i
�
� 1

2L1L
�
1 0

0 "
2

3 Ip�q

�

Hence:

�min(�
1�1

�
+ �2�2

�
) � min(

1

3
"2;

1

2
kL�11 k�2)

Since L1 2 L1(2;GLq(C)) it follows that �
1�1

�
+ �2�2

� � 
 > 0 for a.e. (t; s) 2 2 and some 
 > 0.

Thus H(g1; g1#) is ful�lled. Similarly H(g2; g2#) holds true as well.

It remains to check that the approximation error is close to 2eopt(WM;�; �). The �rst channel

approximation error is eopt(WM;�; �). For the second channel we use (43) and get:

e2
st
� e1

st;o = e(W;M; �1 + "�;�1# + "�;�; �)� e(W;M; �1;�1#;�; �)

Notice thatW;M;�1;�1#;�are all bounded as functions in L1(2;Sym+
p (C)), L

1(2;Cp�q) or L1(2;Cp�(p�q)).

Using again (43) and expanding the above formula, we obtain a fourth order polynomial in " with zero
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constant term, e2
st
� e1

st;o = a" + b"2 + c"3 + d"4. Since this can obviously be made arbitrarily small by

choosing appropriately small ", (117) is sharp.

For the second part of the theorem we need to show the two conditions in the hypothesis are equivalent

with the existence of two one-channel optimal solutions g1; g2 that satisfy H(g1; g2). As mentioned before

this reduces to the algebraic condition Ran�1 + Ran�2 = Cp a.e., or equivalently, to the existence of

two members �1; �2 2 eigspacemax(WM;��) such that �1(t; s) + �2(t; s) = Cp for a.e. (t; s) 2 2. Using
now the parametrization of eigspacemax(S;�; �) developed in 4.1 we obtain the conclusion. 3.

REMARK 14 The proof of the theorem suggests how to construct optimal solutions when the two con-

ditions hold. Let us �x some (t0; s0) 2 2 and let k1 = k1(t0; s0), k2 = k2(t0; s0) and Dk1;k2 as in 4.1. Let

U(t0; s0) denote the eigenspace of W(s0)M(t0) corresponding to the eigenvalues f�j(t0; s0); �j(t0; s0) >
�q(t0; s0)g. If Eq(t0; s0) denotes the eigenspace corresponding to �q(t0; s0) then U(t0; s0)�Eq(t0; s0) = Cp

and dim Eq(t0; s0) � 2(p � q). Let e1(t; s); : : : ; ep(t; s) be a measurable system of eigenvectors. Let

�1; �2 : f1; 2; : : : ; 1+k1g ! fq�k1; q�k1+1; : : : ; q; q+1; : : : ; q+k2 = pg be two injective selection maps

such that Ran�1 [Ran�2 = fq � k1; q � k1 + 1; : : : ; q; q+ 1; : : : ; q + k2g. Then on Dk1;k2 we construct

the following objects:

(t; s) 2 Dk1;k2 7! E1
q (t; s) = spanfe�1(1)(t; s); : : : ; e�1(1+k1)(t; s)g

(t; s) 2 Dk1;k2 7! E2
q
(t; s) = spanfe�2(1)(t; s); : : : ; e�2(1+k1)(t; s)g

(t; s) 2 Dk1;k2 7! �1(t; s) = U(t; s)� E1
q (t; s)

(t; s) 2 Dk1;k2 7! �2(t; s) = U(t; s)� E2
q
(t; s)

(t; s) 2 Dk1;k2 7! ~F 1(t; s) = [e1(t; s) j � � � j eq�k1�1 j e�1(1)(t; s) j � � � j e�1(1+k1)(t; s)]

(t; s) 2 Dk1;k2 7! ~F 2(t; s) = [e1(t; s) j � � � j eq�k1�1 j e�2(1)(t; s) j � � � j e�2(1+k1)(t; s)]

(t; s) 2 Dk1;k2 7! F 1(t; s) = ~F 1( ~F 1� ~F 1)�1=2

(t; s) 2 Dk1;k2 7! F 2(t; s) = ~F 2( ~F 2� ~F 2)�1=2

By construction E1
q
(t; s) + E2

q
(t; s) = Eq(t; s), dim�1(t; s) = dim�2(t; s) = q and

�1; �2 2 eigspacemax(W(s)M(t);�; �)jDk1 ;k2
.

The F 1; F 2 constructed on Dk1;k2 are local optimal solutions for each one-channel transmission prob-

lem and for every (t; s) 2 Dk1;k2 they form a frame in Cp with lower bound larger than 1. Therefore by

patching together these local frames we get two windows g1; g2 that satisfy H(g1; g2) and are also optimal
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for each one-channel transmission problem.

4.2.3 The Optimal TSDE

The encoding scheme using a time-shift division encoder (TSDE) shown in �gure 2 is characterized by:

g1mn = gm;2n;�0;�0 g2mn = gm;2n+1;�0;�0
g1#
mn

= g1#
m;2n;�0;�0

g2#
mn

= g2#
m;2n+1;�0;�0

(119)

where �0�0 2 [1
2 ; 1] and g; g1#; g2# are the generating windows. The approximation errors have been

computed in (46) and (47). In the TSDE case g1 = g2 = g and thus the total approximation error is:

e1+2;TSDE
st

= e(W;M; �;�1#;�0; 2�0) + e(W;M; �;�2#;�0; 2�0)

The partial optimal TSDE with �xed encoder has been obtained in Theorem 5 case B5, as:

�1#so = �2#so = pM�(��M�)�1 (120)

and

e1+2;TSDE
st;so = 2eso(W;M; �;�0; 2�0) (121)

which is perfectly equivalent to the one-channel problem, duplicated modulo a �0-time shift to the two

channels. Clearly the optimal value of the error is bounded below by twice the one-channel optimal error:

e1+2;TSDE
st;opt � 2eopt(WM;�0; 2�0) (122)

As in the optimal two-channel case, the lower bound in actually achieved if and only if the hypothesis

H2(g) holds true. To be more precise, the only issue is whether there is any optimal solution of the

one-channel optimal problem (paramterized by (111)-(114)) that makes also WHg;�0;�0 a WH frame. A

partial answer to this question in given by the following lemma:

LEMMA 15 Consider 2�0�0 = p

q
� 1 with p; q relatively prime integers and g 2 L2(R) such that

WHg;�0;2�0 is a s-Riesz basis. Then WHg;�0;�0 is a frame for L2(R) i� there is an A > 0 such that for

almost every (t; s) 2 2:

���j(t;s) + ���j(t;s+ 1
2
) � pA (123)

(� is the p� q matrix de�ned in (37)).
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Proof Let us denote by g(2) = T�0g the �0-time shift of g. By sorting the labels (m;n) into those with

even n and those with odd n, we have the following decomposition

WHg;�0;�0 =WHg;�0;2�0 [WHg(2) ;�0;2�0

Therefore WHg;�0;�0 is a frame i� WH(g;g(2));�0;2�0 is a WH multiframe. Next note the Zak transform

of g(2) is:

G(2)(t; s) =
p
2�0

X
k

e2�iktg(2)(2�0(s + k)) = G(t; s+
1

2
)

The fact that WHg;�0;2�0 is a WH s-Riesz basis translates into (see Proposition 3, case A.1):

pA0 � ��� � pB0 (124)

for almost every (t; s) 2 2 and some A0; B0 > 0. By the same Proposition 3, case B.3, the multiset

WH(g;g(2));�0;2�0 is a multiframe (with frame bounds A;B) i�

pA � ��� + �(2)(�)(2)� � pB (125)

a.e. (t; s). Since �(2) = �(t; s + 1
2 ) the upper bound comes automatically from (124) (note kT �Tk =

kTT �k). Thus the only condition that remains to be satis�ed is the lower bound in (125) which is

equivalent to (123). 3

This Lemma does not solve our problem completely yet. It merely states an equivalent form to the

hypothesis H2(g) when H1(g) is satis�ed (i.e. when WHg;�0;2�0 is a WH s-Riesz basis). However, it

provides an easier veri�able condition. The general solution of the optimal TSDE is furnished by the

following theorem:

THEOREM 16 (TSDE) Consider the encoding scheme 2 using a TSDE. Then the optimal approxi-

mation error is

eTSDEst;opt = 2eopt(WM;�0; 2�0) (126)

This bound is achieved i� for almost every (t; s) 2 2,

FF �j(t;s)+ FF �j(t;s+1
2
) � A (127)
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for F 2 eigmax(WM;�0; 2�0) and some A > 0. In this case the optimal solution in terms of the Zak

transform is

�opt(t; s) = F (t; s)L(t; s) (128)

�1#opt = �2#opt = F#(t; s)L#(t; s) (129)

with

F# = MF (F �M2F )�1=2 2 eigmax(MW;�0; 2�0) (130)

L 2 L1(2;GLq(C)) ; L# = p(F �M2F )1=2(F �MF )�1L�� 2 L1(2;GLq(C)) (131)

If (127) is not satis�ed, the optimal bound (126) is not achieved, however for every " > 0 there is a

near-optimal solution within ".

REMARK 17 1. The condition (127) is generically satis�ed. In fact it represents a constraint only

on the weight w. However, for every (R;w) (autocovariance and weight functions) such that W;M 2
L1(2;GLq(C)) but not satisfying (127), and for every " > 0 there is a weight w0 that satis�es (127) and

kw � w0k
L1

< ". To see this note that kw � w0k
L1
� kW �W0k

L1
and (127) can be made to hold true

with an arbitrary small perturbation.

2.There is a particular class of weights for which (127) does not hold true in general (it depends

now on R). This class contains the characteristic function of [0; 2�0], or any other weight w such that

!(s) � const. For these weights W(s) = !(0)I and therefore F does not depend on s. The only way for

(127) to be satis�ed is, in this case, that M satisfy both conditions of the Theorem 13. Since this is an

important case we state it explicitelly in the following corollary:

COROLLARY 18 Suppose the weight w satis�es !(s) =
P

k2Z w(2�0(s + k)) = !(0) > 0 for almost

every s. Then the lower bound in the TSDE encoding scheme is achieved i� for almost every t the

following two conditions hold true:

1. The eigenvalue �q(t) of M(t) is degenerate;

2. 1 + k1(t) � k2(t) = p� q

where k1(t); k2(t) are the left and right multiplicities of �q(t) as de�ned in 4.1.

Proof of Theorem 16
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It is clear that �opt and �
1#

opt from (127) and (129) achieve the lower bound in (122) because of (121)

and the construction of eigmax(WM;�0; 2�0). The only issue is to check whether the frame hypothesis

on WHg;�0;�0 is satis�ed. Using the previous lemma we have to check whether

�opt�
�
optj(t;s)+ �opt�

�
optj(t;s+1

2
) � ~A

for some ~A > 0 and a.e. (t; s). Since � = F � L and L 2 L1(2;GLq(C)) it follows that kL�1(t; s)k is

uniformly bounded, therefore L � L�j(t;s) � 
 > 0 for a.e. (t; s). Hence:

�opt�
�
opt
j(t;s)+ �opt�

�
opt
j(t;s+1

2
) � 
(FF �j(t;s) + FF �(t;s+1

2
))

and (127) is then a su�cient condition.

To show now that it is necessary also, we use the upper bound L � L�j(t;s) � � < 1 for some �nite

� > 0 and a.e. (t; s). Then if H2(g) holds true we get:

�(FF �j(t;s) + FF �j(t;s+1
2
)) � �opt�

�
opt
j(t;s) + �opt�

�
opt
j(t;s+1

2
) � p ~A

and thus (127).

The near-optimal solution is easily obtained using the following observation. Condition (127) is

structurally stable because for every (t; s), rank(FF �j(t;s)) = q � p

2 . Thus a small perturbation in

L1(2;Cp�q)-sense of F would make (127) hold true. However by the continuity of the approximation

error with respect to the window � (see the argument used in the proof of Theorem 13) we get a

perturbation that increases the approximation error by no more than " and makes (127) hold true. This

concludes the proof. 3.

Proof of Corollary 18

If W(s) = !(0)Ip then the columns of F can be chosen from the eigenvectors of M and the lower

bound condition reduces to an algebraic range condition: if � 2 eigspacemax(WM;�0; 2�0) then �(t; s)+

�(t; s+ 1
2) = Cp and thus the conclusion. 3

REMARK 19 In general the range condition from the proof is a necessary but not su�cient condition

for the attainability of the optimal bound. The equation (127) is equivalent to this range condition plus

a lower bound of some angle between these spaces. The angle should be de�ned between the orthogonal

complements within each range of their intersection.
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4.2.4 The Optimal TSDD

The encoding scheme using a time-shift division decoder (TSDD) is shown in �gure 3 and involves the

following con�guration:

g1
mn

= g1
m;2n;�0;�0

g2
mn

= g2
m;2n+1;�0;�0

g1#
mn

= g#
m;2n;�0;�0

g2#
mn

= g#
m;2n+1;�0;�0

(132)

where �0�0 2 [12 ; 1] and g
1; g2; g# are the generating windows. The approximation error is similar to the

TSDE case:

e1+2;TSDDst = e(W;M; �1;�#;�0; 2�0) + e(W;M; �2;�#;�0; 2�0)

The partial optimal TSDD with �xed decoder has been obtained in Theorem 5, case B8, as:

�1so = �2so = pW�#(�#
�
W�#)�1 (133)

e1+2;TSDD
st = 2eso(M;W; �#;�0; 2�0) (134)

Note the similarity to (120),(121) thoughM andW have switched their places. The problem is formally

equivalent to two one-channel problems as in the TSDE case. Since MW has the same spectrum as

WM, it follows immediately the lower bound for the optimal error is:

e1+2;TSDD
st;opt � 2eopt(WM;�0; 2�0) (135)

Clearly the �# which achieves the lower bound in (135) is given by:

�#opt = F# � L# (136)

with F# 2 eigmax(MW;�0; 2�0), L
# 2 L1(2;GLq(C)). Using (133) we obtain for �

�opt = F �L (137)

with

F = WF#(F#�W2F#)�1=2 2 eigmax(WM;�0; 2�0)

L = p(F#�W2F#)1=2(F#�WF#)�1L#�� 2 L1(2;GLq(C))
(138)

The achievability of the lower bound depends now upon the validity of the frame hypothesis onWHg;�0;�0

as in the TSDE case. Moreover, the equations (136)-(138) are perfectly equivalent to the solution (127)-

(131) of the TSDE case. Thus we have obtained the following
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THEOREM 20 (TSDD) The optimal encoding scheme using a TSDD is identical to the TSDE case.

The optimal bound 2eopt(WM;�0; 2�0) is achieved under the same conditions and by the same solutions

as in the TSDE case.

REMARK 21 1. The corollary 18 equally applies to the TSDD case.

2. One can ask whether the s-Riesz basis and/or frame conditions on the decoder automatically

imply the corresponding conditions on the encoder. The answer to this question is analyzed in the next

subsubsection, devoted to the TSDED case.

4.2.5 The Optimal TSDED

In the TSDED scheme shown in �gure 4, we start with the structure

g1
mn

= gm;2n;�0;�0 g2
mn

= gm;2n+1;�0;�0
g1#mn = g#

m;2n;�0;�0
g2#mn = g#

m;2n+1;�0;�0

(139)

with �0�0 2 [1
2 ; 1] and g; g# 2 L2(R) the generating windows. Since the partial optimal of TSDE or

TSDD schemes involve a TSDED structure anyway, it is straightforward that the optimal TSDED case

should be identical to the optimal TSDE and TSDD. Indeed using the same arguments as before, one

can easily show that:

e1+2;TSDED
st;opt

� 2eopt(WM;�0; 2�0) (140)

and the optimal value, if achieved, is attained by (136)-(138). Hence the following theorem:

THEOREM 22 (TSDED) The optimal TSDED scheme coincides with the optimal TSDE and TSDD

schemes. The achievability conditions are the same as in Theorem 16.

We discuss now two interesting results concerning the behaviour of the encoding and decoding sets. Recall

the hypotheses of the optimal problems were stated in terms of the encoding sets. Here we establish the

connections with the decoding sets.

PROPOSITION 23 a) Suppose R 2 L1(2;GLp(C) \ Sym+
p (C)) and g# satis�es H1(g

#;�; �), i.e.

WHg#;�;� is a s-Riesz basis. Then g de�ned by

� = pR�#(�#
�
R�#)�1 (141)

satis�es H1(g;�; �) as well, i.e. WHg;�;� is a s-Riesz basis too.
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b) Suppose W;M 2 L1(2;GLp(C) \ Sym+
p
(C)) are the standard matrices associated to the weight,

respectively the autocovariance function. Suppose g# satis�es H2(g
#;�0; �0) and has the form

�# = F# � L# (142)

for some F# 2 eigmax(MW;�0; 2�0), L
# 2 L1(2;GLq(C)). Then g# satis�es also H1(g

#;�0; 2�0)

and g de�ned by:

� = pW�#(�#
�
W�#)�1 (143)

satis�es both H1(g;�0; 2�0) and H2(g;�0; �0).

REMARK 24 One may ask whether is was necessary to assume the special form for �# at part b.

The answer is a�rmative. Indeed, without assuming �# = F# � L# as above, the frame conclusion

H2(g;�0; �0) would not be true in general. Therefore the exact solutions of the partial optimal problems

should take into account this phenomenon: while the s-Riesz basis condition on the encoder follows easily

from the s-Riesz basis conditions on the decoder, the same thing does not happen for the frame condition.

Proof of Proposition 23

a) The conclusion follows easily since H1(g
#) means:

pA1 � �#
�
�# � pB1 (144)

for some A1; B1 > 0, and R 2 L1(2;GLp(C)) means c1 � R � c2 a.e. for some c1; c2 > 0. Hence

pA1c1 � �#
�
R�# � pB1c2 and

pA1c
2
1

B2
1c

2
2

� �#
�
�# = p2(�#

�
R�#)�1�#

�
R2�#(�#

�
R�#)�1 � pB1c

2
2

A2
1c

2
1

and thus H1(g).

b) The �rst claim H1(g
#;�0; 2�0) comes from �#

�
�# = L#�L# � kL#�1k�2 > 0. The conclusion

H1(g;�0; 2�0) follows from the part a). For the frame condition we use the Theorem 16. Repeating the

proof of this theorem we obtain that the only condition we have to check on � is the lower bound of the

form:

K(t; s) = � � ��j(t;s)+ � � ��j(t;s+1
2
) � pA

for some A > 0. We know that �# satis�es (144) and the similar inequality:

K#(t; s) = �# � �#�j(t;s) + �# � �#�j(t;s+1
2
) � pA2
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Using (143) and (142) we get:

K(t; s) = p2[W�#(�#
�
W�#)�2�#

�
Wj(t;s) +W�#(�#

�
W�#)�2�#

�
Wj(t;s+1

2
)]

� c3[WF# � F#�Wj(t;s) +WF# � F#�Wj(t;s+1
2
)]

Now we note that MWF# = F#� with � 2 L1(2;GLq(C)). Therefore:

M(t) �K(t; s) �M(t) � c3[F
#�2F#�j(t;s) + F#�2F#�j(t;s+ 1

2
)]

� c4K
#(t; s) � pc4A2

for some positive constants c3; c4 > 0 depending on �#;W and M. This proves H2(g;�0; �0) and hence

the Proposition. 3

4.2.6 The Optimal FSDE

The encoding-decoding scheme for the frequency-shift division encoder (FSDE) case is similar to the

TSDE case shown in Figure 2. The analog encoder and respectively side decoders are given by:

g1
mn

= g2m;n;�0;�0 g2
mn

= g2m+1;n;�0;�0

g1#
mn

= g1#2m;n;�0;�0 g2#
mn

= g2#2m+1;n;�0;�0

(145)

with �0�0 2 [1
2 ; 1] as before, and g; g

1#; g2# the generating windows. The approximation error obtained

before in (48) and (50) gives:

e1+2;FSDE
st = e(W;M; �;�1#; 2�0; �0) + e(W;N; �;�2#; 2�0; �0) (146)

The partial optimal FSDE with �xed encoder has been obtained in Theorem 5, case B9, as:

�1#so = pM�(��M�)�1 ; �2# = pN�(��N�)�1 (147)

and the error:

e1+2;FSDEst;so = eso(W;M; �; 2�0; �0) + eso(W;N; �; 2�0; �0) (148)

Note that unlike the TSDE case, the two terms are di�erent because N 6=M in general. The di�erence

is due to the meaning of stationarity: the signals are assumed stationary in time domain; this makes the

TSDE case so easy: both channels have the same M. However, in frequency domain we do not have

stationarity which results in di�erent M matrices.Unfortunately we are not able to obtain a closed form

solution for the optimal window in the FSDE case. We still can �nd lower and upper bounds for the
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optimal error and a subspace type condition for the optimal window g, though this subspace does not

necessary comes from an eigenvalue problem.

For the optimal error we proceed as follows. A lower bound is given as in the previous cases by the

two-channel optimal formula with adapted parameters. Thus:

e1+2;FSDE
opt

� 2eopt(WM; 2�0; �0) (149)

An upper bound of the optimal error is obtained by choosing a particular, yet interesting as we shall see

later, con�guration. Set �1# = �2# = � in (146) and obtain:

e1+2;FSDEst = e(W;M +N; 2�0; �0)

Thus the optimal value under this constraint is given by a formula similar to the one-channel case.

Obviously this will contain an upper bound for the optimal FSDE error:

e1+2;FSDE
opt

� eopt(W(M +N); 2�0; �0) (150)

Hence we can bound the optimal FSDE error by:

2eopt(WM; 2�0; �0) � e1+2;FSDE
opt � eopt(W(M +N); 2�0; �0) (151)

A direct computation shows that M and N commute (we shall discuss in x4.3 the exact structure of the
spectrum of these two matrices). However they do not commute withW in general, unless W (orM;N)

is (are) a multiple of identity. Suppose this is the case, namely W is a multiple of identity. Then the

lower bound is given by the smallest p � q eigenvalues of M, whereas the upper bound is determined

by the smallest p � q eigenvalues of M +N. Unfortunately the p � q eigenvalues of M that enter in

the smallest p� q eigenvalues of M +N are, in general, not the p� q smallest eigenvalues of M. Thus,

despite of the fact that eopt(WN; 2�0; �0) = eopt(WM; 2�0; �0) (since WN(t) �WM(t + �0�0)) we do

not obtain an exact formula for the optimal FSDE error.

Let us analyze now the optimal windows. Using (65), (148) turns into the following explicit formula:

e1+2;FSDEst;so = �0q

Z 1=p

0

ds

Z 1=q

0

dt tracefW(M+N) �WM�(��M�)�1��M �WN�(��N�)�1��Ng

Therefore the optimization problem turns into an in�nite number of �nite-dimensional optimization

problems: for each (t; s), we have to maximize the trace of:

I(�) = tracefWM�(��M�)�1��M +WN�(��N�)�1��Ng (152)
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over � 2 Cp�q subject to the constraints H1(g; 2�0; �0) and H2(g;�0; �0). An analysis of (152) shows

that � can be factorized in the usual way, � = F �L where F has orthonormal columns and L is invertible

in L1. The following Lemma is the �rst step toward this fact:

LEMMA 25 Let T 2 GLq(C) be an arbitrary change of coordonates in Cq . Then: I(�) = I(�T ) and I

de�nes a unique map from Lq(Cp), the space of all q-dimensional subspaces of Cp, into R+ denoted by

J as follows:

� 2 Lq(Cp) �! J(�) := I(�) ; where Ran� = � (153)

REMARK 26 J can also be de�ned on the space of rank q orthogonal projectors, since each � 2 Lq(Cp)

de�nes uniquely such a projector.

Proof The proof is straightforward since �(��M�)�1�� and �(��N�)�1�� are invariant under the

transformation � 7! � � T . Hence, for any two �1;�2 2 Cp�q of rank q such that Ran�1 = Ran�2,

I(�1) = I(�2). 3

This Lemma shows the optimal window is given by a � 2 Cp�q, Ran� � Lq(Cp) solution of the

following optimization problem:

Ran� = arg max
�2Lq(Cp)

J(�) (154)

Note that the optimizer may not be unique. However it always can be factorized as � = F � L with F a

p�q-matrix valued function whose columns are orthonormal vectors and L a q�q matrix valued function.

The s-Riesz basis condition H1(g; 2�0; �0) imposes to consider only those L that are in L1(2;GLq(C)).

There still remained to check the frame hypothesis H2(g;�0; �0). For this end we need the following

Lemma, similar to Lemma 15:

LEMMA 27 Suppose 2�0�0 =
p

q
� 1 with p; q relatively prime integers and WHg;2�0;�0 a WH s-Riesz

basis in L2(R). Then WHg;�0;�0 is a frame for L2(R) i� there is a constant A > 0 such that for almost

every (t; s) 2 2:

���j(t;s) +D���j(t+�0�0;s)D � pA (155)

where D is the p� p diagonal matrix whose (l; l) element is Dl;l = (�1)l and � is the p� q matrix given

by (37).
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Proof

Let g(2) = M2��0g be the 2��0-frequency modulation of g. By sorting the labels (m;n) into those

with even m and those with odd m, we have the following decomposition

WHg;�0;�0 =WHg;2�0;�0 [WHg(2) ;2�0;�0

Therefore WHg;�0;�0 is a frame i� WH(g;g(2) );2�0;�0 is a WH multiframe. The Zak transform of g(2) is:

G(2)(t; s) =
p
�0
X
k

e2�iktg(2)(�0(s + k)) = e2�i�0�0sG(t+ �0�0; s)

Then the �-matrix of g(2) is �(2) = e2�i�0�0sD�(t + �0�0; s). Since WHg;2�0;�0 is a WH s-Riesz basis,

with Proposition 3, case A.1, we obtain pA0 � ��� � pB0 for some A0; B0 > 0. Using again Proposition

3, case B,WH(g;g(2) );2�0;�0 is a WH multiframe (with frame bounds A;B) i� pA � ���+�(2)�(2)� � pB

for almost every (t; s) 2 2 and for some A;B > 0. The upper bound is immediate, whereas the lower

bound condition is equivalent to (155). This ends the proof of the Lemma. 3

Thus we have to check (155) for the optimizer of (154). Unfortunately the answer is negative. In

general, the optimizers of (154) do not satisfy (155) and the reason is the following: The de�nition of N

given by (51)-(52) is equivalent to

N(t) = DM(t + �0�0)D (156)

with D as in the statement of Lemma 27. Then one can easily check that:

J(�(t+ �0�0; s))j(t+�0�0;s) = J(D�(t+ �0�0; s))j(t;s)

Assuming the solution of (154) is unique (in terms of subspaces) and q < p we obtain DF (t+�0�0; s) =

F (t; s) where � = F � L. Then ���j(t;s) + D���j(t+�0�0;s)D = F (t; s)(LL�j(t;s) + LL�j(t+�0�0;s))F (t; s)
which makes (155) impossible. The only way in which (155) can be satis�ed is by the existence of two

subspace optimizers that cover the entire space Cp very much like in Theorem 13. In the generic case

(when the subspace optimizer is unique) the optimal error is not achieved by admissible windows (i.e.

windows that obey the frame and s-Riesz basis hypotheses) but for every " > 0 there is a near-optimal

solution within ", because of the continuity of the approximation error with respect to the windows.

Hence we obtained the following result:
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THEOREM 28 (FSDE) suppose (t; s) 7! Fopt(t; s) is a measurable solution of (154) whose columns

are orthonormal vectors in Cp. Then the optimal error has the lower bound:

e1+2;FSDE
st;opt = 2kwk1R(0) � �0q

Z 1=p

0

ds

Z 1=q

0

dt I(Fopt) (157)

The optimum is not achieved unless there are two such solutions F1 and F2 such that RanF1+RanF2 =

Cp a.e. (t; s) 2 2. In this case the admissible optimizers are parametrized by �opt = FoptL with

L 2 L1(2;GLq(C)). The decoding windows are obtained from (147).

In general, for every " > 0 there is an admissible near-optimum solution g, within " of (157).

REMARK 29 The term 2kwk1R(0) in (157) comes from the integral �0q tracefW(M +N)g over 2.

kwk1 =
R
w(x)dx stands for the 1-norm of the weight function and R(0) is the variance of the signal (i.e.

the autocovariance for lag 0).

4.2.7 The Optimal FSDD

In the frequency-shift division decoder case, the encoding-decoding scheme is similar to the TSDD case

shown in Figure 3. The analog encoders and side decoders are described by:

g1
mn

= g12m;n;�0;�0 g2
mn

= g22m+1;n;�0;�0

g1#mn = g#2m;n;�0;�0 g2#mn = g#2m+1;n;�0;�0

(158)

with �0�0 2 [12 ; 1] and g1; g2; g# the generating windows. The approximation error obtained through

(48) and (50) gives:

e1+2;FSDDst = e(W;M; �1;�#; 2�0; �0) + e(W;N; �2;�#; 2�0; �0) (159)

The solution of the partial optimal FSDD with �xed decoder, as found in Theorem 5, case B12, yields:

�1so = �2so = pW�#(�#
�
W�#)�1 (160)

and the error:

e1+2;FSDD#
st;so = eso(M+N;W; �#; 2�0; �0) (161)

The optimal FSDD sould minimize (161). This is equivalent to the one-channel optimization problem

having the matrix-valued autocovariance function M +N instead of M. Therefore the lower bound of

the optimal approximation error is

e1+2;FSDDst;opt � eopt((M +N)W; 2�0; �0) (162)
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and the optimizer is parametrized by �# = F#L#, F# 2 eigmax((M + N)W; 2�0; �0) and L# 2
L1(2;GLq(C)) with 2�0�0 =

p

q
. However it remains to check that g = g1 = g2 satis�es the s-Riesz basis

and frame hypotheses H1(g; 2�0; �0) and H2(g;�0; �0). First we need the following result proved with

the help of Lemma 27:

PROPOSITION 30 SupposeW;M+N 2 L1(2;GLp(C)\Sym+
p (C)) and g

# de�ned by �# = F#L#

for some F# 2 eigmax((M +N)W; 2�0; �0) and L# 2 L1(2;GLq(C)), satis�es H2(g;�0; �0). Then

g# satis�es H1(g
#; 2�0; �0) and g de�ned by � = pW�#(�#

�
W�#)�1 satis�es both H1(g; 2�0; �0) and

H2(g;�0; �0).

Proof

The claim H1(g
#; 2�0; �0) comes from �#

�
�# = L#�L# � kL��1k�2 � 0. The second claim

H1(g; 2�0; �0) follows from Proposition 23, part a). The frame condition H2(g; 2�0; �0) comes from

the previous lemma as follows: First, the condition we need to check is (155). Let:

K(t; s) = ���j(t;s) +D���j(t+�0�0;s)D

and similarly:

K#(t; s) = �#�#
�j(t;s) +D�#�#

�j(t+�0�0;s)D

By hypothesis and Lemma 27, K#(t; s) � pA for some A > 0. For M 2 L1(2;GLp(C) \ Sym+
p
(C)) we

have XMX� � kM�1k�1XX� . Therefore:

K(t; s) = p2W[�#(�#
�
W�#)�2�#

�j(t;s) +D�#(�#
�
W�#)�2�#

�
Dj(t+�0�0;s)]W

� p2k�#�W�#k�2kW�1k�2K#(t; s) � c1A

for some positive constant c1. This end the proof of the claim and hence of the Proposition. 3

This Proposition proves the optimizer g; g# de�ned above satis�es the s-Riesz basis hypotheses. Un-

fortunately in the cases of interest, the frame conditions is not satis�ed. Indeed, suppose �# is given

by �# = F#L# with F# 2 eigmax((M +N)W; 2�0; �0) and L# 2 L1(2;GLq(C)). The de�nition of

N given by (51)-(52) is equivalent to N(t) = DM(t + �0�0)D with D as in the statement of Lemma

27. Then note the following invariance (M+N)Wj(t+�0�0;s) = D(M +N)WDj(t;s) holds which implies

F#(t + �0�0; s) = DF#(t; s), unless the qth eigenvalue �q of (M +N)W is fully degenerate as in the
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hypothesis of Theorem 13. This invariance turns into:

�#�#
�j(t;s) +D�#�#

�j(t+�0�0;s)D = F#(t; s)[L#L#�j(t;s) + L#L#�j(t+�0�0;s)]F#(t; s)

and clearly the rank of this matrix is q < p, when 2�0�0 > 1. On the other hand, a similar perturbation

argument as in Theorem 13, shows that the approximation error can be arbitray close to the lower bound

in (162). Thus we obtained:

THEOREM 31 (FSDD) In the FSDD case, the optimal approximation error is:

eTSDDst;opt = eopt((M +N)W; 2�0; �0) (163)

although in general it is not achieved by any encoder-decoder satisfying the frame hypothesis H2(g;�0; �0).

For any " > 0 there are g1; g2; g# that satisfy the s-Riesz basis and frame hypotheses H1(g
1; 2�0; �0),

H1(g
2; 2�0; �0), H(g1; g2; 2�0; �0) and achieve for FSDD scheme an approximation error within " of the

optimal value (163). The optimal value is achieved by an admissible solution (i.e. one that satis�es

the above s-Riesz basis and frame hypotheses) only if the conditions in Theorem 13 with WM replaced

by W(M +N) are satis�ed in which case the optimizers are parametrized by �# = F#L# with F# 2
eigmax((M +N)W; 2�0; �0) and L# 2 L1(2;GLq(C)).

4.2.8 The Optimal FSDED

The frequency-shift division encoder and decoder case, similar to TSDED shown in Figure 4, has the

following equations:

g1mn = g2m;n;�0;�0 g2mn = g2m+1;n;�0;�0

g1#mn = g#2m;n;�0;�0 g2#mn = g#2m+1;n;�0;�0

(164)

leaving only two degrees of freedom g and g#. As in the TSDED case, the FSDED optimal problem

reduces to the previous case FSDD. Indeed, as we have seen in (160), the partial optimal FSDD with

�xed decoder already requires g1 = g2. Thus the optimizers of FSDD are also optimizers for FSDED and

conversly. Thus we obtained:

THEOREM 32 (FSDED) The optimal approximation error in the FSDED case is

eFSDEDst;opt = eopt((M +N)W; 2�0; �0) (165)

and is achieved under the same conditions as in Theorem 31. Moreover for every " > 0 there is a

near-optimal admissible solution g; g#, within " to (165).
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REMARK 33 The only new thing this Theorem brings, compared to Theorem 31, is that there is near-

optimal solutions of the form g1 = g2 = g for every " > 0. Again the proof of this fact follows the

perturbative arguments as shown in Theorem 13.

4.3 The Case W(s) = !(s)I

In this subsection we analyze the optimal solutions obtained before in the case W(s) is a multiple of the

identity matrix. Recall the operator W(s) is de�ned in terms of the weight function w(�) by (39) and

(42). Thus W(s) is a multiple of identity if and only if the function !(s) is a 1
p
-periodic function. This

means the following condition:

X
k2Z

w(�(s +
1

p
+ k)) =

X
k2Z

w(�(s + k)) (166)

for almost every s. A particular case is when w = 1[0;�] and then the approximation errors (16)-(17) are

computed as averages over an interval of length �, the translation step.

Except for the FSDE case, in all the other con�gurations, the optimal solution involves the computa-

tion of the eigenspaces of WM or W(M +N). When W is a multiple of the identity, the computation

reduces to the eigenproblem for M or M+N. In the rest of this subsection we �nd �rst the eigenvalues

and eigenvectors of M and M +N, and next we compute the optimal errors for two encoding-decoding

schemes (one-channel and FSDD cases).

Recall M is the Symp(C)-valued function introduced by (40). We pointed out in (41) some of its

properties. In fact M(t) is not only self-adjoint Toeplitz matrix, but it is also a nonnegative form as we

prove below. First note the following \quasi-periodicity" property of M(t):

E(t) �M(t) �E(t)� =M(t) (167)

where E(t) is the following p � p unitary matrix:

E(t) =

2
666664

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1

e�2�iqt 0 0 � � � 0

3
777775

(168)

Therefore E and M commutes, hence they have the same system of eigenvectors. A simple computation

shows the eigenvalues of E(t) are the p roots of e�2�iqt:

"r(t) = e�2�i
q

p
(t+ r

q
) ; r = 0; 1; : : : ; p� 1 (169)
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corresponding to the eigenvectors:

xr =
1p
p
[1 "r "2

r
� � � "p�1

r
]T (170)

Note at t = 0 these eigenvectors are the standard vectors that perform the �nite-dimensional discrete

Fourier tranform. The eigenvalues of M(t) are obtained by computing the quadratic form:

�r(t) =< xr;M(t)xr >=
1

p

p�1X
k;l=0

�k�l"
�(k�l)
r (t) =

p�1X
k=0

�k(t)"
�k
r (t)

because �k(t)"
k�p
r

= �k�p(t)"
k

r
. Furthermore, using the de�nition (38) of �r(t) we obtain:

�r(t) =
X
l2Z

e2�il
q

p
(t+ r

q
)R(

l

�
) (171)

Thus �r(t) is the discrete Fourier transform of the sequence fR( l
�
)g
l2Z evaluated at q

p
(t+ r

q
). Note

�r(t+
1

q
) = �r+1(t): (172)

relation that is useful in the localization problem treated in x4.6.
Suppose now R decays su�ciently fast (for instance jR(x)j � C

(1+jxj)1+
 , for some 
 > 0), then we can

apply the Poisson summation formula (see for instance [Gr�oc96]) and obtain:

�r(t) =
p
2��

X
l2Z

R̂(2��l � 2��

p
(qt+ r)) (173)

where R̂(!) = 1p
2�

R
e�i!xR(x)dx is the Fourier transform of R(�), and thus the spectral power density

of the original signal. The equation (173) shows also that �r(t) � 0 because the spectral power is always

nonnegative. Thus we proved M(t) is nonnegative de�nite and the eigenproblem for M(t) is completely

solved.

We study now the eigenproblem for N(t), de�ned by (51) and (52). A simple computation shows that

N(t) has the same \quasi-cyclicity" property as M(t), i.e. E(t)N(t)E(t)� = N(t). Therefore N(t) has

the same system of eigenvectors as E(t), namely (170). In particular this shows thatM and N commute.

The eigenvalues of N(t) are computed similar to those of M(t):

�r(t) =< xr;N(t)xr >=

p�1X
k=0

�k(t)"
�k
r
(t)

Explicitely, this turns into:

�r(t) =
X
l2Z

e2�il
q

p
(t+ r

q
+ q

2p
)R(

l

�
) = �r(t+

p

2q
) (174)
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Thus N has the same eigenvectors as M has at an argument shifted by p

2q
. This also proves that N is

nonnegative de�nite as well. These conclusions could have been obtained also from (156). Indeed, this

relation shows that N(t) has the same eigenvalues as M(t + �0�0) = M(t + p

2q
). However (174) shows

something more, namely these eigenvalues correspond to the same eigenvectors as �r(t)'s correspond to

for M(t). This remark allows us to write down immediately the eigenvalues of M+N:

�r(t) = �r(t) + �r(t) = 2
X
l2Z

e4�il
q

p
(t+ r

q
)R(

2l

�
) (175)

Note �r(�) is p

2q -periodic, whereas �r(�) and �r(�) are only p

q
-periodic.

Now we can obtain explicit forms for some approximations errors. We compute eopt(WM;�; �) and

eopt(W(M +N); 2�0; �0) where eopt(�; �; �) has been introduced in (115). The eigenvalues of WM are:

�r(WM)(t; s) = !(s)�r(t) ; r = 0; 1; : : : ; p� 1 (176)

To compute the optimal error we need to select the smallest p� q eigenvalues. Let I(t) denote an index

set of the smallest p�q eigenvalues. Thus for every r 2 I(t) and j 2 f0; 1; : : : ; p�1gnI(t), �r(t) � �j(t).

The index set I(t) may not be unique if the qth monotonically ordered eigenvalue is degenerate. In any

case, eopt(WM;�; �) turns into:

eopt(WM;�; �) = �q

Z 1=p

0

!(s) ds

Z 1=q

0

X
r2I(t)

�r(t) dt

Since !(s) is 1
p
-periodic, the �rst integral is 1

�p
kwk

L1
. Thus we obtain:

eopt(WM;�; �) =
kwk

L1

��

X
l2Z

R(
l

�
)

Z 1=q

0

X
r2I(t)

e
2�il
��

(t+ r

q
) dt (177)

For eopt(W(M+N); 2�0; �0) analog computations yield:

eopt(W(M +N); 2�0; �0) =
kwk

L1

��

X
l2Z

R(
2l

�
)

Z 1=q

0

X
r2I(t)

e
2�il
�0�0

(t+ r

q
) dt (178)

REMARK 34 1. Let us assume now the map t 7! ~R =
P

l
e2�il

q

p
tR( l

�
) is continuous and monotonically

decreasing on [0; t�] and increasing on [t�; p
q
], for some t� 2 [0; p

q
]. Then for a �xed t, the sum of the

smallest p�q eigenvalues is given by ~R(t+ r0

q
)+ ~R(t+ r0+1

q
)+ � � �+ ~R(t+ r0+p�q�1

q
) for some 0 � r0 � q.

Then, integrating over t 2 [0; 1
q
] we obtain:

Z 1=q

0

X
r2I(t)

�r(t) dt =

Z
I0

~R(t) dt
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where I0 = [t0; t0+
p�q
q
] is an interval of length p�q

q
containing t�. The monotonicity insures the contiguity

of I0. Then eopt turns into:

eopt(WM;�; �) =
kwk

L1

��

X
l2Z

R(
l

�
)e

2�il
��

(t0����1
2

)
sin( �l

��
(�� � 1))

�l

��

(179)

Furthermore, if the original signal has the correlation length smaller than 1
�
, i.e. R(x) = 0 for jxj � 1

�
,

then the approximation error turns into a very simple expression:

eopt(WM;�; �) =
�� � 1

��
kwk

L1
R(0) (180)

showing the decaying of the error proportional to 1� 1
��

as plotted in Figure 5, bottom.

2. For the other approximation error eopt(W(M +N); 2�0; �0) the anlysis can be done similarly.

3. The knowledge of the eigenvectors (170) allows one to explicitely construct the optimizing win-

dow(s). However, one has �rst to �nd for every t the largest eigenvalues of M or M +N and then to

select the right eigenvectors in the columns of �. Later on we give some example of optimal windows.

4.4 The case M(t) = �0(t)I

The second special case we propose to treat separately is whenM(t) is a diagonal matrix for every t. Since

M(t) is already Toeplitz, it follows that it has to be a multiple of the diagonal matrix, i.e. M(t) = �0(t)I.

Such a situation can be achieved when R(x) = 0, for jxj � �, i.e. the signal correlation length is smaller

than �. One such a case is when the signal is white noise.

The solution of the optimization problems studied before is controlled in this case by the weight

function w(�). The optimizer subspace is given at every (t; s) by the q-dimensional invariant subspaces of

W(s) corrsponding to the largest q eigenvalues, i.e. eigspacemax(W(s); p; q). One case easily see that

the optimization problem (154) reduces also to eigspacemax(W(s); p; q). The eigenvectors of W(s) are

given by:

yr(s) = [0 : : : 0 1 0 : : : 0]T (181)

i.e. by the canonical basis of Cp (the only \1" is on the r + 1st position in (181), 0 � r � p � 1). The

eigenvalues of W(s) are:

Spec(W(s)) = f!(s); !(s + q

p
); : : : ; !(s+ (p� 1)

q

p
)g (182)
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or, since p and q are relatively prime:

Spec(W(s)) = f!(s); !(s + 1

p
); : : : ; !(s +

p� 1

p
)g (183)

The selection of yr 's is based on the largest q eigenvalues, respectively the largest q positive numbers of

(182). When the qth eigenvalue is degenerate, the invariant space is not unique. In fact there are in�nitely

many possible choices, i.e. eigspacemax(W; p; q) has an in�nite cardinal. Let !r(s) = !(s + r q
p
). Note

the following \twisting" relation, similar to (172):

!r(s +
1

p
) = !�(r)(s) (184)

where � is a permutation of f0; 1; : : : ; p� 1g. This relation will be useful in the localization analysis of

the optimal window.

We analyze now the optimal approximation error eopt given in (115). ForM (t) = �0(t)I this expression

turns into:

eopt = �q

Z 1=q

0

�0(t)dt

Z 1=p

0

X
r2I(s)

!(s +
r

p
)ds (185)

where I(s) is the index set of the p � q labels corresponding to the smallest eigenvalues in (183). Using

the de�nition of �0(t) (38) we obtain:

Z 1=q

0

�0(t)dt =
1

q
R(0)

Thus:

eopt = �R(0)

Z 1=p

0

X
r2I(s)

!(s +
r

p
)ds (186)

REMARK 35 The upper bound obtained in (116) is more transparent here: �rst note that:

1

p� q

X
r2I(s)

!(s +
r

p
) � 1

p

p�1X
r=0

!(s +
r

p
) (187)

Then the integrand in (186) is bounded above by p�q
p

R 1=p
0

tracefW(s)gds = p�q
p

1
�
kwk

L1
. Thus we get:

eopt � (1� 1

��
)R(0)kwk

L1
(188)

The equality in (187) is achieved only for W(s) = !(s)I.
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4.5 Optimal Windows - Examples

Let us consider the stationary signal f given by the output of a 4-pole Markov process whose transfer

function is:

H(s) =
158:1s2(s2 + 60s+ 3002)

(s2 + 20s+ 1002)(s2 + 200s+ 10002)
(189)

We take the weight function w to be the characteristic function of the interval [0; �]. Thus:

R̂(�) = jH(i�)j2 ; R(x) =
1p
2�

Z 1

�1
ei�xR̂(�)d� (190)

we plot in Figure 6 the autocovariance function in time and frequency domains, respectively.

Let us consider now the one-channel optimal problem. We set � = 0:1. For every � � 10 such that

�� = p

q
� 1, we construct M(t) using (40). Then the optimal window is parametrized by:

�(t; s) = F (t) � L(t; s) (191)

where F 2 eigmax(M; p; q) and L 2 L1(2;GLq(C)). Let us consider the solution with

L(t; s) =

�
Iq ; t � 1

2q

Jq ; t > 1
2q

(192)

where Jq is the q � q matrix with 1 on the anti-diagonal ( (Jq)l;r = �l+r;q�1 , 0 � l; r � q � 1). Then

the optimal window g is uniquely determined by eigmax(M; p; q). We choose the columns in F to

be the eigenvectors of M, ordered according to the corresponding eigenvalues �0(t); : : : ; �p(t) of M.

Therefore, for those (t; s) where �0(t) > �1(t) > � � � > �q(t), F (t) is uniquely determined. Suppose this

nondegeneracy condition holds for almost every t. Then � does not depend on s, for s 2 [0; 1
p
] which in

turn implies G(t; s) is piecewise constant for every t and s 2 [0; 1]. The number of pieces is exactly p.

Therefore the optimal window g is piecewise constant on [0; �] and the number of pieces on this interval

is exactly p.

For our case (189), this situation takes place as it can be seen in the Figures 7{9.

For various � (i.e. p and q) we plot the p eigenvalues of M(t) as function of t (Figures 10{12), and

the optimal window obtained as described before (Figures 7{9). We point out this window is also a

Weyl-Heisenberg orthogonal basis generator. Thus the biorthogonal window g# coincides with a scaled

version of g. The exact normalization is 1p
p
g to have an orthonormal basis generator. The standard

biorthogonal generator to g is g# = 1
p
g.
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We prove when the signals are real, the optimal solution chosen as before is a real-valued function.

First the necessary and su�cient condition for a function to be real in terms of the Zak transform is the

following:

LEMMA 36 g 2 L2(R) is a real-valued function if and only if

G(t; s) = G(1� t; s) (193)

or, equivalently, i�:

�(t; s) = �(
1

q
� t; s) � Jq (194)

where G = Zak(g) is the Zak transform of g, � is the matrix representation (37) and Jq is the q � q

matrix with 1 on the anti-diagonal.

This lemma can be checked directly from the de�nition of the Zak transform (34) and of � in (37).

Next, we check the symmetry properties of the eigenvectors (170). Since in F (t) de�ned above, the

eigenvectors are ordered according to the eigenvalues, we have to �nd the symmetry relations of the

eigenvalues as well. Note the eigenvalues are proportional with �r(t) given in (171) or �r(t) + �r(t) with

�r(t) given in (174). Assume the signal is real. This implies the autocovariance function is real too and

then:

R(�x) = R(x) (195)

This symmetry of the autocovariance function implies immediatelly:

�r(
1

q
� t) = �p�r�1(t) ; �r(

1

q
� t) = �p�r�1(t) (196)

Therefore, if the 0-indexed column (i.e. the �rst one) of F at t is given by the eigenvector xr(t), then

at 1
p
� t the �rst column is given by xl(

1
q
� t) such that �l(

1
q
� t) = �r(t). Hence l = p� r�1. Similar for

the other columns. Thus, if r0(t); : : : ; rq�1(t) are indices of the eigenvectors appearing in the columns of

F (t), at 1
q
�t, the indices are r0(1q �t) = p�r0(t)�1; r1(1q �t) = p�r1�1; : : : ; rq�1(1q �t) = p�rq�1�1:

F:;l(t) = xrl(t)(t) ; F:;l(
1

q
� t) = xp�rl(t)�1(

1

q
� t)

Note that "r(t) de�ned in (169) obeies:

"r(
1

q
� t) = "p�1�r(t)
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hence:

xr(
1

q
� t) = xp�1�r(t)

Thus:

F:;l(
1

q
� t) = xrl(t)(t) = F:;l(t)

or:

F (
1

q
� t) = F (t) (197)

(Alternatively, (197) could have been obtained also by noting that M(1
q
� t) = M(t).) Note L(t; s) has

been chosen in (192) in such a way that we obtain:

�(
1

q
� t; s) = �(t; s) � Jq

which proves that g is real. The following result contains our �ndings so far:

THEOREM 37 When the autocovariance function is real, the optimal window can be chosen to be

real-valued.

4.6 Localization of the optimal windows

We continue in this subsection the anlysis of the optimal solution of the one-channel problem. The other

encoding-decoding schemes, except for the FSDE case, reduce to an equivalent one-channel optimal prob-

lem. The examples shown in the previous subsection suggest a \bad" localization in the time-frequency

domain. For a given autocovariance function R(�) and a weight w(�), the optimizer is parametrized via

(191), by some L 2 L1(2;GLq(C)), in general. In the examples shown in Figures 7{9, we made a

particular choice for L to obtain real-valued windows, namely (192). One can ask whether by appro-

priately choosing L, the \bad" time-frequency localization phenomenon observed before can be avoided.

The purpose of this subsection is to show for any choice of L, when the data satis�es some topological

condition, the optimizer g is not well localized in time-frequeny domain, in a sense that is made more

precise below.

Our method of proving requires the exact knowledge of the eigenvectors and eigenvalues. Thus we

shall assume either W(s) = !(s)Ip or M(t) = �0(t)Ip. The general case still remains an open problem,
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though some perturbative arguments may extend the nonlocalization results that we obtain, a bit further

than the mentioned cases.

For our purposes a window g is said well-localized in time-frequency domain if g 2 Q1;1[C(L1; l1) or
ĝ 2 Q1;1[C(L1; l1). The space Q1;1 and Wiener amalgam space C(L1; l1) has been introduced in A, by

(236), respectively (237). As it can be easily checked, if a function g is well-localized in time-frequency

domain (as de�ned above), then the Zak transform G is either a continuous function (if g 2 C(L1; l1) or

ĝ 2 C(L1; l1)), i.e. G 2 C(2;C), or the derivatives of G with respect to t and s are square integrable

(if g 2 Q1;1), i.e. G 2W 1;2(2;C). Thus, in order to prove g is not well-localized (or, equivalently, is bad

localized) in TF domain, we have to show that G 62 C(2;C) [W 1;2(2;C), i.e. G is discontinuous and

R R
2
j@G
@t
j2dt ds =1 or

R R
2
j@G
@s
j2dt ds =1 (see [BeHeWa95]).

Consider now the data (R;w; p; q) (the autocovariance and weight functions and �� = p

q
� 1) for the

one-channel optimal problem. With this data we construct the matrix-valued functions M and W as in

(40) and (42). For every (t; s) we denote by �j(t; s), j = 0; : : : ; p�1, the p real eigenvalues ofW(s)M(t)

ordered monotonically decreasing. Consider now the following sets of points of 2 = [0; 1
q
]� [0; 1

p
]:

D0 = f(t; s) 2 2 j �q(t; s) > �q+1(t; s)g (198)

D1 = D0 nD0 (199)

Note D0 agrees with the de�nition in (109), and D1 = [p�q
l=1Dl with the same notations as in (109).

The data (R;w; p; q) is said nondegenerate on a dense subset if D0 is dense in 2.

The data is said su�ciently regular if the spectral projector associated to the eigenvalues � > �q+1(t; s)

is continuous on D0.

For instance is enough thatM andW are continuous for the data (R;w; p; q) to be su�ciently regular

(see Proposition 9). Hence, when the data is su�ciently regular and nondegenerate on a dense subset,

D1 is a closed subset with empty interior in 2. This also shows the following property:

LEMMA 38 Suppose (R;w; p; q) is a data su�ciently regular and nondegenerate on a dense subset.

Let f : 2 ! R be a function such that on D0 � 2 it takes only values on a discrete set (for instance

f0; 1; : : : ; p� 1g). Then, if f is continuous it follows that f should be constant on 2.

The next lemma extends the previous result to multi-valued maps (or selection maps):

55



LEMMA 39 Suppose the data (R;w; p; q) is su�ciently regular and nondegenerate on a dense subset.

Let f0; : : : ; fp�1 : 2 ! Cp be p continuous vector-valued maps on 2 such that at every point (t; s) 2 2,
ff0(t; s); : : : ; fp�1(t; s)g form a basis in Cp. Let V : 2 ! Lq(Cp) be a q-dimensional subspace-valued

map on 2 such that on D0, V is spanned by some q vectors from ff0; : : : ; fp�1g, i.e. there is a selection

map � : D0 � f0; 1; : : : ; q � 1g ! f0; 1; : : : ; p� 1g such that:

V(t; s) = spanff�(t;s;0)(t; s); : : : ; f�(t;s;q�1)(t; s)g ; 8(t; s) 2 D0 (200)

Then, if V is continuous on 2 with respect to the graph topology (or, equivalently, the orthonormal

projection onto V at every (t; s) is continuous with respect to the norm topology), then the selection

map is a permutation of the same index set I, i.e. Ran�(t1; s1; �) = Ran�(t2; s2; �) = I for every

(t1; s1); (t2; s2) 2 D0. Moreover, in this case V(t; s) = spanffi(t; s) ; i 2 Ig for every (t; s) 2 2.

Proof Despite of its rather long statement, the proof of this lemma is relatively simple. Suppose

D0 = [a2AHa is the decomposition of D0 into its arcwise connected components. Thus each Ha is an

open arcwise connected subset of 2. The continuity of V implies that �jHa
is a permutation of the same

index set Ia, Ran�(t; s; �) = Ia, for every (t; s) 2 Ha. Next, consider two neighborhing subspaces Ha1

and Ha2 such that Ha1 \Ha2 6= ;, where Ha is the closure (with respect to the usual euclidian topology)

of Ha in 2. This is always possible since there is no isolated subset Ha in D0 (recall D0 is dense). Now,

the same continuity argument implies that Ia1 = Ia2 and, furthermore, on the common boundary:

V(t; s) = spanffi(t; s) ; i 2 Ia1 = Ia2g ; (t; s) 2 @Ha1 \ @Ha2

where @Ha = Ha nHa is the boundary of Ha. This ends the proof of the lemma. 2.

REMARK 40 The two essential ingredients in this lemma are the continuity of V and the fact that the

arcwise connected components of D0 are not isolated. Thus, for every continuous curve 
 : [0; 1]! 2,

the intersection of its image with D1 is either empty or is made out of isolated points.

Now let us return to our optimization solution �. In the one-channel case, � is chosen in such a

way that Ran�j(t;s) is a q-dimensional subset of a family of q-dimensional subspaces. Moreover, at

(t; s) 2 D0 Ran�j(t;s) is constrained to a unique subspace. Thus we are in a position to check whether

V(t; s) = Ran�j(t;s) can be a continuous map on 2. Under regularity and density conditions of the initial

data, if V is continuous it follows the selection map is a permutation of the some index set of eigenvectors.
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But this is not possible when V is chosen to be spanned by the eigenvectors corresponding to the largest

eigenvalues because of twisting relations (172) and (184) as we prove next:

LEMMA 41 (The case W(s) = !(s)Ip) Suppose the data (R;w; p; q) is su�ciently regular and non-

degenerate on a dense subset, and, additionally, W(s) = !(s)Ip . Then, if (t0; s0) 2 D0, (t0; s0) and

(t0 +
1
q
; s0 +

1
p
) belong to di�erent connected components of D0, and every V 2 eigspacemax(WM; p; q)

is discontinuous.

LEMMA 42 (The case M(t) = �0(t)Ip) Suppose the data (R;w; p; q) is su�ciently regular and non-

degenerate on a dense subset, and, additionally, M(t) = �0(t)Ip. Then, if (t0; s0) 2 D0, (t0; s0) and

(t0 +
1
q
; s0 +

1
p
) belong to di�erent connected components of D0, and every V 2 eigspacemax(WM; p; q)

is discontinuous.

REMARK 43 The conclusions of these lemmas also imply that for any continuous curve 
 connecting

(t0; s0) to (t0 +
1
q
; s0 +

1
p
), there is at least one transversal intersection of the curves �q and �q+1, or,

since �q � �q+1, �q is not di�erentiable along that curve 
.

Proof of Lemma 41

In the case W(s) = !(s)Ip the eigenvectors are given by xr(t), r = 0; 1; : : : ; p � 1, given in (170).

Let �r(t) be the associated eigenvalue for M (t) as given in (171). Note �j(t; s) = !(s)��(j)(t) for some

permutation � depending on t. we prove the claim by contradiction. Suppose 
 : [0; 1]! 2 is a continuous

curve connecting (t0; s0) to (t0+
1
q
; s0+

1
p
). First note that M (t0+

1
q
) =M (t0), hence from (t0; s0) 2 D0

it follows (t0 +
1
q
; s0 +

1
p
) 2 D0 as well. Using Lemma 39, it follows that V(t0; s0) and V(t0 + 1

q
; s0 +

1
p
)

are spanned by the same eigenvector labels, say fr0; r1; : : : ; rq�1g � f0; 1; : : : ; p�1g. On the other hand

�r(t0 +
1
q
) = �r+1(t0) (see (172)). Thus it necessarily holds true:

q�1X
l=0

�rl(t0 +
1

q
) 6=

q�1X
l=0

�rl(t0) (201)

On the other hand V 2 eigspacemax(WM; p; q) that implies the eigenvalues of WMjV should be the

largest q eigenvalues ofWM. In particular, because of periodicity, we should have tracefWMjV(t0;s0)g =
tracefWMjV(t0+ 1

q
;s0+

1
p
)g. But this is a contradiction with (201). This end the proof of this lemma. 3.

Proof of Lemma 42

Note �rst that since W(s + 1
p
) is equivalent to W(s), if (t0; s0) 2 D0 then (t0 +

1
q
; s0 +

1
p
) 2 D0

as well. On D0, V is spanned by some q vectors of fy0; y1; : : : ; yp�1g, where yr is de�ned in (181).
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Note the correspinding eigenvalues of W are !r(s) = !(s + r q
p
). Suppose the conclusion of this lemma

is fale. Then there is a continuous curve 
 connecting (t0; s0) to (t0 +
1
q
; s0 +

1
p
) such that Vj
 is

continuous. In particular, using Lemma 39, it follows the eigenvalues of WjV(t0+ 1
q
;s0+

1
p
)(t0 +

1
q
; s0 +

1
p
)

are !r0 (s0+
1
p
); : : : ; !rq�1(s0 +

1
p
) where r0; : : : ; rq�1 are the indices of the largest q eigenvalues of W at

(t0; s0). Because of (184):

q�1X
l=0

!rl (s0 +
1

p
) 6=

q�1X
l=0

!rl(s0)

which is a contradiction with the maximality of the eigenvalues of WjV . 3
These two lemmas have the following conclusion:

THEOREM 44 Suppose the data (R;w; p; q) is nondegenerate on a dense subset. Additionally suppose

that either W(s) = !(s)Ip or M(t) = �0(t)Ip. Then any window de�ned by �(t; s) = F (t; s)L(t; s)

with F 2 eigmax(WM; p; q) and L 2 L1(2;GLq(C)) is bad localized in time-frequency domain, in that

g 62 C(L1; l1) [Q1;1 and ĝ 62 C(L1; l1) [Q1;1.

Proof

If the data (R;w; p; q) is not su�ciently regular, then the spectral projector onto the eigenvectors

corresponding to the largest q eigenvalues is discontinue and then g will have even less regularity than in

the case when the data is su�cently regular. Thus we can assume the data is su�ciently regular.

We have to prove two conditions: G is discontinuous and @G

@t
or @G

@s
is not square integrable over 2.

The discontinuity of G comes directly from the previous two lemmas because otherwise V = Ran� 2
eigspacemax(WM; p; q) would be continuous.

The nonintegrability condition is proved as follows. First note in any of the two cases W(s) = !(s)Ip

or M(t) = �0(t)Ip, G turns out discontinuous on at least a straight segment f(t0; s) ; js � s0j < "g or

f(t; s0) ; jt� t0j < "g parallel with one of the axes. Then by Fubini theorem:

Z Z
jt� t0j < "
js� s0j < "

dt ds j@G
@n

j2 =
Z

t0+"

t0�"
dt

Z
s0+"

s0�"
ds j@G

@n
j2 =

Z
s0+"

s0�"
ds

Z
t0+"

t0�"
dt j@G

@n
j2

where n is the normal direction to the segment (t in the �rst case, and s in the second case). Then one

of the inner integrals
R s0+"
s0�" j

@G

@n
j2ds or R t0+"

t0�" j
@G

@n
j2dt is in�nite (because a discontinuous function on the

line cannot have a square-integrable derivative) and therefore the left-hand side is in�nite as well. In

conclusion we obtain that @G

@t
and @G

@s
cannot both be in L2(2;C) which is equivalent to g 62 Q1;1. This

ends the proof of the Theorem. 3
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REMARK 45 1. The discontinuity of G comes as a result of the discontinuity of V 2 eigspacemax(WM; p; q).

This means the rank q projector-valued function associated to V that is uniquelly de�ned on D0, cannot

be extended to a continuous projector-valued function on 2.

2. As in the standard Balian-Low Theorem, the second part of non-localization (i.e. g 62 Q1;1) does not

come automatically from G discontinuous via a Sobolev embedding argument, because Sobolev embedding

theorem in dimension 2 does not require continuity for functions in W 1;2.

5 Near-Optimal Solution and Distortion-Rate Estimates

The previous section showed the optimal solution is not well-localized in the time-frequency domain.

Moreover, in the Frequency-Shift Division cases, the optimal solution does not satisfy in general the

frame condition H2(g;�; �), unless some very strong geometric conditions are satis�ed. Naturally, in

such cases we can ask to �nd a near-optimal solution. In this section we show in a case study how to

design or choose a near-optimal solution and next we obtain some asymptotic estimates regarding the

transmission rate when a \nice" window is used (i.e. a well-localized in time-frequency domain). In fact

the TF localization of the window is a �rst important factor in determining the rate. Thus for better-

localized windows, the �lter lengths used to implement the encoders and decoders are smaller and the

number of coe�cients in frequency label (i.e. m label) is smaller than in the non well-localized case.

5.1 Near-Optimal Solutions: A Case Study

Let us study closer the example introduced in subsection 4.5. Thus consider a signal f whose autocovari-

ance function is given by (190) and for the weight we choose w = 1[0;2�]. Consider � = 0:05 (note is half

the value considered in x4.5) and let us concentrate on the Time-Shift Division Optimal Problems. More

speci�c we shall consider the TSDED problem where the encoder is characterized by a window g and

the decoder is determined by a window g#. As proved in Theorem 22 the optimal problem reduces to a

one-channel problem with �equiv = 2� = 0:1. This latter problem has been analyzed in x4.5. The Figures
7-9 show some real-valued optimal windows. In general any optimal solution is bad-localized in TF plane

as we proved in Theorem 44. On the other hand we know for any " > 0 and �, there is a near-optimal

solution (g; g#) in that the criterion J(g; g#;R;w;�; �) is not larger than 1 + " times the optimal value

J1+2;TSED
st;opt

(R;w;�; �) given in (140). Our problem here is to �nd well-localized near-optimal solutions.

Suppose "max = 5% is the allowed tolerance to the optimal criterion.
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We start by choosing a particular window for the encoder and computing the best associated decoding

window. For this we use the solution of the partial optimal problem TSDED given in Theorem 5, case B

13. We choose a gaussian function for the encoding window. More speci�c, consider:

g(x) = e�1000x
2

(202)

for the encoder. For the partial optimal g# we use (90) and for the criterion (91). The numerical results

are compared in Table 1 (note that Jmax = 2kwk
L1
R(0) = 26:88 would be obtained for �� =1).

ARiesz and BRiesz are the Riesz basis bounds obtained for fgmn;�;2�g, whereas Aframe and Bframe are

the frame bounds obtained for fgmn;�;�g with 2�� = p

q
and " = (e1+2;TSDED

st;so
�e1+2;TSDED

st;opt
)=e1+2;TSDED

st;opt
.

The decoding window g# is plotted in Figures 13{16 for each case. Note how well-localized in TF domain

each window is. Basically we can very well approximate the window by compactly supported functions

in both time and frequency domain. Practically, this implies short �lters for both the analog encoder and

analog decoder.

We would like to have the criterion smaller than 1:05 times the optimal value. Notice the gaussian

window (202) satis�es this condition for all the redundancy values except p

q
= 6

5
and p

q
= 7

6
. For these

particular valuee we have to choose di�erent encoding windows. Here is how we proceed for these two

cases. In the �rst step we analyze the optimal window and �nd some frequency conditions. In the second

step we design an encoding window satisfying these constraints Finally, in the third step we adjust, if

needed, the decoding window to have a better time-frequency localization satisfying, at the same time

the near-optimality condition.

The optimal encoding windows given by:

� = F (t) �L(t; s)

with F 2 eigmax(M;�; 2�) (recall W = Ip in our case) and L 2 L1(2;GLq(C)) as in (192), are

represented in Figure 17 and 18. Note the symmetry axis in time domain has an o�set from the origin.

Thus the Fourier transform of the window has an imaginary component too. In any case, the frequency

plots suggest to choose encoding windows that have no DC components. And that what we do next.

The previous frequency constraint imposes to choose a window of zero mean. The s-Riesz basis and

frame constraints require the measure of the window support to be at least 1
�
. One simple choice satisfying
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these constraints is:

g(x) =

� �1 ; x 2 [��; 0]
1 ; x 2 [0; �]

(203)

shown in Figure 19. For this choice we obtain the results of Table 2.

The approximation error is less than 3% larger than the optimal value. The time domain plots of the

partial optimal duals for (203) are shown in Figure 20. Note the time localization of both the encoding

and decoding windows is very good. The frequency localization is not so good, but this is due to the

temporal discontinuities of these windows. For practical purposes, their form is good enough. Hence we

do not need a third step, to �lter the decoding window function. Other example is given in [Balan98],

where all these steps are e�ectively applied to obtain windows well localized in TF plane.

5.2 Rate and Distortion Estimation

Let us return to our transmision scheme in Figure 1. The digital encoders will encode only those mean-

ingful coe�cients. By meaningful we mean those coe�cients whose variance is greater than a threshold.

The labels of these coe�cients can be determined a priori, based on the autocovariance function R and

the encoding window g. Suppose �2

12
is this threshold. (This corresponds to a uniform quantizer with

interlevel �). As lower the threshold, as larger the number of coe�cients to be encoded and transmitted,

and hence as higher the rate. At the other limit, as higher the threshold as larger the distortion (i.e. the

reconstruction error). Thus there is a trade-o� between distortion and rate realized by this threshold.

However, in our case we want to keep the threshold �xed and realize the trade-o� by changing the re-

dundancy of the encoding scheme. In the following, the threshold is assumed �xed and the redundancy

is the free parameter. However, to obtain analytic expressions, we need to consider the asymptotic limit

�! 0.

The analysis is done in the following steps: �rst we compute the variance of the coe�cients < f; g1
mn

>

and < f; g2
mn

> that are outputed from the analog encoder. Next, using a Gaussian model for the signal,

we can estimate the number of bits (in average) needed to encode this coe�cient when the entropic

encoder is used. Thus we obtain an exact formula for the rate. Also we can obtain an upper bound

for the distortion when only a �nite number of coe�cients are sent. However, to obtain the qualitative

behaviour of these we shall make the asymptotic analysis for �! 0. We also make the assumption the

signal is real. This implies the autocovariance is a real and even function.

Here we make the analysis for one channel. The same result holds for all the two-channel cases,
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although some adjustment of the formula might be necessary because of di�erent encoding windows. We

assume the encoding window is su�ciently well localized in time frequency domain. For instance the

frequency band of the window is much smaller than the frequency range of the stochastic process (i.e. of

the spectral power).

First, let us evaluate the variance of the coe�cents. We denote by g the window that de�nes the en-

coder. Thus we are interested in estimatingE[jcmnj2];E[jRe(cmn)j2];E[jIm(cmn)j2] where cmn =< f; gmn;�;� >.

Assuming R 2 L2(R) and g 2 L4=3(R) \ L2(R) these variances are easily obtained as (for details see

[Balan98]):

�2
mn = E[jcmnj2] =

p
2�

Z 1

�1
d�R̂(�)jĝ(� � 2�m�)j2 �

p
2�kRk

L2
kĝk2

L4
�
p
2�kRk

L2
kgk2

L4=3
(204)

�2mn = E[jRe(cmn)j2] =
p
2�

4

Z 1

�1
d�R̂(�)je2�imn�� ĝ(� � 2�m�)

+ e�2�imn��ĝ(�� � 2�m�)j2 (205)

�2
mn

= E[jIm(cmn)j2] =
p
2�

4

Z 1

�1
d�R̂(�)je2�imn�� ĝ(� � 2�m�)

� e�2�imn��ĝ(�� � 2�m�)j2 (206)

Note in general the variances of the real and imaginary parts may depend on n. In any case, this

dependency is q-periodic.

The scheme works in the following way: in a q� time interval, say [N�; (N + q+1)�), the transmitter

has to send the meaningful coe�cients cm;n (or cm;n�d for some �xed delay d > 0) for n 2 fN;N +

1; : : : ; N + qg. The meaningful coe�cients are those given by �2mn � �2

12 or �2mn � �2

12 (when each real

and imaginary part is quantized separately). Using the Riemann-Lebesgue lemma (see [Rudin74]) there

exists a M > 0 such that for every jmj > M , �2mn � �2

12
. Thus we have to send only a �nite number of

quantized values.

In the second step of our analysis we have to assume a particular distribution for the signal. Suppose

the signal is gaussian. Then, when the entropic encoder is used, for the threshold � the number of bits

Rx needed to quantize a gaussian random variable x with zero-mean and variance E[jxj2] is given by:

E[jxj2] = �2

12
22Rx (207)
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(see [Davi72]). This yields the following rate:

Rate =
1

2q�

X
m;n

�2
mn

� �2

12

log2(
12

�2
�2mn) +

1

2q�

X
m;n

�2
mn

� �2

12

log2(
12

�2
�2mn) (208)

where we assume we encode independently the real and imaginary parts of cmn.

Let us analyze now the distortion obtain through this scheme. In (31) we obtained an upper bound

for the distortion in this transmission scheme. We now analyze further the terms in that formula.

Let g# the decoding window. Let S1 = f(m;n)j�2
mn

� �2

12
g, S2 = f(m;n)j�2

mn
� �2

12
g. Then the

reconstructed signal has the following form:

frecon =
X

(m;n)2S1

Q�(Re(< f; gmn >))g
#
mn

+ i
X

(m;n)2S2

Q�(Im(< f; gmn >))g
#
mn

Then:

p
Distortion � (Ekf �

X
m;n

cmng
#
mnk2L2

w

)1=2

+ (Ek
X

(m;n)62S1

Re(< f; gmn >)g
#
mn

+ i
X

(m;n)62S2

Im(< f; gmn >)g
#
mn
k2
L2
w

)1=2

+ (Ek
X

(m;n)2S1

(Re(< f; gmn >) �Q�(Re(< f; gmn >)))g
#
mn (209)

+ i
X

(m;n)2S2

(Im(< f; gmn >) �Q�(Im(< f; gmn >)))g
#
mnk2L2

w

)1=2

=
p
J +

p
J" +

p
Jq

where J represents the stochastic approximation error due to the incompleteness of the set fgmn;m;n 2 Zg
in L2(R); J" is the truncation error and represents those coe�cients that are excluded from encoding;

Jq is the quantization error and is due to the uncertainty introduced by the quantizer. Our problem is

to bound and control each term.

Now recall the upper bound given in Lemma 59, Appendix B. Let B# denote the norm of the

reconstruction operator T �
g#

: l2;1 ! L2w. By the lemma above, an upper bound for this norm is:

B# � B2;1 :=
X
n

k
X
k

w(�+ k

�
)jg#(�+ k

�
� n�)j2k

L1(0; 1
�
)

For an arbitrary distribution of < f; gmn >, the di�erence jRe(< f; gmn >)�Q�(Re(< f; gmn >))j � �
2

which implies E[jRe(< f; gmn >) � Q�(Re(< f; gmn >))j2] � �2

4
. The same relation holds true for
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the imaginary part too. However, if we assume the signal f is gaussian, the upper bound becomes �2

12

instead of �2

4 . The same thing is obtained if we assume the < f; gmn > is uniformly distributed on each

quantization interlevel. Anyway in general we obtain:

Jq � B#�2

4
sup
n

(#S1n +#S2n) (210)

where S1n = f(m;n) 2 S1g, S2n = f(m;n) 2 S2g. Assuming symmetry between the distribution of real

and imaginary parts of the coe�cients cmn we get:

Jq � 2B2;1�2

4
(#S) (211)

where S = fmjE[jcmnj2] � �2=12g. We give now a rough evaluation of the cardinality of S based on

(204) and the following assumptions: R̂(�) is concentrated in a band of size 2bR (2 because R̂ is even in

frequency domain - recall we assumed real-valued signals) and the support of ĝ is much narrower than

2bR. Then the number of coe�cients is roughly constant and it is given by:

#S � 2bR
2��

=
bR
��

Thus:

Jq �
bRB

2;1

2��
�2 � C �2 (212)

which says that Jq decays to 0 as �
2 when �! 0.

For the truncation error, using again Lemma 59 (see Appendix A) we obtain a �rst estimate of the

form:

J" � B2;1(sup
n

X
m62S1n

E[jRe(cmn)j2] + sup
n

X
m62S2n

E[jIm(cmn)j2])

Next, assuming again a symmetry in the distribution of the real and imaginary part we obtain:

J" � 2B2;1 sup
n

X
m62S

E[jcmnj2] = 2B2;1
X
m62S

�2
mn

with S = fmj�2mn > �2

12 g. Assuming S = [�M;M ] we obtain:

J" � 2
p
2�B2;1

X
jmj�M

Z 1

�1
R̂(�)jĝ(� � 2�m�)j2d� (213)

The assumptions made before to obtain (212) would now give J" = 0. Thus if we assume that both the

autocovariance function and the window are band-limited, we get rid of the truncation error provided we

take into account all the (�nite) non-zero coe�cients.
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Another (more realistic) model of R and g is to assume that both decay in frequency domain as:

jR̂(�)j � C1

(1 + j�j)a ; jĝ(�)j � C2

(1 + j�j)b (214)

with a; b > 1. The assumption on R̂ is particularily useful when we assume that our signal is the output

of a linear system excited by white noise. Then R̂(�) = jH(i�)j2 where H(s) is the linear system transfer

function. We shall give an asymptotic estimation of the rate and the truncation and quantization errors.

We start by estimating the variance �2
mn

:

�2
mn

=
p
2�

Z 1

�1
jR̂(� + �m�)j � jĝ(� � �m�)j2d�

� C0
Z 1

�1

d�

(1 + j� + �m�j)a(1 + j� � �m�j)2b

� C0

(�m�)2b

Z 0

�1

d�

(1 + j� + �m�j)a +
C0

(�m�)a

Z 1

0

d�

(1 + j� � �m�j)2b

� C0

(�m�)2b

Z 1

�1

d�

(1 + j�j)a +
C0

(�m�)a

Z 1

�1

d�

(1 + j�j)2b �
C

mr
(215)

where r = min(a; 2b) and an estimate of C is:

C = 2C1C2

p
2�(

1

(a � 1)(��)2b
+

1

(2b� 1)(��)a
) � C0

�r

Next we estimate M� such that for jmj > M�, �
2
mn <

�2

12 . Using (214) we obtain for M� the following

estimate:

M� =
(12C)1=r

�2=r
(216)

Therefore we have to encode at most 2M� + 1 coe�cients. This gives the following estimate for the

quantization error Jq (see (211):

Jq � 2B2;1�2

4
(2M� + 1) � Cq�

2(1�1
r
) (217)

with an estimate of Cq given by Cq = (12C)1=rB2;1.

For the truncation error we use the following estimate (see (213)):

J" � 2
p
2�B2;1

X
jmj�M�

C

mr
� ~C00

Z 1

M�

dx

xr
=

C00

M r�1
�

Using now (216) we obtain:

J" � C"�
2(1�1

r
) (218)
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with an estimate of C" given by C" = 2C
p
2�B2;1=(r � 1). We notice that J" and Jq are both of the

same order in �. Moreover, for a > 1 and b > 1
2 they both decay to zero as � ! 0. Thus by choosing

a su�ciently small � we can make J" + Jq < J . The moral of this computation was to show that

asymptotically (i.e. for � ! 0), the dominant term in the distortion (209) is given by the stochastic

approximation error J which depends on the redundancy proportional to 1� 1
��

(see (116).

We analyze next an asymptotic approximation of the rate, under the same assumptions as before. We

use (208) and again we replace �mn and �mn by �mn and we get:

Rate � 1

�

X
jmj�M�

log2(
12

�2
�2
mn

) =
2

�

X
1�m�M�

(log2
12C

�2
� r log2m)

Note that M� has been chosen so that log2
12C
�2 = r log2M�. Then, when we approximate the sum by

an integral we get:

Rate � 2r

�

Z
M�

1

(log2M� � log2 x)dx �
2r

� ln 2
M�

Thus:

Rate � (12C)1=r2r

� ln 2
��2=r � ��2=r

��
(219)

Note the upper bound of the rate goes to1 when �! 0, a very natural conclusion since we are going to

send more and more coe�cients. For a �xed �, the rate is (essentialy) proportional to the redundancy

1
��
, whereas, for su�ciently small �, the distortion is given by the stochastic part which is proportional

to 1� 1
��
. Thus the redundancy 1

��
parametrizes both the distortion and the rate plots, realizing thus a

trade-o� between two two quantities in the distortion-rate characteristics.

We end this section by evaluating the rate for the stochastic process studied in Subsection 5.1. We

analyze the rate for two encoding windows: the gaussian (202) and the step function (203), both after

norming. We took � = 1:0. The numerical results are given in the Table 3, where M q

� represents

the number of coe�cients sent in a q� time interval (� = 0:1 for each channel and �� = p

q
)) counting

separately the real and immaginary parts of each cmn, M� is the average on each � time interval, i.e.

M� = M q

�=q, and the rate Rate is computed with (208). We computed these values for both the

gaussian window and the step function. In Figure 21 we represent the typical distribution of the variance

coe�cients for the two windows. On the same plot is shown the coe�cient variance for di�erent n. Note

for gaussian window there is no di�erence for di�erent n's. For the step function, for some values of m
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the variance is di�erent for di�erent n (in particular at m = 1). In Figure 22 the rate-redundancy and

rate-distortion characteristics are shown. The redundancy is Red = q

p
. Note the almost linear dependence

of the rate to the redundancy. We computed only the stochastic part of the distortion when the decoding

window is the partial optimal dual to g. In Figure 22, the distortion is measured as the ratio J=Jmax

where Jmax = Ekfk2
L2
w

= R(0)kwk
L1

= 13:4. These results are for one channel. For two channels, one

should multiply the numbers by a factor of two. However the dependence rate-distortion is essentially

the same.

6 Conclusions

In this paper we analyzed the multiple representation transmission scheme when windowed Fourier en-

coders and decoders are used. A windowed Fourier encoder is obtained by computing �rst the Fourier

coe�cients of the signal multiplied by a translated window and next by quantizing and encoding these

coe�cients. The inverse of the product of the modulation parameter and window translation factor rep-

resents the redundancy of the encoder. When this number is subunital, the encoder gives only a partial

description of the signal, i.e. ignoring the quantization e�ects, the encoder is not invertible, or, which

is the same, any decoder would not be able to perfectly reconstruct the original signal. The windowed

Fourier decoder is obtained by an inverse operation (even though, as we mentioned before, it may not be

the inverse operator), namely by making a linear combination of the quantized coe�cients with trans-

lates and modulates of a certain window function. Thus a windowed Fourier encoding-decoding channel

is characterized by two distinct windows: the encoding window and the decoding window. Some natural

invariance properties meke us to choose respectively the same translation and modulation parameters for

the encoder and decoder.

In the multiple description scheme, two channels are used to transmite the signal (see Figure 1). Each

channel carries a partial description of the signal, but together they form an (over)complete representation

of the original signal. The side decoders have the task to estimate the original signal based on the partial

description that each channel carries. When the signal is assumed stationary with a known autocovariance

function and the error is measured as a weighted L2 norm, an exact analysis of the approximation error

is possible and this is what we did in this paper.

In Section 2 we introduced several con�guration schemes. More speci�c, the two encoders can be re-

alized a a time-shift or a frequency-shift of the other. This means that one of the windows is, essentially,
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either a time-shift or a frequency-shift of the other. We call the former scheme a Time-Shift Division

Encoder (TSDE), and the latter scheme a Frequency-Shift Division Encoder (FSDE). The same termi-

nology is appliable to the decoder: Time-Shift Division Decoder (TDED) and Frequency-Shift Division

Decoder (FSDD). When the division is performed at both the encoder and decoder we have a TSDED

or FSDED transmission schemes. These cases are shown in Figures 2{4, for Time-Shift Division.

The one-channel distortion, in the absence of quantization e�ects, is simply a weighted 2-norm of the

approximation error. In Section 3 we analyzed this error by using the Zak transform. In order to do

that, we assume the redundancy parameter is rational. This allows us to obtain reduce the problem to

a �nite dimension matrix algebra problem. The minimization of this criterion (i.e. the purely stochastic

distortion) yields an interesting optimization problem. In Section 4 we analyzed all the eight optimization

problems and we obtained explicit parametrization in all cases, except the FSDD case. The parametriza-

tion is a Karhunen-Lo�eve-type formula': the window is obtained by solving an eigenvalue-eigenvector

problem for a self-adjoint matrix of functions. The distortion is obtained by summing and then inte-

grating the lowest eigenvalues of this matrix (the exact formuae are obtained in the Subsection 4.2). In

the FSD cases, the optimal solution is shown not to satisfy generically the completeness hypothesis on

the encoders. More speci�c, the encoders are optimal, the two channels do not give an (over)complete

description of the signal. Thus, even though each channel would have the lowest distortion, when both

channels work, the reconstruction stochastic error (i.e. neglecting the quantization e�ects) is nonzero.

However, a near-optimal solution always exists and satis�s the (over)completeness requirement. A sec-

ond negative property of the optimizer is established in Subsection 4.6 where a non-localization result

(whether for TSD or FSD case) of the optimal window is proved. These non-localization results are of

the type of \no-go theorems" of Balian-Low and Heil-Walnut. The case FSDD is still open, though.

A case study is presented in Subsection 5.1. It is shown that well-localized windows can achieve

near-optimality. The optimal window, despite of being poorly localized, gives interesting information

about certain \frequency bands" that a near-optimal window has to avoid. This suggests an algorithm

of designing such windows (and therefore encoding-decoding schemes).

Finally, in Subsection 5.2, we analyzed the total distortion and the rate needed for transmission.

Asymptotic formulae with respect to the quantizing interlevel are obtained in that section. The redun-

dancy parameter is shown to trade-o� between distortion and rate.

Some problems are left for a further study. We mention here two such open problems. First is the
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non-localization phenomenon proved in Subsection 4.6. There, we proved this result assuming some

extra conditions (either M(t) is diagonal ofW(s) is Toeplitz). Thus we naturally ask whether thsi result

holds in the general case. The second problem concerns the near-optimal case. A better solution to the

designing problem would be to minimize a criterion containing not only the approximation error measure

but also a time-frequency localization norm of the window (for instance some mixed Sobolev norm).
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Appendices

A Known Results on Weyl-Heisenberg Frames and Riesz Bases

The abstract concept of frame has been introduced in the seminal paper [DuSch52] by R.J.Du�n and

A.C.Schae�er. Consider H a Hilbert space and I a countable index set. Then:

DEFINITION 46 A set of vectors of H, F = ffigi2I is caled a frame (for H) if there are constants

A;B > 0 such that for every f 2 H we have:

Akfk2 �
X
i2I

j < f; fi > j2 � Bkfk2 (220)

The constants A;B are called frame bounds. If we can choose A = B the frame is called tight. Note that

(220) immediately implies F is a complete set in H (i.e. the set of �nite linear combinations of fi's is

dense in H). Indeed if this is not so, there would exist a nontrivial f 2 H orthogonal to all of fi's. But

the �rst inequality would imply kfk = 0, leading to a contradiction.

The Riesz basis for its span concept generalizes the notion of an orthonormal set:

DEFINITION 47 A set of vectors of H, F = ffigi2I is called a Riesz basis for its span (or a s-Riesz

basis) if there are constants A;B > 0 such that for every �nite sequence of complex numbers c = fcigi2I
we have:

A
X
i2I

jcij2 � k
X
i2I

cifik2 � B
X
i2I

jcij2 (221)

The constants A;B are called s-Riesz basis bounds. If we can choose A = B, the s-Riesz basis is an

orthogonal equi-norm set. The span of F is de�ned as the closure of its linear span (i.e. of the �nite linear

combinations of fi's). If the span is H, we simply call F a Riesz basis. Note that (221) implies a l2-form

of linear independence of fi's. Moreover, the restriction that c be a �nite sequence can be dropped; we

can let c run through l2(I).

We introduce now several operators associated to frames and s-Riesz bases:

the analysis operator T : H ! l2(I) ; T (f) = f< f; fi >gi2I (222)

the synthesis operator T � : l2(I)! H ; T �(c) =
X
i2I

cifi (223)

the frame operator S : H ! H ; S = T �T ; S(f) =
X
i2I

< f; fi > fi (224)

the grammian operator G : l2(I)! l2(I) ; G = TT � ; G(c) = f<
X
j2I

cjfj ; fi >gi2I (225)
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The right inequalities in (220) and (221) show that the analysis and synthesis operators are bounded

and well-de�ned on their de�nition domains. Moreover, notice they are dual to one another (hence the �
notation). Thus the frame and grammian operators are well de�ned as well. The frame condition (220)

is equivalent to A � S � B, where the inequalities are in the sense of quadratic forms. Similarly, (221)

is equivalent to A � G � B in the same sense. Note that A > 0 implies S, respectively G, is invertible.

Then let us de�ne the following vectors. For a frame F :

~fi = S�1fi ; i 2 I (226)

and respectively, for a s-Riesz basis F :

f#
i
= T �G�1�i (227)

(where �i is the canonical basis of l
2(I), (�i)j = �ij the Kronecker symbol). Straightforward computations

show the following result:

PROPOSITION 48 A. Suppose F is a frame for H and consider the vectors (226). Then:

1. The set ~F = f ~fi; i 2 Ig is a frame for H with bounds 1
B
; 1
A
;

2. The synthesis operator associated to ~F is a left inverse of the analysis operator associated to F .
Similarly, the synthesis operator associated to F is a left inverse of the analysis operator ~T associated to

~F . Explicitly this means for every f 2 H,

X
i2I

< f; fi > ~fi =
X
i2I

< f; ~fi > fi = f (228)

3. Let E denote the range of T in l2(I). Then:

PE := T ~T � (229)

is the orthogonal projection onto E. Thus PE = ~TT � and ~T has the same range E as T .

B. Suppose F is a s-Riesz basis in H and consider the vectors f#
i

de�ned by (227).

1. The set F# = ff#
i
; i 2 Ig is a s-Riesz basis in H with bounds 1

B
; 1
A

and with the same span E as

F in H.

2. The analysis operator T# associated to F# is a left inverse of the synthesis operator T � of F , and
the analysis operator T is a left inverse of the synthesis operator T#� associated to F#. Explicitly, for

every c = (ci)i2I 2 l2(I),

<
X
j2I

cjfj ; ~fi >=<
X
j2I

cj ~fj ; fi >= ci (230)
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Thus the following biorthogonality relations hold:

< fi; ~fj >= �ij (231)

3. The operator:

PE = T �T# (232)

is the orthogonal projection onto the span E of F . Hence the following identity holds true as well:

PE = T#�T (233)

4. F is a frame for E . Moreover the formula (226) gives the same vectors as (227), i.e.

(SjE )�1fi = T �G�1�i (234)

The set ~F de�ned by (228) is called the standard dual frame (associated to F). The remarkable

property (228) represents a discrete resolution of identity, called also a reconstruction formula. Note

that (228) does not uniquely de�ne ~F . In other words, there may exist many dual frames which yield

reconstruction formulae as (228). In general there are in�nity many such duals, unless F is a Riesz basis,

in which case the dual is unique. Each such alternate dual frame gives an oblique (i.e. non-orthogonal)

projection onto E via (229).

The set F# de�ned by (227) is called the standard biorthogonal s-Riesz basis (associated to F).
(230) represents a reconstruction formula in the space of coe�cients and follows immediately from the

biorthogonality relations (231). Note that in general there are many alternate biorthogonal s-Riesz bases

that satisfy (231). Each of them will yield a reconstruction formula of type (230), although (232) will give

only an oblique projection onto E and therefore (233) is no longer true. These alternate biorthogonals

will have di�erent spans.

Weyl-Heisenberg frames and s-Riesz bases are simply WH sets that are frames or s-Riesz bases,

according to the previous de�nitions. Note that the de�nitions in De�nition 1 are simply particular

instances of De�nitions 46 and 47, applied to the WH context.

WH sets enjoy the remarkable property (which wavelet sets do not have, for instance) that the

standard dual frame or the standard biorthogonal s-Riesz basis is also a WH set. This follows from the

commutation relations:

ST� = T�S ; SM2�� =M2��S (235)
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Therefore, in the WH frame case, if ~g = S�1g, the WH set WH~g;�;� is the standard dual frame, whereas

in the WH s-Riesz basis case, if g# = T �G�1�(0;0) = (Sj
spanWHg;�;�

)�1g thenWHg#;�;� is the standard

biorthogonal s-Riesz basis.

The window ~g is called the standard dual frame window, whereas g# is called the standard biorthogonal

window. Note that in general there are many dual frame generators (respectively biorthogonal windows)

that give rise to alternate WH dual frames (respectively alternate WH biorthogonal s-Riesz bases). The

only case when the dual (or biorthogonal) is unique is when WHg;�;� is a Riesz basis, in which case the

standard dual frame is also the standard biorthogonal s-Riesz basis.

Beside this dual/biorthogonal construction, there are also results dealing with the density of the

lattice f(m�;n�);m;n 2 Zg and the localization of the generator g in the basis case. We summarize

these results in the following theorem. The interested reader may �nd the density results proved for the

lattice case in [Rief81], [DaLaLa96] or [Jans95], and for nonuniform sets in [RaSte95]. The localization

theorem due in its original form to Balian ([Balian81]) and Low ([Low85]) has been rigorously proved by

Coifman and Semmes (see [Daub90]) and di�erently (and much more simply) by Battle in [Batt88]. Later

on it was extended to a di�erent space of functions by Heil and Walnut (see [BeHeWa95]). Statements

of these results are summarized in the theorem below. The following spaces of functions turn out to be

very useful in the statement:

Q1;1 = ff 2 L2j
Z
x2jf(x)j2dx <1 ;

Z
�2jf̂ (�)j2d� <1g (236)

C(L1; l1) = ff j kfk
W (L1;l1) :=

X
n2Z

kf � 1[n;n+1]k1 <1g (237)

THEOREM 49 Consider WHg;�;� a WH Riesz basis. Then:

1. The lattice f(m�;n�);m;n 2 Zg has uniform density 1, i.e. � = � = 1. Moreover, if WHg;�;� is

a frame then �� � 1, whereas if WHg;�;� is a s-Riesz basis then �� � 1.

2.1 (Balian-Low) The generator g has an in�nite uncertainty product, i.e. g 62 Q1;1.

2.2 (Heil-Walnut) The generator is spread in time-frequency domain, i.e. g 62 C(L1; l1) and ĝ 62
C(L1; l1).

2

Moreover, when we have a union of WH sets, the following density and nonlocalization results apply:

THEOREM 50 Suppose WHg1 ;�;� [WHg2;�;� is a Riesz basis of L2(R). Then:
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1.(see [ChDeHe99]) �� = 1
2
;

2.(see [ZiZe97]) Either g1 62 Q1;1, or g2 62 Q1;1;

3.(see the proof of the previous result and the Heil-Walnut's proof in [BeHeWa95]) Either g1 62
C(L1; l1) and ĝ1 62 C(L1; l1), or g2 62 C(L1; l1) and ĝ2 62 C(L1; l1).

B Approximation of Stochastic Processes by Weyl-Heisenberg

Sets

Consider two WH sets WHg1;�;�,WHg2 ;�;� and a stationary stochastic signal f of zero-mean and second-

order statistics (i.e. autocovariance) given by R(t) = E[f (�)f (� � t)]. Assume the analysis operators of

the two WH sets are bounded on L2(R) (this means they are Bessel sequences). For such pairs of WH

sets we de�ne the frame operator denoted Sg1;g2;�;� by:

Sg1;g2;�;�(f) =
X
m;n

< f; g1
mn;�;� > g2

mn;�;� (238)

Note that Sg1;g2 ;�;� is bounded on L2(R) and its norm is bounded by the product of the two analysis

operator norms kTg1 ;�;�k � kTg2 ;�;�k. The problem is to give sense to and study the boundedness of this

frame operator when applied to the stochastic signal f .

First we introduce a couple of function spaces that are useful in the following. the general Wiener

amalgam space is de�ned for by

W (Lp; lq) = ff j kfk
W (Lp;lq) := kfkf � 1[n;n+1]kpgn2Zkq <1g (239)

where the (p; q) norm for p; q 6=1 is de�ned as

kfkf � 1[n;n+1]kpgn2Zkq = (
X
n2Z

(

Z n+1

n

jf(x)jpdx) qp ) 11 q: (240)

For p =1 or q =1 the de�nitions have to be adapted in the obvious way. For instance W (L1; l1) has

been de�ned earlier in (237). In particular we are concerned with W (L2; l1);W (L1; l1) and W (L1; l1).

For more properties of these spaces we refer the reader to [FoSt85]. Note that these spaces are translation

and dilation invariant. In particular the space does not change (although the norm does) if instead of

translation step 1 we consider the translation step �.

Another useful space is the weighted L2w space for some nonnegative function w � 0:

L2
w
= ff j kfk

w
:= (

Z 1

�1
w(x)jf(x)j2dx)1=2 <1 (241)
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With this weight w we construct also a weighted version of the Wiener amalgam space:

W�(L
2
w
; l1) = ff j kfk

W� (L2w;l
1) := sup

n2Z

Z 1

�1
w(x)jf(x� n�)j2dx (242)

L2
w
and W�(L

2
w
; l1) are in general no longer translation invariant, but for appropriate w they may be

(see below). Finally, we introduce also the following notion:

DEFINITION 51 A function f : R! C has the persistency length a if there is a � > 0 and a compact

set K congruent to [0; a]moda such that for every x 2 K, jf(x)j � �.

The following results are proved in [Balan98].

THEOREM 52 Suppose g1; g2 2W (L1; l1).

a) Let f 2 W (L2; l1) and �; � > 0. Then
P

m;n
< f; g1

mn
> g2

mn
converges unconditionally in the

L2
loc

topology, i.e. for every " > 0 and compact set K there are N";M" > 0 such that for every �nite set

S � Z2 n ([�M";M"]� [�N"; N"]),

k
X

(m;n)2S

< f; g1
mn

> g2
mn
k
L2(R) < "; (243)

moreover (243) converges also in the weak-� topology of W (L2; l1), i.e. for every h 2 W (L2; l1) and

" > 0 there are M"; N" > 0 such that for every N > N", M > M",

j < h; f �
X

jmj�M

X
jnj�N

< f; g1
mn

> g2
mn

> j < "

b) For every �; � > 0 there is some constant C = C(g1; g2;�; �) such that for every f 2 W (L2; l1)

the function de�ned by (238) is in W (L2; l1) and kSg1 ;g2;�;�fkW (L2 ;l1) � Ckfk
W (L2;l1). Therefore

Sg1;g2;�;� is a well-de�ned and bounded operator on W (L2; l1). Moreover, the constant C can be chosen

as C(g1; g2;�; �) = C�;�kg1kW (L1;l1) � kg2kW (L1;l1).

REMARK 53 It is well-known (see [HeWa89]) that if g1; g2 2 W (L1; l1) then g1 and g2 are Bessel

sequence generators; therefore Sg1 ;g2;�;� is well-de�ned and bounded on L2(R). However, in general even

if Sg1;g2;�;� is well-de�ned and bounded on L2(R), it does not need to be bounded on W (L2; l1).

REMARK 54 Similar results has been proved in [FeiGr�o97] but under a stronger requirement, namely

the generators to belong to the Segal algebra S0 which is a subspace of W (L1; l1) (for exact de�nitions

see [FeiGr�o97]).
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REMARK 55 The series (238) that locally de�nes Sg1 ;g2;�;� is not strongly convergent in W (L2; l1)-

norm in general.

The condition g1; g2 2 W (L1; l1) in Theorem 52 is not necessary for the boundedness of Sg1;g2;�;� on

W (L2; l1) (an example is given in [Balan98]). However the following result shows that it is a necessary

condition for g1 2W (L1; l2):

THEOREM 56 Let (g1; g2;�; �) be the given data and suppose the following:

1. For every f 2W (L2; l1), the series
P

m;n
< f; g1

mn
> g2

mn
converges unconditionally in L2

loc
;

2. The frame operator is bounded on W (L2; l1);

3. g2 has persistency length 1
�
.

Then g1 2W (L1; l2). 2

The above results refer speci�cally to W (L2; l1). We are interested to measure the error in L2w though.

The transition toward this space is given by the following result:

PROPOSITION 57 Suppose the nonnegative weight w has persistency length � and w 2 W (L1; l1).

Then the norm k � k
W (L2;l1) is equivalent to k � kW� (L2w;l

1) and thus the two Banach spaces are identical:

W (L2; l1) = W�(L
2
w
; l1). 2

Note that by equivalence we mean there are constants A;B > 0 such that for every f ,

Akfk
W (L2;l1) � kfk

W�(L2w;l
1) � Bkfk

W (L2;l1)

All these results show that if g1; g2 2 W (L1; l1) and the weight w has persistency length � and belongs

to the space W (L1; l1), then Sg1;g2;�;� is well-de�ned and bounded on W�(L
2
w ; l

1).

The picture is now the following. We would like to work with f 2 L2w because f 2 L2(R) is not

possible for stationary signals. However, extending Sg1;g2 ;�;� to L2w is tricky because L2w is not well-

adapted to the study of translations (in general it is not even a normed space). Therefore we introduce

W (L2; l1) = W�(L
2
w; l

1) under some mild conditions on the weight. On this space Sg1 ;g2;�;� is well-

de�ned and bounded, provided the conditions of Theorem 52 are satis�ed. Now, our stochastic signal is

given by an element f of L2(
;W (L2; l1)) where (
;�; �) is a probability space and L2(
;W (L2; l1)) is

the space of W (L2; l1)-valued functions on 
 that are square integrable with respect to the probability

measure �. Thus ! 2 
 7! f! = f (!) 2W (L2; l1) is a realization of this stochastic process. The goal is
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to approximate f by the coherent stochastic signal Sg1;g2 ;�;�f . We still measure the approximation error

in L2
w
:

J(g1; g2;�; �) = Ekf � Sg1;g2 ;�;�fk2w

which is �nite and bounded as follows:

J(g1; g2;�; �) �
Z



d�(!) sup
n

kTn� (1� Sg1 ;g2;�;�)f!k2w
� (1 + kSg1;g2 ;�;�kB(W� (L2w;l

1)))kfkL2(
;W� (L2w;l
1))

because Sg1;g2;�;� commutes with the translation of �. Note that

kSg1 ;g2;�;�kB(W� (L2w;l
1)) � C�;�;wkg1kW (L1;l1)kg2kW (L1;l1)

which turns the previous relation into:

J(g1; g2;�; �) � (1 + C�;�;wkg1kW (L1;l1)kg2kW (L1;l1))kfkL2(
;W (L2 ;l1)) (244)

All the above are summarized by the following theorem:

THEOREM 58 Suppose g1; g2 2W (L1; l1) and the nonnegative weight w has persistency length � and

w 2W (L1; l1). Then for every stochastic signal f 2 L2(
;W (L2; l1)) the approximation error given by

the WH pair (g1; g2;�; �) is bounded above as in (244). 2

In the asymptotic analysis of the distortion we shall need the following result (whose proof is in

[Balan98]):

LEMMA 59 Suppose g; w 2 W (L1; l1). Then T �g : l2;1 ! L2w de�ned by T �g (c) =
P

m;n2Z cmngmn is

well de�ned and bounded by:

kT �g k2B(l2;1;L2
w
) � 1

�

X
n

k
X
k

w(�+ k

�
)jg(�+ k

�
� n�)j2k

L1(0; 1
�
)

� C�;�kwkW (L1;l1)kgkW (L1;l1)kgk1 (245)

C Note on the Poisson Summation Formula

The computationsmade in subsection 3.1 used a special form of the Poisson summation formula. Actually,

despite its similarity, the formula we use is in fact the Parseval identity. We call it the weak form of
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the Poisson Summation Formula. It has been proved and used by many authors before (see the proof

of Theorem 4.1.5 in [HeWa89], or Theorem 2 in [ChuiShi93], or Lemma 3.2 in [DaLaLa96]). Below we

prove it for a di�erent set of functions:

LEMMA 60 (Weak Poisson Summation Formula) Suppose f1; f2 2W (L2; l1) and g1; g2 2W (L1; l1).

Then:

X
m

Z Z
dx dy f1(x)g

1(x)f2(y)g
2(y)e2�im�(x�y) =

1

�

X
m

Z
dx f1(x)g

1(x)f2(x +
m

�
)g2(x +

m

�
) (246)

and the integrals converge absolutely.

Proof

The \trick" is to periodize each integral in the left hand side. Notice f1g
1; f2g

2 2 L1(R) \ L2(R).

Then:

c1(m) :=

Z
dx f1(x)g

1(x)e�2�im�x =

Z 1
�

0

dx[
X
l2Z

f1(x+
l

�
)g1(x+

l

�
)]e�2�im�x

and the 2�
�
-periodic function x 7! P

l2Z f1(x + l

�
)g1(x + l

�
) is in L1[0; 2�

�
] \ L2[0; 2�

�
] because of the

following:

Z 1
�

0

j
X
l2Z

f1(x +
l

�
)g1(x+

l

�
)jdx �

X
l2Z

Z 1
�

0

jf1(x+
l

�
)j � jg1(x+ l

�
)jdx =

Z 1

�1
jf1(x)j � jg1(x)jdx = kf1g1kL1

Z 1
�

0

j
X
l2Z

f1(x+
l

�
)g1(x+

l

�
)j2dx � [

X
l

Z 1
�

0

jf1(x+ l

�
)j2 � jg1(x+ l

�
)jdx] � [

X
l

Z 1
�

0

jg1(x+ l

�
)jdx] =

=

Z 1

�1
jf1(x)j2 � jg1(x)jdx � kg1kL1 � kf1k2W (L2;l1)kg1k2W (L1;l1)

We denote by c2(m) a similar expression as for c1(m) where the product f1g
1 is replaced by f2g

2. Thus,

using the Parseval identity, the left hand side in (246) becomes:

X
m

c1(m)c2(m) =
1

�

Z 1
�

0

[
X
l2Z

f1(x+
l

�
)g1(x +

l

�
)] � [

X
l2Z

f2(x+
l

�
)g2(x+

l

�
)]dx

Now commuting all the summation symbols with the integral (allowed because of the absolute convergence

of the integrals) and extending again the integral over the entire real line, we obtain the right hand side

in (246) and thus the conclusion. 2

This lemma has the following corollary:
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COROLLARY 61 Suppose f 2 L2(
;W (L2; l1)) is a stationary stochastic signal of autocovariance

function R, and g1; g2 2W (L1; l1), then:

X
m

Z Z
dx dyw(x)R(x� y)e2�im�(y�x)g1(y � n�)g2(x� n�) =

=
1

�

X
m

R(
m

�
)

Z
dxw(x)g1(x� n� � m

�
)g2(x� n�) (247)

2

D Proof of Theorems 3 and 5

Proof of Theorem 3

The idea is to consider the frame operator associated toWHmultisetsWH(g1;g2);�;� andWH
( ~g1; ~g2);�;�

,

S1;~1 + S2;~2. For the �rst two cases we set g1 = g; g2 = 0, ~g1 = g# or ~g, ~g2 = 0. In the �rst case S1;~1

should be the orthogonal projector onto the range of S1;1 (which is the span of the s-Riesz basis); in the

second case S1;~1 = 1 and in the third case S1;~1 + S2;~2 = 1, the unit operator.

These conditions are more transparent if we change the representation. Instead of L2(R) we use

L2([0; 1]� [0; 1
p
];Cp) via the unitary transformation:

f 7! �(t; s) = [F (t; s) F (t; s+
q

p
) : : : F (t; s+ (p� 1)

q

p
)]�

where F is the Zak transform (34) of f and � denotes the hermitian conjugation. Note also that:

< g1; g2 >=

Z 1
p

0

ds

Z 1
q

0

dt tracef�1�2�g =:< �1;�2 >HS (248)

Then standard computations show that, for every f1; f2 2 L2(R) (or, equivalently, for every �1;�2 2
L2([0; 1]� [0; 1

p
];Cp)):

< f1; S1;~1f2 >=
X
m;n

< f1; g
1
m;n;�;� >< g2m;n;�;�; f2 >=

1

p

Z 1
p

0

ds

Z 1

0

dt��1�
2�1

�
�2

Thus the frame operator S1;~1+S2;~2 acting on L
2([0; 1]� [0; 1

p
];Cp) is given simply by the matrix multipli-

cation with 1
p
( ~�1�1

�
+ ~�2�2

�
) for every (t; s). This easily implies (57) and (59). Note that if any of (55),

(57) or (59) holds true for t 2 [0; 1
q
] then it automatically holds true for every t by the 1-periodicity of the

Zak transform in t. Note that a s-Riesz basis can always be viewed as a frame when one restricts oneself to

the span of the s-Riesz basis; the upper s-Riesz basis bound is then identical to the upper frame bound of
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this (restricted) frame. Hence ifWHg;�;� is a s-Riesz basis then B � 1
p
�max(��

�) = 1
p
�max(�

��) � 1
p
���

where �max(M ) is the largest eigenvalue of the matrix M . Thus we obtain the upper bound in (55).

Next we compute the standard biorthogonal generator, respectively the standard dual generator. In

the case A1 we impose 1
p
~��� to be the othogonal projection onto the range of 1

p
���. This clearly implies

(56).

In the case A2 we require for 1
p
~��� = I. Clearly (58) is a solution. Now any other solution will be given

by �# = ~�+ �� for some �� with < ~�;�� >=
R 1
p

0 ds
R 1
q

0 dt tracef~����g = 0. Thus k�#k
HS

� k~�k
HS

which can be drawn back to g's via (248). Since the standard dual frame generator is the dual frame

generator with the smallest norm (see [DaLaLa96]) we obtain that �� = 0 and hence (58).

Similarly, in case B we obtain the equation 1
p
( ~�1�1

�
+ ~�2�2

�
) = I or 1

p
~��� = I with ~� = [ ~�1 ~�2] and

� = [�1 �2]. The discussion follows the previous case and we thus obtain (60) and (61).

The lower bounds in (55), (57) and (59) are obtained by noting that the standard biorthogonal s-Riesz

basis, respectively standard dual frame, have 1
A
as upper bound. 2.

Proof of Theorem 5.

First a Lemma:

LEMMA 62 Let W1;W2;M1;M2 be p� p nonegative symmetric matrices and �1;�2 be p� q matrices.

Suppose further that either W1;M1 are invertible and �1 is of full rank, or W2;M2 are invertible and �2

has maximal rank. Then the solution of the following optimization problem:

e� = min
X2Cp�q

J(X) := tracefW1(I �X�1�)M1(I � �1X�) +W2(I �X�2�)M2(I � �2X�)g (249)

is unique and given by the solution X0 of the linear system:

W1M1�
1 +W2M2�

2 = W1X0�
1�M1�

1 +W2X0�
2�M2�

2 (250)

and the optimum in (249) is:

e� = tracefW1(I �X0�
1�)M1 +W2(I �X0�

2�)M2g (251)

Proof of Lemma

The variation of the criterion (249) due to a variation �X is:

�J = tracef�W1(I �X�1�)M1�
1�X� �W2(I �X�2�)M2�

2�X�g+ c:c:

= �tracef[W1(I �X�1�)M1�
1 +W2(I �X�2�)M2�

2]�X�g+ c:c:
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where c.c. stands for complex conjugated term.

By the variational principle �J must vanish for every �X; �X�. Thus we get (250). We have now to

prove that (250) has a unique solution. Consider the linear endomorphism on Cp�q de�ned by X 7!
T (X) = W1X�1�M1�

1 +W2X�2�M2�
2. This linear map de�nes also a quadratic form on the Hilbert

space (Cp�q ; <;>HS) of p � q complex matrices with scalar product < A;B >HS= tracefA�Bg. It is

straightforward to see that:

< X; T (X) >HS= tracefW 1=2
1 X�1�M1�

1X�W
1=2
1 +W

1=2
2 X�2�M2�

2X�W
1=2
2 g � 0

The hypothesis guarantees at least one of the two terms is strictly positive. Thus

< X; T (X) >HS� � < X;X >HS

with � > 0, and then T is invertible.

The only issue that remains is to check that X0 de�nes the minimum for (249). To do this consider

X = X0 +�. Then, an easy computation using (249) shows that:

J(X) = J(X0) + tracefW 1=2
1 ��1�M1�

1��W
1=2
1 +W

1=2
2 ��2�M2�

2��W
1=2
2 g � J(X0)

Thus X0 is a global minimum and (251) follows. 2.

Proof of the Theorem 5

Each of the partial optimal problems is solved by choosing appropriate W1;W2;M1;M2;�
1;�2 in

(249) as follows:

B1. W1 =W, M1 =M, �1 = 1
p
�1, W2 =M2 = 0, �2 = 0.

B2. W1 =M, M1 =W, �1 = 1
p
�1#, W2 =M2 = 0, �2 = 0.

B3. W1 =W, M1 =M, �1 = 1
p
�1, W2 =M2 = 0, �2 = 0 (for channel 1),

W1 =M1 = 0, �1 = 0, W2 =W, M2 =M, �2 = 1
p
�2 (for channel 2).

B4. W1 =M, M1 =W, �1 = 1
p
�1#, W2 =M2 = 0, �2 = 0 (for channel 1),

W1 =M1 = 0, �1 = 0, W2 =M, M2 =W, �2 = 1
p
�2# (for channel 2).

B5. W1 =W, M1 =M, �1 = 1
p
�, W2 =M2 = 0, �2 = 0 (for channel 1),

W1 =M1 = 0, �1 = 0, W2 =W, M2 =M, �2 = 1
p
� (for channel 2).

B6. W1 = W2 =W, M1 =M2 =M, �1 = 1
p
�1#, �2 = 1

p
�2#.

B7. W1 = W2 =W, M1 =M2 =M, �1 = 1
p
�1, �2 = 1

p
�2.

B8. W1 =M, M1 =W, �1 = 1
p
�#, W2 =M2 = 0, �2 = 0 (for channel 1),
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W1 =M1 = 0, �1 = 0, W2 =M, M2 =W, �2 = 1
p
�# (for channel 2).

B9. W1 =W, M1 =M, �1 = 1
p
�, W2 =M2 = 0, �2 = 0 (for channel 1),

W1 =M1 = 0, �1 = 0, W2 =W, M2 =N, �2 = 1
p
� (for channel 2).

B10. W1 =M, W2 = N, M1 =M2 =W, �1 = 1
p
�1#, �2 = 1

p
�2#.

B11. W1 = W2 =W, M1 =M, M2 = N, �1 = 1
p
�1, �2 = 1

p
�2.

B12. W1 =M, M1 =W, �1 = 1
p
�#, W2 =M2 = 0, �2 = 0 (for channel 1),

W1 =M1 = 0, �1 = 0, W2 = N, M2 =W, �2 = 1
p
�# (for channel 2).

B13. W1 = W2 =W, M1 =M2 =M, �1 = �2 = 1
p
�.

B14. W1 = W2 =M, M1 =M2 =W, �1 = �2 = 1
p
�#.

B15. W1 = W2 =W, M1 =M, M2 = N, �1 = �2 = 1
p
�.

B16. W1 =M, W2 = N, M1 =M2 =W, �1 = �2 = 1
p
�#.

This ends the proof of the Theorem. 2
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Captions for Figures and Tables

Figure 1: The Multidescription Transmission Block Diagram.

Figure 2: The Encoding-Decoding Scheme for the Time-Shift Division Encoder (TSDE): g1; g2 are

derived from the same g.

Figure 3: The Encoding-Decoding Scheme for the Time-Shift Division Decoder (TSDD): g1#; g2# are

derived from the same g#.

Figure 4: The Encoding-Decoding Scheme for the Time-Shift Division Encoder and Decoder (TS-

DED): g1; g2 are derived from the same g and g1#; g2# are derived from the same g#.

Figure 5: The optimal error in the deterministic model (top plot) and in the generic stochastic model

(bottom plot).

Figure 6: The autocovariance function of the stationary process (189) in time domain - left plot - and

the spectral power (i.e. frequency domain) - right plot.

Figure 7: The optimal solution for p = 2 and q = 1.

Figure 8: The optimal solution for p = 5 and q = 1.

Figure 9: The optimal solution for p = 3 and q = 2.

Figure 10: The eigenvalue maps for the case p = 2 and q = 1.

Figure 11: The eigenvalue maps for the case p = 5 and q = 1.

Figure 12: The eigenvalue maps for the case p = 3 and q = 2.

Table 1: Numerical results for the partial optimal problem with gaussian window (202).

Figure 13: The gaussian g given by (202) (top) and the partial optimal g# found in time domain for

various choices of p and q: Bottom left: p = 6; q = 5; Bottom right: p = 5; q = 4.

Figure 14: The partial optimal g# found in time domain for various choices of p and q: Top left:

p = 4; q = 3; Top right: p = 3; q = 2; Bottom left: p = 5; q = 3; Bottom right: p = 2; q = 1.

Figure 15: The gaussian g given by (202) (top) and the partial optimal g# found in frequency domain

for various choices of p and q: Bottom left: p = 6; q = 5; Bottom right: p = 5; q = 4.

Figure 16: The partial optimal g# found in frequency domain for various choices of p and q: Top left:

p = 4; q = 3; Top right: p = 3; q = 2; Bottom left: p = 5; q = 3; Bottom right: p = 2; q = 1.

Figure 17: The optimal encoding window for p = 6 and q = 5.

Figure 18: The optimal encoding window for p = 7 and q = 6.

Table 2: Numerical results for the partial optimal problem with the characteristic function window
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(203).

Figure 19: The encoding window g given in (203) in time (left plot) and frequency (right plot) domains.

Figure 20: The decoding window g# obtained as the partial optimal dual to g via (90) for p = 6 and

q = 5 (left plot) and p = 7 and q = 6 (right plot).

Table 3: Numerical results for the Rate Estimation.

Figure 21: The distribution of the variance of Re(cmn) for p = 4 and q = 3 when g is the gaussian

(left plot) or the step function (right plot).

Figure 22: The rate-redundancy (left plot) and rate-distortion (right plot) characteristics; o is for the

gaussian and + is for the step function.
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p=q ARiesz � 102 BRiesz � 102 Aframe � 102 Bframe � 102 Aframe

Bframe

e1+2;TSDED
st;so

e1+2;TSDED
st;opt

"

7=6 0.4309 8.5715 4.919 9.4805 1.92 3.9264 3.679 6.72%

6=5 0.5149 8.333 4.7907 9.6833 2.02 4.542 4.308 5.43%

5=4 0.6509 8 4.6195 10.207 2.21 5.396 5.218 3.41%

4=3 0.9002 7.5 4.397 10.981 2.50 6.644 6.492 2.34%

7=5 1.1139 7.1435 4.2834 11.365 2.65 7.533 7.3528 2.45%

3=2 1.444 6.669 4.2325 11.621 2.75 8.736 8.524 2.49%

5=3 1.983 6.01 4.4729 11.447 2.56 10.47 10.24 2.24%

7=4 2.233 5.7323 4.721 11.188 2.37 11.208 10.86 3.20%

2=1 2.827 5.136 5.653 10.271 1.82 13.254 12.984 2.08%
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p=q ARiesz � 102 BRiesz � 102 Aframe � 102 Bframe � 102 Aframe

Bframe

e1+2;TSDED
st;so

e1+2;TSDED
st;opt

"

7=6 8.5714 17.143 17.143 25.714 1.5 3.7534 3.679 2.02%

6=5 8.333 16.667 16.667 25 1.5 4.406 4.308 2.27%

Table 2:
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Gaussian window Step window

p=q � M q

� M� Rategauss M q

� M� Ratestep
7/6 11.66 96 16 119.7 102 17 115.4

6/5 12 80 16 117.6 85 17 111.6

5/4 12.5 64 16 113.2 68 17 107.3

4/3 13.33 42 14 108.3 37 12.3 97

7/5 14 70 14 103.4 60 12 93

3/2 15 24 12 98 20 10 85.4

5/3 16.66 36 12 90.4 30 10 78.6

7/4 17.5 40 10 84 40 10 73

2/1 20 10 10 73 9 9 64.46

Table 3:
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